
Semi-Automatic Calibration
for the Ada/Expo.02 Vision Matrix

Christoph Kiefer
(D-INFK)

Semester Thesis July 10, 2003

PERCEPTUAL COMPUTING

COMPUTER VISION

Advisor: Martin Spengler

Prof. B. Schiele
Institute of Scientific Computing
ETH Zürich

Table of Contents

1 Introduction 1

2 Digital Video over IEEE 1394 3

2.1 The IEEE 1394 Standard . 3

2.2 Linux IEEE 1394 Subsystem . 4

2.3 Using Libraw1394 . 4

2.4 Controlling the DV Camera . 8

2.4.1 Data Packet Transfer Protocols . 8

2.4.2 Implementation in AdaDVCamera Application 10

2.5 Handling Packet Data . 13

2.5.1 Structure of Isochronous Packets 13

2.5.2 Queue Management . 14

3 Synchronization 17

3.1 Purpose of Synchronization . 17

3.2 Timestamps and Timecodes . 17

3.3 Synchronization . 18

4 Camera Calibration and Tsai Method 23

4.1 Selection of Points . 23

4.2 Computing the Unified View . 26

5 Conclusions and Future Work 27

5.1 Future Work . 27

Appendix 28

A Installation Notes 29

B User Tutorial for AdaDVCamera 31

iv TABLE OF CONTENTS

C Libraw1394 Example Program 39

D Source Code Documentation 43

D.1 AdaDVCamera_Application Class Hierarchy 43

D.2 AdaDVCamera Class Reference . 43

D.2.1 Detailed Description . 44

D.2.2 Constructor & Destructor Documentation 44

D.2.3 Member Function Documentation 44

D.3 AdaPrettifier Class Reference . 45

D.3.1 Detailed Description . 45

D.3.2 Constructor & Destructor Documentation 46

D.3.3 Member Function Documentation 46

D.4 AdaTsai Class Reference . 46

D.4.1 Detailed Description . 47

D.4.2 Constructor & Destructor Documentation 47

D.4.3 Member Function Documentation 47

D.5 AdaViewer Class Reference . 48

D.5.1 Detailed Description . 49

D.5.2 Constructor & Destructor Documentation 50

D.5.3 Member Function Documentation 50

D.6 ApplicationWindow Class Reference . 52

D.6.1 Detailed Description . 54

D.6.2 Constructor & Destructor Documentation 55

D.6.3 Member Function Documentation 55

D.7 DVCamera Class Reference . 58

D.7.1 Detailed Description . 60

D.7.2 Constructor & Destructor Documentation 60

D.7.3 Member Function Documentation 60

D.7.4 Member Data Documentation . 64

D.8 FloorWidget Class Reference . 65

D.8.1 Detailed Description . 67

D.8.2 Constructor & Destructor Documentation 67

D.8.3 Member Function Documentation 67

D.8.4 Member Data Documentation . 72

D.9 Frame Class Reference . 73

D.9.1 Detailed Description . 73

D.9.2 Constructor & Destructor Documentation 74

TABLE OF CONTENTS v

D.9.3 Member Function Documentation 74

D.9.4 Member Data Documentation . 74

D.10 IEEE1394IOHandler Class Reference . 75

D.10.1 Detailed Description . 76

D.10.2 Constructor & Destructor Documentation 76

D.10.3 Member Function Documentation 76

D.10.4 Member Data Documentation . 78

D.11 imagePoint Struct Reference . 78

D.11.1 Detailed Description . 79

D.11.2 Member Data Documentation . 79

D.12 Prettifier Class Reference . 79

D.12.1 Detailed Description . 80

D.12.2 Constructor & Destructor Documentation 80

D.12.3 Member Function Documentation 80

D.13 Scaler Class Reference . 80

D.13.1 Detailed Description . 81

D.13.2 Constructor & Destructor Documentation 81

D.13.3 Member Function Documentation 81

D.14 Tile Class Reference . 82

D.14.1 Detailed Description . 83

D.14.2 Constructor & Destructor Documentation 83

D.14.3 Member Function Documentation 84

D.15 Tsai Class Reference . 84

D.15.1 Detailed Description . 85

D.15.2 Constructor & Destructor Documentation 85

D.15.3 Member Function Documentation 85

D.16 TsaiViewer Class Reference . 86

D.16.1 Detailed Description . 87

D.16.2 Constructor & Destructor Documentation 87

D.16.3 Member Function Documentation 88

D.17 VideoEncoder Class Reference . 89

D.17.1 Detailed Description . 90

D.17.2 Constructor & Destructor Documentation 90

D.17.3 Member Function Documentation 90

D.18 worldPoint Struct Reference . 91

D.18.1 Detailed Description . 91

vi TABLE OF CONTENTS

D.18.2 Member Data Documentation . 91

D.19 IEEE1394AVC.h File Reference . 92

D.19.1 Detailed Description . 95

D.20 points.h File Reference . 96

D.20.1 Detailed Description . 96

E Project Description 97

E.1 Introduction . 97

E.2 Task Description . 97

E.3 Requirements by PCCV . 98

Bibliography 99

List of Figures

1.1 Ada - The Intelligent Space. 1

1.2 Ada Vision Matrix. 2

2.1 Handle and Port Initialization. 5

2.2 Receiving Iso Packets. 7

2.3 Receiving Iso Packets using poll(). 8

2.4 IEC 61883 Main Components. 9

2.5 FCP Registers at Controlling and Target Device. 9

2.6 AV/C Command Structure. 10

2.7 Writing Commands using raw1394_write(). 12

2.8 Structure of an Iso Packet. 13

2.9 DIF Block Header. 14

2.10 Buffer_queue and Output_queue. 14

2.11 Queue Locking. 15

3.1 Portion of Ada/Expo.02 Log File. 18

3.2 First Video Frame with Possible Reference Timestamp. 19

3.3 Choosing the Reference Timestamp. 20

4.1 Pair of Corresponding Corner Points. 24

4.2 Camera Data File (cdfile). 24

4.3 Camera Parameter File (cpfile). 25

4.4 Procedure to Compute the Unified View. 26

B.1 AdaDVCamera after Start Up. 31

B.2 Display the First Video Frame. 32

B.3 Select the Log File. 33

B.4 Enter the Reference Timestamp and Synchronize. 34

B.5 Suitable Situation to Start Camera Calibration. 35

B.6 Selection of Points for Camera Calibration. 36

viii LIST OF FIGURES

B.7 Unified View. 37

Chapter 1

Introduction

ETH Zurich participated in the Swiss National exhibition Expo.021 (March 15 - October
20 2002) with a project named Ada2.

Ada is named after Lady Ada Lovelace (1815-1852), one of the pioneers of computer
science. “Ada - the intelligent space” is conceived as an artificial organism that can interact
and communicate with its visitors (Figure 1.1)[1].

Figure 1.1: Ada - The Intelligent Space.

Different kinds of sensors are installed as Ada’s sensory organs. They detect visitors’
motion and generate input data. The sensory organs include an active sensory floor, mi-
crophones as well as four pan/tilt cameras at the ceiling. A pan/tilt camera is an electronic
camera that can be moved left, right, up or down. Each camera was recording one quar-
ter or section of the floor. The cameras were connected to a quad split. This is a special
switcher that splits a television screen into four sections. Each section contains the video
source of one camera.

The four cameras build up the so-called Vision Matrix of Ada. It consists of a grid of
the four sections of the Ada floor. Playing-back the recorded DV tapes is actually showing
the Vision Matrix during recording time. The Vision Matrix can be seen in Figure 1.2.

The Vision Matrix’s main purpose is to watch visitors everywhere in the space. The
1www.expo02.ch
2www.ada-ausstellung.ch

2 Chapter 1. Introduction

Figure 1.2: Ada Vision Matrix.
The Vision Matrix is a grid that contains the video sources of the four pan/tilt cam-
eras mounted at the ceiling of the space.

video data that is captured from the Vision Matrix will be used for tracking of the visitors.
That way, interactive communication between Ada and its visitors is possible.

Furthermore, Ada has a “skin” of 360 hexagonal pressure sensitive floor tiles that can
detect the presence of visitors. Visual effects as rings or flowers can be generated using
the RGB colored neon lights in each floor tile. Log files were created that store the state
of the floor in inconstant time steps. That is, for every tile of the floor, the pressure on it
and its color is written to the log. These characteristics of the Ada floor make it possible
to identify certain points on the floor. These points are used as input to “Tsai’s method” to
calibrate the cameras.

The aim of this semester thesis was to develop an application that

� grabs and displays the Vision Matrix from the Mini DV tapes.

� synchronizes the Vision Matrix with the corresponding log file of the Ada floor.

� uses “Tsai’s method” to compute a unified view of the Vision Matrix.

The developed application is called AdaDVCamera. This document is divided into five
chapters. Chapter 2 describes how to grab the video data from the DV tapes by using IEEE
1394 aka “FireWire”. Chapter 3 focuses on the synchronization of the video data with the
log files. In chapter 4, “Tsai’s method” to compute a unified view of the Vision Matrix is
explained. Finally, chapter 5 gives a conclusion and mentions future work. A user tutorial
of AdaDVCamera, a demo program of libraw1394 as well as an API documentation
of AdaDVCamera is given in the appendix. The API documentation is also available as
HTML version.

Chapter 2

Digital Video over IEEE 1394

IEEE 1394 is a standard defining a high speed serial bus. This bus is also named “FireWire”
by Apple or “i.Link” by Sony. All these names refer to the same thing, but the official stan-
dard name “IEEE 1394” by IEEE[13] is used in this document. The DV camera is a “Sony
DCR-VX200E PAL”. The following sections describe the basic steps to communicate with
a DV camera connected via IEEE 1394 to a Linux PC.

2.1 The IEEE 1394 Standard

A brief description of the standard is given in this section. The necessary terms used in this
document are explained.

The IEEE 1394 serial bus is similar in principle to USB but runs at speeds of up to
800 Mbit/s. The upcoming IEEE 1394b standard even enables rates from 800 Mbit/s to
3.2GBit/s. The data rate is determined by the slowest active device on the bus. However,
the bus can support multiple signalling speeds between individual device pairs. It has a
mode of transmission that guarantees bandwith what makes it ideal for DV cameras.

The bus connects all devices via a serial data cable. Connectable devices are also re-
ferred to as nodes. The standard allows daisychaining of the nodes. Each node in turn may
be the source of a new chain what makes it possible to construct tree structures. That way,
each node has the ability to act as a bus repeater or “mini hub”. There may be no loops in
a chain. Each node is assigned a unique ID to be identified on the bus.

The distance between two nodes may be up to 4.5 meters whereas the total length of
one chain needs to be less than 72 meters. This allows connecting a maximum number of
17 nodes per chain.

Data packets have a 64-bit address header which is divided into a 10-bit network ad-
dress, a 6-bit node address and the remaining 48 bits for data memory addresses at the
receiving node. This gives IEEE 1394 the ability to address 1024 networks of 63 nodes1.

The maybe most important feature of the IEEE 1394 bus is to transmit data asyn-
chronously as well as isochronously. A data packet is transfered asynchronously if the time
of transmission does not matter but reliability. Asynchronous transfer provides acknowl-
edged, guaranteed delivery of data and is targeted to a specific node with an explicit address.
A control command would be an example therefor. In contrast, isochronous transmission is
used if the time of the whole transmission as well as the time between consecutive transfers

1The last node is used as a broadcast address that addresses the entire bus.

4 Chapter 2. Digital Video over IEEE 1394

of packets does matter. In this scenario a packet is discarded if it does not hold the time
constraints. Isochronous transmission makes it possible to watch videos uninterrupted in a
constant frame rate. 80% of the bus bandwidth is reservered for isochronous transmissions.
The remainder is available for asynchronous transmissions.

One node on the bus acts as bus manager, an can also act as an isochronous resource
manager or IRM. The latter allocates bus bandwidth for isochronous data transfers when a
node requests them. An IRM allocates each isochronous transfer a channel consisting of
so many bandwidth the node needs. A DV stream to a PC for instance is allocated about
30Mb/s. The number of channels depends on available bandwidth which in turn depends
on reserved bandwidth of already existing channels.

The bus is cyclic. Isochronous transfers of all nodes are executed every 125 � s. They
have always higher priority than asynchronous transfers. 25 � s of every bus cycle is re-
served for asynchronous control data transfers. Only one data packet can occur every basic
cycle for a particular isochronous transfer channel using that channel’s allocated band-
width. There may be multiple isochronous transfers at the same time, providing there is
enough bandwidth available. Asynchronous transfers can have multiple data packets per
basic cycle within the 25 � s.

IEEE 1394 supports “Hot-Plugin” and removal of nodes without shutting down the
whole system. A bus reset occurs after adding or removing a device. After a bus reset,
nodes detect their neighbors and are assigned a new ID. More information is available in
the following documents: [12], [15], [14] and [2].

2.2 Linux IEEE 1394 Subsystem

The core of the entire Linux 1394 subsystem is module ieee1394. It manages all high-
and low-level driver modules in the subsystem and handles transactions. The low-level
hardware driver modules are below the ieee1394 module. One such driver for instance
is ohci1394 (1394 Open Host Controller Interface driver). A system having an OHCI
compliant card would use this driver module to interface the 1394 card.

Above the ieee1394 module are the high-level driver modules. One such high-level
driver module is raw1394 that provides an interface for user space applications (executing
in user memory space not kernel memory space) to access the IEEE 1394 bus. Applica-
tions therefore need to be linked with libraw1394 (see section 2.3) that handles the
communication with the raw1394 high-level driver module. When the raw1394 driver
module is initialized, it connects to the Linux character device “/dev/raw1394” used by
libraw1394 to connect to raw1394 from user space[16][17].

2.3 Using Libraw1394

“Libraw1394[5] is a Linux library that provides direct access to the IEEE 1394 bus
through the Linux subsystem’s raw1394 high-level driver module[4].” A key data struc-
ture defined in libraw1394 is the raw1394handle_t. It encapsulates a connection to
“/dev/raw1394”. Every application using libraw1394 needs such a handle to control
one port. A port stands for one 1394 card or on board chip (e.g. OHCI compliant chips).
To use the handle it must be correctly initialized. Figure 2.1 shows the correct order of
function calls to initialize the handle and port.

Function raw1394_new_handle() returns a new handle which then needs to be con-
nected to one port. Information about the number of available ports and its connected

2.3 Using Libraw1394 5

...

raw1394handle_t handle;
int numcards = 0;
int card = 0;

// Maximum number of ports is 16.
struct raw1394_portinfo pinf[16];
handle = raw1394_new_handle();

if ((numcards = raw1394_get_port_info(handle, pinf, 16)) < 0)
{
cout << "couldn’t get card info" << endl;
return 1;

}
else
{
cout << numcards << " card(s) found" << endl;
for(int i=0; i<numcards; i++)
{
cout << "nodes on bus: " << pinf[i].nodes

<< " , card name: " << pinf[i].name << endl;
}

}

cout << "enter card: ";
cin >> card;

if (raw1394_set_port(handle, card) < 0)
{
cout << "couldn’t set port" << endl;
return 1;

}

...

Figure 2.1: Handle and Port Initialization.
Three functions from libraw1394 are used to correctly initialize a handle that
provides the connection to the IEEE 1394 subsystem: raw1394_new_handle(),
raw1394_get_port_info() and raw1394_set_port().

6 Chapter 2. Digital Video over IEEE 1394

nodes is obtained by raw1394_get_port_info(). The choice of port is then reported by
raw1394_set_port().

Having obtained the handle and correctly initialized the port, the next step is to register
an iso handler. The iso handler is a callback function used by raw1394_loop_iterate().
raw1394_loop_iterate() repeatedly calls this handler to process the received iso packets
from the isochronous packet stream. In the AdaDVCamera application, this handler is
implemented in class DVCamera as a static member function. The appropriate call to reg-
ister an iso handler is raw1394_set_iso_handler(). There are other handlers that can be
registered, for instance a bus reset handler that is called when a bus reset occurs. What
happens on a bus reset is that the configuration of the bus changes. This is the case if
a physical device is connected or disconnected from the bus. As mentioned in section
2.1, nodes are then assigned a new unique ID. The kernel and libraw1394 identify
such a configuration of the bus by generation numbers. A bus reset handler should call
raw1394_update_generation() to update the generation number. The default bus reset han-
dler in libraw1394 will update this number automatically. Correct generation numbers
are necessary because packets that are sent asynchronously to a connected device always
get tagged with the node ID of the device. In case of the wrong ID, sending of the packed
fails. This does not apply to isochronous transmissions since they are broadcast. They do
not depend on bus configuration.

Port and handlers are set up at this point. The next step is to start receiving the
isochronous stream from the DV camera. This is done by calling raw1394_start_iso_rcv()
that starts filling up a ring buffer in kernel memory. This buffer needs to be processed by re-
peated calls to raw1394_loop_iterate() as mentioned above. The called iso handler obtains
a data pointer to an iso packet in the kernel ring buffer. The iso handler copies the packet’s
data to an instance of class Frame. This is necessary to further process it later. One PAL
frame consists of 300 iso data packets. To get one video frame, the iso handler needs to be
called 300 times therefore. The processing of these frames is explained in section 2.5.

AdaDVCamera application is multi-threaded due to performance reasons. There are
two threads implemented. The main thread defines the overall program logic, implements
GUI elements and processes appropriate events. The handler thread is created if a user
starts packet receiving, for instance by start playing the DV camera. This thread repeatedly
calls raw1394_loop_iterate() that in turn calls the installed iso handler. The handler thread
is implemented in class IEEE1394IOHandler. The code snippet in figure 2.2 shows the
procedure of receiving iso packets.

2.3 Using Libraw1394 7

...
//In main thread:
handler = new IEEE1394IOHandler();

...
// The main thread calls startPolling() of class IEEE1394IOHandler.
handler->startPolling();

...
// In function startPolling() of IEEE1394IOHandler:
// Start to receive iso packets.
raw1394_start_iso_rcv(_handle, _channel);
iterate = true;

// Start the handler thread.
start();

...
// The handler thread executes the following code:
while (iterate)
{

// Poll the 1394 interface
raw1394_loop_iterate(handle);

}

...
// At some point, the main thread sets iterate to false.
// This terminates the handler thread.
iterate = false;

// The last thing the handler thread does is to stop receiving
// iso packets.
raw1394_stop_iso_rcv(handle, channel);
...

Figure 2.2: Receiving Iso Packets.
raw1394_iso_rcv() starts receiving iso packets of a certain channel. The handler
thread repeatedly calls raw1394_loop_iterate() which in turn calls the installed iso
handler. The iso handler will copy a packet’s data to an instance of class Frame.
The main thread terminates the handler thread by setting “iterate” to “false”. This
stops the receiving of iso packets.

It turned out that this procedure alone was not enough to work correctly.
raw1394_loop_iterate() uses read() system call that reads up a certain number of bytes
from the handle’s file descriptor. But read() will block if no data is available. The resulting
code snippet is shown in figure 2.3 (only additional code is shown).

8 Chapter 2. Digital Video over IEEE 1394

...
// In class IEEE1394IOHandler:
// A structure containing the handle’s file descriptor is initialized.
struct pollfd pfd[1];

pfd[0].fd = raw1394_get_fd(handle);
pfd[0].events = POLLIN | POLLPRI;
pfd[0].revents = 0;

...
while (iterate)
{
// Poll the handle’s file descriptor for events.
if((poll(&pfd[0], 1, -1) == -1))
{
cout << "error" << endl;

}

if(pfd[0].revents & (POLLIN|POLLPRI))
{
// Poll the 1394 interface.
raw1394_loop_iterate(handle);

}
}

Figure 2.3: Receiving Iso Packets using poll().
A struct pollfd from poll.h is initialized with the handle’s file descriptor by call-
ing raw1394_get_fd(). raw1394_loop_iterate() is only called if there is data to fetch
from the file descriptor. This way, read() will not block.

The code in figure 2.3 makes use of raw1394_get_fd() that returns the file descriptor of
the handle. This file descriptor can then be used for poll() calls. If “POLLIN” (there is data
to read) or “POLLPRI” (there is urgent data to read) events occur, raw1394_loop_iterate()
is guaranteed not to block.

When AdaDVCamera application terminates, a call to raw1394_destroy_handle() is
performed. This closes the connection to “/dev/raw1394” and deallocates everything asso-
ciated with it. Appendix C shows a simple demo program that summarizes the necessary
steps to receive an isochronous data stream from a DV camera.

2.4 Controlling the DV Camera

This section focuses on the key mechanisms to send control commands to the DV camera.
A brief overview of the necessary protocols is given.

2.4.1 Data Packet Transfer Protocols

For both isochronous and asynchronous transfers, there are several protocols specified to
transfer data packets. The most important protocols for isochronous transfers are described
by the “International Engineering Consortium (IEC)”[19] in document “IEC 61883 Digital
Interface for Consumer Audio/Video Equipment”. The main components of IEC 61883 are
shown in figure 2.4.

2.4 Controlling the DV Camera 9

CIP CMP FCP

IEC 61883 Protocol

Figure 2.4: IEC 61883 Main Components.
The main components of IEC 61883 are Common Isochronous Packets (CIP),
Connection Management Protocol (CMP) and Function Control Protocol (FCP).

The Common Isochronous Packets (CIP) module defines the structure of the
isochronous packets that are sent over the IEEE 1394 bus (see also section 2.5.1). The man-
agement of isochronous data flow should be done by procedures defined in the Connection
Management Protocol (CMP). These procedures specify how to start and stop isochronous
packet streams. The Function Control Protocol (FCP) is required to send and receive com-
mands for Audio/Video devices. It defines the asynchronous packet structure for high-level
Audio/Video device control protocols such as the Audio/Video Control (AV/C) Protocol.

Controlling the DV camera is achieved by sending AV/C commands to the camera.
The Audio/Video Control protocol defines a command set used to control devices such as
video recorders and digital cameras. As mentioned above, it is based on FCP. The FCP
module defines two registers: one for commands and one for responses. Figure 2.5 shows
the principle of writing the registers.

Command

Register

Response

Register

Command

Register

Controlling Device Target Device

IEEE 1394 Bus

0xFFFFF0000D00

0xFFFFF0000B00

Response

Command

Register

Response

Figure 2.5: FCP Registers at Controlling and Target Device.
The controlling device writes the command to the FCP command register of the
target device which in turn writes the response back to the FCP response register
of the controlling device. The top addresses of the registers are depicted on the
left.

An AV/C command or response is encapsulated in a FCP frame. The controlling de-
vice writes the command to a 512-bytes FCP command register of the target device which
then writes the response back to the 512-bytes FCP response register of the controlling

10 Chapter 2. Digital Video over IEEE 1394

device[3].

The AV/C protocol is designed to work with digital video cameras, monitors, CD and
cassette recorders, as well as amplifiers, tuners and receivers. The commands correspond
very closely to the functions of these devices (“play”, “record”, “track time”, etc). The
protocol specifies its own command packet structure (figure 2.6).

.

.

CTS−Code (0000) ctype subunit type opcode operand[0]

operand[1] operand[2] operand[3] operand[4]

..

operand[n] zero padding bytes

lsbmsb

subunit ID

127

1

0

Figure 2.6: AV/C Command Structure.
At the beginning the Command/Transaction Set Code (CTS-Code) for Audio/Video
(AV) devices can be seen. For this kind of devices, this is always 0. ctype defines
the type of command, subunit type and subunit ID address the corresponding sub-
unit. opcode refers to a specific command. operand specifies the command’s
argument. The maximum packet size is 512 bytes (= 128 words on a 32 bit ma-
chine).

The Command/Transaction Set Code (CTS-Code) is 0 for Audio/Video (AV) devices.
ctype defines the type of the command, e.g. a control or a status command. The subunit
type specifies the type of the AV device, for instance a video monitor, tape recorder or video
camera. If an AV device has more than one subunit, e.g. a tuner besides a recorder, the
correct unit can be addressed by the subunit ID. The opcode defines one concrete command.
“Play” or “Wind” are examples therefore. Finally, operand[0] to operand[n] refer to the
command’s arguments, e.g. “Forward” or “Fast Forward”.

2.4.2 Implementation in AdaDVCamera Application

To send an AV/C command to the DV Camera, the FCP command register of the camera
needs to be written with the appropriate bit pattern of the command. The bit pattern is
obtained by ORing individual command pieces (refer to figure 2.6). The following code
snippets show bit patterns of command pieces to form command “Play Forward”. They are
defined in file IEEE1394AVC.h.

The Command/Transaction Set Code (CTS-Code). For AV devices, this is 0.

#define AVC_CTS_CODE 0

0

The type of command (ctype). “Play” is a control command.

#define AVC_CTYPE_CONTROL 0

0

2.4 Controlling the DV Camera 11

The subunit type. The DV camera is a tape recorder.

#define AVC_SUBUNIT_TYPE_TAPE_RECORDER (4 << 19)

1000000000000000000000

The subunit ID.

#define AVC_SUBUNIT_ID_0 0

0

The command itself (opcode).

#define VCR_COMMAND_PLAY 0xC300

1100001100000000

The command argument (operand[0]).

#define VCR_OPERAND_PLAY_FORWARD 0x75

1110101

These command pieces need to be ORed. For simplicity there is another constant de-
fined: “CTLVCR0”2.

#define CTLVCR0 AVC_CTS_CODE
| AVC_CTYPE_CONTROL
| AVC_SUBUNIT_TYPE_TAPE_RECORDER
| AVC_SUBUNIT_ID_0

1000000000000000000000

Notice that in this case the CTS-Code and the command type could be omitted. They
are both 0. The final “Play Forward” command is obtained by ORing CTLVCR0 with the
rest:

#define AVC_PLAY_FORWARD CTLVCR0
| VCR_COMMNAD_PLAY
| VCR_OPERAND_PLAY_FORWARD)

1000001100001101110101

This command is written to the FCP command register of the DV camera by calling
raw1394_write(). The next IEEE 1394 bus cycle, the command is executed and the camera
starts playing. Figure 2.7 shows the appropriate code fragment.

2Control Video Cassette Recorder, Subunit ID 0

12 Chapter 2. Digital Video over IEEE 1394

...
// In class DVCamera:
// Convert command from host byte order to
// internet network byte order.
quadlet_t play = htonl(AVC_PLAY_FORWARD);

// Call sendCommand with correct node address: 1111111111000001
handler->sendCommand(handle, (Oxffc0 | 1), FCP_COMMAND_ADDR, 4, &play);

...
// In class IEEE1394IOHandler:
// Write play command to FCP command register of node 1.
void IEEE1394IOHandler::sendCommand(raw1394handle_t handle,

nodeid_t node,
nodeaddr_t addr,
size_t length,
quadlet_t *cmd)

{
raw1394_write(handle, node, addr, length, cmd);

}

...
// In class DVCamera:
quadlet_t stop = htonl(AVC_WIND_STOP);
handler->sendCommand(handle, (Oxffc0 | 1), FCP_COMMAND_ADDR, 4, &stop);

Figure 2.7: Writing Commands using raw1394_write().
Class DVCamera calls sendCommand() of class IEEE1394IOHandler. The node
is addressed correctly (refer to section 2.1). The handler calls raw1394_write() that
writes the command to the FCP register of the DV camera. The next IEEE 1394
bus cycle, the command is executed.

2.5 Handling Packet Data 13

2.5 Handling Packet Data

2.5.1 Structure of Isochronous Packets

The handler thread repeatedly calls raw1394_loop_iterate() which in turn calls the regis-
tered iso handler. The handler is passed a pointer to the kernel ring buffer that contains the
received iso packets. To get one video frame from the DV camera, the handler needs to be
called 300 times (compare section 2.3). The structure of an iso packet is shown in figure
2.8.

Isochronous Packet Header

4 bytes

CIP Header

8 bytes

Isochronous Packet

DV Data Blocks

480 bytes

(= 120 quadlets)

(= 6 DIF blocks)

Figure 2.8: Structure of an Iso Packet.
The packet consists of a 4-bytes isochronous packet header. It gives information
about the data length of the packet and the channel number that was used. The
CIP header contains the source node ID. The data blocks contain audio and video
data.

The isochronous packet header gives information about the data length and the used
channel number. The header’s length is 1 quadlet or 4 bytes. The CIP header follows. It
contains the ID of the source node, the total data block size in quadlets as well as timestamp
information for synchronization of a transmitter and receiver node. The data blocks are
organized in Digital Interface Format (DIF) sequences. A PAL frame contains 12 DIF
sequences. Each DIF sequence is made of 150 DIF blocks at a length of 80 bytes. This
gives a total PAL frame size of 144000 bytes. Each DIF block contains a header identifying
the section type of the DIF block and its position in the data stream. There are five possible
section types: DIF sequence header block, DIF sequence subcode block, DIF sequence
VAUX block and DIF video block[21][22]. Figure 2.9 shows the 3-bytes header of a DIF
block.

14 Chapter 2. Digital Video over IEEE 1394

0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

DIF sequence number Offset of section type in DIF sequenceDIF block section type

RSV Frame sequence number RSV0

Figure 2.9: DIF Block Header.
The 3-bytes header contains three main values: The section type of the block, the
DIF sequence number of the block and the DIF block’s offset into the DIF sequence.

The three main values of the DIF header block are the section type of the block, the
DIF sequence number and the DIF block’s offset into the DIF sequence.

2.5.2 Queue Management

The handler copies the packet data to an instance of class Frame dependent on the sec-
tion type of the DIF block header. A frame object holds a data buffer large enough to
store the data of a PAL frame (144000 bytes). There a two data structures implemented
in AdaDVCamera: the buffer_queue and the output_queue. At the beginning, all frame
objects are on the buffer_queue. The handler thread then calls the iso handler which takes
an “empty” frame object from the buffer_queue and copies 480 bytes iso packet data to the
data buffer in the frame object. The object is then moved to the output_queue. Frames that
are on the output_queue are ready to get displayed. Each frame has therefore a decoder
(defined in libdv[6]). After having displayed a frame, it is appended to the buffer_queue
by the main thread to be reused. At all times, all frame objects share one of the two queues,
either the buffer_queue or the output_queue. The queues can be seen in Figure 2.10.

output queue

buffer queue

Figure 2.10: Buffer_queue and Output_queue.
The iso handler takes a frame object from the buffer_queue and copies iso packet
data to it. Then the handler appends the object to the output_queue. Frames on
the output_queue are ready to get displayed. Afterwards, the main thread appends
the frame object to the buffer_queue.

2.5 Handling Packet Data 15

Class Frame offers methods to process the video frame. The decoder is used for in-
stance to extract RGB values from the frame’s data buffer or to extract the timecode of the
video frame.

The queues need to be locked if a thread wants to access them. This is necessary due
to concurrency reasons. The main thread takes frames from the output_queue and displays
them. Thereafter the main thread appends the frame to the buffer_queue. The handler
thread does the inverse operation: It takes frames from the buffer_queue and appends them
to the output_queue. Figure 2.11 shows basic queue locking mechanisms.

Mutex buffer_mutex;
Mutex output_mutex;
Frame *frame;

...
// Lock the output queue, this statement is blocking.
output_mutex.lock();
frame = output_queue.first();
output_mutex.unlock();

// Process the frame, e.g. display it.

// Put the frame back to the buffer queue.
buffer_mutex.lock();
buffer_queue.append(frame);
buffer_mutex.unlock();
...

Figure 2.11: Queue Locking.
The queues need to be locked because both, the main thread and the handler
thread access these queues. The queues are critical resources. Mutual exclusion
must be guaranteed.

Chapter 3

Synchronization

This chapter focuses on the synchronization of a video stream with a log file of the
Ada/Expo.02 floor. This synchronization is necessary to select correct pairs of correspond-
ing points of the visualization of the log file and the video. These points will be used as
input for the camera calibration algorithm (section 4.1).

3.1 Purpose of Synchronization

The video stream and the log file need to be synchronized for an exact calibration of the
installed cameras. “Tsai’s method”[24][23] is used to compute a unified view (refer to
chapter 4). Tsai needs pairs of corresponding points of the visualization of the log file and
the Vision Matrix. Points selected on the floor are given in world coordinates (millimeters),
points selected on the Vision Matrix in image coordinates (pixels). Therefore, to choose
correct pairs of points, the video stream and the log must be synchronized.

3.2 Timestamps and Timecodes

Each video frame has a timecode in milliseconds. The timecode is the time passed since
the cameras started recording.

Example of a timecode:

00:23:08.106

Log files of the Ada floor consists of ASCII data. They are arranged line by line.
Each line starts with a timestamp in milliseconds. The timestamp is the time passed since
midnight, first January 1970. Figure 3.1 shows a portion of a log file. Timestamps are
emphasized in bold face.

Each line of the log file starts with a timestamp (emphasized in bold face). The follow-
ing 720 entries of that line are pressure and color of each of the 360 tiles. The pressure on
a tile is not used but its color. The colors are encoded as signed integers.

Notice the difference between timecode and timestamp used in this document. The for-
mer one designates the time passed since an arbitrarily point in time, whereas the latter one
stands for the time passed in milliseconds since midnight, first January 1970. In Timecodes
are converted to timestamps to perform calculations in AdaDVCamera.

18 Chapter 3. Synchronization

1034755208106 62 -16646144 45 -16646144 45 -16646144 64 ...
1034755208166 65 -16646144 45 -16646144 46 -16646144 67 ...
1034755208225 64 -16646144 43 -16646144 51 -16646144 61 ...
1034755208336 66 -16646144 44 -15922164 46 -16646144 62 ...
1034755208394 63 -16646144 42 -9803672 46 -16646144 65 ...

Figure 3.1: Portion of Ada/Expo.02 Log File.
The first entry per log line is the timestamp in milliseconds. The next entry state
pressure on the first tile. The third entry describes the tile’s color at that moment.
The total number of tiles is 360. The color of a tile is encoded as signed integer.

Example of a timestamp:

1034755208106

The corresponding conversion to readable date/time is:

Wed, 16 Oct 2002 08:00:08.106

3.3 Synchronization

The video data and the log data are not sampled at the same frequency. The video data is
sampled at a constant PAL frequency of 25Hz. The frequency of the log varies between
0.73Hz and 33.33Hz and is 14.51Hz on average. The frequency of sampling the log file
depends on the network load at Ada/Expo.02.

The timecode ����� of the first video frame �	� is not equal zero. It is something like:

00:00:00.21

Starting the motors of the cameras takes a few milliseconds. This pre-capture time is
written to the tape as the first timecode. Fact is, the time passed at frame ��
 since the
cameras started to record is the difference of �
��������������� .

To synchronize video frames with the log file, a reference timestamp �	����� needs to be
specified. The reference timestamp says when, since midnight, first January 1970, a video
frame was captured. Remember, the video tape only stores timecodes. Possible reference
timestamps are shown in the video at the beginning of each tape. Figure 3.2 shows the first
frame of a video tape. Timestamps are recognizable in the lower left quarter.

The accuracy of this timestamps is seconds. This leads to another problem, because the
precision of the timestamps in the log file is milliseconds. Figure 3.3 shows the situation.

3.3 Synchronization 19

Figure 3.2: First Video Frame with Possible Reference Timestamp.
A possible reference timestamp can be seen in the lower left quarter of the video
frame.

20 Chapter 3. Synchronization

1034755208XXX

1034755208000 1034755209000

10347552083641034755207990

Log file

Video

F F’F’’

1034755209XXX

Tref =

Tlog Tlog’

1034755208929 1034755209280

e e’

Figure 3.3: Choosing the Reference Timestamp.
Frame � is currently displayed. It shows timestamp 1034755208. The “XXX” states
that the accuracy is seconds not milliseconds. Choosing this timestamp as refer-
ence timestamp would result in an initial synchronization error of � . Going on until
frame ��� and choosing 1034755209 as reference timestamp gives a smaller syn-
chronization error ��� .

The initial synchronization should be as exact as possible. The accuracy of the ini-
tial synchronization defines the precision of further synchronization. The goal is there-
fore to minimize the initial synchronization error. In the example depicted in figure 3.3,
frame � shows timestamp 1034755208. The “XXX” states that the accuracy is seconds
not milliseconds. � � is the first frame that shows a timestamp that just altered one second
(1034755209). This timestamp should be chosen as �!����� because the error ��� is smaller
than � . The timestamp that is closest to the reference timestamp is searched in the log
file. This is ��"$#&% (1034755208929). The log entry of that timestamp is then visualized. If
the reference timestamp is 1034755208, ��"'#�% would be 1034755207990. This results in a
bigger initialization error of seven log entries versus two log entries in the example above.

It is obvious from figure 3.3 that the log entry ��"$#&%�(would even better match � � . Or
��� � would better match �)"$#&% . It is therefore reasonable to either move manually one video
frame backwards or one log entry forwards. The time between �*� and � � � or ��"$#&%+(and ��"$#�%
is said to be the correction value , . All this leads to the following equation to synchronize
the log file with the video stream. �)"$#&%-� refers to video frame �.
 .

�/"'#�%��102�)�����435�6�)����7+89���������!�-7+89�:�;�!3<, (3.1)

Example: Synchronize Frame �
 with the log file. �
 has timecode:

00:23:08.106

The conversion to a timestamp in milliseconds is:

1388106

The reference timestamp is:

1034755209000

3.3 Synchronization 21

The timestamp of the first video frame is 21 and the correction value is 180 for instance.
This leads to:

��"$#&%-�10>=;?�@�ACB�D�D�E�?�F�?�?�?�35��=G@�H�HI=;?�JK�LEM=G��3N=;H�? 0O=;?�@PAMBPDPJ�DPFCBPEPJ�?
Using equation 3.1 to compute the initial synchronization is fine. It results in a small

synchronization error. But the frequency at which the log data was sampled is not constant.
It varies between 0.73Hz and 33.33Hz. This means there will always be an error in further
synchronization.

Chapter 4

Camera Calibration and Tsai
Method

This chapter will briefly explain the calibration of the installed cameras to compute the
unified view. “Tsai’s method” is used therefore[25][24]. Camera calibration is to define
intrinsic and extrinsic camera parameters. Intrinsic parameters are for instance lens distor-
tion and focal length. Examples for extrinsic parameters are the position and the orientation
of the camera. This parameters are used to compute the unified view. A unified view is the
projection of the four overlapping camera views of the Vision Matrix into a common coor-
dinate system.

4.1 Selection of Points

The first step to calibrate a camera is to select pairs of corresponding points within the view
of that camera. A pair consists of a world point (point in world coordinates) and an image
point (point in image coordinates). The world point is selected on the Ada floor, the image
point on the video frame. At least seven pairs of points need to be selected per camera.
Better results will be obtained if more than seven pairs are selected. Figure 4.1 shows a
pair of corresponding corner points in the image and the world coordinates system.

Two files are created next. The cdfile (camera data file) holds the image and world
points. It is used to generate the cpfile (camera parameter file) which contains the camera
parameters. The cpfile is created by using the Tsai software[23]. A cdfile and a cpfile can
be seen in figures 4.2 and 4.3. “Zw” values in the cdfile are zero since all selected world
points lie in a single plane.

The center coordinate ,�QR 0S�
TUQWV&XMQY� for camera view Z , Z[0\?^]'] @ , are computed
in world coordinates ,�_R 0`�6T/_aVWXM_b� . These coordinates are computed by calling im-
age_coord_to_world_coord() of class TsaiCal. Refer to figure 4.4. These world coordi-
nates are used to find out in which camera view an arbitrary world point cd_e0[�6T/_fV&XM_g�
of the Tsai image lies. The Tsai image is synonym to the unified view. The procedure of
selecting points is repeated for every camera view. Each camera gets its own cd- & cpfile.
At that point, every camera is calibrated, i.e. they are in a common coordinate system.

24 Chapter 4. Camera Calibration and Tsai Method

hihj kikl

Video Frame Ada Floor

(0,0)
Camera 0 Camera 3

Camera 1 Camera 2

(0,0)

Figure 4.1: Pair of Corresponding Corner Points.
The image coordinate system is depicted on the left side. Corresponding points
get selected on the Vision Matrix as well as on the Ada floor (world coordinate
system).

a cdfile
#
Xw Yw Zw Xi Yi

-2310 -7783.33 0 52 323
-1650 -7773.33 0 81 317
-990 -7773.33 0 115 309
-330 -7773.33 0 149 302
330 -7783.33 0 183 294
990 -7783.33 0 216 283

1650 -7783.33 0 249 274

Figure 4.2: Camera Data File (cdfile).
The cdfile contains coordinates of corresponding world and image points. “Xw”,
“Yw” and “Zw” are world coordinates. “Zw” values are zero because all selected
world points lie in a plane. World points are given in millimeters. “Xi” and “Yi” are
image coordinates. The unit of image points is pixels.

4.1 Selection of Points 25

a cpfile
#----------------

Intrinsic camera parameters.
5.7600000000e+02 # Ncx: Number of sensor elements in

camera’s x direction.
5.7600000000e+02 # Nfx: Number of pixels in frame

grabber’s x direction.
2.3000000000e-02 # dx: X dimension of camera’s sensor

element (in mm).
2.3000000000e-02 # dy: Y dimension of camera’s sensor

element (in mm).
2.3000000000e-02 # dpx: Effective X dimension of pixel

in frame grabber.
2.3000000000e-02 # dpy: Effective Y dimension of pixel

in frame grabber.
1.3652641152e+02 # Cx: Z axis intercept of camera

coordinate system.
4.9805723022e+02 # Cy: Z axis intercept of camera

coordinate system.
1.0000000000e+00 # sx: Scale factor to compensate for

any error in dpx.

Calibration constants.
4.1792644328e+00 # f

-4.9644775779e-02 # kappa1
-3.5136282543e+02 # Tx
-8.0826044350e+02 # Ty
-3.4830068050e+02 # Tz
7.5465870915e-01 # Rx
2.7502668339e-01 # Ry
1.0705791606e-01 # Rz
0.0000000000e+00 # p1
0.0000000000e+00 # p2

Figure 4.3: Camera Parameter File (cpfile).
The cpfile contains intrinsic parameters as well as calibration constants of the cal-
ibrated cameras.

26 Chapter 4. Camera Calibration and Tsai Method

4.2 Computing the Unified View

The unified view is computed by performing the following steps for every point c _ 0
�6T/_fV&XM_g� of the Tsai image. For each camera view Z , an instance of class TsaiCal is
instantiated with the corresponding cpfile of that view.

1. Find out in which camera view the point cm_ lies. For this, the distances between
point c�_ and each of ,n_R , Zo05?^]'] @ , is compared.

2. Take the corresponding class instance of TsaiCal and call
world_coord_to_image_coord() This computes the image coordinates cdQ of
point c�_ .

3. Look up the color of the pixel c Q in the video frame. Fill pixel c _ in the Tsai image
with that color.

Figure 4.4 summarizes the whole procedure.

Camera 1 Camera 2

Camera 3Camera 0

Video Frame

Tsai Image

compare

color

Ci0

Ci1 Ci2

Ci3

Pw

Pi = world_coord_to_image_coord(Pw)

Cw1 = image_coord_to_world_coord(Ci1)

Figure 4.4: Procedure to Compute the Unified View.
The center coordinate ,�QR 0p�6T/Q&VWXCQq� for camera view Z , ZL0>?^]'] @ , are computed in
world coordinates , _R 0r�6T _ V&X _ � . Method image_coord_to_world_coord() of class
TsaiCal is used. These world coordinates are used to find out in which camera
view an arbitrary world point c�_s0t�6TU_fVWXC_.� of the Tsai image lies. Point c _ is
then computed into image coordinates c�Q . Method world_coord_to_image_coord()
is used. The color of pixel c�Q in the video frame is written to pixel c _ in the Tsai
image.

Chapter 5

Conclusions and Future Work

This document presented an application to read in the Ada Vision Matrix from a DV cam-
era. The camera is connected to a Linux PC via IEEE 1394. The libraw1394 library
is used to control the DV camera. Control commands can be sent to the camera. This
commands are specified in the Audio/Video Control (AV/C) protocol. The IEEE 1394
bus and its associated protocols are complex. More functions could be implemented into
AdaDVCamera.

It was then explained how to synchronize the Vision Matrix with a log file of the Ada
floor. This leads to some problems: The log data was sampled with an inconstant frequency.
Timecodes are encoded into the video stream but timestamps are stored in the log file.
Specifying an accurate reference timestamp is especially critical. The Vision Matrix shows
possible reference timestamps whose accuracy is only seconds. The synchronization error
can not be eliminated, only minimized.

Tsai’s method is used for camera calibration. The cameras are calibrated after a user
has selected enough pairs of corresponding image and world points for each camera view.
A unified view of the Vision Matrix can be computed then.

5.1 Future Work

Future work should encode the unified view into an MPEG-2 video stream. Besides this,
a few GUI elements need to be implemented. For instance a grid of the Ada floor that can
be put onto the unified view to measure its quality. Or a magnifying glass to select points
on the Vision Matrix more precisely. In the current implementation of AdaDVCamera,
log files are parsed step by step. Future work should also be to internalize these log files
and eliminate unnecessary values, e.g. pressure on a floor tile. This would speed up the
synchronization of the Vision Matrix and the log files.

Appendix A

Installation Notes

AdaDVCamera was developed under Red Hat Linux 7.3. The latest version of Qt[27]
was used. That is version 3.2.0 beta 2. The following steps are necessary to compile
AdaDVCamera on Linux. It is assumed that the CD ROM drive is “/mnt/cdrom”. The
“<install dir>” is a placeholder for a user specified installation directory.

1. Insert the CD ROM into the CD ROM drive and mount the drive if necessary (“mount
cdrom”). Change to the corresponding directory (“cd /mnt/cdrom”).

2. Make sure to have Qt installed on the system. It needs to be installed with threading
support. Install it from the CD ROM if it is not already installed:

cd /mnt/cdrom/libs
tar xzvf qt-x11-free-3.2.0b2.tar.gz -C <install dir>
cd <install dir>/qt-x11-free-3.2.0b2
export QTDIR=<install dir>/qt-x11-free-3.2.0b2
./configure -thread
make

3. Install the DV codec libdv:

cd /mnt/cdrom/libs
tar xzvf libdv-0.99.tar.gz -C <install dir>
cd <install dir>/libdv-0.99
./configure
make

4. Install libraw1394 that provides direct access to the IEEE 1394 bus through the
Linux subsystem:

cd /mnt/cdrom/libs
tar xzvf libraw1394_0.9.0.tar.gz -C <install dir>
cd <install dir>/libraw1394_0.9.0
./configure
make

5. Install FFMPEG[30]. It holds the libavcodec and libavformat libraries that
are used to encode the unified view to a video file.

30 Appendix A. Installation Notes

cd /mnt/cdrom/libs
tar xzvf ffmpeg-cvs-2003-07-07.tar.gz -C <install dir>
cd <install dir>/ffmpeg-cvs-2003-07-07
patch -p0 < patch.diff
./configure
make

6. Install the Tsai calibration code:

cd /mnt/cdrom/libs
cp Tsai-method-v3.0b3.tar.Z <install dir>
cd <install dir>
uncompress Tsai-method-v3.0b3.tar.Z
tar xvf Tsai-method-v3.0b3.tar
cd Tsai-method-v3.0b3
make all

7. Make changes to the paths section of the Makefile to match the installation directories
which were specified during the installation process of all the other libraries.

8. Install and compile the AdaDVCamera sources:

cd /mnt/cdrom/src
cp * <install dir>/AdaDVCamera
cd <install dir>/Tsai-method-v3.0b3.tar
cp TsaiCal.* ccal_fo <install dir>/AdaDVCamera
cd <install dir>/AdaDVCamera
make

9. In the directory where the AdaDVCamera sources are located, type “make doc” to
obtain a Doxygen documentation. The documentation can be found under the doc
directory in both tex and html format.

Appendix B

User Tutorial for AdaDVCamera

1. Connect the DVCamera to the IEEE 1394 interface and insert a Mini DV tape.
Rewind the tape if it is not already rewinded. Start AdaDVCamera. Figure B.1
shows AdaDVCamera after start up. It is divided into two parts: On the left side the
Vision Matrix will be displayed in the video widget, on the right side the correspond-
ing log entry in the floor widget. The associated controls are discussed later.

Figure B.1: AdaDVCamera after Start Up.
AdaDVCamera is divided into two parts: On the left side the Vision Matrix will be
displayed in the video widget, on the right side the corresponding log entry in the
floor widget. Several control items help the user to work with the application. These
controls are discussed later.

32 Appendix B. User Tutorial for AdaDVCamera

2. Press the “Next Frame” button. The DV camera starts playing but shows only the
first frame on the DV tape. The camera will automatically stop after a few seconds.
The timecode of the frame is shown inside the “Camera Controls” box. A possi-
ble reference timestamp is shown in the top left quarter of the Vision Matrix. The
situation is shown in Figure B.2.

Figure B.2: Display the First Video Frame.
AdaDVCamera displays the first Video frame in the video widget. The timecode of
the frame can be seen inside the “Camera Controls” box.

33

3. Load the log file by pressing the “Select Log” button. This will open a dialog window
letting the user choose a log file. The first entry of the log file is automatically
displayed in the floor widget on the right side. Figure B.3 shows AdaDVCamera
after having chosen the log file.

Figure B.3: Select the Log File.
Press the “Select Log” button to choose a log file. The first entry of the log file is
displayed automatically in the floor widget on the right side.

34 Appendix B. User Tutorial for AdaDVCamera

4. Set the reference timestamp. Press the “Next Frame” button until a timestamp is
shown that just altered one second (compare chapter 3). Enter this timestamp in the
appropriate field inside the “Sync Controls” box and press enter. Press the “Sync”
button. AdaDVCamera displays the log entry that matches best the reference times-
tamp (figure B.4).

Figure B.4: Enter the Reference Timestamp and Synchronize.
Enter the chosen reference timestamp into the appropriate field inside the “Sync
Controls” box. After pressing the “Sync” button, the corresponding log entry that
matches best the reference timestamp is displayed in the floor widget on the right
side.

35

5. Find a video frame that is suitable for camera calibration. Thus a video frame that
shows some patterns (e.g. flowers, stars, rings etc.). Pressing the “Play” button starts
playing the DV camera. In parallel, corresponding log entries are displayed in the
floor widget. Press the “Stop” button when a suitable video frame appears. It is also
possible to fast-forward/rewind the tape by pressing “»”/“«”. Press “Stop” to stop
fast-forwarding/rewinding or “Play” to restart the camera. The video widget and the
floor widget are locked. That means, the floor widget will automatically display cor-
responding log entries when the DV camera is playing. Pressing the “Lock” button
will change this behavior. That way, a preciser synchronization of the Vision Matrix
and the log file can be achieved by manually pressing the “Next Entry” or the “Pre-
vious Entry” button inside the “Floor Controls” box. It is also possible to move one
video frame forwards or backwards. Therefore press the “Next Frame” or “Previous
Frame” button. Figure B.5 shows a situation that is suitable to start camera calibra-
tion. A user may enter the image size of the unified view into the appropriate fields
inside the “Tsai Image” box before starting the calibration.

Figure B.5: Suitable Situation to Start Camera Calibration.
Find a video frame that is suitable for camera calibration. Thus a video frame that
shows some patterns (e.g. flowers, stars, rings etc.). Start playing the camera
or fast-forward it. The video widget and the floor widget are locked, i.e. playing
the camera will automatically update the floor widget with the corresponding log
entry of the displayed Vision Matrix. Press the “Lock” button to change this behav-
ior. Move manually to a suitable position by pressing the “Next Frame”/“Previous
Frame” button or “Next Entry”/“Previous Entry” button.

36 Appendix B. User Tutorial for AdaDVCamera

6. Start camera calibration by pressing the “Start Calibration” button. This highlights
the top left quarter of the Vision Matrix. Choose at least seven points within that
quarter. Afterwards select the corresponding points in the floor widget (figure B.6).
An equal number of points needs to be selected in both, the Vision Matrix and the
floor widget. Having done this, press the “Next” button inside the “Sync Controls”
box. This highlights the next quarter of the Vision Matrix. It is possible to control
the DV camera during calibration. This means, a user can still move forwards and
backwards in the video widget as well as in the floor widget.

Figure B.6: Selection of Points for Camera Calibration.
Select corresponding points in the Vision Matrix and in the floor widget for every
quarter of the Vision Matrix. Press the “Next” button to proceed to the next quarter.
It is still possible to control the camera during calibration.

37

7. As soon as corresponding points are selected for the last quarter of the Vision Matrix
(top right), press the “Convert” button inside the “Sync Controls” box. This com-
putes the unified view. Figure B.7 shows the result. The result is also stored in the
current working directory under “result.png”. Restart camera calibration if the result
is not good enough.

Figure B.7: Unified View.
The result of the computation gets displayed.

Appendix C

Libraw1394 Example Program

/**
*
* Very simple program to show some Linux
* libraw1394 library functions.
* The program sets up the necessary handle
* and port and then reads USHRT_MAX packets
* from the isochronous video stream and prints
* out the section type of the packets to
* standart out.
*
* author: Christoph Kiefer
* date: 10.6.2003
*
**/

#include <iostream>

#include <raw1394.h>
#include <csr.h>

#include <sys/poll.h>
#include <netinet/in.h>
#include <values.h>

using namespace std;

bool iterate = false;
unsigned short int count = 0;

int handler(raw1394handle_t handle, int channel,
size_t length, quadlet_t *data)
{

if (count == USHRT_MAX)
{

iterate=false;
return 0;

}

40 Appendix C. Libraw1394 Example Program

// the meaning of packets smaller than 16
// bytes is not known, therefore not useable
if (length > 16)
{

// actual DV data starts at quadlet 4
unsigned char *p = (unsigned char*) & data[3];
int section_type = p[0] >> 5;
cout << "section type of packet number "
<< count << " is " << section_type << endl;

count++;
return 0;

}
else
{

count++;
return 0;

}
}

int main(int argc, char **argv)
{

raw1394handle_t handle;
struct pollfd pfd[1];
int numcards;
int port, channel;
struct raw1394_portinfo pinf[16];
iso_handler_t oldhandler;

// get the handle to the kernel side of raw1394
handle = raw1394_new_handle();
if (!handle)
{

cout << "couldn’t get handle" << endl;
return 1;

}

// get port info (number of cards,
// connected nodes)
if ((numcards = raw1394_get_port_info(handle, pinf, 16)) < 0)
{

cout << "couldn’t get card info" << endl;
return 1;

}
else
{

cout << numcards << " card(s) found" << endl;
for(int i=0; i<numcards; i++)

{
cout << "nodes on bus: " << pinf[i].nodes
<< " , card name: " << pinf[i].name << endl;

}
}

41

cout << "enter card: ";
cin >> port;
// sets the port
if (raw1394_set_port(handle, port) < 0)
{

cout << "couldn’t set port" << endl;
return 1;

}
else
{

// prints out number of nodes on port,
// ID and IRM (isochronous resource
// manager id)
cout << "found " << raw1394_get_nodecount(handle)

<< " nodes on bus, local ID is "
<< (raw1394_get_local_id(handle) & 0x3f)
<< " IRM is " << (raw1394_get_irm_id(handle) & 0x3f)
<< endl;

}

// generation number (configuration) of port
cout << "current generation number of port is "

<< raw1394_get_generation(handle) << endl;

cout << "enter channel: ";
cin >> channel;
// sets the handler
oldhandler = raw1394_set_iso_handler(handle, channel, handler);

// file descriptor of handle to poll later
pfd[0].fd = raw1394_get_fd(handle);
pfd[0].events = POLLIN|POLLPRI;
pfd[0].revents = 0;

// the isochronous video stream starts
raw1394_start_iso_rcv(handle, channel);

iterate = true;
while(iterate)
{

// Poll the 1394 interface
if((poll(&pfd[0], 1, -1) == -1))

{
cout << "error" << endl;

}
if(pfd[0].revents & (POLLIN|POLLPRI))

{
// process packets, calls iso handler repeatedly
raw1394_loop_iterate(handle);

}
}

// stop the isochronous video stream
raw1394_stop_iso_rcv(handle,channel);

42 Appendix C. Libraw1394 Example Program

cout << "program finished" << endl;
return 0;

}

Appendix D

Source Code Documentation

D.1 AdaDVCamera_Application Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AdaViewer . 48
ApplicationWindow . 52
DVCamera . 58

AdaDVCamera . 43

FloorWidget . 65
Frame . 73
IEEE1394IOHandler . 75
imagePoint . 78
Prettifier . 79

AdaPrettifier . 45

Scaler . 80
Tile . 82
TimeCode
Tsai . 84

AdaTsai . 46

TsaiViewer . 86
VideoEncoder . 89
worldPoint . 91

D.2 AdaDVCamera Class Reference

Class to represent the digital video camera that was installed at Ada at Expo.02.

#include u adadvcamera.h v
Inheritance diagram for AdaDVCamera::

Public Methods

� AdaDVCamera ()

44 Appendix D. Source Code Documentation

AdaDVCamera

DVCamera

Protected Methods

� virtual void frameToQImage (Frame w frame)
� virtual void checkForMemoryAllocation ()

Private Attributes

� AdaPrettifier w _adaPrettifier

D.2.1 Detailed Description

Class to represent the digital video camera that was installed at Ada at Expo.02.

AdaDVCamera inherits DVCamera (p. 58) and therefore uses the same functionality
as DVCamera (p. 58) but overloads methods frameToQImage() (p. 45) and checkFor-
MemoryAllocation() (p. 44). This is necessary because there were four pan/tilt color cam-
eras installed at Ada whose four individual video streams were put together into one using
a quad split.

Author:
Christoph Kiefer

Date:
6/6/2003

D.2.2 Constructor & Destructor Documentation

D.2.2.1 AdaDVCamera::AdaDVCamera ()

Constructor

D.2.3 Member Function Documentation

D.2.3.1 virtual void AdaDVCamera::checkForMemoryAllocation ()
[protected, virtual]

Checks if the image buffer and the QImage which are needed in method frameToQImage()
(p. 45) are already allocated. It gives the class the possibility to allocate only the needed
amount of memory. This amount is less than in class DVCamera (p. 58) because not the
whole raw frame data is used.

Reimplemented from DVCamera (p. 61).

D.3 AdaPrettifier Class Reference 45

D.2.3.2 virtual void AdaDVCamera::frameToQImage (Frame w frame)
[protected, virtual]

This overloaded method extracts and rearranges the four individual images from the raw
frame data and stores them in the QImage in the right way. The result is one properly
arrange QImage.

Parameters:
frame The frame to copy to a QImage.

Reimplemented from DVCamera (p. 61).

The documentation for this class was generated from the following file:

� adadvcamera.h

D.3 AdaPrettifier Class Reference

Class to prettify the video data grabbed at Ada/Expo.02.

#include u adaprettifier.h v
Inheritance diagram for AdaPrettifier::

AdaPrettifier

Prettifier

Public Methods

� AdaPrettifier ()
� virtual void rearrange (QImage &image, unsigned char w data_buffer)

D.3.1 Detailed Description

Class to prettify the video data grabbed at Ada/Expo.02.

This class reads video data from a data buffer and prettifies it. Thus the video data of
the four sub images is written to a QImage in the right rotated way.

Author:
Christoph Kiefer

Date:
6/6/2003

46 Appendix D. Source Code Documentation

D.3.2 Constructor & Destructor Documentation

D.3.2.1 AdaPrettifier::AdaPrettifier ()

Constructor

D.3.3 Member Function Documentation

D.3.3.1 virtual void AdaPrettifier::rearrange (QImage & image, unsigned char w
data_buffer) [virtual]

This virtual method implements how to extract the four individual images from the data
buffer. To know at which positions extraction should start, one unarranged image was
measured out with an image processing tool.

Parameters:
image QImage to hold the final data.

data_buffer Holding the original frame data.

Implements Prettifier (p. 80).

The documentation for this class was generated from the following file:

� adaprettifier.h

D.4 AdaTsai Class Reference

Inherits class Tsai (p. 84) and implements methods to use Tsai (p. 84) in the Ada./Expo.02
example.

#include u adatsai.h v
Inheritance diagram for AdaTsai::

AdaTsai

Tsai

Public Slots

� virtual void startCalibration ()
� virtual void createCalibrationFile (int fileNumber, QPtrList u imagePoint vxw i-

Points, QPtrList u worldPoint vyw wPoints)
� virtual void convert (double wWorld, double hWorld, int w, int h)
� void setCurrentImage (QImage image)

D.4 AdaTsai Class Reference 47

Public Methods

� AdaTsai (int tsaiInstances, QImage &oldImage, QImage &tsaiImage)

Private Attributes

� double _midPointsWorld [8]� int _midPointsImage [8]

D.4.1 Detailed Description

Inherits class Tsai (p. 84) and implements methods to use Tsai (p. 84) in the Ada./Expo.02
example.

The class implements the abstract methods from class Tsai (p. 84) to fulfill the calibra-
tion of the four cameras at Ada/Expo.02.

Author:
Christoph Kiefer

Date:
6/6/2003

D.4.2 Constructor & Destructor Documentation

D.4.2.1 AdaTsai::AdaTsai (int tsaiInstances, QImage & oldImage, QImage &
tsaiImage)

Constructor

Parameters:
tsaiInstances Number of instances of class TsaiCal.

oldImage Image out of which a unified view should be computed.

tsaiImage The image which will hold the unified view.

D.4.3 Member Function Documentation

D.4.3.1 virtual void AdaTsai::convert (double wWorld, double hWorld, int w, int h)
[virtual, slot]

Computes the final unified view. For every given world point it calculates the shortest
distance to a middle point of one image sector. That world point is then mapped to an
image point by the means of the corresponding camera parameters.

Parameters:
wWorld x-coordinate in the world (in mm) of point w

hWorld y-coordinate in in the world (in mm) of point h

w x-coordinate in the image (that image that hold the unified view), in pixels

h y-coordinate in the image (that image that hold the unified view), in pixels

Implements Tsai (p. 85).

48 Appendix D. Source Code Documentation

D.4.3.2 virtual void AdaTsai::createCalibrationFile (int fileNumber, QPtrList u
imagePoint vew iPoints, QPtrList u worldPoint vew wPoints) [virtual,
slot]

Writes the calibration files and uses the calculated camera parameters to compute the world
point of the middle point of the image to be unified.

Parameters:
fileNumber Number or index of the calibration files that get written.

iPoints A list of image points.

wPoints A list of world points.

Implements Tsai (p. 86).

D.4.3.3 void AdaTsai::setCurrentImage (QImage image) [slot]

Sets a new source image out of which a unified view should be calculated.

Parameters:
image Source image to calculate unified view.

D.4.3.4 virtual void AdaTsai::startCalibration () [virtual, slot]

The middle points of each image sector are set up. The image out of which the unified
view is to be calculated should used therefore. This middle points are necessary to later
determine the shortest distance between that middle point and another world point. And
this in turn is absolutely necessary to define which camera parameters to take to finally map
the world point back to an image point in the unified view.

Implements Tsai (p. 86).

The documentation for this class was generated from the following file:

� adatsai.h

D.5 AdaViewer Class Reference

Image viewer class.

#include u adaviewer.h v

Public Slots

� void selectPoint (QPoint point)
� void magnify (QMouseEvent w mme)
� void setImage (QImage image)
� void setMagnify (bool state)

D.5 AdaViewer Class Reference 49

Public Methods

� AdaViewer (QWidget w parent=0, const char w name=0, WFlags f=0)
� QPtrList u imagePoint vzw getPointList ()
� void highlightArea (int currentArea)
� void clearPointList ()

Protected Methods

� virtual void polishContent (QPainter &p)
� virtual void mouseMoveEvent (QMouseEvent w mme)
� virtual void mousePressEvent (QMouseEvent w mme)

Private Methods

� bool pointAllreadySelected (QPoint p)
� void removePoint (QPoint p)

Private Attributes

� QPtrList u imagePoint vzw _viewerPoints
� int _selectedPoints
� int _currentArea
� QPixmap pm
� QPixmap _image
� int x
� int y
� bool _doMagnify
� int _mlengthHalf
� int _zoomMlengthHalf
� int _zoomMlength

D.5.1 Detailed Description

Image viewer class.

This class implements an image viewer for the images that are constructed out of the
video frames captured at Ada/Expo.02.

Author:
Christoph Kiefer

Date:
6/6/2003

50 Appendix D. Source Code Documentation

D.5.2 Constructor & Destructor Documentation

D.5.2.1 AdaViewer::AdaViewer (QWidget w parent = 0, const char w name = 0,
WFlags f = 0)

Constructor.

Parameters:
parent Pointer to parent widget. Zero (default) for top-level widgets.

name Identifier internally used by Qt for identifying individual class instances.

f Widget-specific flags.

D.5.3 Member Function Documentation

D.5.3.1 void AdaViewer::clearPointList ()

Deletes all points on the list of image points.

D.5.3.2 QPtrList u imagePoint v{w AdaViewer::getPointList ()

Returns the list of user selected points.

Returns:
A list of pointers to image points.

D.5.3.3 void AdaViewer::highlightArea (int currentArea)

One area of the displayed image is highlighted. The other 3 areas are shadowed.

Parameters:
currentArea The area of the image to highlight.

D.5.3.4 void AdaViewer::magnify (QMouseEvent w mme) [slot]

Slot gets called when an area on the Vision Matrix should be magnified.

Parameters:
mme Mouse event. Holds position of mouse pointer.

D.5.3.5 virtual void AdaViewer::mouseMoveEvent (QMouseEvent w mme)
[protected, virtual]

This virtual method defines what happens if the user moves the mouse over the widget. If
the magnifier checkbox is clicked, a small area around QMouseEvent::pos is magnified.

Parameters:
re Mouse event.

D.5 AdaViewer Class Reference 51

D.5.3.6 virtual void AdaViewer::mousePressEvent (QMouseEvent w mme)
[protected, virtual]

Catch mouse press events. Depending on mouse button, either a point is selected or dis
selected from the Vision Matrix.

Parameters:
mme Mouse event.

D.5.3.7 bool AdaViewer::pointAllreadySelected (QPoint p) [private]

Goes through the list of image points and looks up if a given point was already selected by
the user.

Parameters:
p Point to look for in the list.

Returns:
true if point is already in the list, | false otherwise.

D.5.3.8 virtual void AdaViewer::polishContent (QPainter & p) [protected,
virtual]

Enhance image content before displaying it.

This virtual method can be overloaded in a derived class for changing/enhancing the
image’s content before it is displayed. The painter p is open when it is passed to this
method and must still be opened when leaving the method. The method draws lines on the
3 areas which are not to highlight.

Parameters:
p Painter for drawing into the given image.

D.5.3.9 void AdaViewer::removePoint (QPoint p) [private]

Remove a point from the Vision Matrix.

Parameters:
The point to remove.

D.5.3.10 void AdaViewer::selectPoint (QPoint point) [slot]

This slot gets called whenever a user selects a point on the image.

Parameters:
point The point the user has clicked (x- & y-coordinate within image).

D.5.3.11 void AdaViewer::setImage (QImage image) [slot]

Set a new image. Takes a local copy of the image.

Parameters:
image New image to be displayed.

52 Appendix D. Source Code Documentation

D.5.3.12 void AdaViewer::setMagnify (bool state) [slot]

Sets magnification on/off.

Parameters:
state true or false

The documentation for this class was generated from the following file:

� adaviewer.h

D.6 ApplicationWindow Class Reference

Class that implements the whole GUI around the application. .

#include u application.h v

Public Slots
� void play ()� void stop ()� void fastForward ()� void rewind ()� void next ()� void previous ()� void updateTimeCodeFrame (QImage image)� void updateTimeCodeLog (QString timecode)� void setCurrentTimecode (const QString ¤tTimecode)� void setRefFrameTimestamp ()� void setImage (QImage image)

Public Methods
� ApplicationWindow (QWidget w parent=0, const char w name=0, WFlags f=0)

Protected Methods

� virtual void closeEvent (QCloseEvent w ce)� virtual void resizeEvent (QResizeEvent w re)

Private Slots
� void synchronize ()� void deSynchronize ()� void startCalibration ()� void createCalibrationFile ()� void convert ()� void setTsaiImageWidth (const QString &height)� void setTsaiImageHeight (const QString &width)� void changeLock ()� void encodeUnifiedView ()

D.6 ApplicationWindow Class Reference 53

Private Methods

� void setupGUI ()

Private Attributes

� AdaDVCamera w _dvcam� QPushButton w _startCaptureButton� QPushButton w _stopCaptureButton� QPushButton w _nextFrameButton� QPushButton w _prevFrameButton� QPushButton w _ffButton� QPushButton w _rewindButton� QPushButton w _selectLogButton� QPushButton w _nextLogEntryButton� QPushButton w _prevLogEntryButton� QPushButton w _syncButton� QPushButton w _lockButton� QPushButton w _calibrateButton� QHBoxLayout w _mainLayout� QWidget w _viewerWidget� QWidget w _floor� QWidget w _widgetA� QWidget w _widgetB� QGroupBox w _gbViewer� QGroupBox w _gbFloor� QGroupBox w _gbSync� QGroupBox w _videoBox� QGroupBox w _floorBox� QGroupBox w _gbTsai� QGroupBox w _gbMisc� QGridLayout w _leftLayout� QGridLayout w _rightLayout� QGridLayout w _gridViewer� QGridLayout w _gridFloor� QButtonGroup w _buttonGroupV� QButtonGroup w _buttonGroupF� QButtonGroup w _buttonGroupS� QButtonGroup w _buttonGroupM� QHBoxLayout w _buttonGroupLayoutV� QHBoxLayout w _buttonGroupLayoutF� QHBoxLayout w _buttonGroupLayoutS� QHBoxLayout w _buttonGroupLayoutM� QLineEdit w _logHours� QLineEdit w _logMinutes� QLineEdit w _logSeconds� QLineEdit w _logMiliSeconds� QLineEdit w _frameHours� QLineEdit w _frameMinutes� QLineEdit w _frameSeconds

54 Appendix D. Source Code Documentation

� QLineEdit w _frameMiliSeconds
� QLineEdit w _timestamp
� QLineEdit w _tsaiWidth
� QLineEdit w _tsaiHeight
� QCheckBox w _saturationCBox
� QHBox w _frameRecDateBox
� QHBox w _logRecDateBox
� QHBox w _syncBox
� QHBox w _miscBox
� QSpacerItem w _spacer
� QSpacerItem w _spacer2
� QValidator w _tsaiValidator
� QLabel w _frameRecDate
� QLabel w _logRecDate
� QImage _image
� QImage _currentImage
� QImage _tsaiImage
� int _tsaiImageWidth
� int _tsaiImageHeight
� AdaViewer w _viewer
� AdaTsai w _tsai
� FloorWidget w _floorWidget
� QString _currentTimecode
� int _currentArea
� Scaler w _targetScaler
� QCheckBox w _magnifier
� QCheckBox w _encodeCBox
� QPushButton w _goButton
� VideoEncoder w _encoder
� TsaiViewer w _tsaiViewer
� bool _encodeUnified

D.6.1 Detailed Description

Class that implements the whole GUI around the application. .

This class implements a GUI to use the classes AdaDVCamera (p. 43) and Floor-
Widget (p. 65). Various buttons and fields give the user the opportunity to control the DV
camera and to start the camera calibration using Tsai (p. 84)’s method.

Author:
Christoph Kiefer

Date:
6/6/2003

D.6 ApplicationWindow Class Reference 55

D.6.2 Constructor & Destructor Documentation

D.6.2.1 ApplicationWindow::ApplicationWindow (QWidget w parent = 0, const
char w name = 0, WFlags f = 0)

Constructor.

Parameters:
parent Pointer to parent widget. Zero (default) for top-level widgets.

name Identifier internally used by Qt for identifying individual class instances.

f Widget-specific flags.

D.6.3 Member Function Documentation

D.6.3.1 void ApplicationWindow::changeLock () [private, slot]

Changes the state of the lock button. If the video and the floor are unlocked moving forward
or backward one frame in the video does not automatically move forward or backward the
log and vise versa.

D.6.3.2 virtual void ApplicationWindow::closeEvent (QCloseEvent w ce)
[protected, virtual]

This virtual method defines what happens if the user closes the main widget. If the camera
is still playing it is told to stop.

Parameters:
ce Close event.

D.6.3.3 void ApplicationWindow::convert () [private, slot]

Produces the unified view.

D.6.3.4 void ApplicationWindow::createCalibrationFile () [private, slot]

For each area of the image two corresponding files are created. One holding the pairs of
points for that area, the other one consists of the calculated camera parameters (by Tsai
(p. 84)).

D.6.3.5 void ApplicationWindow::deSynchronize () [private, slot]

Defines the action that is performed if the user presses the sync button when a synchroniza-
tion of the video and the log has already been done.

D.6.3.6 void ApplicationWindow::encodeUnifiedView () [private, slot]

Starts encoding the unified view to a video file. Allocates a new VideoEncoder (p. 89).

56 Appendix D. Source Code Documentation

D.6.3.7 void ApplicationWindow::fastForward () [slot]

Winds the camera fast forward.

D.6.3.8 void ApplicationWindow::next () [slot]

Displays the next video frame.

D.6.3.9 void ApplicationWindow::play () [slot]

Start playing the camera.

D.6.3.10 void ApplicationWindow::previous () [slot]

Displays the previous video frame.

D.6.3.11 virtual void ApplicationWindow::resizeEvent (QResizeEvent w re)
[protected, virtual]

This virtual method defines what happens if the user resizes the main widget.

Parameters:
re Resize event.

D.6.3.12 void ApplicationWindow::rewind () [slot]

Rewinds the camera.

D.6.3.13 void ApplicationWindow::setCurrentTimecode (const QString &
currentTimecode) [slot]

Stores the timecode of the current frame to a variable.

Parameters:
currentTimecode The timecode.

D.6.3.14 void ApplicationWindow::setImage (QImage image) [slot]

The current QImage to display. To clarify: the current frame to display is synonym with
the current image to display.

Parameters:
image The image.

D.6.3.15 void ApplicationWindow::setRefFrameTimestamp () [slot]

Sets the timestamp of the reference frame.

D.6 ApplicationWindow Class Reference 57

D.6.3.16 void ApplicationWindow::setTsaiImageHeight (const QString & width)
[private, slot]

Does basically the same as setTsaiImageWidth() (p. 57) but sets the height instead of the
width of the unified view.

Parameters:
width Gets width and calculates maximum height.

D.6.3.17 void ApplicationWindow::setTsaiImageWidth (const QString & height)
[private, slot]

Sets the width of the unified view.

Parameters:
height Gets the height and calculates the maximum width to still respect the ratio of

the Ada floor width and height.

D.6.3.18 void ApplicationWindow::setupGUI () [private]

Sets up all GUI elements.

D.6.3.19 void ApplicationWindow::startCalibration () [private, slot]

Starts the camera calibration in which the user must select pairs of image and world points
in every of the four areas of the image.

D.6.3.20 void ApplicationWindow::stop () [slot]

Stop playing the camera.

D.6.3.21 void ApplicationWindow::synchronize () [private, slot]

Defines the action performed if the user clicks on the sync button.

D.6.3.22 void ApplicationWindow::updateTimeCodeFrame (QImage image)
[slot]

Sets the timecode of the current frame in the appropriated field.

Parameters:
image The timecode of the current frame is attached to current image to display.

D.6.3.23 void ApplicationWindow::updateTimeCodeLog (QString timecode)
[slot]

Sets the timecode of the current log entry in the appropriated field.

Parameters:
timecode The timecode.

58 Appendix D. Source Code Documentation

The documentation for this class was generated from the following file:

� application.h

D.7 DVCamera Class Reference

Control digital video camera connected to IEEE1394 interface.

#include u dvcamera.h v
Inheritance diagram for DVCamera::

DVCamera

AdaDVCamera

Public Slots

� void startCapture ()
� void stopCapture ()
� void pauseCapture ()
� QImage next ()
� QImage previous ()
� void stop ()
� void play ()
� void fastForward ()
� void rewind ()
� void pauseCamera ()
� void setTimerValue (int value)

Signals

� void captureStarted ()
� void captureStopped ()
� void ff ()
� void rw ()
� void frameProcessed (QImage image)
� void bufferEmpty ()
� void outputEmpty ()
� void outputNotEmpty ()
� void signalRefFrameTimecode (const QString &refFrameTimecode)
� void signalFrameTimecode (const QString &frameTimecode)

D.7 DVCamera Class Reference 59

Public Methods

� DVCamera ()
� bool bufferQueueIsEmpty ()
� bool outputQueueIsEmpty ()
� bool isPlaying ()� void setQImage (QImage &image)

Static Public Methods

� int avi_iso_handler (raw1394handle_t handle, int channel, size_t length,quadlet_t
w data)

� int this_reset_handler (raw1394handle_t handle, unsigned int generation)

Static Public Attributes

� QMap u raw1394handle_t, DVCamera wnv map
� int currentRetries
� int maxRetries

Protected Methods

� void send_avc_command (raw1394handle_t handle, nodeid_t node, quadlet_t com-
mand)

� void startCamera ()
� void stopCamera ()
� void playSlowestReverse ()
� virtual void frameToQImage (Frame w frame)
� virtual void checkForMemoryAllocation ()

Protected Attributes

� IEEE1394IOHandler w _handler
� raw1394handle_t _handle
� unsigned char w _image_buffer
� Frame w _current_frame
� QImage _image
� QTimer w _timer
� QPtrList u Frame v _buffer_queue
� QPtrList u Frame v _output_queue
� QMutex _buffer_Mutex
� QMutex _output_Mutex
� QWaitCondition _pass
� bool _isPlaying� bool _refFrameTimecodeSend
� int _value

60 Appendix D. Source Code Documentation

D.7.1 Detailed Description

Control digital video camera connected to IEEE1394 interface.

Class DVCamera provides methods to control a digital video camera that is connected
to the IEEE1394 (FireWire, i.Link) serial bus. To control the camera, methods like play()
(p. 62) send AV/C (Audio/Video Control) commands using a _handle (p. 64) obtained from
IEEE1394IOHandler::get_raw1394_handle() (p. 76). The _handle (p. 64) provides a
connection to the kernel side of raw1394. The implemented AVI/ISO (Audio Video Inter-
leave) handler grabs raw audio/video data and packs it into frames (p. 73). These frames
then share either the _buffer_queue (p. 64) or the _output_queue (p. 65). Because these
queues are shared between this class and class IEEE1394IOHandler (p. 75) that calls re-
peatedly the static member function avi_iso_handler() (p. 60), mutexes (_buffer_Mutex
(p. 64), _output_Mutex (p. 65)) are used to gain and release access to these queues. DV-
Camera does not handle any audio data.

Author:
Christoph Kiefer

Date:
6/6/2003

D.7.2 Constructor & Destructor Documentation

D.7.2.1 DVCamera::DVCamera ()

Constructor.

D.7.3 Member Function Documentation

D.7.3.1 int DVCamera::avi_iso_handler (raw1394handle_t handle, int channel,
size_t length, quadlet_t w data) [static]

Implements the AVI/ISO handler as a static member function. When the camera is playing
this function is repeatedly called from IEEE1394IOHandler::run() (p. 77).

Parameters:
handle Provides a connection to kernel side of raw1394.

channel ISO channel used for transmitting the video data. Default is 63, the channel
most DV cameras are using.

length Length of packet to process.

data The raw PAL/NTSC DV data packet.

D.7.3.2 void DVCamera::bufferEmpty () [signal]

Signal is emitted if _buffer_queue (p. 64) is empty.

D.7.3.3 bool DVCamera::bufferQueueIsEmpty ()

Returns true if the _buffer_queue (p. 64) is empty, false otherwise.

D.7 DVCamera Class Reference 61

D.7.3.4 void DVCamera::captureStarted () [signal]

Signal is emitted at the end of method startCapture() (p. 64).

D.7.3.5 void DVCamera::captureStopped () [signal]

Signal is emitted at the end of method stopCapture.

D.7.3.6 virtual void DVCamera::checkForMemoryAllocation () [protected,
virtual]

This virtual method can be overloaded in a derived class. It checks if the image buffer and
the QImage which are needed in method frameToQImage() (p. 61) are already allocated.
It gives the class the possibility to allocate only the needed amount of memory.

Reimplemented in AdaDVCamera (p. 44).

D.7.3.7 void DVCamera::fastForward () [slot]

First flushes _buffer_queue (p. 64) and _output_queue (p. 65) and tells the camera to wind
fast forward. Calls send_avc_command() (p. 63). AV/C command operand is "VCR_-
OPERAND_PLAY_FAST_FORWARD".

D.7.3.8 void DVCamera::ff () [signal]

Signal is emitted at the end of method fastForward() (p. 61).

D.7.3.9 void DVCamera::frameProcessed (QImage image) [signal]

Signal is emitted when next frame from @_output_queue has been processed.

Parameters:
image Image holding extracted frame data.

D.7.3.10 virtual void DVCamera::frameToQImage (Frame w frame)
[protected, virtual]

This virtual method can be overloaded in a derived class to change the way in which the
frame data is copied to the QImage.

Parameters:
frame The frame to copy to a QImage.

Reimplemented in AdaDVCamera (p. 45).

D.7.3.11 bool DVCamera::isPlaying ()

Returns true if the camera is currently playing, false otherwise.

62 Appendix D. Source Code Documentation

D.7.3.12 QImage DVCamera::next () [slot]

Takes next frame from output queue, calls frameToQImage() (p. 61) and emits a frame-
Processed() (p. 61) signal.

D.7.3.13 void DVCamera::outputEmpty () [signal]

Signal is emitted if _output_queue (p. 65) is empty.

D.7.3.14 void DVCamera::outputNotEmpty () [signal]

Signal is emitted if _output_queue (p. 65) is not empty.

D.7.3.15 bool DVCamera::outputQueueIsEmpty ()

Returns true if the _output_queue (p. 65) is empty, false otherwise.

D.7.3.16 void DVCamera::pauseCamera () [slot]

Pauses the camera. Calls send_avc_command() (p. 63). AV/C command operand is
"VCR_OPERAND_PLAY_FORWARD_PAUSE".

D.7.3.17 void DVCamera::pauseCapture () [slot]

Tells IEEE1394IOHandler (p. 75) to stop polling the interface. Also calls pause-
Camera() (p. 62).

D.7.3.18 void DVCamera::play () [slot]

Slot to call startCapture() (p. 64).

D.7.3.19 void DVCamera::playSlowestReverse () [protected]

Calls send_avc_command() (p. 63). AV/C command operand is "VCR_OPERAND_-
PLAY_SLOWEST_REVERSE".

D.7.3.20 QImage DVCamera::previous () [slot]

Takes the most recently processed frame from the tail of the _buffer_queue (p. 64), puts it
back to the front of the _output_queue (p. 65) and processes like next() (p. 62).

D.7.3.21 void DVCamera::rewind () [slot]

Behaves actually in the same way as fastForward() (p. 61) but tells the camera to rewind.
Calls send_avc_command() (p. 63). AV/C command operand is "VCR_OPERAND_-
WIND_REWIND".

D.7 DVCamera Class Reference 63

D.7.3.22 void DVCamera::rw () [signal]

Signal is emitted at the end of method rewind() (p. 62).

D.7.3.23 void DVCamera::send_avc_command (raw1394handle_t handle, nodeid_t
node, quadlet_t command) [protected]

Method to send AV/C commands to the DV camera. It will call
IEEE1394IOHandler::cooked1394_write().

Parameters:
handle Provides a connection to kernel side of raw1394.

node Physical device id of DV camera. Default is 1.

command AV/C command.

D.7.3.24 void DVCamera::setQImage (QImage & image)

Set image.

Parameters:
image Image where extracted frame data should be stored.

D.7.3.25 void DVCamera::setTimerValue (int value) [slot]

Sets the value of the timer. The timer continuously calls next() (p. 62) that grabs frames
from the _output_queue (p. 65).

Parameters:
value Timer value in milliseconds.

D.7.3.26 void DVCamera::signalFrameTimecode (const QString & frameTimecode)
[signal]

Signal is emitted whenever a frame is processed.

Parameters:
frameTimecode The timecode of the frame.

D.7.3.27 void DVCamera::signalRefFrameTimecode (const QString &
refFrameTimecode) [signal]

Signal is emitted when first frame from DV tape is processed.

Parameters:
refFrameTimecode The timecode of the first frame.

D.7.3.28 void DVCamera::startCamera () [protected]

Sends AV/C command "VCR_OPERAND_PLAY_FORWARD" to camera.

64 Appendix D. Source Code Documentation

D.7.3.29 void DVCamera::startCapture () [slot]

Tells IEEE1394IOHandler (p. 75) to start polling the interface. Also calls startcamera().

D.7.3.30 void DVCamera::stop () [slot]

Slot to call stopCapture() (p. 64).

D.7.3.31 void DVCamera::stopCamera () [protected]

Calls send_avc_command() (p. 63). AV/C command operand is "VCR_OPERAND_-
WIND_STOP".

D.7.3.32 void DVCamera::stopCapture () [slot]

Tells IEEE1394IOHandler (p. 75) to stop polling the interface. Also calls stopCamera()
(p. 64) stopCamera.

D.7.3.33 int DVCamera::this_reset_handler (raw1394handle_t handle, unsigned int
generation) [static]

The handler that is called when a bus reset message is encountered.

Parameters:
handle Provides a connection to kernel side of raw1394.

generation Current configuration of the port.

D.7.4 Member Data Documentation

D.7.4.1 QMutex DVCamera::_buffer_Mutex [protected]

Mutex to protect the critical resource _buffer_queue (p. 64).

D.7.4.2 QPtrList u Frame v DVCamera::_buffer_queue [protected]

Frames are buffered on the this queue before they go to the _output_queue (p. 65).

D.7.4.3 raw1394handle_t DVCamera::_handle [protected]

Provides a connection to kernel side of raw1394.

D.7.4.4 IEEE1394IOHandler w DVCamera::_handler [protected]

IEEE1394IOHandler (p. 75).

D.8 FloorWidget Class Reference 65

D.7.4.5 QMutex DVCamera::_output_Mutex [protected]

Mutex to protect the critical resource _output_queue (p. 65).

D.7.4.6 QPtrList u Frame v DVCamera::_output_queue [protected]

Frames to display are taken from the this queue.

D.7.4.7 QTimer w DVCamera::_timer [protected]

The timer emits signal timeout to initiated processing of the next frame from the _output_-
queue (p. 65) and is started in method play() (p. 62) and stopped in method stop() (p. 64).

The documentation for this class was generated from the following file:

� dvcamera.h

D.8 FloorWidget Class Reference

Class representing the Ada floor.

#include u floorwidget.h v

Public Slots

� void nextLogEntry ()� void previousLogEntry ()� void setRefFrameTimestamp (const QString &refFrameTimestamp)� void setRefFrameTimecode (const QString &refFrameTimecode)� void synchronize (const QString &frameTimecode)� void changeLockState ()� QPointArray definePolygon (int tile, Scaler w scaler)

Signals

� void pixmapCreated (QString timestamp)� void backQueueIsEmpty ()� void floorPointSelected (QPoint p)

Public Methods

� FloorWidget (QWidget w parent=0, const char w name=0)� QPtrList u worldPoint vyw getPointList ()� void signalResizeHandler (QResizeEvent w re)� void clearPointList ()� double getFloorWidth ()� double getFloorHeight ()� double getMinX ()� double getMaxY ()� bool refFrameTimestampIsSet ()

66 Appendix D. Source Code Documentation

Protected Methods

� virtual void paintEvent (QPaintEvent w pe)� virtual void mousePressEvent (QMouseEvent w me)

Private Slots

� void selectPoint (const QPoint &p)� void selectnewLog ()� void changeSaturation ()

Private Methods

� void setLogFile (const QString &filename)� void loadNextLogLine (string logline)� void loadFloorTopologyFile ()� void setPoints (const int index, const int na, const int nb, double w cornerPoints, const
int offset)� void createPixmap ()� void setTileOutlines ()� QString getCurrentTimestamp ()� bool pointAllreadySelected (double xw, double yw)� void removePoint (const QPoint &p)� QPointArray definePolygon (int tile)

Private Attributes

� Tile tiles [360]� QPixmap w _buffer� QString logFilename� ifstream logStream� string logLine� string _currentLine� string _nextLine� int _logsRead� QColor _back_queue [MAX_BACK_QUEUE_LENGTH][360]� char _ts_queue [MAX_BACK_QUEUE_LENGTH][20]� int _current_queue_index� int _next_free_queue_index� bool _saturate� long long _firstTimestamp� long long _refFrameTimestamp� long long _refFrameTimecode� long long _timestampToSynchronize� QPtrList u worldPoint vyw _floorPoints� int _selectedPoints� long long _dif1� long long _dif2� bool _synchronized

D.8 FloorWidget Class Reference 67

� bool _locked� double _minX� double _maxX� double _minY� double _maxY� double _floorWidth� double _floorHeight� Scaler w _floorScaler� int _xDist� int _correctionValue

D.8.1 Detailed Description

Class representing the Ada floor.

The class implements methods to draw the Ada floor that consists of 360 pentagonal
tiles. Therefore a log file needs to be read and processed and the user also has the possibility
to select corner points of one tile. There is also a method that searches a log entry by the
means of a given timestamp.

Author:
Christoph Kiefer

Date:
6/6/2003

D.8.2 Constructor & Destructor Documentation

D.8.2.1 FloorWidget::FloorWidget (QWidget w parent = 0, const char w name = 0)

Constructor.

Parameters:
parent Pointer to parent widget. Zero (default) for top-level widgets.

name Identifier internally used by Qt for identifying individual class instances.

f Widget-specific flags.

D.8.3 Member Function Documentation

D.8.3.1 void FloorWidget::backQueueIsEmpty () [signal]

Signal is emitted if the floor log back queue is empty which means further pressing the
previous button has no effects.

D.8.3.2 void FloorWidget::changeLockState () [slot]

Changes the state of the widget to be locked or unlocked. Refer to Application-
Window::changeLock() (p. 55) for further explanation.

68 Appendix D. Source Code Documentation

D.8.3.3 void FloorWidget::changeSaturation () [private, slot]

Changes the color saturation of each tile of the Ada floor.

D.8.3.4 void FloorWidget::clearPointList ()

Deletes all points on the list of world points.

D.8.3.5 void FloorWidget::createPixmap () [private]

Paints all 360 tiles and all selected user points to a pixmap buffer.

D.8.3.6 QPointArray FloorWidget::definePolygon (int tile) [private]

Constructs an array which holds the points that define the pentagonal tile. The points are
scaled down by the _floorScaler (p. 72).

Parameters:
tile The number of the tile to construct its pentagonal shape.

Returns:
The array holding the coordinates of the corners of the tile.

D.8.3.7 QPointArray FloorWidget::definePolygon (int tile, Scaler w scaler)
[slot]

Constructs an array which holds the points that define the hexagonal tile. The points are
scaled by a scaler.

Parameters:
tile The number of the tile to construct its hexagonal shape.

scaler Scales points.

Returns:
The array holding the coordinates of the corners of the tile.

D.8.3.8 void FloorWidget::floorPointSelected (QPoint p) [signal]

Signal is emitted as soon as a point on the floor is selected.

Parameters:
p The selected point on the Ada floor.

D.8.3.9 QString FloorWidget::getCurrentTimestamp () [private]

Returns the timestamp of the current displayed floor log entry.

Returns:
The timestamp of the current floor log entry.

D.8 FloorWidget Class Reference 69

D.8.3.10 double FloorWidget::getFloorHeight ()

Returns the height of the Ada floor.

Returns:
The Ada floor height.

D.8.3.11 double FloorWidget::getFloorWidth ()

Returns the width of the Ada floor.

Returns:
The Ada floor width.

D.8.3.12 double FloorWidget::getMaxY ()

Return the minimal y-coordinate in meters of the Ada floor.

Returns:
The minimal y-coordinate of the Ada floor.

D.8.3.13 double FloorWidget::getMinX ()

Return the minimal x-coordinate in meters of the Ada floor.

Returns:
The minimal x-coordinate of the Ada floor.

D.8.3.14 QPtrList u worldPoint v{w FloorWidget::getPointList ()

Returns the list of user selected points.

Returns:
A list of pointers to world points.

D.8.3.15 void FloorWidget::loadFloorTopologyFile () [private]

Loads the floor topology file. This file contains all center coordinates of the tiles and each
tile’s neighbors as well as some other parameters that are not used in this application.

D.8.3.16 void FloorWidget::loadNextLogLine (string logline) [private]

Loads the next line in the log file into memory, that is fills up the _back_queue (p. 72) and
the _ts_queue (p. 72).

Parameters:
logline The line to load into memory.

70 Appendix D. Source Code Documentation

D.8.3.17 virtual void FloorWidget::mousePressEvent (QMouseEvent w me)
[protected, virtual]

Virtual method to handle mouse press events that occurs if the user wants to select a point
on the floor.

Parameters:
me The catched mouse event.

D.8.3.18 void FloorWidget::nextLogEntry () [slot]

Goes to the next log entry.

D.8.3.19 virtual void FloorWidget::paintEvent (QPaintEvent w pe)
[protected, virtual]

This virtual method handles paint events which occur in the case of a resize event.

Parameters:
pe The catched paint event.

D.8.3.20 void FloorWidget::pixmapCreated (QString timestamp) [signal]

Signal is emitted as soon as the floor is painted that is after createPixmap() (p. 68).

Parameters:
timestamp The timestamp of the painted floor log entry.

D.8.3.21 bool FloorWidget::pointAllreadySelected (double xw, double yw)
[private]

Goes through the list of world points and looks up if a given point was already selected by
the user.

Parameters:
xw X-coordinate of world point.

yw Y-coordinate of world point.

Returns:
true if point is already in the list, | false otherwise.

D.8.3.22 void FloorWidget::previousLogEntry () [slot]

Goes to the previous log entry.

D.8.3.23 bool FloorWidget::refFrameTimestampIsSet ()

Return true if the timestamp of the reference frame is set, false otherwise. This is
important because only if the timestamp is set, the floor log can be synchronized with the
video.

D.8 FloorWidget Class Reference 71

Returns:
| true if timestamp of reference frame is set, false otherwise.

D.8.3.24 void FloorWidget::removePoint (const QPoint & p) [private]

Removes a point from the list of world points.

Parameters:
p The point to remove.

D.8.3.25 void FloorWidget::selectnewLog () [private, slot]

Opens a file dialog to select a log file.

D.8.3.26 void FloorWidget::selectPoint (const QPoint & p) [private, slot]

Selects a point on the Ada floor by first finding out to which tile the user selected point
belongs and afterward storing the point in the list of world points.

Parameters:
p The point the user selected by clicking on the widget.

D.8.3.27 void FloorWidget::setLogFile (const QString & filename) [private]

Sets up necessary variables to log the log file.

Parameters:
filename The chosen log file.

D.8.3.28 void FloorWidget::setPoints (const int index, const int na, const int nb,
double w cornerPoints, const int offset) [private]

Calculates the corner points of a tile.

Parameters:
index The index of the tile whose corner points should be set.

na Index of one neighbor of the tile.

nb Index of another neighbor of the tile.

cornerpoints A pointer where the corner points of the tile should be stored.

offset Offset into the array of corner points.

D.8.3.29 void FloorWidget::setRefFrameTimecode (const QString &
refFrameTimecode) [slot]

Sets the timecode of the reference frame.

Parameters:
refFrameTimecode

72 Appendix D. Source Code Documentation

D.8.3.30 void FloorWidget::setRefFrameTimestamp (const QString &
refFrameTimestamp) [slot]

Sets the timestamp of the reference frame.

Parameters:
refFrameTimestamp The timestamp of the reference frame.

D.8.3.31 void FloorWidget::setTileOutlines () [private]

Checks out which neighbors a tile has and makes a corresponding call to setPoints() (p. 71).

D.8.3.32 void FloorWidget::signalResizeHandler (QResizeEvent w re)

Handels resize events.

Parameters:
re The catched resize event.

D.8.3.33 void FloorWidget::synchronize (const QString & frameTimecode)
[slot]

Synchronizes the floor log with a given timecode of a video frame. Notice: Although a
timecode is given, internally timestamps are used for synchronization.

Parameters:
frameTimecode The timecode of a video frame which is to synchronize with the log.

D.8.4 Member Data Documentation

D.8.4.1 QColor FloorWidget::_back_queue[MAX_BACK_QUEUE_-
LENGTH][360] [private]

Data structure to store a certain amount of log entries. It is only necessary to store the color
of each tile.

D.8.4.2 Scaler w FloorWidget::_floorScaler [private]

Object that handles the scaling of world points to image points and vise versa.

D.8.4.3 char FloorWidget::_ts_queue[MAX_BACK_QUEUE_LENGTH][20]
[private]

A separate data structure to store timestamps of log entries.

The documentation for this class was generated from the following file:

� floorwidget.h

D.9 Frame Class Reference 73

D.9 Frame Class Reference

Code for handling raw DV frame data.

#include u frame.h v

Public Methods

� Frame ()�z} Frame ()� bool GetSSYBPack (int packNum, Pack &pack) const� bool GetVAUXPack (int packNum, Pack &pack) const� bool GetAAUXPack (int packNum, Pack &pack) const� bool GetTimeCode (TimeCode &timeCode) const� string GetTimeCode () const� bool GetRecordingDate (struct tm &recDate) const� string GetRecordingDate (void) const� int GetFrameSize (void) const� float GetFrameRate () const� bool IsPAL (void) const� bool IsNewRecording (void) const� bool IsComplete (void) const� void ExtractHeader (void)� void SetPreferredQuality ()� void ExtractRGB (void w rgb)� int ExtractPreviewRGB (void w rgb)� bool IsWide (void) const� int GetWidth ()� int GetHeight ()� void SetRecordingDate (time_t w datetime, int frame)� void SetTimeCode (int frame)� void Deinterlace (void w image, int bpp)

Public Attributes

� unsigned char data [144000]� int bytesInFrame� dv_decoder_t w decoder

D.9.1 Detailed Description

Code for handling raw DV frame data.

Class Frame contains methods for handling the raw DV frame data (p. 74).
A PAL frame usually occupies 144000 bytes of data. Methods like GetTime-
Code() (p. 74), GetFrameRate() (p. 74), ExtractHeader() (p. 74) or ExtractRGB()
(p. 74) do special analysis of that data in one or the other way. The ob-
ject therefore uses a digital video decoder (p. 75) provided by libdv-0.99 library
(http://sourceforge.net/projects/libdv/).

74 Appendix D. Source Code Documentation

Author:
Christoph Kiefer

Date:
6/6/2003

D.9.2 Constructor & Destructor Documentation

D.9.2.1 Frame::Frame ()

Constructor

D.9.3 Member Function Documentation

D.9.3.1 void Frame::ExtractHeader (void)

Extracts various frame header information as timecode or recording date. The information
are directly decoded into data (p. 74).

D.9.3.2 void Frame::ExtractRGB (void w rgb)

Extracts RGB values from frame data (p. 74).

Parameters:
rgb The buffer which afterward holds the extracted RGB values.

D.9.3.3 float Frame::GetFrameRate () const

Returns the actual frame rate. For PAL this is 25Hz, for NTSC about 30Hz.

Returns:
The frame rate.

D.9.3.4 string Frame::GetTimeCode () const

Returns the timecode of the frame.

Returns:
The String representing the timecode of the frame.

D.9.4 Member Data Documentation

D.9.4.1 unsigned char Frame::data[144000]

Enough space to hold a PAL frame.

D.10 IEEE1394IOHandler Class Reference 75

D.9.4.2 dv_decoder_t w Frame::decoder

The decoder to decode the frame data (p. 74).

The documentation for this class was generated from the following file:

� frame.h

D.10 IEEE1394IOHandler Class Reference

Provides basic functionality to talk to the IEEE1394 interface.

#include u IEEE1394IOHandler.h v

Public Methods

� IEEE1394IOHandler (int channel, int card)
�z} IEEE1394IOHandler ()
� virtual void run ()
� void open_1394_driver ()
� void close_1394_driver ()
� void set_1394_iso_handler (iso_handler_t handler)
� void set_1394_reset_handler (bus_reset_handler_t reset_handler)
� void ask_for_raw1394_handle ()
� raw1394handle_t get_raw1394_handle ()
� void updateGeneration (unsigned int generation)
� void startPolling ()
� void stopPolling ()
� bool isPolling ()
� void write_raw1394 (raw1394handle_t handle, nodeid_t node, nodeaddr_t addr,

size_t length, quadlet_t w data)

Private Attributes

� iso_handler_t _iso_handler
� bus_reset_handler_t _reset_handler
� bool _handlerIsSet
� int _channel
� int _card
� raw1394handle_t _handle
� bool _polling
� bool _openDriver
� pollfd _pfd [1]

76 Appendix D. Source Code Documentation

D.10.1 Detailed Description

Provides basic functionality to talk to the IEEE1394 interface.

This class offers methods to talk to the IEEE1394 Interface. It therefore implements
methods to open and close the interface, to set an ISO handler and to start and stop polling
the interface. It makes use of Linux libraw1394-0.9.0 library. Due to performance reasons
IEEE1394IOHandler inherits QThread to faster poll the FireWire interface.

Author:
Christoph Kiefer

Date:
6/6/2003

D.10.2 Constructor & Destructor Documentation

D.10.2.1 IEEE1394IOHandler::IEEE1394IOHandler (int channel, int card)

Constructor

Parameters:
channel The channel the connected device is using.

card The interface (port, card, bus) number.

D.10.2.2 IEEE1394IOHandler:: } IEEE1394IOHandler ()

Destructor

D.10.3 Member Function Documentation

D.10.3.1 void IEEE1394IOHandler::ask_for_raw1394_handle ()

Calls raw1394_new_handle() to get a handle that can control one IEEE1394 interface.

D.10.3.2 void IEEE1394IOHandler::close_1394_driver ()

Stops receiving from the ISO channel and destroys the _handle (p. 78)

D.10.3.3 raw1394handle_t IEEE1394IOHandler::get_raw1394_handle ()

Returns the _handle (p. 78) to the caller.

Returns:
The handle with the connection to the kernel side of raw1394.

D.10.3.4 bool IEEE1394IOHandler::isPolling ()

Returns true if thread is still polling the IEEE1394 interface, false otherwise.

D.10 IEEE1394IOHandler Class Reference 77

Returns:
Status of _polling (p. 78).

D.10.3.5 void IEEE1394IOHandler::open_1394_driver ()

Uses various functions from libraw1394-0.9.0 library, for example raw1394_set_port(),
raw1394_start_iso_rcv() or raw1394_set_iso_handler(). After this method returns the
IEEE1394 interface is ready for transactions.

D.10.3.6 virtual void IEEE1394IOHandler::run () [virtual]

This virtual method is inherited from QThread. As long as _polling (p. 78) is true the
created thread polls the IEEE1394 interface by repeatedly calling raw1394_loop_iterate().

D.10.3.7 void IEEE1394IOHandler::set_1394_iso_handler (iso_handler_t handler)

Set the _iso_handler (p. 78) that will be called when an iso packet arrives.

Parameters:
handler AVI ISO handler

D.10.3.8 void IEEE1394IOHandler::set_1394_reset_handler (bus_reset_handler_t
reset_handler)

Set the _reset_handler (p. 78) that will be called when a bus reset message is encoun-
tered.

Parameters:
reset_handler Bus reset handler.

D.10.3.9 void IEEE1394IOHandler::startPolling ()

If necessary calls open_1394_driver() (p. 77). Calls start() to initiate thread execution.

D.10.3.10 void IEEE1394IOHandler::stopPolling ()

Sets _polling (p. 78) to false.

D.10.3.11 void IEEE1394IOHandler::updateGeneration (unsigned int generation)

Updates the generation number of the port.

Parameters:
handle Structure providing a connection to the kernel side of raw1394.

generation The new generation number to use for the handle’s port.

78 Appendix D. Source Code Documentation

D.10.3.12 void IEEE1394IOHandler::write_raw1394 (raw1394handle_t handle,
nodeid_t node, nodeaddr_t addr, size_t length, quadlet_t w data)

Calls same function from libraw1394-0.9.0 library which does the complete transaction of
the data. It will call raw1394_loop_iterate() as often as necessary.

Parameters:
handle Structure providing a connection to the kernel side of raw1394.

node Physical device id of DV camera. Default is 1.

addr FCP Register address.

length Length of command (4 byte or one quadlet).

data The command to send to the camera/

D.10.4 Member Data Documentation

D.10.4.1 raw1394handle_t IEEE1394IOHandler::_handle [private]

Structure providing a connection to the kernel side of raw1394.

D.10.4.2 iso_handler_t IEEE1394IOHandler::_iso_handler [private]

The handler to process the packets. It is called repeatedly by raw1394_loop_iterate().

D.10.4.3 struct pollfd IEEE1394IOHandler::_pfd[1] [private]

Structure to store the file descriptor of the _handle (p. 78). Used to poll the descriptor to
see if packets are available.

D.10.4.4 bool IEEE1394IOHandler::_polling [private]

If true thread is still polling the IEEE1394 interface.

D.10.4.5 bus_reset_handler_t IEEE1394IOHandler::_reset_handler [private]

Handler that is called whenever a bus reset occurs (optional).

The documentation for this class was generated from the following file:

� IEEE1394IOHandler.h

D.11 imagePoint Struct Reference

Struct to hold an image point.

#include u points.h v

D.12 Prettifier Class Reference 79

Public Attributes

� int x� int y� int number

D.11.1 Detailed Description

Struct to hold an image point.

D.11.2 Member Data Documentation

D.11.2.1 int imagePoint::number

Number of image point.

D.11.2.2 int imagePoint::x

x-coordinate of image point.

D.11.2.3 int imagePoint::y

y-coordinate of image point.

The documentation for this struct was generated from the following file:

� points.h

D.12 Prettifier Class Reference

Abstract class to read image data from an image buffer in a user defined way and to store
the image data in a QImage.

#include u prettifier.h v
Inheritance diagram for Prettifier::

Prettifier

AdaPrettifier

Public Methods

� Prettifier ()� virtual void rearrange (QImage &image, unsigned char w data_buffer)=0

80 Appendix D. Source Code Documentation

D.12.1 Detailed Description

Abstract class to read image data from an image buffer in a user defined way and to store
the image data in a QImage.

Author:
Christoph Kiefer

Date:
6/6/2003

D.12.2 Constructor & Destructor Documentation

D.12.2.1 Prettifier::Prettifier ()

Constructor

D.12.3 Member Function Documentation

D.12.3.1 virtual void Prettifier::rearrange (QImage & image, unsigned char w
data_buffer) [pure virtual]

A derived class can overload this virtual method to define how to extract the image data
from the image buffer. Method setPixel() of QImage may be used to store the image data
at the proper position in the image.

Implemented in AdaPrettifier (p. 46).

The documentation for this class was generated from the following file:

� prettifier.h

D.13 Scaler Class Reference

Class to scale points between the world and an image (or widget).

#include u scaler.h v

Public Methods

� Scaler (double width, double height, double minX, double maxY)
� void setScaleFactor (double widgetWidth, double widgetHeight)
� double getScaleFactor ()
� virtual int wx2ix (double wx)
� virtual int wy2iy (double wy)
� virtual double ix2wx (int ix)
� virtual double iy2wy (int iy)

D.13 Scaler Class Reference 81

Private Attributes

� double _width� double _height� double _ratio� double _scaleFactor� double _minX� double _maxY

D.13.1 Detailed Description

Class to scale points between the world and an image (or widget).

The class scales a world point (maybe in mm) to an image point (in pixels) and vise
versa. It therefore uses a scale factor that is calculated in method setScaleFactor() (p. 82).

Author:
Christoph Kiefer

Date:
6/6/2003

D.13.2 Constructor & Destructor Documentation

D.13.2.1 Scaler::Scaler (double width, double height, double minX, double maxY)

Constructor Computes the ratio of given width and height. This ratio stays unchanged.

Parameters:
width The width of a constant distance, for instance the width of the Ada/Expo.02

floor.

height The height of a constant distance.

minX The minimum x-coordinate.

maxY The maximum y-coordinate.

D.13.3 Member Function Documentation

D.13.3.1 double Scaler::getScaleFactor ()

Returns the scale factor.

Returns:
The current scale factor.

D.13.3.2 virtual double Scaler::ix2wx (int ix) [virtual]

Virtual method than can be overloaded in a derived class. It computes the world x-
coordinate of an x-coordinate in an image.

Parameters:
ix x-coordinate in an image (in pixels).

82 Appendix D. Source Code Documentation

D.13.3.3 virtual double Scaler::iy2wy (int iy) [virtual]

Virtual method than can be overloaded in a derived class. It computes the world y-
coordinate of an y-coordinate in an image.

Parameters:
iy y-coordinate in an image (in pixels).

D.13.3.4 void Scaler::setScaleFactor (double widgetWidth, double widgetHeight)

Sets the scale factor according to a given width and height of an image or widget.

Parameters:
widgetWidth The width of the widget where a point should be scaled in.

widgetHeight The height of the widget where a point should be scaled in.

D.13.3.5 virtual int Scaler::wx2ix (double wx) [virtual]

Virtual method than can be overloaded in a derived class. It computes the image x-
coordinate of an x-coordinate in the world.

Parameters:
wx x-coordinate in the world (in mm).

D.13.3.6 virtual int Scaler::wy2iy (double wy) [virtual]

Virtual method than can be overloaded in a derived class. It computes the image y-
coordinate of an y-coordinate in the world.

Parameters:
wy y-coordinate in the world (in mm).

The documentation for this class was generated from the following file:

� scaler.h

D.14 Tile Class Reference

Class representing one hexagonal floor tile at Ada/Expo.02.

#include u tile.h v

Public Methods

� Tile ()� Tile (double xCenter, double yCenter, const int rh, const int ru, const int lu, const int
lh, const int ld, const int rd)� int getNeighbour (const neighbours n) const� double getXCenterWorld ()� double getYCenterWorld ()

D.14 Tile Class Reference 83

Public Attributes

� double w _cornerPointsWorld� QColor color

Private Attributes

� double _xCenterWorld� double _yCenterWorld� int _rh� int _ru� int _lu� int _lh� int _ld� int _rd

D.14.1 Detailed Description

Class representing one hexagonal floor tile at Ada/Expo.02.

The floor at Ada/Expo.02 was consisting of 360 individual hexagonal floor tiles which
were able to change its colors. In that way the floor could produce some kind of patterns to
interact with visitors at the exhibition.

Author:
Christoph Kiefer

Date:
6/6/2003

D.14.2 Constructor & Destructor Documentation

D.14.2.1 Tile::Tile ()

Constructor

D.14.2.2 Tile::Tile (double xCenter, double yCenter, const int rh, const int ru, const
int lu, const int lh, const int ld, const int rd)

Constructor

Parameters:
xCenter x-coordinate of the center of tile inside the room.

yCenter y-coordinate of the center of tile inside the room.

rh Horizontal right neighbor tile. -1 if no neighbor is present, otherwise its index.

ru Upper right neighbor tile. -1 if no neighbor is present, otherwise its index.

lu Upper left neighbor tile. -1 if no neighbor is present, otherwise its index.

lh Horizontal left neighbor tile. -1 if no neighbor is present, otherwise its index.

ld Lower left neighbor tile. -1 if no neighbor is present, otherwise its index.

rd Lower right neighbor tile. -1 if no neighbor is present, otherwise its index.

84 Appendix D. Source Code Documentation

D.14.3 Member Function Documentation

D.14.3.1 int Tile::getNeighbour (const neighbours n) const

Tells caller if tile has neighbor ’n’.

Returns:
1 if caller has neighbor n, -1 otherwise.

D.14.3.2 double Tile::getXCenterWorld ()

Returns x-coordinates of center to the caller.

Returns:
The x-coordinate of the center.

D.14.3.3 double Tile::getYCenterWorld ()

Returns y-coordinates of center to the caller.

Returns:
The y-coordinate of the center.

The documentation for this class was generated from the following file:

� tile.h

D.15 Tsai Class Reference

Abstract wrapper around class TsaiCal.

#include u tsai.h v
Inheritance diagram for Tsai::

Tsai

AdaTsai

Public Slots

� virtual void startCalibration ()=0
� virtual void createCalibrationFile (int fileNumber, QPtrList u imagePoint vxw i-

Points, QPtrList u worldPoint vyw wPoints)=0
� virtual void convert (double wWorld, double hWorld, int w, int h)=0

D.15 Tsai Class Reference 85

Public Methods

� Tsai (int tsaiInstances, QImage &oldImage, QImage &tsaiImage)

Protected Attributes

� ofstream _camCDStream� QPtrList u TsaiCal vyw _tsai� QImage _oldImage� QImage _tsaiImage

D.15.1 Detailed Description

Abstract wrapper around class TsaiCal.

The class is actually a wrapper around class TsaiCal but augmented with some sugar to
separate the calibration from the main application.

Author:
Christoph Kiefer

Date:
6/6/2003

D.15.2 Constructor & Destructor Documentation

D.15.2.1 Tsai::Tsai (int tsaiInstances, QImage & oldImage, QImage & tsaiImage)

Constructor

Parameters:
tsaiInstances Number of instances of class TsaiCal.

oldImage Image out of which a unified view should be computed.

tsaiImage The image which will hold the unified view.

D.15.3 Member Function Documentation

D.15.3.1 virtual void Tsai::convert (double wWorld, double hWorld, int w, int h)
[pure virtual, slot]

Pure virtual function that must be implemented by a derived class. Computes the final
unified view.

Parameters:
wWorld x-coordinate in the world (in mm) of point w

hWorld y-coordinate in in the world (in mm) of point h

w x-coordinate in the image (that image that hold the unified view), in pixels

h y-coordinate in the image (that image that hold the unified view), in pixels

Implemented in AdaTsai (p. 47).

86 Appendix D. Source Code Documentation

D.15.3.2 virtual void Tsai::createCalibrationFile (int fileNumber, QPtrList u
imagePoint vew iPoints, QPtrList u worldPoint v2w wPoints) [pure
virtual, slot]

Pure virtual function that must be implemented by a derived class. Writes the calibration
files.

Parameters:
fileNumber Number or index of the calibration files that get written.

iPoints A list of image points.

wPoints A list of world points.

Implemented in AdaTsai (p. 48).

D.15.3.3 virtual void Tsai::startCalibration () [pure virtual, slot]

Pure virtual function that must be implemented by a derived class. Steps that needs to be
done before the calibration may start should be implemented in this method.

Implemented in AdaTsai (p. 48).

The documentation for this class was generated from the following file:

� tsai.h

D.16 TsaiViewer Class Reference

The TsaiViewer class displays the unified view.

#include u tsaiviewer.h v

Public Slots

� void setImage (QImage image)

Public Methods

� TsaiViewer (QWidget w parent=0, const char w name=0, WFlags f=0, FloorWidget
w floorWidget=0, Scaler w scaler=0)

Protected Methods

� void polishContent (QPainter &p)
� void wheelEvent (QWheelEvent w we)
� void mousePressEvent (QMouseEvent w me)
� void mouseReleaseEvent (QMouseEvent w me)
� void mouseMoveEvent (QMouseEvent w me)

D.16 TsaiViewer Class Reference 87

Private Slots

� void showGrid ()

Private Attributes

� FloorWidget w _floorWidget
� Scaler w _scaler
� QPixmap w _buffer
� QBitmap _mask
� double _width
� double _height
� bool _mousePressed
� int _xPos
� int _yPos
� QImage _image

D.16.1 Detailed Description

The TsaiViewer class displays the unified view.

This class displays the unified view in a separate Qt widget. By clicking the mouse, the
floor grid is projected over the unified view. The grid can be moved around on the unified
view. The floor grid can also be enlarged or scaled down by turning the mouse wheel.

Author:
Christoph Kiefer

Date:
3/7/2003

D.16.2 Constructor & Destructor Documentation

D.16.2.1 TsaiViewer::TsaiViewer (QWidget w parent = 0, const char w name = 0,
WFlags f = 0, FloorWidget w floorWidget = 0, Scaler w scaler = 0)

Constructor.

Parameters:
parent Pointer to parent widget. Zero (default) for top-level widgets.

name Identifier internally used by Qt for identifying individual class instances.

f Widget-specific flags.

floorWidget Holds information about floor tiles. Offers methods to handle them.

scaler Scales points to fit in this widget.

88 Appendix D. Source Code Documentation

D.16.3 Member Function Documentation

D.16.3.1 void TsaiViewer::mouseMoveEvent (QMouseEvent w me)
[protected]

Catch mouse move events. The grid is moved as long as the mouse is pressed down and
moved on the image.

Parameters:
Mouse event.

D.16.3.2 void TsaiViewer::mousePressEvent (QMouseEvent w me) [protected]

Catch mouse press events. If mouse is pressed down, the grid can be moved.

Parameters:
me Mouse event.

D.16.3.3 void TsaiViewer::mouseReleaseEvent (QMouseEvent w me)
[protected]

Catch mouse release events. If mouse is released the grid cannot be moved around on the
displayed anymore. If left mouse button is pressed, the grid will be displayed. Pressing the
right mouse button removes the grid from the image.

Parameters:
me Mouse Event.

D.16.3.4 void TsaiViewer::polishContent (QPainter & p) [protected]

Enhance image content before displaying it.

Parameters:
p Painter for drawing into the given image.

D.16.3.5 void TsaiViewer::setImage (QImage image) [slot]

Sets new image. Stores image width and height locally before calling Viewer::set-
Image().

Parameters:
image New image to be displayed.

D.16.3.6 void TsaiViewer::showGrid () [private, slot]

Paints the floor grid onto the unified view.

D.17 VideoEncoder Class Reference 89

D.16.3.7 void TsaiViewer::wheelEvent (QWheelEvent w we) [protected]

Catch mouse wheel events. The displayed grid is either enlarged or scaled down.

Parameters:
we Wheel Event.

The documentation for this class was generated from the following file:

� tsaiviewer.h

D.17 VideoEncoder Class Reference

Class to encode QImages into a movie stream.

#include u videoencoder.h v

Public Slots

� void openVideoStream ()� void closeVideoStream ()� void encode (QImage image)

Public Methods
� VideoEncoder (CodecID id, const char w of, int width, int height, const char
w filename)�z} VideoEncoder ()

Private Slots
� int avpicture_alloc (AVPicture w picture, int pix_fmt, int width, int height)� void avpicture_free (AVPicture w picture)

Private Attributes
� AVCodecContext w codecContext� AVCodec w codec� AVPicture w yuvImage� AVPicture w rgbImage� AVFrame w frame� ofstream movie� unsigned char w outbuf� unsigned char w yuvBuffer� unsigned char w rgbBuffer� int pos� int outSize� int _width� int _height� bool _codecIsOpen� const char w _filename

90 Appendix D. Source Code Documentation

D.17.1 Detailed Description

Class to encode QImages into a movie stream.

The class encapsulates functionality from libavcodec library that also belongs to FFM-
PEG Multimedia System (see http://ffmpeg.sourceforge.net/). A video en-
coder gets initialized. A QImage is converted from RGB24 to YUV420 before it is encoded
and written to the video file.

Author:
Christoph Kiefer

Date:
30/6/2003

D.17.2 Constructor & Destructor Documentation

D.17.2.1 VideoEncoder::VideoEncoder (CodecID id, const char w of, int width, int
height, const char w filename)

Constructor.

Parameters:
id ID of the video encoder.

an of Name of the output format, e.g. "avi".

Parameters:
width Width of output frame.

height Height of output frame.

filename Name of the output video file.

D.17.2.2 VideoEncoder:: } VideoEncoder ()

Destructor.

D.17.3 Member Function Documentation

D.17.3.1 int VideoEncoder::avpicture_alloc (AVPicture w picture, int pix_fmt, int
width, int height) [private, slot]

Allocates an new AVPicture. Is currently not used.

Parameters:
picture Pointer to an AVPicture whose data is to be allocated.

pix_fmt Pixel format (e.g. PIX_FMT_RGB24).

width Width of picture.

height Height of picture.

Returns:
0 if successfully allocated, otherwise -1.

D.18 worldPoint Struct Reference 91

D.17.3.2 void VideoEncoder::avpicture_free (AVPicture w picture) [private,
slot]

Frees resources of an AVPicture.Currently not used.

Parameters:
picture Pointer to an AVPicture whose data is to be freed.

D.17.3.3 void VideoEncoder::closeVideoStream () [slot]

Writes trailer data to video file and closes it. Frees allocated resources.

D.17.3.4 void VideoEncoder::encode (QImage image) [slot]

The QImage is converted first from RGB24 to YUV420. The new image is then encoded
using the video encoder. The the encoded image is written to the video file.

D.17.3.5 void VideoEncoder::openVideoStream () [slot]

Opens the video codec and the output video file.

The documentation for this class was generated from the following file:

� videoencoder.h

D.18 worldPoint Struct Reference

Struct to hold a world point.

#include u points.h v

Public Attributes

� int tile� int corner� int number� double xw� double yw

D.18.1 Detailed Description

Struct to hold a world point.

D.18.2 Member Data Documentation

D.18.2.1 int worldPoint::corner

Number of the corner of the tile the point designates.

92 Appendix D. Source Code Documentation

D.18.2.2 int worldPoint::number

Number of world point.

D.18.2.3 int worldPoint::tile

Tile (p. 82) number the point lies on.

D.18.2.4 double worldPoint::xw

x-coordinate of world point.

D.18.2.5 double worldPoint::yw

y-coordinate of world point.

The documentation for this struct was generated from the following file:

� points.h

D.19 IEEE1394AVC.h File Reference

Defines AV/C commands that can be be sent to the DV camera.

Defines

� #define FCP_COMMAND_ADDR 0xFFFFF0000B00

Address of function control protocol register. AV/C commands are written to this register.

� #define FCP_RESPONSE_ADDR 0xFFFFF0000D00� #define AVC_CTYPE_CONTROL 0x00000000

Type of command.

� #define AVC_CTYPE_STATUS 0x01000000� #define AVC_CTYPE_SPECIFIC_INQUIRY 0x02000000� #define AVC_CTYPE_NOTIFY 0x03000000� #define AVC_CTYPE_GENERAL_INQUIRY 0x04000000� #define AVC_RESPONSE_NOT_IMPLEMENTED 0x08000000� #define AVC_RESPONSE_ACCEPTED 0x09000000� #define AVC_RESPONSE_REJECTED 0x0A000000� #define AVC_RESPONSE_IN_TRANSITION 0x0B000000� #define AVC_RESPONSE_IMPLEMENTED 0x0C000000� #define AVC_RESPONSE_STABLE 0x0C000000� #define AVC_RESPONSE_CHANGED 0x0D000000� #define AVC_RESPONSE_INTERIM 0x0F000000� #define AVC_SUBUNIT_TYPE_VIDEO_MONITOR (0 u�u 19)� #define AVC_SUBUNIT_TYPE_DISC_RECORDER (3 u�u 19)� #define AVC_SUBUNIT_TYPE_TAPE_RECORDER (4 u�u 19)

D.19 IEEE1394AVC.h File Reference 93

The device that is connected to the IEEE1394 bus.

� #define AVC_SUBUNIT_TYPE_TUNER (5 u�u 19)� #define AVC_SUBUNIT_TYPE_VIDEO_CAMERA (7 u�u 19)� #define AVC_SUBUNIT_TYPE_VENDOR_UNIQUE (0x1C u�u 19)� #define AVC_SUBUNIT_ID_0 (0 u�u 16)� #define AVC_SUBUNIT_ID_1 (1 u�u 16)� #define AVC_SUBUNIT_ID_2 (2 u�u 16)� #define AVC_SUBUNIT_ID_3 (3 u�u 16)� #define AVC_SUBUNIT_ID_4 (4 u�u 16)� #define AVC_COMMAND_CHANNEL_USAGE 0x00001200� #define AVC_COMMAND_CONNECT 0x00002400� #define AVC_COMMAND_CONNECT_AV 0x00002000� #define AVC_COMMAND_CONNECTIONS 0x00002200� #define AVC_COMMAND_DIGITAL_INPUT 0x00001100� #define AVC_COMMAND_DIGITAL_OUTPUT 0x00001000� #define AVC_COMMAND_DISCONNECT 0x00002500� #define AVC_COMMAND_DISCONNECT_AV 0x00002100� #define AVC_COMMAND_INPUT_PLUG_SIGNAL_FORMAT 0x00001900� #define AVC_COMMAND_OUTPUT_PLUG_SIGNAL_FORMAT 0x00001800� #define AVC_COMMAND_SUBUNIT_INFO 0x00003100� #define AVC_COMMAND_UNIT_INFO 0x00003000� #define AVC_COMMAND_OPEN_DESCRIPTOR 0x00000800� #define AVC_COMMAND_READ_DESCRIPTOR 0x00000900� #define AVC_COMMAND_WRITE_DESCRIPTOR 0x00000A00� #define AVC_COMMAND_SEARCH_DESCRIPTOR 0x00000B00� #define AVC_COMMAND_OBJECT_NUMBER_SELECT 0x00000D00� #define AVC_COMMAND_POWER 0x0000B200� #define AVC_COMMAND_RESERVE 0x00000100� #define AVC_COMMAND_PLUG_INFO 0x00000200� #define AVC_COMMAND_VENDOR_DEPENDENT 0x00000000� #define AVC_OPERAND_DESCRIPTOR_TYPE_SUBUNIT_IDENTIFIER_-
DESCRIPTOR 0x00� #define AVC_OPERAND_DESCRIPTOR_TYPE_OBJECT_LIST_-
DESCRIPTOR_ID 0x10� #define AVC_OPERAND_DESCRIPTOR_TYPE_OBJECT_LIST_-
DESCRIPTOR_TYPE 0x11� #define AVC_OPERAND_DESCRIPTOR_TYPE_OBJECT_ENTRY_-
DESCRIPTOR_POSITION 0x20� #define AVC_OPERAND_DESCRIPTOR_TYPE_OBJECT_ENTRY_-
DESCRIPTOR_ID 0x21� #define AVC_OPERAND_DESCRIPTOR_SUBFUNCTION_CLOSE 0x00� #define AVC_OPERAND_DESCRIPTOR_SUBFUNCTION_READ_OPEN
0x01� #define AVC_OPERAND_DESCRIPTOR_SUBFUNCTION_WRITE_OPEN
0x03� #define VCR_COMMAND_ANALOG_AUDIO_OUTPUT_MODE
0x000007000� #define VCR_COMMAND_AREA_MODE 0x000007200� #define VCR_COMMAND_ABSOLUTE_TRACK_NUMBER 0x000005200� #define VCR_COMMAND_AUDIO_MODE 0x000007100

94 Appendix D. Source Code Documentation

� #define VCR_COMMAND_BACKWARD 0x000005600� #define VCR_COMMAND_BINARY_GROUP 0x000005A00� #define VCR_COMMAND_EDIT_MODE 0x000004000� #define VCR_COMMAND_FORWARD 0x000005500� #define VCR_COMMAND_INPUT_SIGNAL_MODE 0x000007900� #define VCR_COMMAND_LOAD_MEDIUM 0x00000C100� #define VCR_COMMAND_MARKER 0x00000CA00� #define VCR_COMMAND_MEDIUM_INFO 0x00000DA00� #define VCR_COMMAND_OPEN_MIC 0x000006000� #define VCR_COMMAND_OUTPUT_SIGNAL_MODE 0x000007800� #define VCR_COMMAND_PLAY 0x00000C300

The command to start playing the DV camera.

� #define VCR_COMMAND_PRESET 0x000004500� #define VCR_COMMAND_READ_MIC 0x000006100� #define VCR_COMMAND_RECORD 0x00000C200� #define VCR_COMMAND_RECORDING_DATE 0x000005300� #define VCR_COMMAND_RECORDING_SPEED 0x00000DB00� #define VCR_COMMAND_RECORDING_TIME 0x000005400� #define VCR_COMMAND_RELATIVE_TIME_COUNTER 0x000005700� #define VCR_COMMAND_SEARCH_MODE 0x000005000� #define VCR_COMMAND_SMPTE_EBU_RECORDING_TIME 0x000005C00� #define VCR_COMMAND_SMPTE_EBU_TIME_CODE 0x000005900� #define VCR_COMMAND_TAPE_PLAYBACK_FORMAT 0x00000D300� #define VCR_COMMAND_TAPE_RECORDING_FORMAT 0x00000D200� #define VCR_COMMAND_TIME_CODE 0x000005100� #define VCR_COMMAND_TRANSPORT_STATE 0x00000D000� #define VCR_COMMAND_WIND 0x00000C400� #define VCR_COMMAND_WRITE_MIC 0x000006200� #define VCR_OPERAND_LOAD_MEDIUM_EJECT 0x60� #define VCR_OPERAND_LOAD_MEDIUM_OPEN_TRAY 0x31� #define VCR_OPERAND_LOAD_MEDIUM_CLOSE_TRAY 0x32� #define VCR_OPERAND_PLAY_NEXT_FRAME 0x30� #define VCR_OPERAND_PLAY_SLOWEST_FORWARD 0x31� #define VCR_OPERAND_PLAY_FAST_FORWARD_1 0x39� #define VCR_OPERAND_PLAY_FAST_FORWARD_2 0x3A� #define VCR_OPERAND_PLAY_FAST_FORWARD_3 0x3B� #define VCR_OPERAND_PLAY_FAST_FORWARD_4 0x3C� #define VCR_OPERAND_PLAY_FAST_FORWARD_5 0x3D� #define VCR_OPERAND_PLAY_FAST_FORWARD_6 0x3E� #define VCR_OPERAND_PLAY_FASTEST_FORWARD 0x3F� #define VCR_OPERAND_PLAY_PREVIOUS_FRAME 0x40� #define VCR_OPERAND_PLAY_SLOWEST_REVERSE 0x41� #define VCR_OPERAND_PLAY_FAST_REVERSE_1 0x49� #define VCR_OPERAND_PLAY_FAST_REVERSE_2 0x4A� #define VCR_OPERAND_PLAY_FAST_REVERSE_3 0x4B� #define VCR_OPERAND_PLAY_FAST_REVERSE_4 0x4C� #define VCR_OPERAND_PLAY_FAST_REVERSE_5 0x4D� #define VCR_OPERAND_PLAY_FAST_REVERSE_6 0x4E� #define VCR_OPERAND_PLAY_FASTEST_REVERSE 0x4F

D.19 IEEE1394AVC.h File Reference 95

� #define VCR_OPERAND_PLAY_FORWARD 0x75

The operand of the command play.

� #define VCR_OPERAND_PLAY_FORWARD_PAUSE 0x7D
� #define VCR_OPERAND_RECORD_RECORD 0x75
� #define VCR_OPERAND_RECORD_PAUSE 0x7D
� #define VCR_OPERAND_TRANSPORT_STATE 0x7F
� #define VCR_RESPONSE_TRANSPORT_STATE_LOAD_MEDIUM

0x0000C100
� #define VCR_RESPONSE_TRANSPORT_STATE_RECORD 0x0000C200
� #define VCR_RESPONSE_TRANSPORT_STATE_PLAY 0x0000C300
� #define VCR_RESPONSE_TRANSPORT_STATE_WIND 0x0000C400
� #define VCR_OPERAND_WIND_HIGH_SPEED_REWIND 0x45
� #define VCR_OPERAND_WIND_STOP 0x60
� #define VCR_OPERAND_WIND_REWIND 0x65
� #define VCR_OPERAND_WIND_FAST_FORWARD 0x75
� #define VCR_OPERAND_RELATIVE_TIME_COUNTER_CONTROL 0x20
� #define VCR_OPERAND_RELATIVE_TIME_COUNTER_STATUS 0x71
� #define VCR_OPERAND_TIME_CODE_CONTROL 0x20
� #define VCR_OPERAND_TIME_CODE_STATUS 0x71
� #define VCR_OPERAND_TRANSPORT_STATE 0x7F
� #define VCR_OPERAND_RECORDING_TIME_STATUS 0x71
� #define TUNER_COMMAND_DIRECT_SELECT_INFORMATION_TYPE

0xC8
� #define TUNER_COMMAND_DIRECT_SELECT_DATA 0xCB
� #define TUNER_COMMAND_CA_ENABLE 0xCC
� #define TUNER_COMMAND_TUNER_STATUS 0xCD
� #define TUNER_COMMAND_DIRECT_SELECT_INFORMATION_TYPE

0xC8
� #define TUNER_COMMAND_DIRECT_SELECT_DATA 0xCB
� #define TUNER_COMMAND_CA_ENABLE 0xCC
� #define TUNER_COMMAND_TUNER_STATUS 0xCD
� #define CTLVCR0 AVC_CTYPE_CONTROL ~ AVC_SUBUNIT_TYPE_TAPE_-

RECORDER ~ AVC_SUBUNIT_ID_0

Simplification because there will always be sent the same type of commands to the same
device.

D.19.1 Detailed Description

Defines AV/C commands that can be be sent to the DV camera.

Author:
Christoph Kiefer

Date:
6/6/2003

96 Appendix D. Source Code Documentation

D.20 points.h File Reference

Defines world and image points.

Compounds

� struct imagePoint

Struct to hold an image point.

� struct worldPoint

Struct to hold a world point.

D.20.1 Detailed Description

Defines world and image points.

The file defines two structs. One for holding image points and another struct for world
points. World points are those used in class FloorWidget (p. 65) whereas image points are
used in class AdaViewer (p. 48).

Author:
Christoph Kiefer

Date:
6/6/2003

Appendix E

Project Description

E.1 Introduction

ETH Zurich participated in the Swiss national exhibition Expo.02 with the Ada project, an
artificial life form developed by the Institute for Neuroinformatics. This life form is able to
interact with its visitors through a room equipped with sensors and actuators.

One of these sensor types is the so-called Vision Matrix, a grid of originally 8 ceiling-
mounted black&white-cameras. In August 2002, the black&white-cameras have been re-
placed by 4 to 6 pan/tilt color cameras. The Vision Matrix’s main purpose is the observation
of the visitors from a bird’s eye perspective. The video data captured from the Vision Ma-
trix allows tracking of the visitors while they are interacting with Ada. This vision based
approach was originally thought as ground truth for the tracking results obtained by the
pressure sensitive floor tiles. However, from PCCV’s perspective, vision will be the major
issue and the floor tiles used as ground truth.

E.2 Task Description

The aim of this semester thesis is the development of a method for the semi-automatic
calibration of the Vision Matrix. The calibration of the four cameras is one major pre-
condition for further applications of vision based tracking algorithms. One prototype[25]
was allready developed. The task in this semester thesis is to automate the process of the
calibration as far as possible. The problem consists of the following four major steps:

1. Reading in video data via IEEE 1394 aka “FireWire”. The video data is stored on
Mini DV tapes. A first step should be to read in this data via the IEEE 1394 bus using
existing API’s. Existing examples concerning this task are applications like dvcont
or dvgrab.

2. Reading in and visualizing the log files of the Ada floor. The already developed
prototype can be used to complete this step.

3. Calibrating the video data. The four individual video streams have to be projected
into one world coordinate system to produce one unified view. The world coordinate
system is defined by the floor topology. “Tsai’s method”[24] should be used to fur-
ther define the necessary parameters of the calibration. This method needs pairs of
points which consist of a world point and a corresponding image point. To choose

98 Appendix E. Project Description

the right pairs of points, the log files of the floor and the video stream have to be syn-
chronized. The process of synchronization should be automatic whenever possible
and is achieved by comparing timestamps.

4. Writing out the resulting unified view as MPEG-2 video.

The following genereal conditions are given aside these textual requirements:

1. Class reuseability. The design of the main interfaces of the components should be
aligned with the supervisor’s work to ensure code reusability.

2. Runtime environment is Linux (>= Kernel 2.4.18) and the GUI Toolkit Qt[27].

E.3 Requirements by PCCV

in accordance with the “guidelines for semester and diploma theses with PCCV”, the group
for Perceptual Computing and Computer Vision demands the following points fulfilled for
successfully accomplish a semester thesis.

� Meetings with the advisor on a regular base. These meetings are thought to discuss
problems, to review intermediate results and to plan the next steps of the thesis.

� Fully functional programs which comply with the requirements stated above.

� Written documentation of the programs as well as source code documentation are
part of the task and will be evaluated in the end of the thesis. The written docu-
mentation should primarily describe the concept and design of the implementation,
explain the applied algorithms and provide a manual for the implemented software.
The source code documentation is thought as a help for re-using the code and thus
focus on the description of interfaces.

� Two bound copies and one loose copy of the written documentation. The written part
of a semester thesis should have an extent of 30 to 60 pages. All printed parts of the
thesis have to be made with LATEX.

� An oral presentation has to be given at the end of the thesis. The duration of the pre-
sentation should not exceed 20 minutes. The focus of the presentation is the descrip-
tion of the student’s own work, e.g. developed algorithms, implemented software,
etc.

� A CD-ROM that contains all files required to rebuild the software as well as the
documentation. In addition, a PDF version of the documentation and – if possible –
a compiled and executable version of the software should also be on the CD.

Advisor
Martin Spengler
IFW B26.2
spengler@inf.ethz.ch
Tel. 632 09 64

Bibliography

[1] Kynan Eng et al. Ada: Buildings as Organisms.
www.ini.unizh.ch/~tobi/papers/ada-gamesetandmatch.pdf.

[2] IEEE 1394 for Linux.
http://www.linux1394.org/.

[3] Audio/Video Control (AV/C).
http://www.ict.tuwien.ac.at/ieee1394/avc/avc-en.htm#%
5BAVC%2099a%5D/.

[4] Andreas Bombe. Libraw1394 Short Documentation.
http://www.linux1394.org/doc/libraw1394/book1.html, 2001.

[5] Libraw1394 Project.
http://sourceforge.net/projects/libraw1394/.

[6] Quasar DV Codec Project.
http://sourceforge.net/projects/libdv/.

[7] Charles Krasic and Erik Walthinsen. Quasar DV Codec: libdv.
http://sourceforge.net/projects/libdv/, 2001.

[8] Quicktime for Linux.
http://heroinewarrior.com/quicktime.php3.

[9] Arne Schirmacher. Digital Video for Linux.
http://kino.schirmacher.de/.

[10] GNU/Linux 1394 AV/C Library.
http://sourceforge.net/projects/libavc1394/.

[11] 1394-based DC Control Library.
http://sourceforge.net/projects/libdc1394/.

[12] IEEE 1394 Standart.
http://www-ivs.cs.uni-magdeburg.de/bs/lehre/wise9900/
proro/vortrag/ieee/IEEE.htm.

[13] IEEE Organisation.
http://www.ieee.org/portal/index.jsp.

[14] Leslie Shapiro Firewire - The Consumer Electronics Connection.
http://www.extremetech.com/article2/0,3973,87693,00.asp,
2002.

[15] IEEE 1394 (AKA “FireWire” & “iLink”).
https://secure2.vivid-design.com.au/jaycar/images_
uploaded/firewire.pdf, 2002.

100 BIBLIOGRAPHY

[16] Soren Thing Andersen. IEEE 1394 for Linux.
http://www.linux1394.org/doc/overview.html, December 1999.

[17] Chad N. Tindel, Brian D. Pietsch. IEEE 1394 and Linux.
http://www.csc.calpoly.edu/~ctindel/550/firewire.html,
Spring 2000.

[18] FireWire Overview.
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/
DeviceInterfaces/FireWire/WorkingWFireWireDI/
FWDevInterfaces/chapter_1_section_3.html.

[19] International Electrotechnical Commission.
http://www.iec.ch/.

[20] Stefan Rubner. Tech Brief: Firewire.
http://eu.computers.toshiba-europe.com/cgi-bin/
ToshibaCSG/download_whitepaper.jsp?z=71&service=
EU&WHITEPAPER_ID=0000000b7e.

[21] Tobias Oebrink. Payload format design continued.
http://www.it.kth.se/~nv91-tob/Report/Lic/Apr1999/
packetization.html, 1999.

[22] DV format encoding.
http://www.zvon.org/tmRFC/RFC3189/Output/chapter2.html.

[23] Chris Needham. Tsai camera calibration software.
http://www.comp.leeds.ac.uk/chrisn/Tsai/index.html,
February 2003.

[24] Tsai, Roger Y. An Efficient and Accurate Camera Calbration Technique for 3D
Machine Vision. Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 1986, pages 364-374.

[25] Andy Hao ZHOU. Multi-Camera Calibration for the Ada/Expo.02 Vision Matrix,
2003.

[26] Guidelines for semester and diploma thesis of the PCCV group.
http://www.vision.ethz.ch/dasa/guidelines.pdf.

[27] Qt, a C++ Application Framework.
http://www.trolltech.com/products/index.html.

[28] Dvgrab 1.2
http://kino.schirmacher.de/article/view/58/1/7.

[29] Linux DV Camera console control program.
http://www.spectsoft.com/idi/dvcont/.

[30] FFMPEG Multimedia System.
http://ffmpeg.sourceforge.net/.

