
Distributed Systems 

Spyros Voulgaris 

 

Lab Assignment 1: Sockets and RMI 
Grade: 10% 

Deadline: Monday 20 October (2 weeks time) 

 
IMPORTANT: This assignment is intended to help you learn, not to scare you away ! ☺ And I 
am here to help you in learning. So, take advantage, don’t hesitate, and ask me questions!! 

Goal 
Communication between processes is the cornerstone of distributed computing. In this lab assignment 
you will gain acquire experience with two types of communication in Java: Sockets (TCP) and RMI. 

Task 
You are asked to implement a very simple FTP server and client. 
 
The server (applies to both TCP sockets and RMI) should take the list of available files as command-
line arguments. 
For example: 
 java tcp.FileServer picture.jpg exercise.doc test.txt 
or: 
 java rmi.FileServer picture.jpg exercise.doc test.txt 
 
The client should take the server address and port as command-line arguments. 
For example: 
 java tcp.FileClient 127.0.0.1 5555 
or: 
 java rmi.FileClient mydesktop.ifi.uzh.ch 5555 
 
Then, the client should wait for user input from STDIN, and should support the following three 
commands: 

 dir --- retrieves the list of files offered, and prints them on the screen 
 get <filename> --- retrieves the file with the given filename 
 bye --- closes the communication with the server and exits 

Any other input should be ignored (not exiting!) with a simple “syntax error” message printed on the 
screen. 

Socket interface 
For the TCP sockets implementation, your client should connect to the server, and send it a String (use 
ObjectInputStream and ObjectOutputStream) containing one of the following commands, and 
expecting the respective responses from the server: 

 dir --- The server sends back a String[] containing the filenames of available files 
 blocks filename (for instance: blocks picture.jpg) --- The server sends back 

an integer (use ObjectOutputStream.writeInt()) denoting the number of 1024-byte 
blocks in that file. For instance, if a file has 5000 bytes, it has 5 blocks (4 blocks of 1024 
bytes and a final block of 904 bytes) 

 get filename block (for instance: get picture.jpg 4) --- The server sends 
back a 1024-byte-long block of the file. The last block of the file may have less than 1024 
bytes. 



RMI interface 
For the RMI implementation, your server should support the following simple API: 

 String[] dir() --- returns an array of String containing the filenames of all available 
files 

 int blocks(String filename) --- returns the number of blocks that the given file 
has 

 byte[] getBlock(filename, blockNumber) --- returns a 1024-byte-long block of 
the file. The last block of the file may have less than 1024 bytes. 

Deliverables 
Send me by email (please don’t forget “DS:” in the subject) a ZIP or TAR file with all your code. 
Please make sure you add sufficiently enough comments in your code that will allow us to examine it. 

Resources 
TCP sockets: http://java.sun.com/docs/books/tutorial/networking/sockets/index.html

RMI: http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html

I will provide you with help in file reading/writing, if you need. Play honest: give it a try yourself first, 
and ask me if you get stuck. 

Try to check interoperability with your friends’ implementation. E.g., put a couple of funny pics on 
your ftp server, and let your friend download them using his/her ftp client, and vice-versa. Promise not 
to reveal the pictures unless downloaded through your own code! 

http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html

	Goal
	Task
	Socket interface
	RMI interface
	Deliverables
	Resources

