The Tree Data Model

Laura Kovács

Trees (Baumstrukururen) - Definition

Trees are sets of

- points, called nodes (Knoten) and

- lines, called edges (Kanten), connecting two distinct nodes,

Trees ${ }_{\text {(Baumstrukuturen) }}$ - Definition

Trees are sets of

- points, called nodes (Knoten) and

- lines, called edges (Kanten), connecting two distinct nodes,
such that:
- there is one special node, called the root (Wurzel);

Trees (Bamsankumere) - Definition

Trees are sets of

- points, called nodes (Knoten) and

- lines, called edges (Kanten), connecting two distinct nodes,
such that:
- there is one special node, called the root (Wurzel); Ex: n_{1}
- every node c other than the root is connected by an edge to some other node p .
- Node p is called the parent (Vater) of node c; Ex: n_{2} is parent of n_{5}, n_{6}
- Node c is called the child (Sohn) of node p; Ex: n_{5}, n_{6} are children of n_{2}

Trees (Bamamstumures) - Definition

Trees are sets of

- points, called nodes (Knoten) and

- lines, called edges (Kanten), connecting two distinct nodes,
such that:
- there is one special node, called the root (Wurzel); Ex: n_{1}
- every node c other than the root is connected by an edge to some other node p .
- Node p is called the parent (Vater) of node c; Ex: n_{2} is parent of n_{5}, n_{6}
- Node c is called the child (Sohn) of node p; Ex: n_{5}, n_{6} are children of n_{2}
- the tree is connected, that is:
if we start at any node n different than the root \rightarrow move to the parent of $n \rightarrow$ move to the parent of parent of $n \rightarrow \ldots \rightarrow$ reach the root of the tree. Ex: $n_{7} \rightarrow n_{4} \rightarrow n_{1}$

Trees (Baumstukutren) - Definition

Trees are sets of

- points, called nodes (Knoten) and

- lines, called edges (Kanten), connecting two distinct nodes,
such that:
- there is one special node, called the root (Wurzel); Ex: n_{1}
- every node c other than the root is connected by an edge to some other node p .
- Node p is called the parent (Vater) of node c; Ex: n_{2} is parent of n_{5}, n_{6}
- Node c is called the child (Sohn) of node p; Ex: n_{5}, n_{6} are children of n_{2}
- the tree is connected, that is:
if we start at any node n different than the root \rightarrow move to the parent of $\mathrm{n} \rightarrow$ move to the parent of parent of $n \rightarrow \ldots \rightarrow$ reach the root of the tree. $E x: n_{7} \rightarrow n_{4} \rightarrow n_{1}$

A node with no children is called a leaf (Blatt).

Trees (Baumstrukuren) - Alternative Definition

- A single node n is a tree. n is said to be the root of this tree.

Trees (Baunstrukurucre) - Alternative Definition

- A single node n is a tree. n is said to be the root of this tree.
- Let r be a new node, and T_{1}, \ldots, T_{k} trees with roots c_{1}, \ldots, c_{k}. Then a new tree T can be formed by
- make r the root of T;
- add an edge from r to each c_{1}, \ldots, c_{k}.

Trees (Baumstưuturen) - Alternative Definition

- A single node n is a tree. n is said to be the root of this tree.
- Let r be a new node, and T_{1}, \ldots, T_{k} trees with roots c_{1}, \ldots, c_{k}. Then a new tree T can be formed by
- make r the root of T;
- add an edge from r to each c_{1}, \ldots, c_{k}.

Trees T_{1}, \ldots, T_{k} are subtrees (Teilbäume) of r. Note: T_{i} contains c_{i}; the root of T_{i} is c_{i}.

Trees (Baumstrukutren) - Alternative Definition $^{\text {I }}$

- A single node n is a tree. n is said to be the root of this tree.
- Let r be a new node, and T_{1}, \ldots, T_{k} trees with roots c_{1}, \ldots, c_{k}. Then a new tree T can be formed by
- make r the root of T;
- add an edge from r to each c_{1}, \ldots, c_{k}.

Trees T_{1}, \ldots, T_{k} are subtrees (Teilbäume) of r.
Ex:

Note: A subtree with root c contains all the children of c, the children of children of c, etc.

Trees - Path

A path (Pfad) in a tree is a sequence of nodes

$$
\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots, \mathrm{~m}_{\mathrm{k}}
$$

such that:

- m_{2} is the parent of m_{1},
- m_{3} is the parent of m_{2},
!
- m_{k-1} is the parent of m_{k}.

Note: $\left(m_{1}, m_{2}\right),\left(m_{2}, m_{3}\right), \ldots,\left(m_{k-1}, m_{k}\right)$ are edges of the tree.
Between arbitrary two nodes there is exactly one path.

Trees - Path

A path (Pfad) in a tree is a sequence of nodes

$$
\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots, \mathrm{~m}_{\mathrm{k}}
$$

such that:

- m_{2} is the parent of m_{1},
- m_{3} is the parent of m_{2},
!
- m_{k-1} is the parent of m_{k}.

Ex: n_{1}, n_{2}, n_{6} is a path of length 2. Ex: n_{1} is a path of length 0 .
Note: $\left(m_{1}, m_{2}\right),\left(m_{2}, m_{3}\right), \ldots,\left(m_{k-1}, m_{k}\right)$ are edges of the tree.
Between arbitrary two nodes there is exactly one path.
The length (Länge) of the path is $\mathrm{k}-1$.

Trees - Path

A path (Pfad) in a tree is a sequence of nodes

$$
m_{1}, m_{2}, m_{3}, \ldots, m_{k}
$$

such that:

- m_{2} is the parent of m_{1},
$-m_{3}$ is the parent of m_{2},
!
- m_{k-1} is the parent of m_{k}.

> Ex: n_{1}, n_{2}, n_{6} is a path of length 2.
> $E x: n_{1}$ is a path of length 0.

Note: $\left(m_{1}, m_{2}\right),\left(m_{2}, m_{3}\right), \ldots,\left(m_{k-1}, m_{k}\right)$ are edges of the tree.
Between arbitrary two nodes there is exactly one path.
The length (Länge) of the path is $\mathrm{k}-1$.
m_{1} is called an ancestor (Vorgänger) of m_{k}; $\quad m_{k}$ is a descendant (Nachfolger) of m_{1}.

Trees - Height, Depth, Degree

- The height (Höhe) of node m is the length of the longest path from m to a leaf. Ex: Height of n_{1} is 2 , height of n_{2} is 1 , leaf n_{5} has height 0 .
- The height of a tree is the height of the root.

Ex: Height of the tree is 2.

- The depth/level (level) of node m is the length of the path from the root to m.

$$
\text { Ex: Depth of } n_{1} \text { is } 0 \text {, depth of } n_{2} \text { is } 1 \text {, leaf } n_{5} \text { has depth } 2 \text {. }
$$

- The degree (Ordnung) of a tree is the maximum of the number of subtrees of nodes.

Ex: Degree of the tree is 3 .

Trees - Height, Depth, Degree

Height of the tree is 2.
Degree of the tree is 3 .

Trees - Ordered Trees geordnete Baum)

An ordered tree (geordneten Baum) is a tree where an order is assigned to the children of any node.

Example: Assign a left-to-right order to the children of any node. Then, among the children of n_{1} :

$$
n_{2} \text { is the leftmost child of } n_{1} \text {, then } n_{3} \text {, then } n_{4} \text {. }
$$

$-n_{4}$ is the rightmost child of n_{1}.
$-n_{3}$ is to the left of n_{4}.

In an ordered tree (geordneten Baum) the order of the subtrees is relevant.

Trees - Isomorphic Trees

Trees who differ only by the order of their subtrees are isomorphic.

Trees - Binary Trees (binârec Baum)

- A binary tree is a tree such that each node has maximum two subtrees.

Special binary tree: empty tree (no nodes, no edges).
Note: The degree of a binary tree is maximum 2.

Binary trees have left (linken) and right (rechten) subtrees.

Difference between a Tree and a Binary Trees

BINARY TREE

- A binary tree may be empty.
- No node in a binary tree may have more than 2 subtrees.
- Degree of a binary tree is maximum 2.
- Subtrees of a binary tree are ordered.

TREE

- A tree cannot be empty.
- No limit on the number of subtrees of a node in a tree.
- No limit on the degree of a tree.
- Subtrees of a tree are not ordered.

Difference between a Tree and a Binary Trees

BINARY TREE

- A binary tree may be empty.
- No node in a binary tree may have more than 2 subtrees.
- Degree of a binary trees is maximum 2.
- The subtrees of a binary tree are ordered.

TREE

- A tree cannot be empty.
- No limit on the number of subtrees of a node in a tree.
- No limit on the degree of a tree.
- Subtrees of a tree are not ordered.

- different when viewed as a binary tree
- same when viewed as a tree

- A binary tree is full / complete / perfect when
- the left subtree
and
- the right subtree
of each node contains the same number of nodes.

is not a full binary tree

is a full binary tree

- A binary tree is full / complete / perfect when
- the left subtree
and
- the right subtree
of each node contains the same number of nodes.

is not a full binary tree

is a full binary tree

In a full binary tree each node

- is either a leaf;
- or has exactly two non-empty subtrees.

Full Binary Trees

- In a full binary tree with N nodes and height h :

$$
N=2^{h+1}-1
$$

and

$$
h=\operatorname{ld}(N+1)-1
$$

- A full binary tree with height h has exactly 2^{h} leaves.

Binary Trees - Syntax Trees (symaxbaum)

Syntax tree (expression tree) is a binary tree of an arithmetic expression.

- Nodes: arithmetic operators (+,-,,,\ldots) and numbers/variables
- Leafs: numbers/variables
- Edges:
- parent-child relation between nodes is defined by the precedence of operators (indicated by parentheses).

Binary Trees - Syntax Trees spmatham)

1. The syntax tree of operand a is a single-node tree with root labeled by a.

2. If T_{1} is the syntax tree of arithmetic expression A_{1}, and T_{2} is the syntax tree of the arithmetic expression A_{2}, then:
2.1. the expression tree of $A_{1} o p_{2} A_{2}$, where $o p_{2}$ is a binary operator $\left(+,{ }^{*},-, \ldots\right)$, is:

2.2. the expression tree of $\mathrm{op}_{1} \mathrm{~A}_{1}$, where op_{1} is a unary operator (!, Id, ...), is:

Binary Trees - Syntax Trees smanatam)

Example: $(\mathrm{a}+\mathrm{b})^{*} \mathrm{c}$

Binary Trees - Traversal of Binary Trees

- Prefix traversal
- Infix traversal
- Postfix

Binary Trees - Prefix Traversal

PREFIX / PREORDER Traversal \rightarrow Prefix / Preorder notation (polish notation):
Recursively perform the following operations:

- Visit the node;

$$
\text { Example: }(a+b)^{\star} c
$$

- Traverse left subtree;
- Traverse right subtree.
(Also called: depth-first traversal.)

Prefix/Preorder notation: *+abc

[^0]
Binary Trees - Infix Traversal

INFIX / INORDER Traversal \rightarrow Infix / Inorder notation:

Recursively perform the following operations:

- Traverse the left subtree;
- Visit the node;
- Traverse the right subtree.

```
```

{------m(root)

```
```

```
```

{------m(root)

```
```

Example: (a+b)*c

Infix/Inorder notation: a+b*c

[^1]
Binary Trees - Postfix Traversal

POSTFIX / POSTORDER Traversal \rightarrow Postfix / Postorder notation (reverse polish notation):

Recursively perform the following operations:

- Traverse the left subtree;
- Traverse the right subtree;
- Visit the node.
(Also called breadth-first traversal.)

Example: $(a+b) * c$

Postfix/Postorder notation: ab+c*

[^2]
Binary Trees - Binary Search (Sort) Tree (Sortictraum)

A binary search tree is a binary tree with:

- The left subtree of a node n contains only nodes with values (keys) less than the value of n;
- The right subtree of a node n contains only nodes with values (keys) greater than the value of n;
- Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Example:

- Inorder: abcde \leftarrow SORTED LIST of NODES
- Preorder: dbace
- Postorder: acbed
- Levelorder: d be ac
(listing nodes from left-to-right, level-by-level starting from root)

Binary Trees - Binary Search (Sort) Tree (Soricicramm)

A binary search tree is a binary tree with:

- The left subtree of a node n contains only nodes with values (keys) less than the value of n ;
- The right subtree of a node n contains only nodes with values (keys) greater than the value of n;
- Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Let T be a binary search tree. Let Nodes(T) denote the set of nodes of T. For a node n of T, let:

- n.left denote its left subtree;
- n.right denote its right subtree;
- n.value denote the value of n.

Then:
$\forall \mathrm{n}$: $\mathrm{n} \in \mathrm{Nodes}(\mathrm{T})$:
($\forall n_{1}$: $n_{l} \in$ Nodes(n.left): n_{l}.value $\left.<n . v a l u e\right) \wedge\left(\forall n_{r}: n_{r} \in \operatorname{Nodes}(n . r i g h t): n_{r}\right.$ value $\left.>n . v a l u e\right)$

An alternative:

$\forall n: n \in \operatorname{Nodes}(T):\left(\forall n_{1}: n_{1} \in \operatorname{Nodes}(n . l e f t): n_{\mid, ~ v a l u e} \leqslant n . v a l u e\right) \wedge\left(\forall n_{r}: n_{r} \in \operatorname{Nodes}(n . r i g h t): n_{r}\right.$ value $\left.>n . k e y\right)$

Binary Trees - Exercises

- Consider the expression $a b+c d-{ }^{*}$ e f + / in postfix form.

What is its infix form?
What is its prefix form?

- Consider the binary tree:
\square Is it a binary search tree?
\square Is it a full binary tree?
\square What is the degree of the tree?
\square What is the height of the tree?
\square What is its prefix form?

[^0]: For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

[^1]: For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

[^2]: For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

