Information Theory

Laura Kovács

THE MATHEMATICAL THEORY OF COMMUNICATION

by Claude E. Shannon and Warren Weaver

1949

THE UNITALISTY OF ILLNESS PRESS - BRINNE - CHICAGO - LONDER

Claude Shannon (1916-2001)

A Communication System Model

Information Theory by Claude Shannon & Warren Weaver

- Information (measured in *bits*):
 - the amount of uncertainty a message eliminates;
- Based on a linear model of communication;
- Noise :
 - reduces information by increasing uncertainty;
- Redundancy:
 - reduces loss of information due to noise.

Information Theory by Claude Shannon & Warren Weaver

- Information (measured in *bits*):
 - the amount of uncertainty a message eliminates;
- Based on a linear model of communication;
- Noise :
 - reduces information by increasing uncertainty;
- Redundancy:
 - reduces loss of information due to noise.

e an i 0 du an Ge an is 0% red nt German is 50% redunda

Information Content h(p)

(Informationgehalt)

- = MEASURE OF UNCERTAINTY associated with probability p
- Independent of coding;
- Increases when probability p decreases (uncertainty increases);

Information Content h(p)

(Informationgehalt)

- = MEASURE OF UNCERTAINTY associated with probability p
- Independent of coding;
- Increases when probability p decreases (uncertainty increases);
- $h(p_1*p_2) = h(p_1)+h(p_2);$
- h(p)=ld(1/p) [bit].

Examples of Information Content

- h(1) = 0 Message will be always expected
- $h(0) = \infty$ Message will be never expected
- h(0.5) = 1
 Message will be by 50% expected
- h(0.1) = 3.32 Information content of a decimal digit

Binary Logarithm ld x

Properties, identities

- 2^{Id x} = x
- Id 1/x = Id x
- Id (x*y) = Id x + Id y
- Id 2*x = 1 + Id x
- Id $x^n = n^* ld x$
- Id $x^2 = 2^* \text{Id } x$
- Id x = In x / In 2 ~ 1.44*In x
- Id x = log x / log 2 ~ 3.32*log x

Examples

- Id 1 = 0
- Id 2 = 1
- Id 4 = Id $(2^2) = 2^*$ Id 2 = 2
- Id 8 = Id $(2^3) = 3^*$ Id 2 = 3
- Id 10 ~ 3.32*log 10 = 3.32*1 = 3.32
- Id 5 = Id 10 1 ~ 2.32
- Id 9 ~ (Id 8 + Id 10)/2 = (3 + 3.32)/2 = 3.16
- Id 3 = (Id 9)/2 ~ 1.58
- Id 7 = $(Id 49)/2 \sim (Id 50)/2 = (Id 100 1)/2 = (2*Id 10 1)/2 = 2.82$

X	ld x
1	0.00
2	1.00
3	1.58
4	2.00
5	2.32
6	2.58
7	2.81
8	3.00
9	3.17
10	3.32

Average Information Content (Entropy): [Mittlerer Informationsgehalt]

 $H = \sum_{i} p_{i} \text{ Id } 1/p_{i} \text{ [bit]}$

 Average Word Length: [Mittlere Wortlänge]

 $L = \sum_{i} p_{i} I_{i}$ [bit]

 Redundancy: [Redundanz]

R = L - H [bit]

Shannon's Coding Theorem: $L \ge H$

Shannon's Binary Entropy Function

[Shannon'sche Binäre Funktion]

Example 1:

Consider tossing a coin with known, not necessarily fair, probabilities of coming up heads or tails.

Shannon's Binary Entropy Function

[Shannon'sche Binäre Funktion]

H= p ld 1/p + (1-p) ld 1/(1-p)

Entropy of a coin toss as a function of the probability p of it coming up heads.

Example 2: Redundancy of a decimal digit. (All 10 digits have same probabilities.)

• Average Information Content (Entropy):

H = Id 10 = 3.32 bit

• Word Length (each binary digit has the *same prefixed length* of 4 bits):

L = 4 bit

• Redundancy:

R = L - H = 0.68 bit

Example 3: Average Information Content of a (German) Letter. (All 26 letters have same probabilities.)

Average Information Content (Entropy):

H = Id 26 = 4.7 bit

Example 4: Average Information Content of a (German) Letter. (Letters have different probabilities.)

Average Information Content (Entropy):

H = 4.1 bit

Note: More than a half of all German texts are formed by letters e, n, r, i and the space symbol.

Example 4: Average Information Content of a (German) Letter. (Sequence of [2] consecutive letters have different probabilities.)

Average Information Content (Entropy):

H ~ 2 bit

Example 5: Average Information Content of a (German) Word. (10 Million Words have different probabilities.)

• Average Information Content (Entropy):

H ~ 15.5 bit

• Word Length:

L = 7.7 letters

Example 6: Information flow during reading.

Theoretically: the brain's storage capacity $\sim 10^{12}$ bits.

 \rightarrow one could store read information for more than ~1900 years \bigcirc

Reminder for Next Lecture

- Carry out the solution of Example 4 of this lecture!
- Next lecture on October 7th !
 - No lecture on September 30th.
- Homework sessions start today (September 23rd), at 12pm!
- This week's homework due by September 30th, 10am.
- Contact teaching assistants for help, if needed!