Graphs

Laura Kovács

Graphs - Definition

An undirected graph (ungerichteter Graph), or simply a graph $G=(\mathrm{V}, \mathrm{E})$ consists of:

- a set V of nodes / vertices (Knoten), and
- a set E of edges (Kanten), connecting two distinct nodes: $E=\{\{u, v\} \mid u, v \in V\}$.

Note: Unlike trees, graphs have no restrictions on edges connecting nodes!
A tree can be viewed as a special kind of graph.

```
Example of a graph:
(it is NOT a tree!)
V = {a,b,c,d,e,f,g}
E={{a,b},{a,c},{b,c},{c,d},{d,e},{d,f},{e,g},{f,g}}
```


[^0]
Graphs - Adjacent and Incident Nodes

Consider a graph $G=(V, E)$.

If $\{u, v\} \in E(\{u, v\}$ is an edge in $G)$, then: nodes u and v are said to be adjacent / neighbors (adjazent).

A node $\mathrm{u} \in \mathrm{V}$ is called incident (inzident) to an edge that contains u .

Example:

- a and b are adjacent
- a and fare not adjacent
- a is incident to $\{a, b\}$, and $\{a, c\}$
- a is not incident to $\{d, f\}$

Graphs - Representing Graphs via Adjacency Matrix

Consider a graph $G=(V, E)$, where V has n nodes.
The adjacency matrix (adjacency list, Adjazenzmatrix) of G is an $\mathbf{n} \times \mathbf{n}$ matrix \mathbf{A} (that is, A has n rows and n columns) Such that

$$
A_{u v}=1 \text { if }\{u, v\} \in E \quad \text { and } \quad A_{u v}=0 \text { if }\{u, v\} \notin E
$$

Example:

	a	b	c	d	e	f	g
a	0	1	1	0	0	0	0
b	1	0	1	0	0	0	0
c	1	1	0	1	0	0	0
d	0	0	1	0	1	1	0
e	0	0	0	1	0	0	1
f	0	0	0	1	0	0	1
g	0	0	0	0	1	1	0

Graphs - Representing Graphs via Adjacency Matrix

Consider a graph $G=(V, E)$, where V has n nodes.
The adjacency matrix (adjacency list, Adjazenzmatrix) of G is an $\mathbf{n} \times \mathbf{n}$ matrix \mathbf{A} (that is, A has n rows and n columns) Such that

$$
A_{u v}=1 \text { if }\{u, v\} \in E \quad \text { and } \quad A_{u v}=0 \text { if }\{u, v\} \notin E
$$

Example:

	a	b	c	d	e	f	g
a	0	1	1	0	0	0	0
b	1	0	1	0	0	0	0
c	1	1	0	1	0	0	0
d	0	0	1	0	1	1	0
e	0	0	0	1	0	0	1
f	0	0	0	1	0	0	1
g	0	0	0	0	1	1	0

Adjacency matrix (list)

Graphs - Degree of a Node

Consider a graph $G=(V, E)$.

The degree (grad) of a node $u \in V$ is the number of edges to which u incident is.

Example:

- degree of a is 2

Graphs and Binary Relations

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set of nodes V and a binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$.

- If $\{u, v\} \in E$, that is $u E v$, then there is an edge $\{u, v\}$ in the graph.

Graphs and Binary Relations

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set of nodes V and a binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$.

- If $\{u, v\} \in E$, that is $u E v$, then there is an edge $\{u, v\}$ in the graph.

For a (undirected) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, the binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ is symmetric.

- If $\{u, v\}$ is an edge in G, so is $\{v, u\}$ an edge in G.

Example:

Binary relation $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$, where:

```
V={a,b,c,d,e,f,g}
E= { {a,b}, {a,c}, {b,c}, {c,d}, {d,e}, {d,f}, {e,g}, {f,g},
    {b,a}, {c,a},{c,b},{d,c},{e,d},{f,d},{g,e},{g,f}}
```


Graphs - Directed Graphs

A graph $G=(V, E)$ is called directed (gerichtet) if its edges give directions (Orientierung) from one node to another.

For an edge $\{u, v\} \in E$ in a directed graph, we say that:

- $\{u, v\}$ is directed (orientiert) from u to v;
(I) \longrightarrow
$-u$ is the head (Kopf) of edge $\{u, v\}$.
$-v$ is the tail (Ende) of the edge $\{u, v\}$.

A directed graph is shortly called Digraph.

Example:

$\{a, b\}$ is the same as $\{b, a\}$
$\{a, b\}$ is an edge, and so is $\{b, a\}$
$\{a, b\}$ is NOT the same as $\{b, a\}$
\{a,b\} is an edge, but $\{b, a\}$ is NOT.

Directed Graphs and Binary Relations

A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of nodes V .

Example:


```
Binary relation E\subseteq V }\times\textrm{V}\mathrm{ , where:
V={a,b,c,d,e,f,g}
\(E=\{\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{d, e\},\{d, f\},\{e, g\},\{f, g\}\}\)
```


Directed Graphs and Binary Relations

A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of nodes V .

A binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of objects V defines a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

```
Example:
Binary relation E \subseteqV }\times\mathbf{V}\mathrm{ , where:
V={a,b,c,d,e,f,g}
E={{a,b},{a,c}, {b,c},{c,d},{d,e},{d,f},{e,g},{f,g}}
```


Directed Graphs and Binary Relations

A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of nodes V .

A binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of objects V defines a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Example:

Binary relation $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$, where:
$V=\{a, b, c, d, e, f, g\}$
$E=\{\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{d, e\},\{d, f\},\{e, g\},\{f, g\}\}$

Directed graph

Directed Graphs and Binary Relations

A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of nodes V .

A binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ over the set of objects V defines a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Note: If $E \subseteq V \times V$ is a symmetric relation,
then the undirected graph $G^{\prime}=(V, E)$ and directed graph $G=(V, E)$ are the same.

Only directed graphs can model antisymmetric /asymmetric/non-symmetric/ partial order relations!

Example:

Binary relation $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$, where:
$\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$E=\{\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{d, e\},\{d, f\},\{e, g\},\{f, g\}\}$

Graphs - Weighted Graphs

A graph $G=(V, E)$ is called weighted (gewichtet) when
a weight/label (Gewicht/Atribut) is associated with every edge in the graph.

Example:

Graphs - Complete Graphs

A graph $G=(V, E)$ is called complete (vollständig) when every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:

Not complete graph!
$e x:\{b, f\}$ is missing

Complete graph!

Not complete graph! ex: $\{\mathrm{d} . \mathrm{g}\}$ is missing

Graphs - Complete Graphs

A graph $G=(V, E)$ is called complete (vollständig) when every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:

Not complete graph!
$e x:\{b, f\}$ is missing

Complete graph!

Not complete graph! ex: $\{\mathrm{d} . \mathrm{g}\}$ is missing

In a complete graph with \mathbf{n} nodes, the degree of every node is $\mathbf{n - 1}$.

Note: A graph refers to an undirected graph. When a graph is directed, then we explicitly say directed graph.

Graphs - Complete Graphs

A graph $G=(V, E)$ is called complete (vollständig) when every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:

Complete graph!
Not a complete directed graph!
Complete directed graph!

Graphs - Bipartite Graphs

A graph $G=(V, E)$ is called bipartite (bipartit) if:

- its nodes can be divided into two disjoint sets U and $W \quad(V=U \cup W, U \cap W=\varnothing)$;
- its edges only connect a node from U with a node from W .

Bipartite graph

Graphs - Paths and Cycles

Consider a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

- A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes

$$
\left(u_{1}, u_{2}, \ldots, u_{k}\right) \quad u_{1}, \ldots, u_{k} \in V
$$

such that each node and the next node are connected by an edge.

- The Length (Länge) of the path $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is $k-1$.

Example:

$-(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f})$ is a path of length 4 .
$-(a, b, c, d, g)$ is NOT a path.

Graphs - Paths and Cycles

Consider a graph $G=(V, E)$.

- A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes

$$
\left(u_{1}, u_{2}, \ldots, u_{k}\right)
$$

$$
\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}} \in \mathrm{~V}
$$

such that each node and the next node are connected by an edge.

- The Length (Länge) of the path $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is $k-1$.
- The path $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is a cycle (Zyklus, Kreis) if:
a $u_{1}=u_{k} \quad$ and \quad the length of the path is ≥ 3 (that is $k \geq 4$)

Example:

$-(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f})$ is a path of length 4 .
$-(a, b, c, d, g)$ is NOT a path.

- (a, b, c) is a path of length 2 , and is not a cycle!
$-(a, b, c, a)$ is a path of length 3 , and is a cycle!

Graphs - Paths and Cycles

Consider a graph $G=(V, E)$.

- A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes

$$
\left(u_{1}, u_{2}, \ldots, u_{k}\right)
$$

$$
u_{1}, \ldots, u_{k} \in V
$$

such that each node and the next node are connected by an edge.

- The Length (Länge) of the path $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is $k-1$.
- The path $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is a cycle (Zyklus, Kreis) if:
a $u_{1}=u_{k} \quad$ and \quad the length of the path is ≥ 3 (that is $k \geq 4$)
- If the graph G has one or more cycles, then it is called a cyclic (zyklisch) graph.
- A graph with no cycles is called an acyclic (azyklish) graph. Ex: Trees are acyclic graphs.

Example:

$-(a, b, c, d, f)$ is a path of length 4.
$-(a, b, c, d, g)$ is NOT a path.
$-(a, b, c)$ is a path of length 2 , and is not a cycle!
$-(a, b, c, a)$ is a path of length 3 , and is a cycle!

An acyclic binary relation can be modelled with an acyclic graph.

Graphs - Loops

Consider a graph $G=(V, E)$.

- An edge connecting a node u with the node u itself is called a loop (Schlaufe).

Loop-free graph
(that is, a graph with no loop)
(a) is a path of length 0
(a, a) is not a path

Graph with a loop
(a) is a path of length 0
(a, a) is a path of length 1
$\{a, a\}$ is a loop

Graphs - Loops

Consider a graph $G=(V, E)$.

- An edge connecting a node u with the node u itself is called a loop (Schlaufe).

Example:

Loop-free graph
(that is, a graph with no loop)
(a) is a path of length 0
(a, a) is not a path

Graph with a loop
(a) is a path of length 0
(a, a) is a path of length 1
$\{a, a\}$ is a loop

- A reflexive binary relation can be modelled with a graph with loops on each node.
- An irreflexive binary relation can be modelled with a loop-free graph.
- For a complete and loop-free graph $G=(V, E): \forall u, v: u, v \in V: u \neq v \Rightarrow\{u, v\} \in E$.

Graphs - Hamiltonian and Eulerian Paths and Cycles

Consider a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

- A path is called a hamiltonian path (Hamilton-Pfad) if:
- it contains all nodes of the graph;
- each node is contained only once.
- A cycle is a hamiltonian cycle (Hamilton-Kreis) if:
- it contains all nodes of the graph;
- each node is contained only once, except the start and end node u_{1} which is contained exactly twice.

Example:
($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{e}$) is a hamiltonian path

Graphs - Hamiltonian and Eulerian Paths and Cycles

Consider a graph $G=(V, E)$.

- A path is called a hamiltonian path (Hamilton-Pfad) if:
- it contains all nodes of the graph;
- each node is contained only once.
- A cycle is a hamiltonian cycle (Hamilton-Kreis) if:
- it contains all nodes of the graph;

Old Swiss 10 Franc banknote honoring Leonard Euler (1707-1783)

- each node is contained only once, except the start and end node u_{1} which is contained exactly twice.
- A path is called an eulerian path (Euler-Pfad) if:
- it contains all edges of the graph;
- each edge is contained only once.
- An eulerian path that is a cycle is called an eulerian cycle (Euler-Kreis).

Example:

(a, b, c, d, f, g, e) is a hamiltonian path, not an eulerian path!

Graphs - Hamiltonian and Eulerian Paths and Cycles

Consider a graph $G=(V, E)$.

- A path is called a hamiltonian path (Hamilton-Pfad) if:
- it contains all nodes of the graph;
- each node is contained only once.
- A cycle is a hamiltonian cycle (Hamilton-Kreis) if:
- it contains all nodes of the graph;

Old Swiss 10 Franc banknote honoring Leonard Euler (1707-1783)

- each node is contained only once, except the start and end node u_{1} which is contained exactly twice.
- A path is called an eulerian path (Euler-Pfad) if:
- it contains all edges of the graph;
- each edge is contained only once.
- An eulerian path that is a cycle is called an eulerian cycle (Euler-Kreis).

Example:

($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{e}$) is a hamiltonian path, not an eulerian path! Graph has no hamiltonian cycles, nor eulerian cycles.

($c, a, b, c, d, e, g, f, d)$ is an eulerian path, but not a hamiltonian path.

Graphs - Spanning Trees and Components

Consider a graph $G=(V, E)$.
The subset $T \subseteq E$ is a spanning tree (spannender Baum) of G if:

- every node in V belongs to an edge of T ;
- between every two distinct nodes of G there is a path in T ;
- edges of T form no cycles.

Example:
$T=\{\{a, b\},\{b, c\},\{c, d\},\{d, e\},\{e, g\},\{g, f\}\}$ is a spanning tree.

Graphs - Spanning Trees and Components

Consider a graph $G=(V, E)$.
The subset $\mathrm{T} \subseteq \mathrm{E}$ is a spanning tree (spannender Baum) of G if:

- every node in V belongs to an edge of T ;
- between every two distinct nodes of G there is a path in T ;
- edges of T form no cycles.

The subset $\mathrm{T} \subseteq \mathrm{E}$ is a component (Komponent) of G if:

- between every two distinct nodes belonging to some edges of T there is a path in T .

```
Example:
T={{a,b},{b,c}, {c,d},{d,e}, {e,g},{g,f}} is a spanning tree.
```


(d)

Graphs - Critical and Isolated Nodes

Consider a graph $G=(V, E)$.

- A node $u \in V$ in the graph G is critical (kritisch) if by deleting u from G the graph G is divided into not connected components.
- An edge $\{u, v\} \in E$ in the graph G is critical (kritisch) if by deleting $\{u, v\}$ from G the graph G is divided into not connected components.
- Critical nodes and edges of the graph G form the articulation points (Artikulationspunkte) of G .

Graphs - Critical and Isolated Nodes

Consider a graph $G=(V, E)$.

- A node $u \in V$ in the graph G is critical (kritisch) if by deleting u from G the graph G is divided into not connected components.
- An edge $\{u, v\} \in E$ in the graph G is critical (kritisch) if by deleting $\{u, v\}$ from G the graph G is divided into not connected components.
- Critical nodes and edges of the graph G form the articulation points (Artikulationspunkte) of G .
- A node $u \in V$ in the graph G is isolated (isoliert) if it is the only node of a component of G.

Graphs - Biconnected Components

Consider a (undirected) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

- A component $T \subseteq E$ of G is a biconnected component (zweifach zusammenhängend), if - by deleting an arbitrary node from T ,
- the remaining nodes and edges in T still form a component of G.

Example:

- Some Biconnected components:
$\mathrm{T}_{1}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$

$$
T_{2}=\{\{d, e\},\{d, f\},\{e, g\},\{f, g\}\}
$$

- Not biconnected component:
$\mathrm{T}_{3}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
$T_{4}=\{\{d, e\},\{d, f\}\}$

Graphs - Subgraphs and Clique

Consider a graph $G=(\mathrm{V}, \mathrm{E})$.

- The graph $G_{1}=\left(V_{1}, E_{1}\right)$ is a subgraph (Subgraph) of G, if

$$
\mathrm{V}_{1} \subseteq \mathrm{~V} \quad \text { and } \quad \mathrm{E}_{1}=\left\{\{u, v\} \in \mathrm{E} \mid \mathrm{u}, \mathrm{v} \in \mathrm{~V}_{1}\right\} \subseteq \mathrm{E}
$$

Example:

- $G_{1}=\left\{V_{1}, E_{1}\right\}$ is a subgraph, where:

$$
V_{1}=\{a, b, c\} \quad T_{1}=\{\{a, b\},\{a, c\},\{b, c\}\}
$$

- $\mathrm{G}_{2}=\left\{\mathrm{V}_{2}, \mathrm{E}_{2}\right\}$ is NOT a subgraph, where:
$\mathrm{V}_{2}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\} \quad \mathrm{T}_{2}=\{\{\mathrm{d}, \mathrm{e}\},\{\mathrm{e}, \mathrm{g}\},\{\mathrm{g}, \mathrm{f}\}\}$

Graphs - Subgraphs and Clique

Consider a graph $G=(V, E)$.

- The graph $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ is a subgraph (Subgraph) of G , if

$$
\mathrm{V}_{1} \subseteq \mathrm{~V} \quad \text { and } \quad \mathrm{E}_{1}=\left\{\{\mathrm{u}, \mathrm{v}\} \in \mathrm{E} \mid \mathrm{u}, \mathrm{v} \in \mathrm{~V}_{1}\right\} \subseteq \mathrm{E}
$$

- A k-clique (k-Clique, Clique der Grösse k) of G is a subgraph of G which is complete and contains knodes.

Example:

- $G_{1}=\left\{V_{1}, E_{1}\right\}$ is a subgraph, where:

$$
\mathrm{V}_{1}=\{a, b, c\} \quad \mathrm{T}_{1}=\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}
$$

G_{1} is a 3 -Clique! Since it is complete, one can also write that $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ forms a 3 -clique!
No other 3 -cliques, nor 4 -cliques! Note: $\{d, e, g, f\}$ is not a 4 -clique! (Although these nodes with their edges form a subgragh!)

- $\mathrm{G}_{2}=\left\{\mathrm{V}_{2}, \mathrm{E}_{2}\right\}$ is NOT a subgraph, where:
$\mathrm{V}_{2}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\} \quad \mathrm{T}_{2}=\{\{\mathrm{d}, \mathrm{e}\},\{\mathrm{e}, \mathrm{g}\},\{\mathrm{g}, \mathrm{f}\}\}$

Directed Graphs - Connected Components

Consider a digraph graph $G=(\mathrm{V}, \mathrm{E})$.

- A node v is weakly reachable (schwach erreichbar) from a node u, if there is an undirected path from u to v.
- A component $T \subseteq E$ is weakly connected (schwach zusammenhängend) if every node in T is weakly reachable from any other node in T.

Example:

- Node a is weakly reachable from node d;
- \{\{a,b\}, \{b,c\}, \{a,c\}, \{c,d\}\} is weakly connected;

Directed Graphs - Connected Components

Consider a digraph graph $G=(V, E)$.

- A node v is weakly reachable (schwach erreichbar) from a node u, if there is an undirected path from u to v .
- A component $\mathrm{T} \subseteq \mathrm{E}$ is weakly connected (schwach zusammenhängend) if every node in T is weakly reachable from any other node in T .
- A node v is strongly reachable (stark erreichbar) from a node u, if there is an (directed) path from u to v.
- A component $\mathrm{T} \subseteq \mathrm{E}$ is strongly connected (stark zusammenhängend) if every node in T is strongly reachable from any other node in T .

Example:

- Node a is weakly reachable from node d;
- $\{\{a, b\},\{b, c\},\{a, c\},\{c, d\}\}$ is weakly connected;
- Node a is NOT strongly reachable from node d;
- $\{\{a, b\},\{b, c\},\{a, c\},\{c, d\}\}$ is weakly connected;

- The only strongly connected components are given by \varnothing, that is only one node and no edge in a strongly connected component.

Example: Seven Bridges of Königsberg

Leonhard Euler, 1736

Problem:

Two large islands connected to each other and the mainland by seven bridges.

Decide whether it is possible to follow a path that crosses each bridge exactly once and returns to the starting point.

Example: Seven Bridges of Königsberg

Leonhard Euler, 1736

Problem:

Two large islands connected to each other and the mainland by seven bridges.

Decide whether it is possible to follow a path that crosses each bridge exactly once and returns to the starting point.

Example: Seven Bridges of Königsberg

Leonhard Euler, 1736

Problem:

Two large islands connected to each other and the mainland by seven bridges.

Decide whether it is possible to follow a path that crosses each bridge exactly once and returns to the starting point.

\downarrow

Is there an Eulerian Cycle?
Euler proved: no eulerian cycle.

[^0]: No difference between edge $\{a, b\}$ or $\{b, a\}$ in the undirected graph!
 $\{a, b\}$ indicates that nodes a and b are connected by edge $\{a, b\}$.

