

Laura Kovács

Preliminaries – Sets (Menge)

- A set is a group of objects;
- Objects in a set are called elements or members;
- One way of describing a set is by listing its elements inside braces.
 For example: {7,14,21,28}; finite set set of natural numbers: N = {0,1,2,...}; infinite set set of integer numbers: Z = {..., -2, -1, 0, 1, 2, ...}; infinite set
- The set with 0 elements is the empty set, denoted by \emptyset .
- Set membership is denoted by the symbol: \in . For example: $7 \in \{7, 14, 21, 28\}$;
- Set nonmembership is denoted by the symbol: ∉.
 For example: 8 ∉ {7,14,21,28}.

Preliminaries – Operation on Sets

Given two sets A and B.

- A is a subset (Teilmenge) of B, written A⊆B, if: every member of A is also an element of B.
 Thus, A⊆B is logically equivalent to ∀ x:: x ∈ A ⇒ x ∈ B.
- A is a proper subset of B, written A⊊ B, if: A is a subset of B and not equal to B.
 Thus, A⊊ B is logically equivalent to A⊆B ∧ A≠B.
- The union of A and B is the set $A \cup B$ obtained by combining *all* elements of A and B;
- The intersection of A and B is the set $A \cap B$ of elements that are both in A and B;
- The complement of A is the set A of all elements that are not in A;
- The Cartesian product (karthesischen Produkt) of A and B is the set A x B of all pairs (a,b) such that a∈A and b∈B.

One may write: $AxB = \{(a,b) \mid a \in A \text{ and } b \in B \}$

Relations (Relationen)

Given the sets $A_1, A_2, ..., A_n$.

- An n-ary relation R is a subset of the Cartesian product $A_1 \times A_2 \times ... \times A_n$: $R \subseteq A_1 \times A_2 \times ... \times A_n$
- A binary relation R is a subset of the Cartesian product $A_1 \times A_2$: R $\subseteq A_1 \times A_2$

Note: Binary relation is also called a 2-ary relation.

For $(a,b) \in \mathbb{R}$ one also writes aRb.

Note: The statement aRb means that aRb is True.

If $A_1 = A_2$ we say that *R* is a relation over A_1 .

Examples: <, >, = are binary relations over numbers.

Relations - Example

Scissors-Paper-Stone game:

-Two players simultaneously select a member from the set {Scissor, Paper, Stone};

- If selections are the same, the game starts over;

- If selection differ, one player wins according to the picture.

Relations - Example

Scissors-Paper-Stone game:

-Two players simultaneously select a member from the set {Scissor, Paper, Stone};

- If selections are the same, the game starts over;

- If selection differ, one player wins according to the picture.

Relation: beats ⊆ {Scissor, Paper, Stone} x {Scissor, Paper, Stone}

beats	Scissor	Paper	Stone
Scissor	False	True	False
Paper	False	False	True
Stone	True	False	False

beats ={(Scissor, Paper), (Paper, Stone), (Stone, Scissor)}

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

R is reflexive if for every x∈A it holds that xRx.
∀x: x ∈A: xRx

That is, every element x of A is in relation R with itself.

Examples:

- =, \geq are ??? binary relations over natural numbers;
- > is ??? binary relation over natural numbers;

Relation beats from the Scissor-Paper-Stone game is ???

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

R is reflexive if for every x∈A it holds that xRx.
∀x: x ∈A: xRx

That is, every element x of A is in relation R with itself.

Examples:

- =, \geq are reflexive binary relations over natural numbers;
- > is not a reflexive binary relation over natural numbers;
- Relation *beats* from the Scissor-Paper-Stone game is not reflexive.

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

R is reflexive if for every x∈A it holds that xRx.
∀x: x ∈A: xRx

That is, every element x of A is in relation R with itself.

■ R is symmetric if for every $x,y \in A$ it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$

Examples:

- = is ??? binary relations over natural numbers;
- >, \geq are ??? binary relations over natural numbers;

Relation *beats* from the Scissor-Paper-Stone game is ???.

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

R is reflexive if for every x∈A it holds that xRx.
∀x: x ∈A: xRx

That is, every element x of A is in relation R with itself.

■ R is symmetric if for every $x,y \in A$ it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$

Examples:

- = is a symmetric binary relations over natural numbers;
- >, \geq are not symmetric binary relations over natural numbers;
- Relation beats from the Scissor-Paper-Stone game is not symmetric

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

R is reflexive if for every x∈A it holds that xRx.
∀x: x ∈A: xRx

That is, every element x of A is in relation R with itself.

- R is symmetric if for every x,y∈A it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$
- R is transitive if for every x,y,z∈A it holds that if xRy and yRz then xRz.

 $\forall x, y, z: x, y, z \in A: (xRy \land yRz) \Rightarrow xRz$

Examples:

- = is ??? binary relations over natural numbers;
- >, \geq are ??? relations over natural numbers;

Relation *beats* from the Scissor-Paper-Stone game is ???

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

■ R is reflexive if for every $x \in A$ it holds that xRx. $\forall x: x \in A: xRx$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every x,y∈A it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$
- R is transitive if for every x,y,z∈A it holds that if xRy and yRz then xRz.

 $\forall x, y, z: x, y, z \in A: (xRy \land yRz) \Rightarrow xRz$

Examples:

- = is a transitive binary relations over natural numbers;
- >, \geq are transitive binary relation over natural numbers;

Relation *beats* from the Scissor-Paper-Stone game is not transitive.

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

• R is reflexive if for every $x \in A$ it holds that xRx. $\forall x: x \in A: xRx$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every x,y∈A it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$
- R is transitive if for every x,y,z∈A it holds that if xRy and yRz then xRz.

 $\forall x, y, z: x, y, z \in A: (xRy \land yRz) \Rightarrow xRz$

R is an equivalence relation if it is reflexive, symmetric and transitive.

Examples: Are =, >, ≥, *beats* equivalence relations?

Let A be a set and R a binary relation over A (that is $R \subseteq A \times A$).

• R is reflexive if for every $x \in A$ it holds that xRx. $\forall x: x \in A: xRx$

That is, every element x of A is in relation R with itself.

- R is symmetric if for every x,y∈A it holds that *if* xRy *then* yRx. $\forall x,y: x,y \in A: xRy \Rightarrow yRx$
- R is transitive if for every x,y,z∈A it holds that if xRy and yRz then xRz.

 $\forall x, y, z: x, y, z \in A: (xRy \land yRz) \Rightarrow xRz$

R is an equivalence relation if it is reflexive, symmetric and transitive.

Examples: = is an equivalence relation; >, \geq , beats are not equivalence relations.

Let A be a set and $R \subseteq A \times A$ an *equivalence relation*.

The set of all elements y such that xRy

- is called the equivalence class of x,
- and is denoted by [x]_R.

 $[\mathbf{x}]_{\mathsf{R}} = \{\mathbf{y} \mid \mathbf{x} \mathbf{R} \mathbf{y}\}$

denotes "the set of all y such that xRy".

Examples: [1]₌ = ???

Let A be a set and $R \subseteq A \times A$ an *equivalence relation*.

The set of all elements y such that xRy

- is called the equivalence class of x,
- and is denoted by [x]_R.

 $[\mathbf{x}]_{\mathsf{R}} = \{\mathbf{y} \mid \mathbf{x} \mathbf{R} \mathbf{y}\}$

denotes "the set of all y such that xRy".

Examples: $[1]_{=} = \{1\}$

Binary Relations – Example

Consider the relation \equiv_5 over the integer numbers \mathbb{Z} defined as i $\equiv_5 j$ *if and only if* i-j is a multiple of 5. (where i, j \in \mathbb{Z})

Is \equiv_5 an equivalence relation?

If so, what is $[1]_{\Xi_{r}}$?

Let $A = \{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

Let $A = \{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

Let $A=\{a,b,c,d\}$ be a set and $R \subseteq A \times A$ the relation below:

Let $A = \{a, b, c, d\}$ be a set and $R \subseteq A \times A$ the relation below:

Binary Relations – Transitive Closure/Hull (Transitive Hülle)

R^t is the transitive closure of R:

Binary Relations – Transitive Closure/Hull (Transitive Hülle)

Let A be a set and $R \subseteq A \times A$ a transitive relation.

The transitive closure of R is (the smallest) relation R^t such that

- R^t contains R: $R \subseteq R^t$;
- it extends R by all those other (indirect) relations among elements that can be obtained using the transitivity of R.

Binary Relations – Transitive Closure/Hull (Transitive Hülle)

Let A be a set and $R \subseteq A \times A$ a transitive relation.

The transitive closure of R is (the smallest) relation R^t such that

- R^t contains R: $R \subseteq R^t$;
- it extends R by all those other (indirect) relations among elements that can be obtained using the transitivity of R.

Computing R^t:

- R¹ = R;
- $R^i = R^{i-1} \cup \{(a,b) \mid \exists c :: (a,c) \in R^{i-1} \land (c,b) \in R^{i-1} \}$, for every i>1.

 $R^{t} = \bigcup_{i \ge 1} R^{i} = R^{1} \cup R^{2} \cup R^{3} \cup \dots$

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself. Examples:

> is ???

Relation beats from the Scissor-Paper-Stone game is ???

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

Examples:

> is irreflexive;

Relation *beats* from the Scissor-Paper-Stone game is irreflexive.

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

R is antisymmetric if for every x,y∈A it holds that if xRy and yRx then x and y are the same.

 $\forall x, y: x, y \in A: (xRy \land yRx) \Rightarrow x=y$

Examples:

Are \geq , =, \subseteq antisymmetric?

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

R is antisymmetric if for every x,y∈A it holds that if xRy and yRx then x and y are the same.

 $\forall x, y: x, y \in A: (xRy \land yRx) \Rightarrow x=y$

Examples:

Are \geq , =, \subseteq antisymmetric? YES.

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

R is antisymmetric if for every x,y∈A it holds that if xRy and yRx then x and y are the same.

 $\forall x,y: x,y \in A: (xRy \land yRx) \Rightarrow x=y$

■ R is asymmetric if for every x,y∈A it holds that *if* xRy *then* ¬(yRx). $\forall x,y: x,y \in A: xRy \Rightarrow \neg(yRx)$

That is, xRy and yRx cannot hold at the same time.

Examples:

Are \geq , =, > asymmetric?

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

R is antisymmetric if for every x,y∈A it holds that if xRy and yRx then x and y are the same.

 $\forall x,y: x,y \in A: (xRy \land yRx) \Rightarrow x=y$

■ R is asymmetric if for every x,y∈A it holds that *if* xRy *then* ¬(yRx). $\forall x,y: x,y \in A: xRy \Rightarrow \neg(yRx)$

That is, xRy and yRx cannot hold at the same time.

Examples:

> is asymmetric; ≥, = are not asymmetric

Let A be a set and $R \subseteq A \times A$.

R is irreflexive if for every x∈A it holds ¬(xRx).
 ∀x: x ∈A: ¬(xRx)

That is, no element x of A is in relation R with itself.

R is antisymmetric if for every x,y∈A it holds that if xRy and yRx then x and y are the same.

 $\forall x,y: x,y \in A: (xRy \land yRx) \Rightarrow x=y$

■ R is asymmetric if for every x,y∈A it holds that *if* xRy *then* ¬(yRx). $\forall x,y: x,y \in A: xRy \Rightarrow \neg(yRx)$

That is, xRy and yRx cannot hold at the same time.

R is asymmetric *if and only if* R is antisymmetric and irreflexive.

Let A be a set and $R \subseteq A \times A$.

■ R is non-symmetric (unsymmetrisch) if it is not symmetric.
∀x,y: x,y ∈A: (xRy) ∧ ¬(yRx)

R is a total relation if for every x,y∈A either xRy or yRx holds.
∀x,y: x,y ∈A: xRy ∨ yRx

That is, R is defined on the entire A.

Note: Total relations are reflexive.

Examples:

Are \geq , =, *beats* total?

Let A be a set and $R \subseteq A \times A$.

■ R is non-symmetric (unsymmetrisch) if it is not symmetric.
∀x,y: x,y ∈A: (xRy) ∧ ¬(yRx)

R is a total relation if for every x,y∈A either xRy or yRx holds.
∀x,y: x,y ∈A: xRy ∨ yRx

That is, R is defined on the entire A.

Note: Total relations are reflexive.

Examples:

 \geq is total;

=, *beats* are not total.

Binary Relations – Properties Let A be a set and $R \subseteq A \times A$.

• R is acyclic (azyklisch) if there is no $x_1, x_2, ..., x_n \in A$ such that $x_1Rx_2 \wedge x_2Rx_3 \wedge ... \wedge x_{n-1}Rx_n \wedge x_nRx_1$ holds.

 $\forall n: n \in \mathbb{N}:$ $\left(\neg(\exists x_1, x_2, \dots, x_n: x_1, x_2, \dots, x_n \in A: x_1 R x_2 \land x_2 R x_3 \land \dots \land x_{n-1} R x_n \land x_n R x_1)\right)$

Note: Acyclic relations are irreflexive.

Example: > is acyclic.

Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
 - R is reflexive;
 - R is transitive;
 - R is antisymmetric.

Example: \geq is a partial order over N.

Division / is a partial order over N.

Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
 - R is reflexive;
 - R is transitive;
 - R is antisymmetric.

Example: ≥ is a partial order over N. Division / is a partial order over N.

- R is called a total order or a linear order (lineare/totale Ordnung) if
 - R is a partial order;
 - R is a total relation.

Example: \geq is a total order over N.

Division / is not a total order over \mathbb{N} .

Let A be a set and $R \subseteq A \times A$.

- R is called a partial order (Halbordung, partiale Ordung) if
 - R is reflexive;
 - R is transitive;
 - R is antisymmetric.

Example: ≥ is a partial order over N. Division / is a partial order over N.

- R is called a total order or a linear order (lineare/totale Ordnung) if
 - R is a partial order;
 - R is a total relation.

Example: \geq is a total order over N.

Division / is not a total order over \mathbb{N} .

- R is called a strict partial order (strenge Halbordnung) if
 - R is irreflexive;
 - R is transitive.

Let A be a set and $R \subseteq A \times A$ a partial order.

• An element $y \in A$ is an upper bound of a set $X \subseteq A$ if:

•

□ xRy for every $x \in X$.

Let A be a set and $R \subseteq A \times A$ a partial order.

- An element y∈A is an upper bound of a set X⊆A if:
 xRy for every x∈X.
- An element $y \in A$ is a least upper bound of a set $X \subseteq A$ if:
 - y is an upper bound of X;
 - □ yRy' for all upper bounds y' of X.

Note: By antisymmetry, if y and y' are least upper bounds, then y=y'. Hence, X has a unique least upper bound y, and we write y=lub(X).