The Tree Data Model

Laura Kovács

Trees (Baumstrukturen) – Definition

Trees are sets of

- points, called nodes (Knoten)
 and
- □ lines, called edges (Kanten), connecting two distinct nodes,

Trees (Baumstrukturen) – Definition

Trees are sets of

points, called nodes (Knoten)
 and

□ lines, called edges (Kanten), connecting two distinct nodes,

such that:

• there is one special node, called the root (Wurzel); Ex: n_1

Trees are sets of

points, called nodes (Knoten)
 and

Trees (Baumstrukturen) – Definition

lines, called edges (Kanten), connecting two distinct nodes,

such that:

- there is one special node, called the root (Wurzel); Ex: n_1
- every node c other than the root is connected by an edge to some other node p.
 - Node p is called the parent (Vater) of node c; Ex: n₂ is parent of n₅, n₆
 - Node c is called the child (Sohn) of node p; Ex: n₅, n₆ are children of n₂

Trees are sets of

points, called nodes (Knoten)
 and

Trees (Baumstrukturen) – Definition

□ lines, called edges (Kanten), connecting two distinct nodes,

such that:

- there is one special node, called the root (Wurzel); Ex: n_1
- every node c other than the root is connected by an edge to some other node p.

n₁

 n_3

(ท₆

 n_2

ns

(́n₄

 n_7

- Node p is called the parent (Vater) of node c; Ex: n₂ is parent of n₅, n₆
- Node c is called the child (Sohn) of node p; Ex: n₅, n₆ are children of n₂
- the tree is **connected**, that is:

if we start at any node n different than the root \rightarrow move to the parent of n \rightarrow move to the parent of n \rightarrow ... \rightarrow reach the root of the tree. Ex: $n_7 \rightarrow n_4 \rightarrow n_1$

Trees are sets of

points, called nodes (Knoten)
 and

Trees (Baumstrukturen) – Definition

□ lines, called edges (Kanten), connecting two distinct nodes,

such that:

- there is one special node, called the root (Wurzel); Ex: n_1
- every node c other than the root is connected by an edge to some other node p.
 - Node p is called the parent (Vater) of node c; Ex: n₂ is parent of n₅, n₆
 - Node c is called the child (Sohn) of node p; Ex: n₅, n₆ are children of n₂
- the tree is connected, that is:

if we start at any node n different than the root \rightarrow move to the parent of $n \rightarrow$ move to the parent of $n \rightarrow ... \rightarrow$ reach the root of the tree. Ex: $n_7 \rightarrow n_4 \rightarrow n_1$

A node with no children is called a leaf (Blatt).

Ex: n_5 , n_6 , n_7 are leaves.

n₁

 n_3

(ท₆

 n_2

ns

(́n₄

 n_{7}

Trees (Baumstrukturen) – Alternative Definition

A single node n is a tree.
 n is said to be the root of this tree.

Trees (Baumstrukturen) – Alternative Definition

- A single node n is a tree.
 n is said to be the root of this tree.
- □ Let r be a new node, and $T_1, ..., T_k$ trees with roots $c_1,...,c_k$. Then a new tree T can be formed by
 - make r the root of T;
 - add an edge from r to each $c_1, ..., c_k$.

Trees (Baumstrukturen) – Alternative Definition

- A single node n is a tree.
 n is said to be the root of this tree.
- □ Let r be a new node, and $T_1, ..., T_k$ trees with roots $c_1,...,c_k$. Then a new tree T can be formed by
 - make r the root of T;
 - add an edge from r to each $c_1, ..., c_k$.

Trees T_1 , ..., T_k are subtrees (Teilbäume) of r. Note: T_i contains c_i ; the root of T_i is c_i .

Note: A subtree with root c contains all the children of c, the children of children of c, etc.

Note: A subtree with root c contains all the children of c, the children of children of c, etc.

Trees – Path

A path (Pfad) in a tree is a sequence of nodes

 $m_1, m_2, m_3, \dots, m_k$

such that:

- m_2 is the parent of m_1 ,
- $\rm m_3$ is the parent of $\rm m_{2,}$

```
- m_{k-1} is the parent of m_{k}
```

Ex: n_1 , n_2 , n_6 is a path

Note: (m_1, m_2) , (m_2, m_3) ,..., (m_{k-1}, m_k) are edges of the tree. Between arbitrary two nodes there is <u>exactly one</u> path.

Trees – Path

A path (Pfad) in a tree is a sequence of nodes

 $m_1, m_2, m_3, \dots, m_k$

such that:

- m_2 is the parent of m_1 ,
- $\rm m_3$ is the parent of $\rm m_{2,}$
- . miatha n

```
- m_{k-1} is the parent of m_{k.}
```

Ex: n_1 , n_2 , n_6 is a path of length 2. Ex: n_1 is a path of length 0.

Note: (m_1, m_2) , (m_2, m_3) ,..., (m_{k-1}, m_k) are edges of the tree. Between arbitrary two nodes there is <u>exactly one</u> path.

The length (Länge) of the path is k-1.

Trees – Path

A path (Pfad) in a tree is a sequence of nodes

 $m_1, m_2, m_3, \dots, m_k$

such that:

- m_2 is the parent of m_1 ,
- m₃ is the parent of m_{2,}
- m_{k-1} is the parent of $m_{k.}$

Ex: n_1 , n_2 , n_6 is a path of length 2. Ex: n_1 is a path of length 0.

Note: (m_1, m_2) , (m_2, m_3) ,..., (m_{k-1}, m_k) are edges of the tree. Between arbitrary two nodes there is <u>exactly one</u> path.

The length (Länge) of the path is k-1.

 m_1 is called an ancestor (Vorgänger) of m_k ; m_k is a descendant (Nachfolger) of m_1 .

Ex: n_1 is an ancestor of n_2 , n_6 ;

 n_6 , n_2 are descendants of n_1 .

- The height (Höhe) of node m is the length of the longest path from m to a leaf. Ex: Height of n_1 is 2, height of n_2 is 1, leaf n_5 has height 0.
- The height of a tree is the height of the root.

Ex: Height of the tree is 2.

- The depth/level (level) of node m is the length of the path from the root to m. Ex: Depth of n_1 is 0, depth of n_2 is 1, leaf n_5 has depth 2.
- The degree (Ordnung) of a tree is the maximum of the number of subtrees of nodes.
 Ex: Degree of the tree is 3.

Trees – Height, Depth, Degree

Height of the tree is 2. Degree of the tree is 3.

An ordered tree (geordneten Baum) is a tree where an order is assigned to the children of any node.

Example: Assign a *left-to-right order* to the children of any node. Then, among the children of n_1 :

 n_2 is the leftmost child of n_1 , then n_3 , then n_4 .

```
-n_4 is the rightmost child of n_1.
-n_3 is to the left of n_4.
```

In an ordered tree (geordneten Baum) the order of the subtrees is relevant.

Trees – Isomorphic Trees

Trees who differ only by the order of their subtrees are isomorphic.

Trees – Binary Trees (binärer Baum)

• A binary tree is a tree such that each node has maximum two subtrees.

Special binary tree: empty tree (no nodes, no edges).

Note: The degree of a binary tree is maximum 2.

Difference between a Tree and a Binary Trees

BINARY TREE

- A binary tree may be empty.
- No node in a binary tree may have more than 2 subtrees.
- Degree of a binary tree is maximum 2.

Subtrees of a binary tree are ordered.

TREE

- A tree cannot be empty.
- No limit on the number of subtrees of a node in a tree.
- No limit on the degree of a tree.
- Subtrees of a tree are not ordered.

Difference between a Tree and a Binary Trees

BINARY TREE

- A binary tree may be empty.
- No node in a binary tree may have more than 2 subtrees.
- Degree of a binary trees is maximum 2.
- The subtrees of a binary tree are ordered.

TREE

- A tree cannot be empty.
- No limit on the number of subtrees of a node in a tree.
- No limit on the degree of a tree.
- Subtrees of a tree are not ordered.

- different when viewed as a binary tree
- same when viewed as a tree

Full (Perfect/Complete) Binary Trees (perfekter/voll binärer Baum)

- A binary tree is full / complete / perfect when
 - the left subtree

and

• the right subtree

of each node contains the same number of nodes.

Full (Perfect/Complete) Binary Trees (perfekter/voll binärer Baum)

- A binary tree is full / complete / perfect when
 - the left subtree

and

• the right subtree

of each node contains the same number of nodes.

In a full binary tree each node

- is either a leaf;
- or has exactly two non-empty subtrees.

Full Binary Trees

• In a full binary tree with N nodes and height h:

$$N = 2^{h+1} - 1$$

and

• A full binary tree with height h has exactly 2^h leaves.

Binary Trees - Syntax Trees (Syntaxbaum)

Syntax tree (expression tree) is a binary tree of an arithmetic expression.

- □ Nodes: arithmetic operators (+,-,*,...) and numbers/variables
 - Leafs: numbers/variables
- Edges:
 - parent-child relation between nodes is defined by the precedence of operators (indicated by parentheses).

Binary Trees - Syntax Trees (Syntaxbaum)

Example: (a+b)*c

Example: (a+b)*ld(c)

Binary Trees – Traversal of Binary Trees

Prefix traversal

Infix traversal

Binary Trees – Prefix Traversal

PREFIX / PREORDER Traversal \rightarrow *Prefix / Preorder notation (polish notation):*

Recursively perform the following operations:

- Visit the node;
- Traverse left subtree;
- Traverse right subtree.

```
(Also called: depth-first traversal.)
preorder(root)
{
    print root.value;
    if NotEmpty(root.left) then preorder(root.left);
    if NotEmpty(root.right) then preorder(root.right)
}
```

Example: (a+b)*c

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Infix Traversal

INFIX / INORDER Traversal \rightarrow *Infix / Inorder notation:*

Recursively perform the following operations:

- Traverse the left subtree;
- Visit the node;
- Traverse the right subtree.

inorder(root)
{
 if NotEmpty(root.left) then inorder(root.left);
 print root.value;
 if NotEmpty(root.right) then inorder(root.right)

Example: (a+b)*c

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Postfix Traversal

POSTFIX / POSTORDER Traversal \rightarrow *Postfix / Postorder notation* (reverse polish notation):

Recursively perform the following operations:

- Traverse the left subtree;
- Traverse the right subtree;
- Visit the node.

```
(Also called breadth-first traversal.)
postorder(root)
{
    if NotEmpty(root.left) then postorder(root.left);
    if NotEmpty(root.right) then postorder(root.right);
    print root.value
    }
```

Example: (a+b)*c

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Binary Search (Sort) Tree (Sortierbaum)

A binary search tree is a binary tree with:

□ The left subtree of a node n contains only nodes with values (keys) less than the value of n;

□ The right subtree of a node n contains only nodes with values (keys) greater than the value of n;

□ Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.

Inorder traversal of a binary search tress yields a sorted list of nodes.

Example:

- Inorder: abcde ← SORTED LIST of NODES
- Preorder: dbace
- Postorder: acbed
- Levelorder: d be ac

(listing nodes from left-to-right, level-by-level starting from root)

Binary Trees – Binary Search (Sort) Tree (Sortierbaum)

A binary search tree is a binary tree with:

□ The left subtree of a node n contains only nodes with values (keys) less than the value of n;

D The right subtree of a node n contains only nodes with values (keys) greater than the value of n;

Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.

Inorder traversal of a binary search tress yields a sorted list of nodes.

Let T be a binary search tree. Let Nodes(T) denote the set of nodes of T. For a node n of T, let:

• n.left denote its left subtree;

• n.right denote its right subtree;

• n.value denote the value of n.

Then:

$\begin{aligned} \forall n: n \in Nodes(T): \\ (\forall n_l: n_l \in Nodes(n.left): n_l.value < n.value) \land (\forall n_r: n_r \in Nodes(n.right): n_r.value > n.value) \end{aligned}$

An alternative: ∀n: n∈Nodes(T): (∀ n_i: n_i∈Nodes(n.left): n_i.value≤n.value) ∧ (∀ n_r: n_r ∈Nodes(n.right): n_r.value>n.key)

Binary Trees - Exercises

 \Box Consider the expression **a b** + **c d** - * **e f** + / in postfix form.

- What is its infix form?
- What is its prefix form?

□ Consider the binary tree:

- Is it a binary search tree?
- □ Is it a full binary tree?
- What is the degree of the tree?
- What is the height of the tree?
- What is its prefix form?

