Information Theory

Laura Kovács

THE MATHEMATICAL THEORY OF COMMUNICATION
by Cleade E, Shanpon and Warren Weaver
fiy?

Claude Shannon (1916-2001)

A Communication System Model

Information Theory by claude Shannon \& Warten Weaver

- Information (measured in bits):
- the amount of uncertainty a message eliminates;
- Based on a linear model of communication;
- Noise:
- reduces information by increasing uncertainty;
- Redundancy:
- reduces loss of information due to noise.

Information Theory by Caude Shamon \& Warren Weaver

- Information (measured in bits):
- the amount of uncertainty a message eliminates;
- Based on a linear model of communication;
- Noise:
- reduces information by increasing uncertainty;
- Redundancy:
- reduces loss of information due to noise.

e	ani	0	du
Ge	an is	0% red	nt

German is 50% redunda

Information Content h(p)

(Informationgehalt)
= MEASURE OF UNCERTAINTY associated with probability p

- Independent of coding;
- Increases when probability p decreases (uncertainty increases);

Information Content $\mathrm{h}(\mathrm{p})$

(Informationgehalt)
$=$ MEASURE OF UNCERTAINTY associated with probability p

- Independent of coding;
- Increases when probability p decreases (uncertainty increases);
- $h\left(p_{1}{ }^{*} p_{2}\right)=h\left(p_{1}\right)+h\left(p_{2}\right) ;$
- $h(p)=\operatorname{ld}(1 / p)[b i t]$.

Examples of Information Content

- $h(1)=0$

Message will be always expected

- $h(0)=\infty$
- $h(0.5)=1 \quad$ Message will be by 50% expected
- $\mathrm{h}(0.1)=3.32$ Information content of a decimal digit

Binary Logarithm ld x

Properties, identities

- $2^{\operatorname{ld} x}=x$
- Id $1 / x=-\operatorname{ld} x$
- $\quad \operatorname{ld}\left(x^{*} y\right)=\operatorname{ld} x+\operatorname{ld} y$
- $\operatorname{ld} 2^{*} x=1+\operatorname{ld} x$
- \quad ld $x^{n}=n^{*} \mid d x$
- $\quad \operatorname{ld} x^{2}=2^{*} \mid d x$
- $\operatorname{ld} x=\ln x / \ln 2 \sim 1.44^{*} \ln x$
- $\operatorname{ld} x=\log x / \log 2 \sim 3.32^{*} \log x$

Examples

- $\operatorname{ld} 1=0$
- \quad ld $2=1$
- $\quad \operatorname{ld} 4=\operatorname{ld}\left(2^{2}\right)=2^{*} \operatorname{ld} 2=2$
- $\quad \operatorname{ld} 8=\operatorname{ld}\left(2^{3}\right)=3^{*} \operatorname{ld} 2=3$
- Id $10 \sim 3.32^{*} \log 10=3.32^{*} 1=3.32$
- \quad ld $5=\operatorname{ld} 10-1$ ~ 2.32
- Id $9 \sim(\operatorname{ld} 8+\operatorname{ld} 10) / 2=(3+3.32) / 2=3.16$
- $\quad \operatorname{ld} 3=(\operatorname{ld} 9) / 2 \sim 1.58$
- $\quad \operatorname{ld} 7=(\operatorname{ld} 49) / 2 \sim(\operatorname{ld} 50) / 2=(\operatorname{ld} 100-1) / 2=\left(2^{*} \operatorname{ld} 10-1\right) / 2=2.82$

\mathbf{x}	$\operatorname{ld} \mathbf{x}$
1	0.00
2	1.00
3	1.58
4	2.00
5	2.32
6	2.58
7	2.81
8	3.00
9	3.17
10	3.32

- Average Information Content (Entropy):
[Mittlerer Informationsgehalt]

$$
H=\sum_{i} p_{i} \operatorname{ld} 1 / p_{i}[b i t]
$$

- Average Word Length:
[Mittlere Wortlänge]

$$
L=\sum_{i} p_{i} l_{i}[b i t]
$$

- Redundancy:
[Redundanz]

$$
\mathrm{R}=\mathrm{L}-\mathrm{H}[\mathrm{bit}]
$$

Shannon's Coding Theorem: L $\geq \mathrm{H}$

Shannon's Binary Entropy Function

[Shannon'sche Binäre Funktion]

Example 1:

Consider tossing a coin with known, not necessarily fair, probabilities of coming up heads or tails.

Shannon's Binary Entropy Function

[Shannon'sche Binäre Funktion]

$$
H=p \operatorname{ld} 1 / p+(1-p) \operatorname{ld} 1 /(1-p)
$$

Entropy of a coin toss as a function of the probability p of it coming up heads.

Example 2: Redundancy of a decimal digit.

(All 10 digits have same probabilities.)

- Average Information Content (Entropy):

$$
\mathrm{H}=\mathrm{Id} 10=3.32 \mathrm{bit}
$$

- Word Length (each binary digit has the same prefixed length of 4 bits):

$$
\mathrm{L}=4 \mathrm{bit}
$$

- Redundancy:

$$
\mathrm{R}=\mathrm{L}-\mathrm{H}=0.68 \mathrm{bit}
$$

Example 3: Average Information Content of a (German) Letter.

 (All 26 letters have same probabilities.)- Average Information Content (Entropy):

$$
\mathrm{H}=\mathrm{Id} 26=4.7 \mathrm{bit}
$$

Example 4: Average Information Content of a (German) Letter.

 (Letters have different probabilities.)- Average Information Content (Entropy):

$$
\mathrm{H}=4.1 \mathrm{bit}
$$

Note: More than a half of all German texts are formed by letters e, n, r, i and the space symbol.

Example 4: Average Information Content of a (German) Letter.
(Sequence of [2] consecutive letters have different probabilities.)

- Average Information Content (Entropy):

$$
\text { H ~ } 2 \text { bit }
$$

Example 5: Average Information Content of a (German) Word. (10 Million Words have different probabilities.)

- Average Information Content (Entropy):

$$
\mathrm{H} \sim 15.5 \text { bit }
$$

- Word Length:
$\mathrm{L}=7.7$ letters

Example 6: Information flow during reading.

Reading: 25 letters per second

Information flow: 50 bits/sec
\downarrow
Storing: 25 bits/sec
\downarrow
In 60 years a person could store approx. $3^{* 1} 10^{10}$ bits.

Theoretically: the brain's storage capacity ~ $\mathbf{1 0}^{\mathbf{1 2}}$ bits.
\rightarrow one could store read information for more than ~ 1900 years $;$

Reminder for Next Lecture

- Carry out the solution of Example 4 of this lecture!
- Next lecture on October $7^{\text {th }}$!
- No lecture on September $30^{\text {th }}$.
- Homework sessions start today (September 23rd), at 12pm!
- This week's homework due by September 30th, 10 am .
- Contact teaching assistants for help, if needed!

