
Distributed S stemsDistributed Systems

Synchronization



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Today’s Agenda

IntroductionIntroduction

Time Synchronization
Clock Synchronization
Logical Clocks

Mutual Exclusion

Leader ElectionLeader Election

The Multicast Problem

2Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Need for Synchronization

Being able to communicate is not enoughBeing able to communicate is not enough

Nodes also need to coordinate & synchronize for various tasks
Synchronize with respect to time
Not access a resource (e.g., a printer, or some memory location) 
simultaneously
A    d i  f (di ib d) Agree on an ordering of (distributed) events
Appoint a coordinator

3Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Assumptions & Algorithms

AssumptionsAssumptions
Communication is reliable (but may incur delays)

Network partitioning might occur
Detecting failure is difficult C h dDetecting failure is difficult

time-out is not reliable
Crashed
router

Algorithms
Distributed Mutual exclusion
Elections
Multicast Communication

4Spyros VoulgarisFigure 12.1



Time Synchronizationy



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Clock Synchronization

Time consistency is not an issue for a single computerTime consistency is not an issue for a single computer
Time never runs backward (a later reading of the clock returns a later 
time)

In distributed environments it can be a real challenge
Think of how make works

6Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Synchronization with a Time Server
A time server has very accurate time (e.g., atomic clock, GPS receiver, 
etc.)

But how can a client synchronize with a time server?
Problem: messages do not travel instantly

Cristian’s algorithm:
Estimate the transmission delay to the server: ((T4-T1) – (T3-T2)) / 2

Used in the Network Time Protocol (NTP)
Cristian’s algorithm is run multiple times  and outlier values are ignored to 

7Spyros Voulgaris

Cristian s algorithm is run multiple times, and outlier values are ignored to 
rule out packets delayed due to congestion or longer paths



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Logical Clocks
In many cases, absolute time synchronization is not needed

We only need to ensure that the order in which events happen is 
preserved across all computers

More specifically: All computers should agree on a total ordering of p y p g g
events

Examplep
A person’s account has €1,000 and he adds €100
At the same time, an accountant invokes a command that gives 1% 
interest to each account
Does that person’s account end up with €1,110 or €1,111 ?

8Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Lamport Timestamps

In a classic paper in 1978  Leslie Lamport defined the fundamental In a classic paper in 1978, Leslie Lamport defined the fundamental 
rules to have consistent timestamps on events:

If d b  t   th    th  if  b f  b  1. If a and b are events on the same process, then if a occurs before b, 
CLOCK(a) < CLOCK(b)

2 If a and b correspond to the events of a message being sent from the 2. If a and b correspond to the events of a message being sent from the 
source process, and received by the destination process, respectively, 
then CLOCK(a) < CLOCK(b), because a message cannot be received 
before it is sent

9Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Lamport Timestamps example

10Spyros Voulgaris



Mutual Exclusion



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Mutual Exclusion Problem
Application level protocol

1. Enter Critical Section
2. Use resource exclusively
3. Exit Critical Section

Requirements
Safety: At most one process may execute in Critical Section at once
Liveness: Requests to enter and exit the critical section should 

ll  d (  d dl k   li l k  h ld  d eventually succeed (no deadlocks or livelocks should occur, and 
fairness should be enforced)
Ordering: Requests are handled in order of appearance

Evaluation criteria
Bandwidth (number of messages)
Client waiting time to enter Critical Section

12Spyros Voulgaris

Client waiting time to enter Critical Section
Vulnerabilities



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Mutual Exclusion Problem

We will see three approaches:We will see three approaches:

Centralized Approach

Distributed Approach

k hToken-Ring Approach

13Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Centralized Approach

Simplest algorithm to achieve Mutual Exclusion
Si l t  h t h  i   i l  Simulate what happens in a single processor

+: Easy to implement, few messages (3 per CS: Request, OK, Release), 
fair (First-In-First-Out)  no starvationfair (First In First Out), no starvation

- : Single point of failure, processes cannot distinguish between dead 
coordinator or busy resource

14Spyros Voulgaris

coordinator or busy resource



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Distributed Approach

Ricart and Agrawala’s algorithmRicart and Agrawala s algorithm
Nodes use logical clocks: all events are in total order
When a node wants to enter a CS (Critical Section) it sends a message 
with its (logical) time and the CS name to all other nodeswith its (logical) time and the CS name to all other nodes
When a node receives such a request

If it is not interested in this CS, it replies OK immediately
If it is interested in this CS:If it is interested in this CS:

If its message’s timestamp was older, then replies OK,
Else, it puts the sender in a queue and doesn’t reply anything (yet)

If it is already in the CS, it puts the sender in a queue and doesn’t reply 
anything (yet)anything (yet)

A node enters the CS when it received OK but all other nodes
A node that exits the CS, sends immediately OK to all nodes that it may 
have placed in the queue

15Spyros Voulgaris

have placed in the queue



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Example

Nodes 0 and 2 express interest in the CS almost simultaneouslyp y
Node 0’s message has an earlier timestamp, so it wins
Node 1 (not interested) and node 2 (interested, but higher 
timestamp) send OK to node 1, so node 1 enters the CStimestamp) send OK to node 1, so node 1 enters the CS
When node 1 exits the CS, it sends OK to node 2, who enters the CS 
then

16Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Ricart & Agrawala’s algorithm
On initialization

state := RELEASED; 
To enter the section

state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;q p;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)p f q i, pi pj ( ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section

17Spyros Voulgaris

state := RELEASED;
reply to any queued requests;



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Distributed Approach

Problems:Problems:
More messages: 2*(n-1)
No single point of failure... but n points of failure!!

A failure on any one of n processes brings the system downA failure on any one of n processes brings the system down

Some improvements have been proposed
k ’ l h ’ f l f ll b f hMaekawa’s algorithm: Don’t wait for approval from all, but from the 

majority

Moral conclusion:
Distributed Algorithms are not always more robust to failures!!

18Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Token-Ring Approach

Nodes are organized in a ring
A token goes around (each one passes it to its successor)
If a node wants to enter a CS, it can do so when it gets the token

It is guaranteed it is the only one holding the token
When it exits the CS, it passes the token to the next node

Very simple, fair, no starvation
Messages per entry/exit: 1 to infinite
Problem if the token is lost

19Spyros Voulgaris

Problem if the token is lost
Long delay might mean that the token is lost, or that someone is using it



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Comparison

Algorithm Messages per 
entry/exit

Waiting time
to enter CS Problems

Centralized 3 2 Crash of coordinatorCentralized 3 2 Crash of coordinator

Distributed 2*(n-1) 2*(n-1) Crash of any node

Token ring 1 to infinite 0 to n-1 Lost token, crash of any node

20Spyros Voulgaris



Leader Election



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Leader Election Problem

Choice of one node among a selection of participantsg p p
Each process gets a number (no two have the same!)
For each process pi: there is a variable electedi

Initialize: set all electedi = NONEInitialize: set all electedi  NONE

Requirements:q
Safety: Participant pi has electedi = NONE or p, where p is the 
number of the elected process
Liveness: All participating processes pi eventually have electedi = pLiveness: All participating processes pi eventually have electedi  p
or crash

22Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The bully algorithm
Assumptions

Synchronous messages
Timeouts

Message types:
election (announcement)
ok (response)ok (response)
coordinator (result)

Election procedure
Wh   d  ti  th t th  When a node notices that the 
coordinator is not responding, it 
starts the election process
Sends election message to all 
processes with a higher number;
f h l d

p g
if no response, then it is elected
If one gets an election message and 
has higher ID, he replies ok and starts 
election
Process that knows it has the highest 

In this example, 7 was the 
coordinator, but it fails
4 notices it first, and starts election 
(notifies higher nodes)

23Spyros Voulgaris

Process that knows it has the highest 
ID elects itself by sending a 
coordinator message to all others

( g )
Eventually 6 prevails and becomes 
the new coordinator



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The ring algorithm
Assumptions

Synchronous messages
Timeouts
Nodes are organized in a ring

Message types:
election: <list of IDs>

Election procedure
When a node notices that the 

di t  i  t di  it coordinator is not responding, it 
starts the election process
Sends election message to its 
successor, with a list containing only 
its own ID

h l

In this example, 7 was the 
coordinator, but it fails

When one gets an election message 
that originated at a different node, it 
appends its ID to the list, and 
forwards the message to its successor
When one gets back its own election

 it i k  th  hi h t ID  th  

Nodes 2 and 5 notice it has 
crashed, and they both start the 
election procedure in parallel
Eventually 6 prevails and becomes 

24Spyros Voulgaris

message, it picks the highest ID as the 
leader and announces it to everyone

y p
the new coordinator (both 2 and 5 
reach the same conclusion)



The Multicast Problem



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

The Multicast Problem
Process sends a single send operation

Efficiencyy
Delivery guarantees

System modely
multicast(m, g) sends message m to all members of group g
deliver(m) delivers the message to the receiving process

Groups are called closed iff only members can send messages

Propertiesp
Integrity: each message is delivered at most once
Validity: if multicast(m,g) and p in g eventually p.deliver(m)
Agreement:  if a message of multicast(m,g) is delivered to p, it should be 
d li d l  t  ll th   i  

26Spyros Voulgaris

delivered also to all other processes in g



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Open and closed groups

Closed group Open group

27Spyros Voulgaris Figure 12.9



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Basic Multicast

Basic multicast:Basic multicast:
B-multicast(m, g): for each p in g, do send(p,m)
On receive(m) at p: B-deliver(m) at p

Problems
Implosion of acknowledgements
Not reliable

28Spyros Voulgaris



Distributed Systems, Univ. of Zurich, Fall 2008 27/10/2008

Reliable Multicast Algorithm

Problems
Inefficient: O(|g|^2) messages
Implosion of acknowledgements

29Spyros Voulgaris

p g

Figure 12.10


