Information Theory.

- Syntax and Semantics;
- Alphabet and Code;
- Bits (Binary Numbers and Binary Codes;
- Code Length and Data Representation;
 - Relation between a Code Length L and the Number of Different Codes of Length L;
- Signed and Unsigned Integers;

- Information Content of a Message Associated with a Certain Probability;
- Average Information Content (Entropy) of a System of Messages;
- Average Word Length of a System of Messages;
- Redundancy of a System of Messages;
- Shannon's Coding Theorem.

Boolean Algebra (Propositional Logic).

- Boolean Variables and Functions (Atoms and Propositional Formulas);
- Boolean Operators (Logical Connectives):
 - Conjunction (\wedge), Disjunction (\vee), Negation (\neg);
 - Identity/Zero Element/Idempotence/Negation/Distributivity/Commutativity/Associativity Axioms;
 - DeMorgans' Axioms;
 - Two more "standard" boolean operators: Implication (\Longrightarrow), Equivalence (\Leftrightarrow);
 - Precedence of Boolean Operators $(\neg, \land, \lor, \Longrightarrow, \Leftrightarrow)$;
 - XOR boolean operator;
- Truth Tables of Boolean Functions;
- Tautology/Contradiction/Satisfiable Boolean Function.

Predicate Logic.

- Variables, Domains, Predicates;
- Logical Connectives $(\neg, \land, \lor, \Longrightarrow, \Leftrightarrow)$;
- Universal (\forall) and Existential (\exists) Quantifiers;
- DeMorgan's Axiom for Quantifiers;
- Distributivity and Non-distributivity Properties for Quantified Predicates;
- Bound and Free Variables;
- Scope of Quantifiers;
- Quantifiers over Formulas without Quantified Variables;
- Math-Reasoning Quantifiers: ANZ, SUM, MIX, MAX.

Binary Relations.

- Binary Relations (and n-ary Relations);
- Reflexivity;
- Irreflexivity;
- Symmetry;
- Antisymmetry;
- Asymmetry;
- Non-symmetry;
- Transitivity;
- Transitive Closure of a Relation;
- Total Relations;
- Acyclic Relations;
- Equivalence Relations and Equivalence Classes;
- Partial Orders;
- Total (Linear) Orders;
- Strict Partial Orders;
- Upper Bounds and Least Upper Bound of Partially Ordered Sets;

Program Verification.

- Programs and Specification;
- Hoare Triple;
- Partial Program Correctness;
- Weakest Precondition;
- Weakest Precondition Calculus Rules (scalar assignments, sequencing, conditional, loops);
- Loop Invariants;
- Program Verification using Weakest Precondition Calculus;
- Verification Conditions.

Trees.

- Root, Children and Leaf Nodes;
- Subtrees;
- Paths and their Length;
- Height of a Node and of a Tree;
- Depth (Level) of a Node;
- Degree of a Tree;
- Ordered Trees;
- Isomorphic Trees;
- Binary Trees:
 - Trees versus Binary Trees;
 - Empty Binary Tree;
 - Left and Right Binary Subtrees;
 - Full Binary Trees:
 - Relation between the Number of Nodes and Tree Height;
 - Syntax Trees;
 - Prefix Traversal;
 - Infix Traversal;
 - Postfix Traversal;
 - Binary Search Trees.

Graphs.

- (Undirected) Graphs:
 - Adjacent and Incident Nodes;
 - Adjacency Matrix (List) of a Graph;
 - Degree of Nodes;
 - Critical Nodes, Critical Edges, Articulation Points;
 - Isolated Nodes;
 - Graphs and Symmetric Binary Relations;
 - Complete Graphs;
 - Weighted Graphs;
 - Bipartite Graphs;
 - Paths and their Length;
 - Cycles;
 - Loops;
 - Hamiltonian Paths and Cycles;
 - Eulerian Paths and Cycles;
 - Spanning Trees;
 - Components and Biconnected Components;
 - Subgraphs;
 - Cliques;
- Directed Graphs and Binary Relations:
 - Weakly and Strongly Connected Components.

Complexity.

- O-Notation and Worst-Case (Upper-Bound) Complexity;
- Calculus Rules and Properties of *O*-notation;
- Ω-Notation and Best-Case (Lower-Bound) Complexity;
- Θ -Notation and Average-Case Complexity;
- Worst/Best/Average-Case Complexity of Programs.