Distributed Systems

Synchronization

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Today’s Agenda

O Introduction

O Time Synchronization
m Clock Synchronization
m Logical Clocks

O Mutual Exclusion
O Leader Election

O The Multicast Problem

Spyros Voulgaris 2

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Need for Synchronization

O Being able to communicate is not enough

O Nodes also need to coordinate & synchronize for various tasks
m Synchronize with respect to time

m Not access a resource (e.g., a printer, or some memory location)
simultaneously

m Agree on an ordering of (distributed) events
®m Appoint a coordinator

Spyros Voulgaris 3

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Assumptions & Algorithms

O Assumptions
m Communication is reliable (but may incur delays) @ ?D
O Network partitioning might occur m |
m Detecting failure is difficult g) crashed| (*)
O time-out is not reliable

O Algorithms
m Distributed Mutual exclusion
m Elections
m Multicast Communication

Spyros \oulgaris

27/10/2008

Distributed Systems, Univ. of Zurich, Fall 2008

Clock Synchronization

O Time consistency is not an issue for a single computer
®m Time never runs backward (a later reading of the clock returns a later
time)

O In distributed environments it can be a real challenge
m Think of how make works

Computer on 2144 2145 2146 2147 q— Time according
which compiler ¢ } ! : to local clock
runs Y\

output.o created

Computer on 2142 2143 2144 2145 <«— Time according

which editor | ¢ ; ; to local clock

runs

output.c created

Spyros Voulgaris 6

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Synchronization with a Time Server

O A time server has very accurate time (e.g., atomic clock, GPS receiver,
etc.)

O But how can a client synchronize with a time server?
®m Problem: messages do not travel instantly

O Cristian’s algorithm:
m Estimate the transmission delay to the server: ((T,-T;) - (T5-T,)) / 2

: e

dTreq dTres

O Used in the Network Time Protocol (NTP)

m Cristian’s algorithm is run multiple times, and outlier values are ignored to
rule out packets delayed due to congestion or longer paths

Spyros Voulgaris 7

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Logical Clocks

O In many cases, absolute time synchronization is not needed

O We only need to ensure that the order in which events happen is
preserved across all computers

m More specifically: All computers should agree on a total ordering of
events

O Example
m A person’s account has €1,000 and he adds €100

m At the same time, an accountant invokes a command that gives 1%
interest to each account

m Does that person’s account end up with €1,110 or €1,111 ?

i Updatet [__J PS’_E}‘?_?] _i

Update 1 is Replicated database Update 2is

@ performed before performed before
update 2 update 1

Spyros Voulgaris 8

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Lamport Iimestamps

O In a classic paper in 1978, Leslie Lamport defined the fundamental
rules to have consistent timestamps on events:

1. If aand b are events on the same process, then if a occurs before b,
CLOCK(a) < CLOCK(b)

2. If aand b correspond to the events of a message being sent from the
source process, and received by the destination process, respectively,

then CLOCK(a) < CLOCK(b), because a message cannot be received
before it is sent

Spyros Voulgaris 9

Distributed Systems, Univ. of Zurich, Fall 2008

Lamport Timestamps example

Ps

27/10/2008

0

o
o
-
e
=
60
70
180,
90,
100

Spyros Voulgaris

m 4

P> adjusts ‘
its clock |

P; adjusts

69

L

85

Ps

20

hltd
99,

its clock

(b)

o)

Z
o
&
60
70

100

10

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Mutual Exclusion Problem

O Application level protocol
1. Enter Critical Section
2. Use resource exclusively
3. Exit Critical Section

O Requirements

m Safety: At most one process may execute in Critical Section at once

m Liveness: Requests to enter and exit the critical section should
eventually succeed (no deadlocks or livelocks should occur, and
fairness should be enforced)

m Ordering: Requests are handled in order of appearance

O Evaluation criteria
m Bandwidth (number of messages)
m Client waiting time to enter Critical Section
® Vulnerabilities

Spyros Voulgaris

12

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Mutual Exclusion Problem

O We will see three approaches:

m Centralized Approach
m Distributed Approach

m Token-Ring Approach

Spyros Voulgaris 13

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Centralized Approach

O Simplest algorithm to achieve Mutual Exclusion

m Simulate what happens in a single processor

OLONO N O @) (D)

Request Release

Request OK OK

/" No reply
Queue is @ |2| |_‘
‘ \em t
Coordinator R

(@) (b) (c)

O +: Easy to implement, few messages (3 per CS: Request, OK, Release),
fair (First-In-First-Out), no starvation

O -:Single point of failure, processes cannot distinguish between dead
coordinator or busy resource

Spyros Voulgaris 14

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Distributed Approach

O Ricart and Agrawala’s algorithm
m Nodes use logical clocks: all events are in total order

® When a node wants to enter a CS (Critical Section) it sends a message
with its (logical) time and the CS name to all other nodes
m When a node receives such a request
O If it is not interested in this CS, it replies OK immediately

O If it is interested in this CS:
= If its message’s timestamp was older, then replies OK,
= Flse, it puts the sender in a queue and doesn’t reply anything (yet)

O If it is already in the CS, it puts the sender in a queue and doesn’t reply
anything (yet)

B A node enters the CS when it received OK but all other nodes

® A node that exits the CS, sends immediately OK to all nodes that it may
have placed in the queue

Spyros Voulgaris 15

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Example

Accesses

8
. resource
8 12 OK OK OK
o e @ Accesses
o 12 o’ OK resource
12
(a) (b)

()

O Nodes 0 and 2 express interest in the CS almost simultaneously

O

Node 0’s message has an earlier timestamp, so it wins

O Node 1 (not interested) and node 2 (interested, but higher
timestamp) send OK to node 1, so node 1 enters the CS

O When node 1 exits the CS, it sends OK to node 2, who enters the CS
then

Spyros Voulgaris 16

©s

Distributed Systems, Univ. of Zurich, Fall 2008

27/10/2008

Ricart & Agrawala’s algorithm

On initialization

state .= RELEASED;
To enter the section

state .= WANTED;

Multicast request to all processes;
T := request’s timestamp;

Wait until (number of replies received
state ;= HELD;

On receipt of a request <T, p,> at D; (i#]j)

then

else

reply immediately to p;
end if

To exit the critical section
state .= RELEASED;
reply to any queued requests;

} request processing deferred here
=Z(N-1));

if (state = HELD or (state = WANTED and (T, p,) < (T, p,)))

queue request from p. without replying;

Spyros Voulgaris

17

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Distributed Approach

O Problems:
®m More messages: 2*(n-1)

m No single point of failure... but n points of failure!!
O A failure on any one of n processes brings the system down

O Some improvements have been proposed

m Maekawa’s algorithm: Don’t wait for approval from all, but from the
majority

O Moral conclusion:
m Distributed Algorithms are not always more robust to failures!!

Spyros Voulgaris 18

©s

O 0O O

O 0O O

Distributed Systems, Univ. of Zurich, Fall 2008

Token-Ring Approach

27/10/2008

Nodes are organized in a ring
A token goes around (each one passes it to its successor)

If a node wants to enter a CS, it can do so when it gets the token
m [t is guaranteed it is the only one holding the token
m When it exits the CS, it passes the token to the next node

Very simple, fair, no starvation
Messages per entry/exit: 1 to infinite

Problem if the token is lost
m Long delay might mean that the token is lost, or that someone is using it

Spyros Voulgaris

19

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Comparison

Messages per Waiting time

Centralized Crash of coordinator
Distributed 2*(n-1) 2*(n-1) Crash of any node
Token ring 1 to infinite 0 to n-1 Lost token, crash of any node

Spyros Voulgaris 20

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Leader Election Problem

O Choice of one node among a selection of participants
m Each process gets a number (no two have the same!)

m For each process p;: there is a variable elected;
m Initialize: set all elected; = NONE

O Requirements:

m Safety: Participant p; has elected; = NONE or p, where p is the
number of the elected process

m Liveness: All participating processes p; eventually have elected; = p
or crash

Spyros Voulgaris 22

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The bully algorithm

O Assumptions
m Synchronous messages
m Timeouts

O Message types:
m election (announcement)
m ok (response)
B coordinator (result)

O Election procedure

m When a node notices that the
coordinator is not responding, it
starts the election process

m Sends election message to all
processes with a higher number;
if no response, then it is elected

m [f one gets an election message and
has higher ID, he replies ok and starts
election

m Process that knows it has the highest
ID elects itself by sending a
coordinator message to all others

Spyros Voulgaris

Previous coordinator
has crashed

(d) (e)
In this example, 7 was the

coordinator, but it fails

4 notices it first, and starts election
(notifies higher nodes)

Eventually 6 prevails and becomes
the new coordinator

23

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The ring algorithm

O Assumptions
m Synchronous messages
® Timeouts
m Nodes are organized in a ring

Election message

Previous coordinator
has crashed

O Message types:
m election: <list of IDs>

O Election procedure

m When a node notices that the
coordinator is not responding, it
starts the election process

® Sends election message to its = In thi le. 7 th
successor, with a list containing only 1 thiS example, 7 was the
its own ID coordinator, but it fails

® When one gets an election message m Nodes 2 and 5 notice it has

;};al;ce(;fé%lﬂgtfg ta(;c ?hcgﬁfif;seargdnode, it crashed, and they both start the

forwards the message to its successor election procedure in parallel

= When one gets back its own election m Eventually 6 prevails and becomes

message, it picks the highest ID as the .
leader and announces it to everyone the new coordinator (b(_)th 2and 5
reach the same conclusion)

Spyros Voulgaris 24

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Multicast Problem

O Process sends a single send operation
m Efficiency
m Delivery guarantees

O System model
m multicast(m, §) = sends message m to all members of group g
m deliver(m) > delivers the message to the receiving process

O Groups are called closed iff only members can send messages

O Properties
m Integrity: each message is delivered at most once
m Validity: if multicast(m,g) and p in ¢ = eventually p.deliver(m)

m Agreement: if a message of multicast(m,g) is delivered to p, it should be
delivered also to all other processes in g

Spyros Voulgaris 26

0000000000

Open and closed groups

O ®
f

N

~ N

Closed group \/ Open group

O

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Basic Multicast

O Basic multicast:
® B-multicast(m, g): for each p in g, do send(p,m)
m On receive(m) at p: B-deliver(m) at p

O Problems
m Implosion of acknowledgements
m Not reliable

Spyros Voulgaris 28

Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Reliable Multicast Algorithm

On initialization
Received ;= {};

For process p to R-multicast message m to group g
B-multicas(g, m); // p e g 1s included as a destination

On B-deliver(m) at process g with g = group(m)
if (m & Received)

then
Received .= Received U {m};
if (q # p) then B-multicast(g, m); end if
R-deliver m;
end if
O Problems

m Inefficient: O(| g | 2) messages
m Implosion of acknowledgements

Spyros Voulgaris 29

