
Distributed Systems

Coordination

2Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Today’s Agenda

Vector Clocks

Atomicity
Two-Phase Commit

Vector Clocks

4Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Logical Clocks

Lamport’s Timestamps can be used for total ordering of events
However, the notion of causality (dependencies between events) is lost
Also, total ordering is often too strict

5Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Example

Example 1: The reception of m3 (50) could depend on the reception of
m2 (24) and m1 (16). That’s correct.

Example 2: The sending of m2 (20) seems to be dependent on the
reception of m1 (16)

But is it? No!

6Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Causality

Generally, two events can:
Be linked by a dependency (a b, which means a happens before b)

E.g., b d, d e, b e, b h
Independent (concurrent)

E.g., a and c, or a and b

7Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Inefficiency of Logical Clocks

If we want to observe causality with Logical Clocks (a.k.a. Lamport
Timestamps), we may fail:

d consistently has a later timestamp than b, so we would (wrongly)
assume that b d

8Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Vector Clocks

We have N nodes
Each node maintains a vector of N logical clocks
One logical clock is its own
The rest N-1 logical clocks are estimations for the other nodes

Logical clocks are managed as follows:
They are all initialized with zero
When an even happens in a node, it increases it own logical clock in the
vector by one
When a node sends a message, it includes its whole vector
When a node receives a message, it updates each element in its vector by
taking the maximum of the value in its own vector clock and the value in the
vector in the received message (for every element)

An event a is considered to happen before event b, only if all elements of
the VC of a are less than or equal that the respective elements of the VC
of b. (in fact, at least one element has to be lower)

9Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Vector Clocks

With Vector Clocks, we can see that
a c, because [1,0] < [1,1]
a d, because [1,0] < [1,2]
Same for a b, c d
But b and d are independent (concurrent), because there is no clear order
between [2,0] and [1,2]

Logical Clocks Vector Clocks

10Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Causal Communication

Vector Clocks can be used to enforce causal communication
Do not deliver a packet until all causally earlier packets have been delivered

Assumptions
No packets get lost
Clocks are increased only when sending a new message
A packet is delivered when only the sender’s logical clock is increased

11Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Causal Ordering: at which layer?
Middleware layer:

+: Generic approach

- : Potential (but not definite) causality is captured
Even messages that are not related, but happen to occur in a given order, are
assumed dependent: this makes it “heavier” than necessary

-: Some causality may not be captured
Alice posts a message, and then calls Bob and informs him about that message.
Bob may take some other action that depends on the information he got from Alice,
even before receiving the official message of Alice. This causality is not captured
by the middleware.
Generally, external communication can mess up the assumptions of the
middleware

Application-specific Causal Ordering
+: Can be tuned to be more lightweight
+: Can be tuned to be more accurate
-: Puts the burden of causality checking on the application developer

Atomicity

13Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Atomicity: The Issue

Consider a replicated database
equipped with a DS that guarantees reliable multicasting
updates are multicast to all replicas, and the system guarantees that they are
delivered in order

Is this enough???

Nasty scenario:
A message is multicast reliably to all replicas, and is delivered to the
application layer (the database)
One replica crashes while performing the update
When it recovers it is at an inconsistent state

Atomicity is what we need
All commit, or all abort!
Guarantee that an operation is completed at all participants (or at none of
them)

14Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Example

Transfer money from bank A to bank B
Debit A, credit B, tell client “OK”

We want either both to do it or neither to do it
Never want only one side to act
Better if nothing happens!

Goal: Atomic Commit Protocol

14

15Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Two Kinds of Atomicity

Serializability:
Series of operations requested by users
Outside observer sees them each complete atomically in some complete
order
Requires support for locking

Recoverability:
Each operation executes completely or not at all; “all-or-nothing”
No partial results

For serializability we use synchronization (logical / vector clocks)
Now we are going to deal with recoverability

15

16Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Atomic Commit Is Hard!

A -> B: “I’ll commit if you commit”
A hears no reply from B
Now what?
Neither party can make final decision!

16

17Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

One-Phase Commit (1PC)

Create Transaction Coordinator
(TC), single authoritative entity

Four entities:
Client, TC, Bank A, Bank B

Operation
Client sends “start” to TC
TC sends “debit” to A
TC sends “credit” to B
TC reports “OK” to client

17

client

TC

BA

“start”

“credit”“debit”

“OK”

18Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Failure Scenarios

Not enough money in A’s bank account
A doesn’t commit, B does

B’s bank account no longer exists
A commits, B doesn’t

One network link (of A or B) is broken
One commits, the other doesn’t

One of A or B has crashed
One commits, the other doesn’t

TC crashes between sending to A and B
A commits, B doesn’t

18

19Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Atomic Commit: Desirable Properties

TC, A, and B have separate notions of committing

Correctness
If one commits, no one aborts
If one aborts, no one commits

Liveness (in a sense, performance)
If no failures, and A and B can commit, then commit
If failures, come to some conclusion ASAP

19

20Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Two-Phase Commit (2PC)

Same entities as in 1PC

Operation
TC sends “prepare” messages to A
and B
A and B respond, saying whether
they’re willing to commit
If both say “yes,” TC sends
“commit” messages
If either says “no,” TC sends
“abort” messages
A and B “decide to commit” if they
receive a commit message.

20

client

TC

BA

“start”

“prepare”“prepare”

“OK”

“yes”
“yes”

“commit”“commit”

21Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

2PC: Correctness, Liveness?

Why is previous protocol correct (i.e., safe)?
Knowledge centralized at TC about willingness of A and B to commit
TC enforces both must agree for either to commit

Does previous protocol always complete (i.e., does it exhibit
liveness)?

No! What if nodes crash or messages get lost?

21

22Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

2PC: Liveness Problems

Timeout
Host is up, but doesn’t receive message it expects
Maybe other host crashed, maybe network dropped message, maybe
network is down1
Usually can’t distinguish these cases, so solution must be correct in all!

Reboot
Host crashes, reboots, and must “clean up”
i.e., want to wind up in correct state despite reboot

22

23Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Fixing Liveness Problems

Solution
Introduce timeouts
Take appropriate actions

but be conservative to preserve correctness!

Where in the protocol do hosts wait for
messages?

TC waits for “yes”/”no” from A and B
A and B wait for “commit”/”abort” from
TC

23

client

TC

BA

“start”

“prepare”“prepare”

“OK”

“yes”
“yes”

“commit”“commit”

24Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

When TC times out

Proceed with a decision when TC waits too long for yes/no

TC has not yet sent any “commit” messages
So it can safely abort: sends “abort” messages

This preserves safety, but sacrifices liveness (why?)
Perhaps both A, B prepared to commit, but a “yes” message was lost
Could have committed, but TC unaware!
Thus, TC is conservative

24

25Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

When B (or A) times out
If B voted “no”

It can unilaterally abort
The TC will never send “commit” in this case

If B voted “yes”
Can it unilaterally abort?

No!!
TC might have received “yes” from both, sent
“commit” to A, then crashed before sending
“commit” to B
Result: A would commit, B would abort;
incorrect (unsafe)!

Can B unilaterally commit?
No!!
A might have voted “no”

So, what do we do if B voted “yes”???
Either B keeps waiting forever (not a solution)
Or we devise a better plan pull it out of indefinite
waiting, without hurting correctness

25

client

TC

BA

“start”

“prepare”“prepare”

“OK”

“yes”
“yes”

“commit”“commit”

26Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Termination Protocol if B voted “yes”
B has voted “yes”, but is waiting for an answer too long

B directly contacts A: sends “status” request to A, asking
if A knows whether the transaction should commit

If A received “commit” or “abort” from TC: B decides same
way (can’t disagree with TC)

If A hasn’t voted anything yet: B and A both abort
TC can’t have decided “commit”; it will eventually hear
from A or B

If A voted “no”: B and A both abort
TC can’t have decided “commit”

If A voted “yes”: no decision possible, keep waiting
TC might have decided “commit” and replied to client
TC might have timed out, aborted, and replied to client

If no reply from A: no decision possible, wait for TC

26

client

TC

BA

“start”

“prepare”“prepare”

“OK”

“yes”

“yes”

“commit”“commit”

27Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Termination Protocol Behavior

Some timeouts can be resolved with guaranteed correctness (safety)

Sometimes, though, A and B must block
When TC fails, or TC’s network connection fails
Remember: TC is entity with centralized knowledge of A’s and B’s state

27

28Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Problem: Crash-and-Reboot

Cannot back out of commit once decided
Suppose TC crashes just after deciding and sending “commit”

What if “commit” message to A or B lost?
Suppose A and/or B crash just after sending “yes”

What if “yes” message to TC lost?

If A or B reboots, doesn’t remember saying “yes”, big trouble!
Might change mind after reboot
Even after everyone reboots, may not be able to decide!

28

29Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Solution: Persistent State

Storing state in non-volatile memory (e.g., a disk)
If all nodes know their pre-crash state, they can use the previously described
termination protocol
A and B can also ask TC, which may still remember if it committed

In what order do we store & send?
write disk, then send “yes” message if A/B, or “commit” if TC?
or vice-versa?

Can we send message before writing disk?
Might then reboot between sending and writing, and change mind after
reboot
e.g,. B might send “yes”, then reboot, then decide “no”

So, should we write disk before sending message?
For TC, write “commit” to disk before sending
For A/B, write “yes” to disk before sending

29

30Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

Revised Recovery Protocol

TC: after reboot, if no “commit” on disk, abort
No “commit” on disk means you didn’t send any “commit” messages;
safe

A/B: after reboot, if no “yes” on disk, abort
No “yes” on disk means you didn’t send any “yes” messages, so no one
could have committed; safe

A/B: after reboot, if “yes” on disk, use ordinary termination
protocol

Might block!

If everyone rebooted and reachable, can still decide!
Just look at whether TC has “commit” on disk

31Spyros Voulgaris

Distributed Systems, Univ. of Zurich, Fall 2008 10/11/2008

2PC: Summary of Properties

“Prepare” and “commit” phases: Two-Phase Commit (2PC)

Properties:
Safety: all hosts that decide reach same decision
Safety: no commit unless everyone says “yes”
Liveness: if no failures occur and all say “yes,” then commit
Liveness: if failures occur, then repair, wait long enough, eventually
take some decision

31

Theorem [Fischer, Lynch, Paterson, 1985]: no distributed asynchronous
protocol can correctly agree (provide both safety and liveness) in presence
of crash-failures (i.e., if failures not repaired)

	Distributed Systems
	Today’s Agenda
	Vector Clocks
	Logical Clocks
	Example
	Causality
	Inefficiency of Logical Clocks
	Vector Clocks
	Vector Clocks
	Causal Communication
	Causal Ordering: at which layer?
	Atomicity
	Atomicity: The Issue
	Example
	Two Kinds of Atomicity
	Atomic Commit Is Hard!
	One-Phase Commit (1PC)
	Failure Scenarios
	Atomic Commit: Desirable Properties
	Two-Phase Commit (2PC)
	2PC: Correctness, Liveness?
	2PC: Liveness Problems
	Fixing Liveness Problems
	When TC times out
	When B (or A) times out
	Termination Protocol if B voted “yes”
	Termination Protocol Behavior
	Problem: Crash-and-Reboot
	Solution: Persistent State
	Revised Recovery Protocol
	2PC: Summary of Properties

