and Propositional Logic

Laura Kovács

Processors

Processors

Processors are made of Switches (shalter)

Switches, wires, resistors and capacitors

- Pentium 4:
 - Willamette: 42 million switches
 - Northwood: 55 million switches
- Memory chip has 256 million

Processors are made of Switches (Shalter)

Switches, wires, resistors and capacitors

- Pentium 4:
 - Willamette: 42 million switches
 - Northwood: 55 million switches
- Memory chip has 256 million

Processors are made of Switches

Switches, wires, resistors and capacitors

- Pentium 4:
 - Willamette: 42 million switches
 - Northwood: 55 million switches
- Memory chip has 256 million

Processors are made of Switches

Switches, wires, resistors and capacitors

- Pentium 4:
 - Willamette: 42 million switches
 - Northwood: 55 million switches
- Memory chip has 256 million

Multi-million switches are ... HARD! We need an abstraction.

Processors are made of Switches (shalter)

Switches, wires, resistors and capacitors

- Pentium 4:
 - Willamette: 42 million switches
 - Northwood: 55 million switches
- Memory chip has 256 million

Multi-million switches are ... HARD! We need an abstraction: Boolean Algebra. (propositional logic)

Boolean Algebra (Boole'sche Algebra)

Algebra on two-valued (binary) variables

- G. Boole (1850) and C. Shannon (1938)
- Straight-forward mapping to switches
 - High voltage (closed switch) ⇒ 1 (True)
 - Low voltage (opened switch) ⇒ 0 (False)

George Boole (1815 – 1864)

- Switches a and b are open
- Output y without voltage

- Switches a and b are open Switch a is open, b is closed
- Output y without voltage Output y without voltage

- Switches a and b are open Switch a is open, b is closed Switch a is closed, b is open
- Output y without voltage Output y without voltage Output y without voltage

Switches a and b are open - Switch a is open, b is closed - Switch a is closed, b is open - Switches a and b are closed
Output y without voltage - Output y without voltage - Output y without voltage - Output y without voltage

Switches a and b are open - Switch a is open, b is closed - Switch a is closed, b is open - Switches a and b are closed
 Output y without voltage - Output y without voltage - Output y without voltage - Output y without voltage

Output y under voltage if and only if switches a <u>and</u> b are closed.

- Algebra on two-valued (binary) variables ← boolean variables (atoms)
- **Boolean operators** \rightarrow to form boolean functions (formulas):

□ Conjunction (AND): ∧

 $a \land b = 1$ if and only if a=1 and b=1

SYNTAX — Conjunction (AND): ^

y = a ∧ b

Conjunction (AND): A

 $y = a \wedge b$

Conjunction (AND): A

 $y = a \wedge b$

- Algebra on two-valued (binary) variables ← boolean variables
- Boolean operators:

```
Conjunction (AND):
```

 $a \land b = 1$ if and only if a=1 and b=1

□ Disjunction (OR): ∨

 $a \land b = 1$ if and only if a=1 or b=1

Disjunction (OR): ∨

(Idempotence) $X \lor X = X$

- Algebra on two-valued (binary) variables ← boolean variables
- Boolean operators:

```
Conjunction (AND): ∧

a∧b = 1 if and only if a=1 and b=1

Disjunction (OR): ∨

a∧b = 1 if and only if a=1 or b=1

Negation (NOT): ¬

a = 1 if and only if a=0
```


Negation (NOT): ¬

y = ¬ a

- Algebra on two-valued (binary) variables ← boolean variables
- Boolean operators (lowest to highest precedence): ∧, ∨, ¬

	а	b	a∧b		а	b	a∨b	_	а	−a
	0	0	0		0	0	0		0	1
	0	1	0		0	1	1		1	0
	1	0	0		1	0	1			
	1	1	1		1	1	1			
Truth Tables (Webricitate(a))										

Example: Construct the truth table of the *boolean function* $f=a \lor (\neg b \land c)$.

Boolean Algebra – Axioms/Laws (Gesetz)

Neutral elements (identity)	a ^ 1 = a		
	a v 0 = a		
Zero elements	a ^ 0 = 0		
	a ∨ 1 = 1		
Idempotence	a ^ a = a		
	$a \lor a = a$		
Negation	a ∧ ¬ a = 0		
	a ∨ ¬ a = 1		
Commutative	$a \wedge b = b \wedge a$		
	$a \lor b = b \lor a$		
Associative	$a \land (b \land c) = (a \land b) \land c$		
	$a \lor (b \lor c) = (a \lor b) \lor c$		
Distributive	$a \land (b \lor c) = (a \land b) \lor (a \land c)$		
	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$		

Note: Every axiom has a *dual* one: replace \lor , 0 with \land , 1.

Duality: $\neg f(x,y) = g(\neg x, \neg y)$

Boolean Algebra – DeMorgan Axioms

DeMorgan's Theorems for negating a boolean function:

- Negate boolean variables;
- Change \land to \lor and \lor to \land ;
- DeMorgan's axioms:

 $\neg (a \land b) = (\neg a) \lor (\neg b) \leftarrow$ called a NAND

 \neg (a \lor b) = (\neg a) \land (\neg b) \leftarrow called a NOR

Boolean Algebra - Axioms with DeMorgan's Axioms

Neutral elements (identity)	a ∧ 1 = a
	a ∨ 0 = a
Zero elements	a ^ 0 = 0
	a ∨ 1 = 1
Idempotence	$a \wedge a = a$
	$a \lor a = a$
Negation	a ∧ ¬ a = 0
	a ∨ ¬ a = 1
Commutative	$a \wedge b = b \wedge a$
	$a \lor b = b \lor a$
Associative	$a \land (b \land c) = (a \land b) \land c$
	$a \lor (b \lor c) = (a \lor b) \lor c$
Distributive	$a \land (b \lor c) = (a \land b) \lor (a \land c)$
	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
DeMorgan's	$\neg (a \land b) = (\neg a) \lor (\neg b)$
	\neg (a \lor b) = (\neg a) \land (\neg b)

Proof using Axioms

- Axioms can be used to prove new theorems:
 - □ Theorems are of the form f=g (f, g are boolean functions);
 - □ Proof by using *simplifications* of f to yield g.
 - Simplification of f:
 - transforming f by repeated application of axioms;
 - yields an equivalent new function with fewer boolean operators.

Examples:

- $\Box \neg (a \lor b) \land \neg ((\neg a) \lor (\neg b)) = 0$
- Absorption Axioms:

$$a \lor (a \land b) = a$$

 $a \land (a \lor b) = a$

Boolean Algebra – Special Boolean Functions XOR: Exclusive OR (Antivalenz)

 $y = a \neq b$

y is 1 if exactly one of the variables a and b is 1.

Boolean Algebra – Special Boolean Functions

a implies b

if a is 1 then b is also 1

Implication \Rightarrow y = a \Rightarrow b

y is 1 if and only if a is 0 or b is 1

Boolean Algebra – Special Boolean Functions

a implies b

if a is 1 then b is also 1

Implication \Rightarrow y = a \Rightarrow b = \neg a \lor b

y is 1 if and only if a is 0 or b is 1

Boolean Algebra – Special Boolean Functions

Equivalence \Leftrightarrow

 $y = a \Leftrightarrow b = (a \Rightarrow b) \land (b \Rightarrow a)$

Boolean Algebra – Precedence of Boolean Operators

Operator	Name	Priority (Precedence)	
_	Negation	4	
\wedge	Conjunction	3	
\mathbf{V}	Disjunction	3	
\Rightarrow	Implication	2	
\Leftrightarrow	Equivalence	1	

Example: $\neg a \land b \Rightarrow c \lor d \Leftrightarrow e$

Boolean Algebra - truth value (Wahrheit) of a boolean function f

f is a <u>tautology</u> if:

f =1 in *all* situations (f is always 1)

Example: $(a \land (a \Rightarrow b)) \Rightarrow b$ (Modus Ponens Axiom)

• f is *contradiction* if:

f = 0 in *all* situations (f is always 0)

Example: $a \land \neg a$

f is <u>satisfiable (valid, erfüllbar)</u> if:

f = 1 in some situation

Example: $(a \Rightarrow b) \land (a \land b \Rightarrow c) \Rightarrow (a \Rightarrow c)$ is a tautology and thus satisfiable. $(a \Rightarrow b) \land c$ is satisfiable, but is not a tautology $Boolean \ Algebra \ - \ checking \ satisfiability \ is \ hard$

I can't get no satisfaction And I try, And I try, And I try, And I try, ...

The Rolling Stones

Boolean Algebra – All Boolean Functions with 2 Parameters

a 0011 b 0101	
0000	$y_0 = 0$
0001	y ₁ = a∧b
0010	y₂ = a∧¬b
0011	$y_3 = a$
0100	$y_4 = \neg a \land b$
0101	$y_5 = b$
0110	y ₆ = a≠b
0111	y ₇ = a∨b

a 0011 b 0101	
1111	$y_{15} = 1$
1110	y ₁₄ = ¬a∨¬b
1101	y ₁₃ = ¬a∨b
1100	y ₁₂ = ¬a
1011	y ₁₁ = a∨¬b
1010	y ₁₀ = ¬b
1001	y ₉ = a⇔b
1000	y ₈ = ¬a∧¬b

Half Adder (Halbaddierwerk)

Half Adder

				XOR
			/	
а	b	C	s	_
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

 $s = (\neg a \land b) \lor (a \land \neg b)$ $c = (a \land b)$ Half Adder – Simplifications

$$s = (\neg a \land b) \lor (a \land \neg b) =$$

= ((\neg a \land b) \neg a) \lefta ((\neg a \land b) \neg \neg b) =
= (\neg a \neg a) \lefta (b \neg a) \lefta (\neg a \neg \neg b) \lefta (b \neg \neg b) =
= (b \neg a) \lefta (\neg a \neg \neg b) =
= (a \neg b) \lefta \neg (a \lefta b)

c = (a ∧ b)

Half Adder - Optimized

 $s = (a \lor b) \land \neg (a \land b)$ $c = (a \land b)$