
Semantic-Web-Backed GUI Applications

Axel Rauschmayer, Axel.Rauschmayer@ifi.lmu.de

Institut für Informatik, LMU München

Position Paper

1 Abstract and Introduction

End User Semantic Web Interaction is a field that is concerned with optimizing
user interfaces for semantic web applications. In this position paper, we present
a different angle to this problem: instead of looking at the Semantic Web from a
user interface perspective, we would like to look at user interfaces from a Seman-
tic Web perspective. Specifically, we are interested in graphical user interfaces
(GUIs) as used by applications in mainstream operating systems such as Win-
dows. We argue that the ease with which data can be integrated, queried and
manipulated in Semantic Web applications is something that can be transferred
to GUI applications. To that end, we outline where current GUIs fall short and
how ideas from the Semantic Web can help. Note: Even though exceptions some-
times apply, our assertions are deliberately general in order to paint a concise
picture.

2 Current Problems

In this section, we enumerate several flaws of GUIs that can be remedied by
Semantic Web ideas.

Information Overload. GUIs suffer from information overload. When building
vocabularies for manipulating data, applications rely on lists of text (menus)
and/or icons which take too long to mentally digest.

Static Information Layout. When displaying a document, GUIs also display
supporting widgets with editing information, meta-data etc. This information is
either arranged in a fixed way or has to be customized by hand, one item at a
time.

One-Dimensional Categorization. In order to categorize information (including
program functionality), current GUIs use hierarchies. An example is preference
management being implemented as a tree of nested dialogs. But hierarchies are
one-dimensional and hinder more direct, associative access, because they force
a fixed way of categorization on the user.



Separate Meta-Level. Making meta-information available at the object level is
called reification. In user interfaces, a lack of reification manifests itself in the
following ways:

– When a user interface element does not behave as wanted, it is often difficult
to find the preference setting that lead to the behavior. For example: “How
do I turn off the red underlines for incorrectly spelled words?” or “Why is
that menu entry grayed out?”.

– If an entity is displayed for a certain purpose, other information not related
to that purpose cannot be directly accessed. For example: If there is a dialog
for picking an application to open a document, one cannot otherwise examine
the applications that are listed.

– When an error message is displayed, there is no way of copying the message
text.

– Documentation and program are disconnected. So there is no systematic way
to browse and discover features. Sometimes there are links between online
help and program, but they are too few and the help content is structured
one-dimensionally (see above).

Note that just filling up context menus with shortcuts to meta-information is
not a solution, as one still faces information overload problems.

Lack of Integration. On one hand, application data such as contacts and book-
marks reside in separate data islands. Thus, properly combining and linking that
data is not possible. On the other hand, application functionality also suffers
from one-dimensional categorization: It is not clear where to put cross-cutting
functionality. For example, whatever application displays a set of images should
also provide operations for editing them and displaying a slide show. But doing
so should not overburden already cramped user interfaces.

3 Sketch of a Solution

Both the architecture and the user interface of an application are stored in an
RDF graph. The interface consists of two parts: the RDF browser that includes
a query widget and the result list that displays the results of browsing and
querying. The latter part is the actual user interface, whereas the former part is
more of a meta-component.

Objects and Operations. An application is not a large monolithic piece of soft-
ware any more, but is decomposed into user interface objects (UIOs). UIOs
are a hybrid of conceptual information and their graphical representation: the
conceptual information is stored in RDF and contains a rich mix of data, docu-
mentation, keywords etc., the graphical representation is a comparatively small
GUI widget. Whenever a UIO is visible in the user interface (the result list) then
the browser allows one to access and further explore the packaged information.
Furthermore, UIOs are annotated with what operations can be performed on
them. Operations can also be considered objects and are stored and visualized
in the same manner as UIOs.



Filtering, Browsing and Querying. Filtering, browsing and querying will be con-
stantly performed while using an application.

– By filtering, one reduces the information overload. Filtering operations means
that they are more directly accessible, instead of time-consuming lookup in
nested menus. Filtering by current context (what data is being displayed)
leads to context-sensitive operation listings.

– Browsing is used for discovering functionality and for associative access to re-
lated information, some of which is obvious (such as documentation), some
of which is less obvious: related operations can be derived by observing
whether they apply to similar objects; object-operation relations are bidi-
rectional, so one can also find out what objects an operation applies to; etc.
Even more information can be accessed by following links into the archi-
tectural information of the application; compare this to modern application
scripting frameworks such as AppleScript.

– RDF queries allow one to dynamically rearrange the user interface. Now
one can customize sets of items instead of single items. Moreover, RDF
naturally supports multi-dimensional categorization. These queries can be
said to create custom, task-specific applications.

Other Advantages. As more architectural information on an application is ac-
cessible to users, they can refer to that information when reporting a bug which
improves bug report quality.

4 Related Work

Mac OS X has the Spotlight search technology for filtering both objects (files)
and operations (programs) and Dashboard which displays information as a
collection of small, separate widgets. The Eclipse IDE has an enhanced prefer-
ences interface where one can both filter the available information and click on
hyperlinks to related preferences.

5 Further Ideas

There are many other user interface ideas that should be adapted to GUIs. Here
are two examples:

– Program history: In GUIs, there is no history in what has been done (for
example: “What files have I recently deleted?”) and many operations such
as moving a window cannot be undone. Command line interfaces fare better
here.

– User interface continuations: in a web browser, one has the ability to put
aside any user interface state in a separate window. Traditional GUIs cannot
do that.


	Semantic-Web-Backed GUI Applications
	Axel Rauschmayer, Axel.Rauschmayer@ifi.lmu.de

