
Distributed Systems

Distributed Hash Tables

2Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Today’s Agenda

What are DHTs?
Why are they useful?

Pastry

Chord

3Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

P2P challenge: Locating content

Simple strategy: flood (e.g., expanding ring) until content is found
If R of N nodes have a replica, the expected search cost is at least
N/R, i.e., O(N)
Need many replicas to keep overhead small

Other strategy: centralized index (Napster)
Single point of failure, high load

Goal: Decentralize the index!

Who has
this paper?

I have it

I have it

4Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Indexed Search

Idea
Store particular content on particular nodes

alternatively: pointers to content
When a node wants this content, go to the node that is supposed to hold
it (or knows where it is)

Challenges
Avoid bottlenecks:
Distribute the responsibilities “evenly” among the existing nodes
Self-organization w.r.t. nodes joining or leaving (or failing)

Give responsibilities to joining nodes
Redistribute responsibilities from leaving nodes

Fault-tolerance and robustness
Operate correctly also under failures

5Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Idea: Hash Tables

In a classic Hash Table:
Table has N buckets
Each data item has a key
Key is hashed to find bucket in hash
table
Each bucket is expected to hold 1/N of
the items, so storage is balanced

In a Distributed Hash Table (DHT),
nodes are the buckets

Network has N nodes
Each data item has a key
Key is hashed to find peer responsible
for it
Each node is expected to hold 1/N of
the items, so storage is balanced
Additional requirement: Also balance
routing load!!

key pos

0

hash function

1
2

N-1

3
...

x

y z

insert (key, data)
lookup (key) → data

“Beattles” 2

hash table

hash bucket

h(key)%N

0

1

2

...

node

key poshash function

insert (key, data)
lookup (key) → data

“Beattles” 2h(key)%N
N-1

7Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

DHT Hashing

Based on consistent hashing (designed for Web caching)
Each server is identified by an ID uniformly distributed in range [0, 1]
Each object maps (via some hash function) to an ID which is uniformly
distributed in [0, 1]

When looking up an object, we hash its ID, and get it from the appropriate
server

Good load balancing: each server covers roughly equal intervals and stores
roughly the same number of objects
Adding or removing a server invalidates few keys

client

server

0 1

Object

0.3 0.4 0.5

2. request page from closest server1. hash (object name) → object ID
0.4

10Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

What Makes a Good DHT Design?
Should be able to route to any node in a few hops (small diameter)

Different DHTs differ fundamentally only in the routing approach

DHT routing mechanisms should be decentralized (no single point
of failure or bottleneck)

The number of neighbors for each node should remain “reasonable”
(small degree)

To achieve good performance, DHTs must provide low stretch
Minimize ratio of DHT routing vs. IP latency

Should gracefully handle nodes joining and leaving
Reorganize the neighbor sets
Bootstrap mechanisms to connect new nodes into the DHT
Repartition the affected keys over existing nodes

11Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

DHT Interface

Minimal interface (data-centric)
Lookup(key) → IP address

Generality: Supports a wide range of applications
Keys have no semantic meaning
Values are application dependent

DHTs do not store the data
Data storage can be built on top of DHTs

Lookup(key) → data
Insert(key, data)

12Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Application spectrum

DHTs support many applications:
Network storage [CFS, OceanStore, PAST, …]
Web cache [Squirrel, …]
E-mail [e-POST, …]
Query and indexing [Kademlia, …]
Event notification [Scribe]
Application-layer multicast [SplitStream, …]
Naming systems [ChordDNS, INS, …]
...

PASTRY (MSR + Rice)

14Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry

Circular m-bit ID space for both
keys and nodes

Addresses in base 2b with m/b
digits

Address: m bits
Digit: b bits
==> Address: m/b digits

Node ID = SHA-1(IP address)

Key ID = SHA-1(key)

A key is mapped to the node
whose ID is numerically-closest
to the key ID

N0002

N0201

N0322

N2001

N1113

N2120

N2222

N3001

N3033

N3200

m=8

K1320

K1201

K0220

K2120

K3122

2m-1 0b=2

15Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

16Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

17Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

18Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

19Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

O(logN) hops

20Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Routing

O(logN) hops

Route to 0202:
2221 → 0002 → 0221 → 0201 → 0202

If chain not complete, forward to
numerically closest neighbor
(successor)
2221 → 0002 → 0221 → 0210 → 0201 → 0202

N0002

N0201

N0322

N2001

N1113

N2120

N2221

N3001

N3033

N3200

m=8
2m-1 0b=2

N0221

lookup(K0202)

N0202

21Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry State and Lookup

For each prefix, a node knows
some other node (if any) with same
prefix and different next digit

For instance, N0201:
N-: N1???, N2???, N3???
N0: N00??, N01??, N03??
N02: N021?, N022?, N023?
N020: N0200, N0202, N0203

When multiple nodes, choose
topologically-closest

Maintain good locality properties
(more on that later)

N0002

N0201

N0322

N2001

N1113

N2120

N2222

N3001

N3033

N3200

m=8
2m-1 0b=2

N0122

N0212
N0221

N0233

Routing
table

N1301

22Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Node ID 10233102
Leaf set

Routing Table

Neighborhood set

A Pastry Routing Table

0
02212102 1 22301203 31203203

11301233 12230203 13021022
210031203 10132102 10323302

3
3

1022230210200230 10211302
10230322 10231000 10232121
10233001

10233120
102332321

0
2

13021022 10200230 11301233 31301233
02212102 22301203 31203203 33213321

10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

< SMALLER LARGER >

Contains the L
nodes that are

numerically
closest to

local node
MUST BE UP

TO DATE

b=2, so node ID
is base 4 (16 bits)

m
/b

ro
w

s

Contains the
nodes that are

closest to
local node

according to
proximity metric

2b-1 entries per row

Entries in the nth row
share the first n digits
with current node
[common-prefix next-digit rest]

nth digit of current node

Entries in the mth column
have m as next digit

Entries with no suitable
node ID are left empty

b=2m=16

23Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry Lookup (Detailed)

The routing procedure is executed whenever a
message arrives at a node

1. IF (key in Leaf Set)
1. If key is in leaf set, destination is 1 hop away,

forward directly to destination.

2. ELSE IF (key in Routing Table)
1. Forward to node that matches one more digit

3. ELSE
1. Forward to a node numerically closer, from Leaf

Set

The procedure always converges!

25Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

X
0629

X joins

Join message

Joining

A
5324

X knows A
(A is “close” to X)

C
0605

D
0620

B
0748

Route message to
node numerically
closest to X’s ID

A’s neighborhood set

D’s leaf set

A0 — ????
B1 — 0???
C2 — 06??
D4 — 062?

0629’s routing table

29Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Pastry and Network Topology

Expected node distance
increases with row
number in routing table

Smaller and smaller
numerical jumps
Bigger and bigger
topological jumps

CHORD (MIT)

38Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Chord (MIT)
Circular m-bit ID space for both
keys and node IDs

Node ID = SHA-1(IP address)

Key ID = SHA-1(key)

Each key is mapped to its
successor node

Node whose ID is equal to or
follows the key ID

Key distribution
Each node responsible for O(K/N)
keys
O(K/N) keys move when a node
joins or leaves

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6

K30

K24

K10

K38

K54

2m-1 0

39Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Basic Chord: State and Lookup

Each node knows only two other
nodes on the ring:

Successor
Predecessor (for ring management)

Lookup is achieved by forwarding
requests around the ring through
successor pointers

Requires O(N) hops

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6

K54

2m-1 0

lookup(K54)

40Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Basic Chord: State and Lookup

41Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Complete Chord

Each node knows these two nodes:
Successor
Predecessor (for ring management)

But also: Each node has m fingers
n.finger(i) points to node on or after
2i steps ahead
n.finger(0) == n.successor
O(log N) state per node

Lookup is achieved by following
longest preceding fingers, then the
successor

O(log N) hops

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6

K54

2m-1 0

+32

+16 +8

+4

+2

+1
lookup(K54)

N8+1
N8+2
N8+4
N8+8
N8+16
N8+32

N14
N14
N14
N21
N32
N42

Finger table

42Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Complete Chord
N8+1
N8+2
N8+4
N8+8
N8+16
N8+32

N14
N14
N14
N21
N32
N42

Finger table

43Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Chord Ring Management

For correctness, Chord needs to maintain the following invariants
Successors are correctly maintained
For every key k, succ(k) is responsible for k

Fingers are for efficiency, not necessarily correctness!
One can always default to successor-based lookup
Finger table can be updated lazily

44Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Joining the Ring

Three step process:

1. Outgoing links
Initialize predecessor and all fingers of new node

2. Incoming links
Update predecessors and fingers of existing nodes

3. Transfer some keys to the new node

45Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Joining the Ring — Step 1

Initialize the new node finger table
Locate any node n in the ring
Ask n to lookup the peers at j+20, j+21, j+22…
Use results to populate finger table of j

46Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Joining the Ring — Step 2

Updating fingers of existing
nodes

New node j calls update
function on existing nodes that
must point to j

Nodes in the ranges
[j-2i , pred(j)-2i+1]

O(log N) nodes need to be
updated

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6
2m-1 0

N8+1
N8+2
N8+4
N8+8
N8+16
N8+32

N14
N14
N14
N21
N32
N42

+16

N28

N28

-16

12

5

-16

47Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Joining the Ring — Step 3

Transfer key responsibility
Connect to successor
Copy keys from successor to new node
Update successor pointer and remove keys

N32

N21

N28

K30 K24

N32

N21

N28

K24
K30

K24

N32

N21

N28

K24
K30

N32

N21

K24
K30

48Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Leaving the Ring (or Failing)

Node departures are treated as
node failures

Failure of nodes might cause
incorrect lookup

N8 doesn’t know correct
successor, so lookup of K19
fails

Solution: successor list
Each node n knows r
immediate successors
After failure, n contacts first
alive successor and updates
successor list
Correct successors guarantee
correct lookups

N1

N8

N32

N21

N38

N42

N48

N51

N56

m=6
2m-1 0

+16 +8

+4

+2

+1

N14

N18
K19

lookup(K19) ?

49Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Leaving the Ring (or Failing)

Successor lists guarantee correct lookup with some probability
Can choose r to make probability of lookup failure arbitrarily small

Assume half of the nodes fail and failures are independent
P(n.successorList all dead) = 0.5r

P(n does not break the Chord ring) = 1 - 0.5r

P(no broken nodes) = (1 – 0.5r)N/2

r = 2log N makes probability = 1 – 1/N
With high probability (1-1/N), the ring is not broken

50Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Stabilization
Case 1: finger tables are reasonably fresh

Case 2: successor pointers are correct, not fingers

Case 3: successor pointers are inaccurate or key migration is
incomplete — MUST BE AVOIDED!

Stabilization algorithm periodically verifies and refreshes node
pointers (including fingers)

Eventually stabilizes the system when no node joins or fails

N32

N21

N28

n
N32

N21

N28

n

x = n.succ.pred
if x in (n, n.succ)

n.succ = x

x = n.pred.succ
if x in (n.pred, n)

n.pred = x

52Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Chord and Network Topology

Nodes numerically-close
are not topologically-close
(1M nodes = 10+ hops)

53Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Cost of Lookup

Cost is O(log N), constant is 0.5

56Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Conclusions (1/2)

Search types
Only equality
(How about ranges?)

Scalability
Diameter (search and update) in O(log N) w.h.p.
Degree in O(log N)
Construction: O(log2 N) if a new node joins

Robustness
Replication might be used by storing replicas at successor
nodes

57Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 8/12/2008

Conclusions (2/2)

DHTs are a simple, yet powerful abstraction
Building block of many distributed services (file systems, application-
layer multicast, distributed caches, etc.)

Many DHT designs, with various pros and cons
Balance between state (degree), speed of lookup (diameter), and ease of
management

System must support rapid changes in membership
Dealing with joins/leaves/failures is not trivial
Dynamics of P2P networks are difficult to analyze

Many open issues worth exploring

	Distributed Systems
	Today’s Agenda
	P2P challenge: Locating content
	Indexed Search
	Idea: Hash Tables
	DHT Hashing
	What Makes a Good DHT Design?
	DHT Interface
	Application spectrum
	PASTRY (MSR + Rice)
	Pastry
	Pastry Routing
	Pastry Routing
	Pastry Routing
	Pastry Routing
	Pastry Routing
	Pastry Routing
	Pastry State and Lookup
	A Pastry Routing Table
	Pastry Lookup (Detailed)
	Joining
	Pastry and Network Topology
	CHORD (MIT)
	Chord (MIT)
	Basic Chord: State and Lookup
	Basic Chord: State and Lookup
	Complete Chord
	Complete Chord
	Chord Ring Management
	Joining the Ring
	Joining the Ring — Step 1
	Joining the Ring — Step 2
	Joining the Ring — Step 3
	Leaving the Ring (or Failing)
	Leaving the Ring (or Failing)
	Stabilization
	Chord and Network Topology
	Cost of Lookup
	Conclusions (1/2)
	Conclusions (2/2)

