Relations

Laura Kovács

Preliminaries - Sets Menge)

- A set is a group of objects;
- Objects in a set are called elements or members;
- One way of describing a set is by listing its elements inside braces.

For example: $\{7,14,21,28\}$;
finite set
set of natural numbers: $\mathbb{N}=\{0,1,2, \ldots\}$;
infinite set
set of integer numbers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} ;$ infinite set

- The set with 0 elements is the empty set, denoted by \varnothing.
- Set membership is denoted by the symbol: \in.

For example: $7 \in\{7,14,21,28\}$;

- Set nonmembership is denoted by the symbol: \notin.

For example: $8 \notin\{7,14,21,28\}$.

Preliminaries - Operation on Sets

Given two sets A and B.

- $\quad A$ is a subset (Teilmenge) of B, written $A \subseteq B$, if: every member of A is also an element of B.
Thus, $A \subseteq B$ is logically equivalent to $\forall x:: x \in A \Rightarrow x \in B$.
- A is a proper subset of B, written $A \subsetneq B$, if:
A is a subset of B and not equal to B.
Thus, $A \subsetneq B$ is logically equivalent to $A \subseteq B \wedge A \neq B$.
- The union of A and B is the set $A \cup B$ obtained by combining all elements of A and B;
- The intersection of A and B is the set $A \cap B$ of elements that are both in A and B;
- The complement of A is the set A of all elements that are not in A;
- The Cartesian product (karthesischen Produkt) of A and B is the set $A \times B$ of all pairs (a, b) such that $\mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}$.
One may write: $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$

Relations ${ }_{\text {arationocen }}$

Given the sets $A_{1}, A_{2}, \ldots, A_{n}$.

- An n-ary relation R is a subset of the Cartesian product $A_{1} \times A_{2} \times \ldots \times A_{n}$:

$$
R \subseteq A_{1} \times A_{2} \times \ldots \times A_{n}
$$

- A binary relation R is a subset of the Cartesian product $A_{1} \times A_{2}$:

$$
R \subseteq A_{1} \times A_{2}
$$

Note: Binary relation is also called a 2 -ary relation.

For $(a, b) \in R$ one also writes $a R b$.
Note: The statement aRb means that aRb is True.
If $\mathrm{A}_{1}=\mathrm{A}_{2}$ we say that R is a relation over A_{1}.
Examples: <, >, = are binary relations over numbers.

Relations - Example

Scissors-Paper-Stone game:

-Two players simultaneously select a member from the set \{Scissor, Paper, Stone\};

- If selections are the same, the game starts over;
- If selection differ, one player wins according to the picture.

Relations - Example

Scissors-Paper-Stone game:

-Two players simultaneously select a member from the set \{Scissor, Paper, Stone\};

- If selections are the same, the game starts over;
- If selection differ, one player wins according to the picture.

Relation: beats $\subseteq\{$ Scissor, Paper, Stone $\} \times\{$ Scissor, Paper, Stone $\}$

beats	Scissor	Paper	Stone
Scissor	False	True	False
Paper	False	False	True
Stone	True	False	False

beats $=\{($ Scissor, Paper), (Paper, Stone), (Stone, Scissor) $\}$

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

Examples:

$=, \geq$ are ??? binary relations over natural numbers;
$>$ is ??? binary relation over natural numbers;
Relation beats from the Scissor-Paper-Stone game is ???

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

Examples:

$=, \geq$ are reflexive binary relations over natural numbers;
> is not a reflexive binary relation over natural numbers;
Relation beats from the Scissor-Paper-Stone game is not reflexive.

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

Examples:
= is ??? binary relations over natural numbers;
$>, \geq$ are ??? binary relations over natural numbers;
Relation beats from the Scissor-Paper-Stone game is ???.

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

Examples:
= is a symmetric binary relations over natural numbers;
$>, \geq$ are not symmetric binary relations over natural numbers;
Relation beats from the Scissor-Paper-Stone game is not symmetric

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

- R is transitive if for every $x, y, z \in A$ it holds that if $x R y$ and $y R z$ then xRz .

$$
\forall x, y, z: x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z
$$

Examples:

```
= is ??? binary relations over natural numbers;
>,\geq are ??? relations over natural numbers;
```


Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

- R is transitive if for every $x, y, z \in A$ it holds that if $x R y$ and $y R z$ then xRz .

$$
\forall x, y, z: x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z
$$

Examples:
= is a transitive binary relations over natural numbers;
$>, \geq$ are transitive binary relation over natural numbers;

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

- R is transitive if for every $x, y, z \in A$ it holds that if $x R y$ and $y R z$ then xRz .

$$
\forall x, y, z: x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z
$$

- R is an equivalence relation if it is reflexive, symmetric and transitive.

Binary Relations - Properties

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

- R is reflexive if for every $x \in A$ it holds that $x R x$.

$$
\forall x: x \in A: x R x
$$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every $x, y \in A$ it holds that if $x R y$ then $y R x$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow y R x
$$

- R is transitive if for every $x, y, z \in A$ it holds that if $x R y$ and $y R z$ then xRz .

$$
\forall x, y, z: x, y, z \in A:(x R y \wedge y R z) \Rightarrow x R z
$$

- R is an equivalence relation if it is reflexive, symmetric and transitive.

Binary Relations

Let A be a set and $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$ an equivalence relation.
The set of all elements y such that $x R y$

- is called the equivalence class of x,
- and is denoted by $[\mathrm{x}]_{\mathrm{R}}$.

$$
[x]_{R}=\underbrace{\{y \mid x R y\}}_{\text {denotes "the set of all } y \text { such that } x R y \text { ". }}
$$

Binary Relations

Let A be a set and $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$ an equivalence relation.
The set of all elements y such that $x R y$

- is called the equivalence class of x,
- and is denoted by $[\mathrm{x}]_{\mathrm{R}}$.

$$
[x]_{R}=\underbrace{\{y \mid x R y\}}_{\text {denotes "the set of all } y \text { such that } x R y \text { ". }}
$$

Examples: $[1]_{=}=\{1\}$

Binary Relations - Example

Consider the relation \equiv_{5} over the integer numbers \mathbb{Z} defined as $\mathrm{i} \bar{\Xi}_{5} \mathrm{j}$ if and only if $\mathrm{i}-\mathrm{j}$ is a multiple of 5 . (where $\mathrm{i}, \mathrm{j} \in \mathbb{Z}$)

Is $\bar{\Xi}_{5}$ an equivalence relation?
If so, what is $[1]_{\overline{5}_{5}}$?

Binary Relations

Let $A=\{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

Binary Relations

Let $A=\{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

R with "1 jump":

Binary Relations

Let $A=\{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

R with "1 jump":

R with "2 jumps":

Binary Relations

Let $A=\{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

R with "1 jump":

R with " 2 jumps", " 3 jumps", ...:

Binary Relations - Transitive Closure/Hull (ransidicu Elile)

R^{t} is the transitive closure of R :

R with "1 jump":

R with "2 jumps", "3 jumps", ...:

Binary Relations - Transitive Closure/Hull (Transitive Hülle)

Let A be a set and $R \subseteq A \times A$ a transitive relation.

The transitive closure of R is (the smallest) relation R^{t} such that

- R^{t} contains $\mathrm{R}: \mathrm{R} \subseteq \mathrm{R}^{\mathrm{t}}$;
- it extends R by all those other (indirect) relations among elements that can be obtained using the transitivity of R.

Binary Relations - Transitive Closure/Hull (Transitive Hülle)

Let A be a set and $R \subseteq A \times A$ a transitive relation.

The transitive closure of R is (the smallest) relation R^{t} such that

- R^{t} contains $\mathrm{R}: \mathrm{R} \subseteq \mathrm{R}^{\mathrm{t}}$;
- it extends R by all those other (indirect) relations among elements that can be obtained using the transitivity of R.

Computing R^{t} :

- $R^{1}=R$;
- $R^{i}=R^{i-1} \cup\left\{(a, b) \mid \exists c::(a, c) \in R^{i-1} \wedge(c, b) \in R^{i-1}\right\}$, for every $i>1$.

$$
R^{t}=\cup_{i \geq 1} R^{i}=R^{1} \cup R^{2} \cup R^{3} \cup \ldots
$$

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.
Examples:
$>$ is ???
Relation beats from the Scissor-Paper-Stone game is ???

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.
Examples:
$>$ is irreflexive;
Relation beats from the Scissor-Paper-Stone game is irreflexive.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.

- R is antisymmetric if for every $x, y \in A$ it holds that if $x R y$ and $y R x$ then x and y are the same.

$$
\forall x, y: x, y \in A:(x R y \wedge y R x) \Rightarrow x=y
$$

Examples:
Are $\geq,=, \subseteq$ antisymmetric?

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.

- R is antisymmetric if for every $x, y \in A$ it holds that if $x R y$ and $y R x$ then x and y are the same.

$$
\forall x, y: x, y \in A:(x R y \wedge y R x) \Rightarrow x=y
$$

Examples:
Are $\geq,=, \subseteq$ antisymmetric? YES.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.

- R is antisymmetric if for every $x, y \in A$ it holds that if $x R y$ and $y R x$ then x and y are the same.

$$
\forall x, y: x, y \in A:(x R y \wedge y R x) \Rightarrow x=y
$$

- R is asymmetric if for every $x, y \in A$ it holds that if $x R y$ then $\neg(y R x)$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow \neg(y R x)
$$

That is, $x R y$ and $y R x$ cannot hold at the same time.

Examples:
Are $\geq,=,>$ asymmetric ?

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.

- R is antisymmetric if for every $x, y \in A$ it holds that if $x R y$ and $y R x$ then x and y are the same.

$$
\forall x, y: x, y \in A:(x R y \wedge y R x) \Rightarrow x=y
$$

- R is asymmetric if for every $x, y \in A$ it holds that if $x R y$ then $\neg(y R x)$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow \neg(y R x)
$$

That is, $x R y$ and $y R x$ cannot hold at the same time.

Examples:

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is irreflexive if for every $x \in A$ it holds $\neg(x R x)$.

$$
\forall x: x \in A: \neg(x R x)
$$

That is, no element x of A is in relation R with itself.

- R is antisymmetric if for every $x, y \in A$ it holds that if $x R y$ and $y R x$ then x and y are the same.

$$
\forall x, y: x, y \in A:(x R y \wedge y R x) \Rightarrow x=y
$$

- R is asymmetric if for every $x, y \in A$ it holds that if $x R y$ then $\neg(y R x)$.

$$
\forall x, y: x, y \in A: x R y \Rightarrow \neg(y R x)
$$

That is, $x R y$ and $y R x$ cannot hold at the same time.
R is asymmetric if and only if R is antisymmetric and irreflexive.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is non-symmetric (unsymmetrisch) if it is not symmetric.

$$
\forall x, y: x, y \in A:(x R y) \wedge \neg(y R x)
$$

- R is a total relation if for every $x, y \in A$ either $x R y$ or $y R x$ holds.

$$
\forall x, y: x, y \in A: x R y \vee y R x
$$

That is, R is defined on the entire A.
Note: Total relations are reflexive.
Examples:
Are \geq, $=$, beats total?

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is non-symmetric (unsymmetrisch) if it is not symmetric.

$$
\forall x, y: x, y \in A:(x R y) \wedge \neg(y R x)
$$

- R is a total relation if for every $x, y \in A$ either $x R y$ or $y R x$ holds.

$$
\forall x, y: x, y \in A: x R y \vee y R x
$$

That is, R is defined on the entire A.
Note: Total relations are reflexive.

Examples:
\geq is total; $\quad=$, beats are not total.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is acyclic (azyklisch) if there is no $x_{1}, x_{2}, \ldots, x_{n} \in A$ such that $x_{1} R x_{2} \wedge x_{2} R x_{3} \wedge \ldots \wedge x_{n-1} R x_{n} \wedge x_{n} R x_{1}$ holds.
$\forall \mathrm{n}: \mathrm{n} \in \mathbb{N}$:
$\left(\neg\left(\exists x_{1}, x_{2}, \ldots, x_{n}: x_{1}, x_{2}, \ldots, x_{n} \in A: x_{1} R x_{2} \wedge x_{2} R x_{3} \wedge \ldots \wedge x_{n-1} R x_{n} \wedge x_{n} R x_{1}\right)\right)$

Note: Acyclic relations are irreflexive.

Example: > is acyclic.

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
- R is reflexive;
- R is transitive;
- R is antisymmetric.

Example: \geq is a partial order over \mathbb{N}.
Division / is a partial order over \mathbb{N}.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
- $\quad R$ is reflexive;
- $\quad R$ is transitive;
- $\quad R$ is antisymmetric.

Example: \geq is a partial order over \mathbb{N}.
Division / is a partial order over \mathbb{N}.

- R is called a total order or a linear order (lineare/totale Ordnung) if
- R is a partial order;
- R is a total relation.

Example: \geq is a total order over \mathbb{N}.
 Division / is not a total order over \mathbb{N}.

Binary Relations - Properties
 Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
- $\quad R$ is reflexive;
- R is transitive;
- R is antisymmetric.

Example: \geq is a partial order over \mathbb{N}.
Division / is a partial order over \mathbb{N}.

- R is called a total order or a linear order (lineare/totale Ordnung) if
- R is a partial order;
- R is a total relation.

Example: \geq is a total order over \mathbb{N}.
 Division / is not a total order over \mathbb{N}.

- R is called a strict partial order (strenge Halbordnung) if
- R is irreflexive;
- $\quad \mathrm{R}$ is transitive.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$ a partial order.

- An element $y \in A$ is an upper bound of a set $X \subseteq A$ if:
- $\quad x R y$ for every $x \in X$.

Binary Relations - Properties

Let A be a set and $R \subseteq A \times A$ a partial order.

- An element $y \in A$ is an upper bound of a set $X \subseteq A$ if:
- x Ry for every $x \in X$.
- An element $y \in A$ is a least upper bound of a set $X \subseteq A$ if:
- y is an upper bound of X;
- yRy' for all upper bounds y^{\prime} of X.

Note: By antisymmetry, if y and y ' are least upper bounds, then $y=y^{\prime}$. Hence, X has a unique least upper bound y, and we write $y=l u b(X)$.

