
A Scalable Framework for the
Interoperation of Information Sources

Prasenjit Mitra, Gio Wiederhold, and Stefan Decker�

Infolab, Stanford University
Stanford, CA, USA 94305

fmitra, gio, stefang@db.stanford.edu

Abstract.
Resolving heterogeneity among information systems is a crucial problem if we

wish to gain value from the many distributed resources available to us. Problems of
heterogeneity in hardware, operating systems, and data structures have been widely
addressed, but issues of diverse semantics have been handled mainly in an ad-hoc
fashion. In this paper, we presentONION, a system based a scalable approach to
interoperation of information systems by articulating their associated ontologies. An
articulation focuses on the semantically relevant intersection of information resources
with respect to a type of application. However, ontologies obtained from diverse sources
are represented using different conceptual models. We have designed a simple inter-
mediate conceptual model - theONION conceptual model - that we use to transform
ontologies into before we generate semantic correspondences or articulations between
them.

In ONION, application-dependent articulation rules that capture the correspon-
dence between concepts in different ontologies are established between source on-
tologies semi-automatically. Finally we present an ontology algebra, based on the
articulation rules, for the composition of ontologies.

1 Introduction

Today a large number of diverse information sources - databases, knowledge bases, collec-
tions of documents - are available on the Internet. Often, we cannot answer a query from a
single source, and need to compose knowledge from multiple sources. Intelligent searching
and querying on the World Wide Web - the largest collection of distributed information and
knowledge sources - often requires composing information from heterogeneous information
sources. Today, the bulk of this composition is done by the end-user. Not only is this ex-
tremely tedious and time-consuming, but also, often, the end-user does not have any idea
of the semantics used by the builder of the information source. In this paper, we present
a brief overview of the ONION (ONtology compositION) system, which takes a principled
approach to enable semi-automatic interoperation among heterogeneous information sources.

� This work was partially supported by a grant from the Air Force Office of Scientific Research (AFOSR).

A Scalable Framework for the Interoperation of Information Sources

1.1 Heterogeneity

Most information sources have been independently constructed and are autonomously main-
tained. Attempts have been made to integrate information from these various information
sources into a monolithic information source [1], [2]. Such an approach creates maintenance
and scalability problems. When an information source is to be added, the large information
source must be restructured. Often such maintenance leads to substantial delays [3].

Some researchers have tried to first build a standard ontology or global schema and then
build information sources that conform to the ontology or schema [4], [5]. Even though the
approach has worked for small communities, it is almost impossible to come up with an
agreed-to-standard for knowledge in larger domains, especially among groups that have diffe-
rent applications in mind.

Besides, it is prohibitively expensive to restructure existing knowledge so that it conforms
to the standard ontology even if such a beast ever came into being.

1.2 Maintenance

Everyday new discoveries expand our knowledge, and change the views of the universe that
we live in. Therefore, even if information sources start off with a common ontology, such
an ontology has to be updated periodically. The maintainers of the information sources that
use the standard ontology will have to agree on the updates being proposed and on the re-
structuring of the ontology. They may have entirely different applications in mind or may not
subscribe to a newly discovered theory. Furthermore, some participants might see the changes
required to support the proposed updates as an unnecessary imposition since restructuring the
information source will require substantial effort on their part. Thus generating new consen-
sus on updates to the standard ontology is a time-consuming and tenuous process. For fast
changing fields, arriving at a consensus within a short period of time is not even feasible.
Therefore, we need a system where the information sources are autonomously maintained.

1.3 A Realistic Setting

We, believe that the information sources should be autonomous and we should not require
them to conform to a standard ontology in order to allow composition of knowledge from
them. Instead of integrating information sources, we intend to enable interoperation among
them.

Unfortunately, the composition of knowledge from multiple independently maintained
information sources is a hard problem. Independently constructed information sources are
heterogeneous and often use different vocabularies and conceptual models. The organization
of class-subclass hierarchies are substantially different. Often, they use different terms to rep-
resent the same concept and the same term to represent entirely different concepts. In order to
interoperate among such information sources we need to resolve their semantic heterogeneity.

Karp [6] proposes a strategy for database interoperation. We extend Karp’s approach to
apply to not only databases, but also to knowledge bases and information sources.

As in [7], [8], and [6], we assume that information sources are independently created
and maintained. In Karp’s system, each database comes with a schem a which is saved in
a Knowledge Base of Databases. Correspondingly, we assume that associated with each in-

A Scalable Framework for the Interoperation of Information Sources

formation source is an ontology. However, we do not require all ontologies to be saved in a
central repository.

The ontologies associated with information sources are based on some existing, known
vocabularies and conceptual models. Native drivers and wrappers provide access to the on-
tol ogies and help us restructure the information if needed. We establish application-specific
articulation rules, i.e., rules that establish correspondence between concepts in different on-
tologies, semi-automatically.

Queries are rewritten using the articulation rules. Before a query is dispatched to a source,
the terms in the query are rewritten using the articulation rules that indicate the semantic cor-
respondence between the terms in the query and those in the source. This rewriting ensures
that a source gets a query that conforms to the vocabulary and the semantics of the source.
During query planning, optimization is enabled based on the algebraic properties of the op-
erations.

In this paper, we describe the ONION system and highlight our approach to interop-
eration. In Section 2, we describe the common conceptual model that ONION uses for its
internal representation of ontologies. In Section 3 we discuss the semi-automatic articulation
of ontologies. In Section 4 we outline an Ontology Algebra that we use to compose informa-
tion from diverse sources. Section 5 concludes the paper.

2 The ONION Conceptual Model

The heterogeneity among information sources needs to be resolved to enable meaningful in-
formation exchange or interoperation among them. The two major sources of heterogeneity
among the sources are as follows. First, different sources use different conceptual models and
modeling languages to represent their data and meta-data. Second, sources using the same
conceptual model differ in their semantics. The ONION system uses a common ontology
format, which we have described below. It first converts all external ontologies to this com-
mon format and then resolves the semantic heterogeneity among the objects in the ontologies
that it is articulating.

Melnik, et al., [9] have shown how to convert ontologies and different classes of concep-
tual models into those using one common format. For example, say one information source
uses UML [10] and another using DAML+OIL [11]. ONION will convert the ontologies
associated with both information sources to the ONIONconceptual modeldescribed below.
Since the number of classes of such conceptual models that are in use and that we want
to support is small, we will provide wrappers which will convert from these models to the
ONION format.

Instead of converting all ontologies from their native models to the ONION format, an
alternative is to do so declaratively. That is, first generate rules that correlate parts of one
ontology to parts of another based on semantic similarity. Then these rules could be used
to transform ontologies as required. However, this approach would require us to create and
manipulate articulation rules that would not only have semantic information but also have in-
formation about how we should transform the conceptual models underlying each ontology.
These rules would be more complex since they would have information about reformating
the ontologies, and would be less usable than the rules required once both ontologies have
been converted to a common format. Besides, by converting to the ONION format, we elim-
inate the necessity ofn2 pariwise conversions amongn ontologies and instead reduce it ton

A Scalable Framework for the Interoperation of Information Sources

conversions (of all the ontologies to the common format).
We solve the problem of establishing correspondences among ontology formats and the

problem of establishing articulations among the concepts in the ontologies differently because
we believe that the small number of conceptual modeling formats that we intend to support
(currently XML, RDF, DAML+OIL) can be converted to use one common conceptual model,
whereas the number of concepts and thus objects used in ontologies are rather large and
creating a huge, integrated, common, global ontology is untenable and unmaintainable.

Information sources were, are and will be modeled using different conceptual models.
We do not foresee the creation of ade factostandard conceptual model that will be used
by all information sources. On the other hand, we need a common ontology format for our
internal representation. We use the ONION format to represent the source ontologies and
manipulate them to create the articulation ontology. The design choices for the conceptual
model that we will transform the various source ontologies to range from the least common
denominator of the different conceptual models used by the various sources to the greatest
common multiple of them. Instead of choosing a model that has various complex features
that capture the intricacies of all the conceptual models, we strive to keep our model simple.

2.1 A Graph-Oriented Conceptual Model

Our common conceptual model for the internal representation of ontologies is based on the
work done by Gyssens, et al.,[12]. In its core, we represent an ontology as a graph. Formally,
an ontologyO = (G;R) is represented as a directed labeled graphG and a set of rulesR.
The graphG = (V;E) comprises a finite set of nodesV and a finite set of edgesE.

An edgee is written as(n1; �; n2) wheren1 andn2 are two nodes belonging to the set
of nodesV and� is the label of the edge between them. The label of a noden is given by
a function�(n) that maps the node to non-null string. In the context of ontologies, the label
is often a noun-phrase that represents a concept. The label� of an edgee = (n1; �; n2) is a
string given by� = Æ(e). The label of an edge is the name of a semantic relationship among
the concepts and can be null if the relationship is not known. The domain of the functions�

andÆ is the universal set of all nodes and edges respectively (from all graphs) and the range
is the set of strings (from all lexicons). For the rest of the paper, we will assume that the
function� maps a node to a unique label (the concatenation of the name of the node in the
ontology and the name of the ontology), and thus will use the label of a node as a unique
identifier of the node. To represent an edge, we can substitute the label of a node for a node
and write edgee = (�(n1); �; �(n2).

The graph in the ONION conceptual model can be expressed using RDF [13]. Each
edge in our graph is coded as an RDF sentence, with the two nodes being the subject and
the predicate and the relationship being the property. However, in order to keep our model
simple, we have not included the containers that provide collection semantics in RDF. If the
children of a node need to be ordered we use a special relationship, as explained below. By
choosing RDF, we can use the various tools that are available and do not have to write parsers
and other tools for our model.

The set of logical rulesR are rules expressed in a logic-based language. Although, the-
oretically, it might make sense to use first-order logic as the rule language due to its greater
expressive power, to limit the computational complexity we will use a simpler language like
Horn Clauses. A typical ruler 2 R is of the formCompoundStatement) Statement.

A Scalable Framework for the Interoperation of Information Sources

A CompoundStatementis the conjunction of multiple Statements. AStatementis of the form
(Concept Relationship Concept). A Conceptcan either be a label of a node in the ontology
graph or a variable that can be bound to a node (in the ontology graph) representing a concept.
A Relationship, as in an edge label in the ontology graph, expresses a relation between the
twoConcepts. A detailed description of the rule language can be found in [14].

2.2 Semantic Relationships inONION

The ONION articulation generatorcan easily derive better semantic matches among con-
cepts in a pair of ontologies if it has some semantic information about the relationships used in
the ONION ontology model. Certain conceptual models allow only strictly-typed relation-
ships with pre-defined semantics. For instance, relationships like SubClassOf, AttributeOf,
etc., have very clearly defined semantics in most object-relational databases. A system that
knows the exact semantics of the relationships in a conceptual model can use the information,
e.g., to find better matches between concepts in two ontologies or to perform type-checking
and flag errors.

Other models allow any user-defined relationships without any restriction. For instance,
relationships likeOwnerOf tend to be interpreted according to the semantics associated to
it by the local application. Such relationships need not be strictly typed and a general system
that imports such a model does not know of the application-specific semantic interpretation of
the relationships. This approach provides enormous flexibility and can accommodate a large
number of relationships. However, since the semantics of these relationships are not exactly
known by the system, it cannot use them for matching related concepts or for type-checking.

The ONION conceptual modeling encourages the use of a set of strictly-typed relation-
ships with precisely defined semantics. The set of relationships that our articulation generator
knows the semantics of isfSubClassOf; PartOf; AttributeOf; InstanceOf; V alueOfg.

In ONION, we assign the conventional semantics to each of these relationships. Some of
these relationships impose type-restrictions on the two nodes they relate. Some of the rela-
tionships (likeSubClassOf , InstanceOf) are somewhat similar to those in RDF-Schema
but the set of relationships that have defined semantics in our conceptual model is different
and much smaller to maintain its simplicity.

The following is a description of the semantics of he set of pre-defined relationships
available in our common conceptual model:

SubClassOf: The relationship is used to indicate that one concept is a subclass of an-
other. The two concepts that it relates must be of type Class. For example, the statement
(Car SubClassOf V ehicle) denotes that the conceptCar is a subclass of conceptV ehicle.
That is any instance of the classCar is also an instance of the classV ehicle and all the at-
tributes of the classV ehicle are also attributes of the classCar. The relationshipSubClassOf
is transitive and in the absence of an explicit rule in an ontology that states theSubClassOf

relationship is transitive, we will add one to the ontology before reasoning or rewriting the
queries using the rules.

AttributeOf: This relationship indicates that a concept is an attribute of another concept,
e.g., an edge(ConceptA AttributeOf ConceptB) indicates thatConceptA is an attribute
of ConceptB. ConceptB has to be of type Class or of type Object andConceptA is of
type Class. This relationship, also referred to as PropertyOf in some information models, has
typically the same semantics as attributes in (object-)relational databases .

A Scalable Framework for the Interoperation of Information Sources

PartOf: This relationship indicates that a concept is a part of another concept, e.g., an edge
(Chassis PartOf Car) indicates thatChassis is part of aCar. The first concept is of type
Class while the second concept can be of type Class or Object. In relational databases, such
relationships are often coded as attributes, but we believe that this relationship is sufficiently
different semantically from the relationshipAttributeOf to warrant separate consideration.

InstanceOf: This relationship indicates that an object is an instance of a class. Therefore,
the first concept in the relationship is of type object and the second of type Class. For example,
an edge(MyCar InstanceOf Car) indicates thatMyCar is an instance of the ClassCar.

ValueOf: This relationship is used to indicate the value of an attribute of an object, e.g.,
("29" V alueOf Age). Thus, the first concept is of type literal and the second of type Class.
Typically, the second concept (in our example, the classAge), in turn has an edge (in our
example,(Age AttributeOf PersonA)) from the object it describes.

2.3 Sequences

XML is becoming the dominant format for expressing data and meta-data on the web. Like
SGML and other markup languages primarily designed to express documents, XML imposes
order among its elements. By itself, the graphical ONION model, described above, does not
impose order among the children of a node. In order to express order, we introduce a special
relationship, namelySequence, which is very similar to the containerSequence in RDF. For
example, a list ranking cars can be described using the edges(MoneyLineRanking Sequence CarRankingList

1 HondaAccord), and(CarRankingList : 2 FordTaurus). The intermediate node Car-
RankingList represents the list object and its elements form an ordered sequence. In an edge
of the form(ConceptA Sequence ConceptB) the first concept can be a class or an object
and the second concept is an object representing the list. The individual elements of the list
can be objects or classes and are related to the list-object via the relationships: 1; : 2; : : : ; : N
where the list hasN elements.

In ONION conceptual model, we do not require that every relationship must belong to
the small set of relationships whose semantics are predefined. The model is flexible enough
to allow any other user-defined relationship. The articulation generator will not be able to use
the relationships, whose semantics it is not aware of, unless the semantics are captured using
rules in the source ontology. For example, if the source ontology uses a relationshipIs�A and
has a rule that says that ”Is-A” is transitive, the articulation generator can use that information
to generate matches. The articulation rules that the articulation generator generates uses only
the relationships whose semantics are predefined to establish correspondences among nodes
in the source ontologies.

The articulation generator generates matches among nodes in the two source ontologies
that is supplied to it and does not attempt to match relationships among ontologies. The
articulation generator uses only relationships whose semantics are clearly defined to it to
derive meaningful matches among the nodes and ignores the relationships that it does not
know the semantics of. Therefore, if two RDF models have the relationships ”Buyer” and
”Owner” and for the purposes of the application we want to generate a match between the
two, we need to represent these relationships as nodes in the ONION model and then run the
articulation generator to match them.

A Scalable Framework for the Interoperation of Information Sources

2.4 Reference and Subsumption

In conceptual models, especially those used to model documents, like XML, SGML, OEM
etc. [15], where there are nested objects and entities, an object is modeled as a subtree in
a graph. The entire subtree rooted at a node comprises the object that the node represents.
When a query asks for the object, the entire subtree is returned. Such models assume that an
object subsumes all objects that are in its subtree. If any relationship needs to be expressed
between two objects a reference to the second object is used. The reference is denoted by
having a node with the the identifier of the second object and having an edge to this node.
The use of this additional node that refers to a different object helps preserve the tree structure
of the models, which is required for documents, since they are in essence serialized entities.

In our model, however, even though many of the relationships, with pre-defined seman-
tics, are essentially subsumptive in nature, we intend to keep the concept of an object as
simple as possible. Faced with the question of defining the scope of an object in our common
conceptual model, we take the minimal approach. In our world, a single node represents a
concept: a class, an object, or a value. All edges are referential in nature. Thus, when a query
asks to select an object, only the node representing the object is returned and not the entire
subtree rooted at the node. This minimal definition of an object helps us keep the articula-
tion rules and the resulting ontology intersections as small as possible. As we will see later,
the larger the intersection, the greater the cost when using the articulation to answer queries.
Thus we make the choice to keep the definition of an object as simple as possible.

Apart from the graph model, our conceptual model allows us to declaratively supply rules.
Some features in other models can be converted using the rules to capture their semantics.
If this is not possible, relationships which are not interpreted by ONION can be used. Some
features still cannot be expressed using the ONION model.

The common conceptual model is used to bring ontologies to a common format - so that
the articulation generator needs to understand only one format. So if a feature cannot be
translated into our common conceptual model, it will not be matched with similar features
carrying similar semantic messages in other ontologies. However, such information will still
be accessible from the individual ontology and the engine associated with the individual
sources.

We resolve the heterogeneity with respect to ontology models and modeling languages
by building wrappers that convert ontologies using various conceptual models to an ontology
in our common conceptual model. However, the second problem of semantic heterogeneity
among the concepts used in the source models still remains. In the next section, we will
summarize various methods that we use to automatically suggest ontology articulations.

3 Resolving Semantic Heterogeneity

An important requirement for the application scenarios that our system will be used for is
high precision. In distinction to research tasks, casual browsing, and web-surfing, the cost of
eliminating false hits is very high in business environments. At this point we believe that re-
solving semantic heterogeneity entirely automatically is not feasible. We, therefore, advocate
a semi-automatic approach wherein an automaticarticulation generatorsuggests matches be-
tween concepts in the two ontologies it is articulating. A human expert, knowledgeable about
the semantics of concepts in both ontologies, validates the generated suggested matches using
a GUI tool. An expert can delete a suggested match or say that the match is irrelevant for the

A Scalable Framework for the Interoperation of Information Sources

application at hand. The expert can also indicate new matches that the articulation generator
might have missed. The process of constructing an articulation is an iterative process and af-
ter the expert is satisfied with the rules generated, they are stored and used when information
needs to be composed from the two ontologies.

In order to keep the cost of computation and especially maintenance (which often dom-
inates other costs in established business environments) low, we strive to make the articula-
tions minimal. Currently, the onus is on the expert to keep the articulation minimal. In future,
we hope to make the automated heuristics aware of the needs of the application and minimize
the articulations.

The matching algorithms that we use can be classified into two types - iterative and non-
iterative.

Non-iterative Algorithms

Non-iterative algorithms are ones that generate the concepts that match in the two ontologies
in one pass. These algorithms do not generate any new matches based on existing matches.
The non-iterative algorithms that we employ involve matching the nodes based on their con-
tent.

The articulation generator looks at the words that appear in the label of the two nodes (or
associated with the two nodes, e.g., if the nodes are documents or if more elaborate descrip-
tions of the concepts that are represented using the nodes are available) that it seeks to match
and generates a measure of the similarity of the nodes depending upon the similarity of the
words used in their descriptions or labels.

The non-iterative methods that we currently use primarily refer to dictionaries and the
Nexus [16] and also use several semantic indexing techniques based on the context of occur-
rence of words in a corpus. Since the articulation generator is modular in nature, it should be
easy to add any other sophisticated heuristic (like consulting WordNet [17]) that allows us to
generate semantic similarity measures between phrases.

Iterative Algorithms

Iterative algorithms require multiple iterations over the two source ontologies in order to
generate semantic matches between them. These algorithms look for structural isomorphism
between subgraphs of the ontologies, or use the rules available with the ontologies and any
seed rules provided by an expert to generate matches between the ontologies. Iterative al-
gorithms are typically used after the non-iterative algorithms have already generated some
semantic matches between the ontologies and use these generated matches as its base.

For example, one heuristic we use is to look at the attributes of each node and see if
the attributes of the two nodes have matched. If a reasonably large number of attributes are
the same, the two nodes are related. If all the attributes of one node are also attributes of
another node, the articulation generator indicates that the second node is a subclass of the
first node. Another heuristic matches nodes based on the matches between their parent (or
child) nodes. The expert has the final decision whether to bless this educated guess generated
by the articulation generator.

Due to space limitations, we will not describe in detail all the heuristic algorithms that we
use to match ontologies, but refer the interested reader to [18].

A Scalable Framework for the Interoperation of Information Sources

In the next section, we will briefly define an Ontology Algebra, which allows us to sys-
tematically compose information from diverse information sources. Since we focus on small,
well-maintained ontologies in order to achieve high-precision, but we still want to serve sub-
stantial applications, we will often have to combine results of prior articulations. The ontol-
ogy algebra provides the compositional capability, and thus enhances the scalability of our
approach.

4 Ontology Algebra

When we compose information from multiple information sources it is important to do so in a
principled fashion, especially when the number of such sources is large. The key to scalability
is the systematic and effective composition of information.

In this section, we present an algebra that allows us to compose information to any level.
By retaining a log of the articulation and subsequent composition process, we can also, with
minimal adaptations, replay the composition whenever any of the sources change[16]. With-
out such a capability, integrated ontologies soon became stale and useless. Redoing a sub-
stantial integration manually is rarely done, because of the cost, and the realization that the
work will be obsolete again in a short time.

The algebra has one unary operator: Select, and three binary operations:Intersection,
Union, and Difference. The unary operator allows us to highlight and select portions of an
ontology that are relevant to the task at hand. Given an ontology and a node, the select oper-
ator selects the subtree rooted at the node. Given an ontology and a set of nodes, the select
operator selects only those edges in the ontology that connect the nodes in the given set.

Each binary operator takes as operands two ontologies that we want to articulate, and gen-
erates an ontology as a result, using the articulation rules. The articulation rules are generated
by an articulation generation function briefly discussed above.

4.1 Intersection

Intersection is the most important and interesting binary operation. The intersection of two
ontologiesO1 = (N1; E1; R1), andO2 = (N2; E2; R2) with respect to the set of articula-
tion rule generating f unctionAR is:
OI1;2 = O1 \AR O2, whereOI1;2 = (NI;EI; RI),
NI = Nodes(AR(O1; O2)),
EI = Edges(E1; NI \N1) + Edges(E2; NI \N2) + Edges(Arules(O1; O2)) ,
andRI = Rules(O1; NI\N1)+Rules(O2; NI\N2)+AR(O1; O2)�Edges(AR(O1; O2)).
The nodes in the intersection ontology are those nodes that appear in the articulation rules.
The edges in the intersection ontology are the edges among the nodes in the intersection
ontology that were either present in the source ontologies or have been established as an ar-
ticulation rule. The rules in the intersection ontology are the articulation rules that have not
already been modeled as edges and those rules present in the source ontology that use only
concepts that occur in the intersection ontology.

The articulation rules are of two types - ones that are simple statements expressing binary
relationships and the more complex rules expressed in Horn Clauses that are mostly supplied
by the expert. An example of rules of the former type is:(O1:CarSubclassOfO2:V ehicle)
and one of the more complex logic-based ones is a conjunctive rule of the form: e.g. con-

A Scalable Framework for the Interoperation of Information Sources

z ArticulationRules = { (O2.LuxuryCar SubClass O1.Car),

(O1.MSRP Equ O2.Price)}

InexpCar

Car LuxuryCar

MSRP Price LuxuryTax

SubClass

Equ

O1
O2OI

Figure 1: The Intersection OntologyOI of Source OntologiesO1 andO2

junctive rules of the form(O1:XInstanceOfO1:Car); (YPriceOfX); (Y > 30000))
(O1:XSubClassOfO2:LuxuryCar). The former set of rules are modeled as edges in the
articulation ontology and the second set of rules which require some form of reasoning to
derive statements from are left as rules belonging to the articulation ontology. These rules
will be processed during the query evaluation process only when necessary.

For all articulation generator functions, we require thatO1 \AR O1 = O1, that is the
articulation generator function should generate such articulation rules that upholds the above-
mentioned property as a sanity-check. Articulation generator functions that do not satisfy the
above equality areunsoundand for the purposes of our compositions, we do not use any
unsound articualtion generator function.

In Figure 1, we show two ontologiesO1, O2, the articulation rules between them and the
intersection ontologyOI. Equ is a short-hand that we use when to indicate classes that are
equivalent in the two ontologies.

Note that since we consider each node as an object instead of the subtree rooted at the
node, we will get only the node in the intersection by virtue of its appearing in an articulation
rule and not automatically include its attributes or subclasses. Again, a minimal linkage serves
our needs better than inclusion of possibly irrelevant concepts. Inclusion of attributes will be
required to define subclass relationships among nodes in the source ontologies precisely.

Each node in the intersection has a label which contains the URI of the source in which it
appears. If the attributes of the object that it represents are required, the application’s query
processor has to get that information from the original source. Defining the intersection with a
minimal outlook reduces the complexity of the composition task, and the maintenance costs,
which all depend upon the size of the articulation.

A Scalable Framework for the Interoperation of Information Sources

4.2 Union

The unionOU between two ontologiesO1 = (V 1; E1; R1) andO2 = (V 2; E2; R2) is ex-
pressed asOU = O1 [AR O2 = (V U;EU;RU) where
V U = V 1 [V 2 [V I1;2,
EU = E1 [E2 [EI1;2,
andRU = R1 [R2 [RU1;2,
and whereOI1;2 = O1 \AR O2 = (V I1;2; EI1;2; RI1;2) is the intersection of the two ontolo-
gies.
The union operation combines two source ontologies retaining only one copy of the concepts
in the intersection. Though queries are often posed over the union of several information
sources, we expect this operation to be rarely applied to entire source ontologies. The union
of two source ontologies is seldom materialized, since our objective is not to integrate source
ontologies but to create minimal articulations and interoperate based on them. However, we
do expect that larger applications will often have to combine multiple articulations and here
is where the union operation is handy.

4.3 Difference

The difference between two ontologiesO1 andO2, written asO1�O2, includes portions of
the first ontology that are not common to the second ontology. The difference can hence be
rewritten asO1� (O1 \AR O2). The nodes, edges and rules that are not in the intersection
ontology but are present in the first ontology comprise the difference.

One of the objectives of computing the difference is to optimize the maintenance of artic-
ulation rules. An articulation might need to be updated when one of the source ontologies that
it articulates is changed. A change in the source ontology is to be forwarded to the articulation
engine.

The articulation engine then checks if the changes are confined to the difference between
the ontology and the other ontologies that it has been articulated with. If the change happens
to be in the difference, then it does not occur in the intersection and is not related to any
of the articulation rules that establish semantic bridges between ontologies. Therefore, the
articulation rules do not need to be changed. If the changes to a source ontology, instead, is
not in the difference, the articulation in which it occurs needs to be updated to reflect the
change in the source ontology.

Using a formal process minimizes the maintenance costs in two ways: first of all we can
recognize when a change in a source does not require a change in the articulation rules, and
if a change is required we can rapidly regenerate the affected articulations, and adapt them to
the new situation.

5 Conclusion

In this paper we present a brief overview of the ONION system used for the interoperation
of information sources. ONION uses a simple conceptual model to which different ontology
models are mapped using wrappers. The articulation generator is then applied to ontolo-
gies expressed using the sc ONION conceptual model to generate semantic correspondences
leading to articulation rules among concepts in the source ontologies. A domain expert vali-

A Scalable Framework for the Interoperation of Information Sources

dates the generated rules or supplies new rules. These rules form the basis of interoperation
among the autonomously maintained information sources. Finally, we briefly highlighted an
ontology algebra that provides the formal basis for composition of information and the main-
tenance of the articulations. The ONION approach supports precise composition of infor-
mation from multiple diverse sources by not relying on simple lexical matches, but requiring
human-validated articulation rules among such sources. This approach allows the reliable
exploitation of information sources that are autonomously maintained without any imposi-
tion on the sources themselves. The algebra based on the articulation rules allows systematic,
composition, which unlike integration is much more scalable. When sources change main-
tenance is rapid since the effect of the changes can be determined using the algebra and the
composition can be regenerated where needed.

References

[1] Cia factbook: http://www.cia.gov/cia/publications/factbook/. 2000.

[2] O. Ritter, P. Kocab, M. Senger, D. Wolf, and S. Suhai. Prototype implementation of the integrated genomic
database.Computers and Biomedical Research, 27:97–115, 1994.

[3] Diane E. Oliver.Change Management and Synchronization of Local and Shared Versions of a Controlled
Vocabulary. PhD thesis, Stanford University, 2000.

[4] Information integration using infomaster, http://infomaster.stanford.edu/infomaster-info.html.

[5] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The information manifold. In
C. Knoblock and A. Levy, editors,Information Gathering from Heterogeneous, Distributed Environments,
Stanford University, Stanford, California, 1995.

[6] Peter D. Karp. A strategy for database interoperation.Journal of Computational Biology, 2(4):573–583,
1996.

[7] Michael D. Siegel Cheng Hian Goh, Stuart E. Madnick. Semantic interoperability through context in-
terchange: Representing and reasoning about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[8] Cheng Hian Goh, St´ephane Bressan, Stuart Madnick, and Michael Siegel. Context interchange: new
features and formalisms for the intelligent integration of information.ACM Transactions on Information
Systems, 17(3):270–270, 1999.

[9] Sergey Melnik. Declarative mediation in distributed systems. InProceedings of the International Confer-
ence on Conceptual Modeling (ER’00), 2000.

[10] Unified modeling language: http://www.omg.org/technology/uml/index.htm. 2000.

[11] Daml+oil http://www.daml.org/2001/03/daml+oil-index. 2001.

[12] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database model. InProc. PODS,
pages 417–424, 1990.

[13] Resource description framework(rdf) model and syntax specification, w3c recommendation
http://www.w3.org/tr/rec-rdf-syntax. 1999.

[14] P. Mitra. The onion rule language http://www-db.stanford.edu/ prasen9/rulelang.pdf. Technical report,
Infolab, Stanford University, May 2001.

[15] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for hetero-
geneous data. To appear in Theoretical Computer Science http://osage.inria.fr/verso/PUBLI/all-
bykey.php?mytexte=abiteboul, 2001.

[16] J. Jannink.A Word Nexus for Systematic Interoperation of Semantically Heterogeneous Data Sources.
PhD thesis, Stanford University, 2000.

A Scalable Framework for the Interoperation of Information Sources

[17] Wordnet - a lexical database for english. http://www.cogsci.princeton.edu/wn/. Technical report, Princeton
University.

[18] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge sources. InProc. of
the 2nd Int. Conf. On Information FUSION’99, 1999.

