
Complexity

Laura Kovács

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

45

1

3

4

1

1

Number
of elementary operations

9

7

6

4

3

Line

For example, in line 6 we:

-look up the value of i;

-look up the value of factorial;

-multiply these two values;

-assign the result of multiplication to factorial.

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

n45

1

3

4

1

1

Number
of elementary operations

19

n7

n6

14

13

How often
is executed

Line

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

n45

1

3

4

1

1

Number
of elementary operations

19

n7

n6

14

13

How often
is executed

Line

An estimate of the

Total number of elementary operations:

1+1+4*n+4*n+3*n+1 = 11*n +3f: ���� →→→→ ����, f(n) =

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

n45

1

3

4

1

1

Number
of elementary operations

19

n7

n6

14

13

How often
is executed

Line

An estimate of the

Total number of elementary operations:

1+1+4*n+4*n+3*n+1 = 11*n +3

Number of elementary operations performed by a comp uter depend on many factors!

For example:

- operation on a LONG/INT type can get 2 elementary operations, instead of 1 fl 11*n+6 is also reasonable.

f: ���� →→→→ ����, f(n) =

Example of a Program Code

1 public static long factorial (int n)

2 {
3 long factorial := 1;

4 int i:=1;

5 while (i≤n) do
6 factorial := factorial * i;

7 i := i+1;

8 end while
9 return factorial;

11 }

How many elementary operations are performed at most when executing the code for
input of a given size n?

n45

1

3

4

1

1

Number
of elementary operations

19

n7

n6

14

13

How often
is executed

Line

An estimate of the

Total number of elementary operations:

1+1+4*n+4*n+3*n+1 = 11*n +3

UPPER BOUND abstraction for all estimates f: Big O Notation

f: ���� →→→→ ����, f(n) =

Big O Notation - Definition

Let � be the set of natural numbers.

Let f: � → � and g: � → � be two functions.

Then fŒO(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

We say:
- O(g) is the order of function g (Ordnung of g)

- If fœO(g), then f is of the Order of g (von der Ordnung g)

Big O Notation - Definition

Let � be the set of natural numbers.

Let f: � → � and g: � → � be two functions.

Then fŒO(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

We say:
- O(g) is the order of function g (Ordnung of g)

- If fœO(g), then f is of the Order of g (von der Ordnung g)

Note: If g: � → � with g(n)=n, we write fœO(n) instead of fœO(g).

Note: If g(n) ∫ 0 for every n œ�, then fœO(g) ñ limn→¶
f(n)/g(n) = c

Big O Notation - Definition

Let � be the set of natural numbers.

Let f: � → � and g: � → � be two functions.

Then fŒO(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Example (Revisited Factorial Example from slides 2-6) :

Consider f: � → �, f(n)=11*n+3. Then fœ?

Big O Notation - Definition

Let � be the set of natural numbers.

Let f: � → � and g: � → � be two functions.

Then fŒO(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Example (Revisited Factorial Example from slides 2-6) :

Consider f: � → �, f(n)=11*n+3. Then fœO(n).

Proof: We choose c=12, n0=3. It remains to show:

"n: (n œ� ∧ n¥3): (11*n+3 b 12*n), that is 11*n+3 b 12*n for all n¥3.

Since n¥3, we have 11*n + 3 b 11*n+n = 12*n.

Therefore, 11*n+3 œO(n).

Big O Notation - Definition

Let � be the set of natural numbers.

Let f: � → � and g: � → � be two functions.

Then fŒO(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Example (Revisited Factorial Example from slides 2-6) :

- Consider f: � → �, f(n)=11*n+3. Then fœO(n).

- Consider f1 : � → �, f1(n)=11*n+6. Then f1œO(n).

- Consider f2: � → �, f2(n)=7*n+1. Then f2œO(n).

In case of the Factorial Example:

At most O(n) elementary operations are performed when executing the code for input n .

Computer Programs implement Algorithms.

Algorithms can be implemented and executed in different ways, depending on computer properties.

(16 / 32/ 64 bits memory allocation for input, CPU-cycles, memory/time limit, etc.)

O(·) measures / estimates the complexity of ALGORITHMs!

O(·) does not depend on computer properties!

O(·) depends only on the INPUT of the ALGORITHM!

Big O Notation - Properties

Algorithms can be:
• deterministic - non-deterministic

(deterministisch) (nichtdeterministisch)

• sequential - parallel
(sequentiell) (parallel)

• finite - infinite
(endlich) (undendlich)

• reversible - irreversible
(reversibel) (irreversibel)

Computer Programs implement Algorithms.

Algorithms can be implemented and executed in different ways, depending on computer properties.

(16 / 32/ 64 bits memory allocation for input, CPU-cycles, memory/time limit, etc.)

O(·) measures the worst-case (ungünstigsten Fall) complexity (Aufwand) of an ALGORITHM!

O(·) gives an upper bound on the execution time of an ALGORITHM!

O(·) does not depend on computer properties!

O(·) depends only on the INPUT of the ALGORITHM!

Big O Notation - Properties

Algorithms can be:
• deterministic - non-deterministic

(deterministisch) (nichtdeterministisch)

• sequential - parallel
(sequentiell) (parallel)

• finite - infinite
(endlich) (undendlich)

• reversible - irreversible
(reversibel) (irreversibel)

Big O Notation – Some Common Orders

O(1) Constant (konstant)

If g: � → � with g(n)=1, we write fœO(1) instead of fœO(g).

O(log n) Logarithmic (logarithmisch)

If g: � → � with g(n)=log n, we write fœO(log n) instead of fœO(g).

O(n) Linear (linear)

If g: � → � with g(n)=n, we write fœO(n) instead of fœO(g).

O(n2) Quadratic (quadratisch)

If g: � → � with g(n)=n2, we write fœO(n2) instead of fœO(g).

O(nk) k œ � Polynomial (polynomial)

If g: � → � with g(n)=nk, we write fœO(nk) instead of fœO(g).

O(en) Exponential (exponentiell)

If g: � → � with g(n)=en, we write fœO(en) instead of fœO(g).

exponential
quadratic
linear
logarithmic
constant

Big O Notation – Some Common Orders

Big O Notation – Dependency among Common Orders

Exponential

Polynomial

Quadratic

Linear

Logarithmic

Constant

Big O Notation – Dependency among Common Orders

Exponential

Polynomial

Quadratic

Linear

Logarithmic

Constant

Note:

If fœO(1), then clearly:

• fœO(log n);

• fœO(n).

• fœO(n2);

• fœO(nk);

• fœO(en).

BUT, we are interested in giving a

TIGHTEST

complexity approximation

Examples of Complexity Measurements for

Algorithms with input n

108130.0001310000

10610.000101000

10161103110’0006647100

2*101810640086420

3*106102410033310

n!2nn2n ld nld nn

Big O Notation – Calculus Rules
Let f: � → � and g: � → � be two functions.

� O(c*f) = O(f), where cŒ ���� is a constant

� O(f) + O(g) = O(f+g)
Note: O(f+g)= max{O(f),O(g)}

� O(f*g) = O(f)*O(g)

Some further properties (follows from O-definition):
Abbreviation: Denoting Õ by b

• O(f) Õ O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)
O(f) b O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)

• O(f) = O(g) ⇔⇔⇔⇔ (O(f) Õ O(g)) ∧∧∧∧ (O(g) Õ O(f))
O(f) b O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)

• O(f) Ã O(g) ⇔⇔⇔⇔ (O(f) Õ O(g)) ∧∧∧∧ (O(g) ≠ O(f))
O(f) < O(g) ⇔⇔⇔⇔ (O(f)ÕO(g)) ∧∧∧∧ (O(f)πO(g))

Example :

• O(log n) Õ O(n)
• O(n*log n) Õ O(n2)
• O(log n) Õ O(n1/2

Big O Notation – Calculus Rules
Let f: � → � and g: � → � be two functions.

� O(c*f) = O(f), where cŒ ���� is a constant

� O(f) + O(g) = O(f+g)
Note: O(f+g)= max{O(f),O(g)}

� O(f*g) = O(f)*O(g)

Some further properties (follows from O-definition):
Abbreviation: Denoting Õ by b

• O(f) Õ O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)
O(f) b O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)

• O(f) = O(g) ⇔⇔⇔⇔ (O(f) Õ O(g)) ∧∧∧∧ (O(g) Õ O(f))
O(f) b O(g) ⇔⇔⇔⇔ f∈∈∈∈ O(g)

• O(f) Ã O(g) ⇔⇔⇔⇔ (O(f) Õ O(g)) ∧∧∧∧ (O(g) ≠ O(f))
O(f) < O(g) ⇔⇔⇔⇔ (O(f)ÕO(g)) ∧∧∧∧ (O(f)πO(g))

Example :

• O(log n) Õ O(n)
• O(n*log n) Õ O(n2)
• O(log n) Õ O(n1/2)

Big O Notation – Examples

Estimate the below complexities with O-notation.
The estimation should be as tight as possible.

� O(2*n-1) = …

� O(n*(n+1)/2) = …

� O(ld n) = …

� O(log n2) = …

� O((3*n2 + 6*n+9)*log(1+2*n)) = …

Big O Notation – Examples

Estimate the below complexities with O-notation.
The estimation should be as tight as possible.

� O(2*n-1) = O(n)

� O(n*(n+1)/2) = O(n2)

� O(ld n) = O(log n)

� O(log n2) = O(log n)

� O((3*n2 + 6*n+9)*log(1+2*n)) = O(n2 log(n))

Lower Bounds of an Algorithm’s Execution Time

Let f: � → � and g: � → � be two functions.

Then fŒΩ(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

O-notation for UPPER BOUND (oberen Schrank) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Ω-notation for LOWER BOUND (unteren Schrank) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

Lower Bounds of an Algorithm’s Execution Time

Let f: � → � and g: � → � be two functions.

Then fŒΩ(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

O-notation for UPPER BOUND (oberen Schrank, ungünstigsten Fall) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Ω-notation for LOWER BOUND (best-case, unteren Schrank, günstigsten Fall) ESTIMATION:

fŒ Ω(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

Average Bounds of an Algorithm’s Execution Time

Let f: � → � and g: � → � be two functions.

Then fŒΩ(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

O-notation for UPPER BOUND (oberen Schrank, ungünstigsten Fall) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Ω-notation for LOWER BOUND (unteren Schrank, günstigsten Fall) ESTIMATION:

fŒ Ω(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

Example:

(3n2+6n+9n)*log(1+2n) b 36 n2 * log n (3n2+6n+9n)*log(1+2n) œO(n2 * log n)

(3n2+6n+9n)*log(1+2n) ¥ n2 * log n (3n2+6n+9n)*log(1+2n) œ Ω(n2 * log n)

Average Bounds of an Algorithm’s Execution Time

Let f: � → � and g: � → � be two functions.

Then fŒΩ(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

O-notation for UPPER BOUND (oberen Schrank, ungünstigsten Fall) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Ω-notation for LOWER BOUND (unteren Schrank, günstigsten Fall) ESTIMATION:

fŒ Ω(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

Average Complexity (mittlere Aufwand): θ(g) = O(g) » Ω(g)

fŒ θ(g) iff $ c1,c2,n0: (c1, c2, n0œ�)∧(c1>0)∧(c2>0): ("n: (n œ� ∧ n¥n0): (c1*g(n) b f(n) b c2*g(n))

Example:

(3n2+6n+9n)*log(1+2n) b 36 n2 * log n (3n2+6n+9n)*log(1+2n) œO(n2 * log n)

(3n2+6n+9n)*log(1+2n) ¥ n2 * log n (3n2+6n+9n)*log(1+2n) œ Ω(n2 * log n)

(3n2+6n+9n)*log(1+2n) Œ θ (n2 * log n)

Average Bounds of an Algorithm’s Execution Time

Let f: � → � and g: � → � be two functions.

Then fŒΩ(g) iff:

$ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

O-notation for UPPER BOUND (oberen Schrank, ungünstigsten Fall) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (f(n) b c*g(n))

Ω-notation for LOWER BOUND (unteren Schrank, günstigsten Fall) ESTIMATION:

fŒO(g) iff $ c, n0: (c, n0œ�) ∧ (c>0) : ("n: (n œ� ∧ n¥n0): (g(n) b c*f(n))

Average Complexity (mittlere Aufwand): θ(g) = O(g) » Ω(g)

fŒ θ(g) iff $ c1,c2,n0: (c1, c2, n0œ�)∧(c1>0)∧(c2>0): ("n: (n œ� ∧ n¥n0): (c1*g(n) b f(n) b c2*g(n))

Factorial Example:

O(n) … linear worst-case complexity

Ω(1) … constant best-case complexity

θ(n) … linear average complexity

Complexity – Example 1

� Example:

boolean f (int[][] a , int n) {

for (int i = 0 ; i < n ; i++) {

for (int j = i + 1 ; j < n ; j++) {
if (a[i][j] == 0) {return false;}

}

}
return true;

}

O(n2) … What is the worst-case complexity?
Ω(1) … What is the best-case complexity?
θ(n2) … What is the the average complexity?

Complexity – Example 1

� Example:

boolean f (int[][] a , int n) {

for (int i = 0 ; i < n ; i++) {

for (int j = i + 1 ; j < n ; j++) {
if (a[i][j] == 0) {return false;}

}

}
return true;

}

O(n2) … quadratic worst-case complexity
Ω(1) … constant best-case complexity
θ(n2) … quadratic average complexity

Complexity – Example 1

� Example:

boolean f (int[][] a , int n) {

for (int i = 0 ; i < n ; i++) {

for (int j = i + 1 ; j < n ; j++) {
if (a[i][j] == 0) {return false;}

}

}
return true;

}

What is the worst-case complexity in case of all ar ray elements are 1?

Complexity – Example 1

� Example:

boolean f (int[][] a , int n) {

for (int i = 0 ; i < n ; i++) {

for (int j = i + 1 ; j < n ; j++) {
if (a[i][j] == 0) {return false;}

}

}
return true;

}

What is the worst-case complexity in case of all ar ray elements are 1?

O(n2)

� Example:

boolean f (int[][] a , int n) {
long factorial := 1;
int i:=1;
while (i≤n) do

factorial := factorial * i;
i := i+1;

end while;

for (int i = 0 ; i < n ; i++) {
for (int j = i + 1 ; j < n ; j++) {

if (a[i][j] == 0) {return false;}
}

}
return true;

}

Complexity – Example 2

What is the worst-case complexity?
What is the best-case complexity?
What is the average complexity?

� Example:

boolean f (int[][] a , int n) {
long factorial := 1;
int i:=1;
while (i≤n) do

factorial := factorial * i;
i := i+1;

end while;

for (int i = 0 ; i < n ; i++) {
for (int j = i + 1 ; j < n ; j++) {

if (a[i][j] == 0) {return false;}
}

}
return true;

}

Complexity – Example 2

O(n2) … quadratic worst-case complexity
Ω(1) … constant best-case complexity
θ(n2) … quadratic average complexity

Big O Notation – Example of Binary Search

A(n) = 1 + A(n/2)
A(1) = 1

A(n) = 1 + ld n ⇒⇒⇒⇒ O(A) = O(log n)

A ∈∈∈∈ O(log n)

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved in O(n k) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem. Example: Factorial is in P.

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved in O(n k) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem.

An algorithm (problem) is in NP iff it can be solved in nondetermistic-polynomial time.

An algorithm is in NP iff it can be verified in O(n k) steps of execution,
where n is the size of the algorithm’s input.

For a problem in NP,
- one guesses a solution-candidate;
- verifies (checks) in POLYNOMIAL TIME whether the solution-candidate is indeed a solution.

An algorithm in NP is called an NP-problem, NP-algorithm, nondeterministic polynomial-time problem.

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved in O(n k) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem.

An algorithm (problem) is in NP iff it can be solved in nondetermistic-polynomial time.

An algorithm is in NP iff it can be verified in O(n k) steps of execution,
where n is the size of the algorithm’s input.

For a problem in NP,
- one guesses a solution-candidate;
- verifies (checks) in POLYNOMIAL TIME whether the solution-candidate is indeed a solution.

An algorithm in NP is called an NP-problem, NP-algorithm, nondeterministic polynomial-time problem.

P Ã NP

Open Questions: P = NP? P ≠NP ?

Big O Notation – NP-Complete Problems

Intuitively, A problem is in NP-complete iff
-it is in NP
-one cannot do better than NP when solving it.

From one NP-complete problem another NP-complete problem can be obtained in polynomial time.

If one NP-complete problem could be solved in polynomial time, then P=NP.

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Satisfiability Problem:

Given a propositional formula with n boolean variables.

Question: Is the formula satisfiable?

Answer: Yes, if the formula is satisfiable;

No, otherwise.

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Clique Problem:

Given a graph G and kœ �

Question: Does G have a k-Clique?

Answer: Yes, if the G has a k-Clique;

No, otherwise.

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Hamiltonian Path Problem:

Given a graph G and two nodes u, v of the graph G

Question: Does G have a Hamiltonian Path from u to v?

Answer: Yes, if G has a Hamiltonian Path from u to v;

No, otherwise.

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Graph Coloring Problem:

Given a graph G and three distinct colors (Red-Green-Blue)

Question: Can the nodes of G be 3-colored, that is

no two adjacent nodes have the same color?

Answer: Yes, if G can be 3-colored;

No, otherwise.

Example of a 3-colored Graph:

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Subset Sum Problem:

Given a set S={x1,…,xn} of natural numbers

and a natural number t œ �

Question: Does S have a subset {y1,…,yk} such that Σyi=t?

Answer: Yes, if S has such subset;

No, otherwise.

Example:

If S={8, 11, 16, 29, 37} and t=37,

then

- {8, 29} is a solution of Subset Sum.

- {11, 16} is a solution of Subset Sum.

- {37} is a solution of Subset Sum.

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Travelling Salesman Problem:

Given a salesman

and n cities with pairwise distances between cities

Question: What is the shortest path the salesman can make
such that each city is visited exactly once?

Example of 4 cities

Minimal hamiltonian path in the weighted graph. (A,B,C,D)

20 B

DC

A

3530

34

12

42

Big O Notation – Examples of NP-Complete Problems

� Satisfiability

� Clique

� Hamiltonian Path

� Graph Coloring

� Subset-sum

� Travelling Salesman

� Scheduling

Scheduling Problem:

Given - a list of exams F1, …, Fk

- a list of students S1,…,Sl

- a number h œ �

Each student is taking some specified subset of exams.

Question: Make an exam-schedule such that:

- it uses only h slots

- no student is required to take 2 exams in the same slot

Computational Limits - Undecidable Problems

There are infinitely many problems that cannot be a lgorithmically solved.

There are infinitely many problems that cannot be s olved by computers.

Example (HALTING-PROBLEM).
There is NO ALGORITHM that decides whether a program terminates or not.

