Utilizing Host Formalisms to
Extend RDF Semantics

Wolfram Conen and Reinhold Klapsing*

+XONAR GmbH,
Wodanstr. 7
D-42555 Velbert, Germany,
Conen@gmx.de

T*Information Systems and Software Techniques,
University of Essen, Universitsstralie 9,
D-45141 Essen, Germany,
Reinhold.Klapsing@uni-essen.de

Abstract. RDF may be considered as an application of XML intended to inter-
operably exchange semantics between Web applications. In its current form, this
objective may be hard to reach. Even if the semantical gems hidden in the RDF/RDFS
specification are precisely captured, as, for example, in the axiomatic formalizations
currently available, the useabilty of RDF's concepts and constraints is limited: RDF
offers a data model but does not specify the processing of RDF-encoded data. RDFS
describes some basic (ontological) concepts and constraints but does not specify
the processing of RDFS-encoded ontological information. The expressiveness of
the constraints is rather limited and no clear means of providing semantics for new
concepts and constraints are specified. This paper presents one possible approach to
overcome this weaknesses. The definition and interpretation of semantics and the
processing of the RDF-encoded information will be delegated to a host formalism
(first order logic). An elaborated example specifies an extended set-algebraic range
constraint and applies the extended vocabulary to a security management task. The
definition of semantics is made explicit in the RDF Schemata. The new constraints
and concepts are added to the concepts and constraints of an underlying axiomatic
interpretation of RDF(S). A Prolog-based implementation of the approach, the RDF
Schema Explorer, which is available on-line, is presented. The tool allows to process,
validate, query and extend a FOL interpretation of (extended) RDF Schémata.

Keywords: Semantic Web, RDF, Semantic Extensibility, Host Formalism, Prolog

1This paper draws from an earlier paper that we will present at the German Wirtschaftsinformatik confer-
ence.

1 Exchanging Semantics on the Web

Semantic annotation of data becomes increasingly important, as increasingly complex inter-
actions, involving a multitude of actors, call for a shared and common understanding of the
exchanged information. Semantic annotation may enable intelligent search instead of key-
word matching, query answering instead of information retrieval Kjowledge base defi-
nition instead of data format exchanges etc. The Semantic Web Activity of the World Wide
Web Consortium (W3C) emphasizes the importance of semantics for the further develop-
ment of the Web. The Resource Description Framework (RDF) [9, 2] may develop into one
of the foundations of the Semantic Web by enabling semantic interoperability. RDF intends
to provide a standard for describing the semantics of information via metadata descriptions
(compare [7]).

For the Semantic Web to scale, independent and heterogenous actors (users, agent, tools)
must be able to exchange and process (meta-)data based on a common semantic interpreta-
tion. One may question if RDF provides the means to achieve this. We want to emphasize two
issues here: (1) most aspects of the RDF Schema specification are expressed informally, and
(2) the concepts and constraints of the RDF Schema specification do not provide sufficient
expressiveness and lack a clear extension mechanism.

The first issue has been addressed béferim [4] we chose first order logic (FOL) to
express the main concepts and constraints defined in the RDF specifications. The main benefit
of using FOL is that it is a well-studied expression mechanism with a commonly agreed-upon
interpretation. This has been utilized in tR®F Schema Explorea Prolog-based tool we
developed that integrates Jan Wielemaker's RDF parser [11] and the axioms given in [4]. A
Web-based version of the RDF Schema Explorer is accessible online [10]. It allows to query
and validate RDF descriptions not only on the statement level but also with respect to the
facts and rules that capture the semantic concepts and constraints of RDF.

The second issue has been discussed in the context of modeling ontologies in RDF(S),
see [5]. Staab et al. state about RDF(S) that “the lack of capabilities for describing the se-
mantics of concepts and relations beyond those provided by inheritance mechanisms makes
it a rather weak language for even the most austere knowledge-based systems”. They pro-
pose an approach that extends the semantics of vocabularies expressed in RDF(S) via axioms
which are considered as objects that are describable in RDF(S).

Our work, to be discussed below, can be seen as a combination of the work citetl above
We also provide means to explicitly specify the (axiomatic) semantic of properties from
within RDF, compare Figure 1. This capability is implemented and available in the RDF
Schema Explorer [10].

Furthermore, the definition of extended vocabularies is based on the axioms that capture
the core RDF(s) concepts and constraints. These axioms are also available accessibly and
explicitly. This tight integration of the RDFS concepts / constraints with the extended seman-

2Fensel provides an instructive overview of rationales for (ontology-driven) semantics in different network-
ing contexts.

3Though, unfortunately, it is not yet on the issue list of the current RDF working group to provide some more
formal (axiomatic) semantics for RDFS, so this effort documents only one possible, not-standardized attempt to
capture the meaning of RDF Schema

4While we implemented the RDF Schema Explorer without knowledge of the approach of Staab et al., we
nevertheless very much agree with their rationales for making axioms available “as objects that are describable
in RDF(S)". We would like to recommend their paper as a complementary source of well-chosen arguments for
extending RDFS with explicitly available axioms

Non-formal Semantics Formal Semantics

p2
p5 p3
p4
+ é b +

Semantics expressed in Prose Semantics expressed in a Host Formalis

<rdf:Property rdf:ID="path">
<rdfs:comment rdf:parseType="Literal">
The semantic of thisproperty is used to
expresstransitiv path relations.
</rdfs.comment>

<rdf:Property rdf:1D="path">
<rdfs:isDefinedAs rdf:parseType="Literal">
path(S,0) :- statement(S,path,0).
path(X,Z) :- statement(X,path,Y), path(Y ,Z).
</rdfs.isDefinedAs>

<Jrdf:Property> </rdf:Property>
risks l leadsto
RDF Tool RDF Tool RDF Tool Generic
for Security for ebRDF for Agents RDF Tools

abletolearn
to process

RDF Schema RDF Schema RDF Schema
for Security for ebRDF for Agents

Figure 1: Defining more sophisticated semantics with a host formalism. In the left part of the figure, semantics
are informally described within rdfs:comments. This may lead to the development of a plethora of interpretation-
specific RDF tools. This is contrasted with the approach to make (axiomatic) meaning explicitly available, thus
making it generally accessible for precise and interoperable interpretation (within the limits of the chosen host
formalism as far as it extends RDFS).

RDF Schema
for Security

RDF Schema
for ebRDF

RDF Schema
for Agents

tics, as well as the availability of a prolog-based implementation maybe considered as the
main difference to the work of Staab et al.

Below, we will demonstrate this integration by means of an application that especially
emphasizes the use of an extended range constraint in an access-control context. The remain-
der of this paper is structured as follows. In Section 2 the extension mechanisms is presented.
We describe how thBRDF Schema Exploraperates and which basic predicates are provided
to query an RDF description. In Subsection 2.1 the extension mechanism, used to formally
define more sophisticated semantics in RDF schemata, is explained. An example, taken from
an access control context, is presented in Subsection 2.3 to demonstrate the extension mech-
anism and the related RDF syntax. We include a brief discussion of one of the core concepts
of RDFS, the range constraint. In Section 3 the paper is concluded with a brief discussion of
the presented approach.

2 Specifying Extensible Semantics in RDF

Below, the RDF Schema Explorer [10] is presented that allows to query RDF models not
only on a statement level but also with respect to the facts and rules that capture the semantic
concepts and constraints of RDFS. For this purpose, a number of pre-defined predicates is
available. This also allows to validate the models against this RDFS rule set. In addition, it
is possible to define the semantics of newly introduced predicates from within RDF and to
guery/check/validate these extended models.

Predicate

Purpose

statement(S,P,0)
res(R)

lit(O)
reifies(R,S,P,0)
reifyingStatement(R)
reifies _fact(R)

subClassOf(C,D)
instanceOf(R,C)

subClass _cycle _violation(C)
subPropertyOf(X,Y)

subProperty _cycle _violation(P)

domain _constrained _property(P)
domain(X,P)
domain _violation(S,P,0)

is _range(C,P)
range _cardinality
has _range(P)
range(X,P)

_violation(P)

range _violation(S,P,0)

violation(T,S,P,0)

Contains the basic facts of the knowledge base.

Gives the resources.

Gives the literals.

R reifies the (not necessarily present) trifgeP,0]

R fulfills reifies/4 for some S,P,0.

R fulfills reifies/4 for some S,P,0 and the trip]§,P,0] isindeed

in the knowledge base.

Transitive predicate that captures the relation that is expressed with the
rdfs:subClassOf property.

Transitive predicate that captures the relation that is expressed with the
rdf:type/rdfs:subClassOf properties.

This is true if the knowledge base allows to ingeibClassOf(C,C)

A transitive predicate that captures the relation that is expressed with the
subPropertyOf predicate.

This is true if the knowledge base allows to infsubProper-
tyOf(P,P)

At least one statement that specifies a domain constraint is present for
property P.

X'is an instance of one of the classes that are in the domain of P.

This is true if a statemens,P,0] is in the knowledge base, and P is
domain-constrained and S is not in the domain of P.

C is (one of) the range restriction(s) for P.

There are (at least) two different range restrictions for P.

P is range-constrained.

X is an instance of (one of) the class(es) to which the range of P is con-
strained to.

P is range-constrained, the stateni&P,O] is in the knowledge base
and O is not in the range of P.

A convenience predicate that collects the above violations. T will show
the type of the violation and S,P,0 will be the violating triple - with
the exception ofange _cardinality , Where S will be the violating
predicate and O will be one of the ranges S should be constrained to. In
this case, all ranges that are given will be shown as different instances of
violation

Table 1: A collection of the predicates that axiomatize the RDF Schema constraints.

The tool works as follows. First, some RDF-File will be fed into the SWI-Prolog-based
RDF parset. This file will be parsed and a relation will be created that contains the triples,
e.g.[S,P,0], in a relatiostatement(s,P,0)).

The slightly modified parser tries toormalizethe URIs—no matter, if a resource is
given in subject, predicate, or object position, the parser tries to transform it into the for-

matnamespace:resource

_name. This makes querying much easier. Furthermore, some form

of normalization is necessary to be able to discoverthatyy anduRl_ of xxx#yyy are (or
better: “represent”) indeed the same resource.

Now, one could already query this simple triple database. The tool offers a query
field allowing to ask the Prolog engine things lik@atement(S,rdf:type,O) or

SCredits go to Jan Wielemaker. Some minor modifications have been made related to namespaces.
5Note that we do not assunper sethat every triple encodes an instance of a binary relation. As has been

discussed in [5], a triple plus a reification and a simple negated truth predicate may easily be used to imply
intentions that render the mapping to binary relations faulty — e.qg. triple [S,P,0], plus Reification R representing
[S,P,0], plus triple [R hasTruthValue FALSE] may express that it is known that [S,P,0] is not true.

setof(O,statement(S,P,0),2) . While it is certainly useful to know a little bit about Pro-
log, it is not necessary, because the tool offers a choice of predefined queries from a pre-
selection list.

However, this would not be completely satisfying. As one will normaly use con-
cepts/constructs from RDFS, the fact and rule base that has been outlined in the paper “A
logical interpretation of RDF” ([4]) is provided. The effect is that the knowledge level predi-
cates that are briefly explained in Table 2 can be used to check and query a model with respect
to the RDF schema constraints.

In addition, we have defined a number of additiocahvenience predicated/ost
of them can be chosen from the pre-selection menu on the query form. An example is
show_statements(S,P,0) where a value for any of the variables S,P, or O cab be substi-
tuted in and a list of the triples containing the substituted value at the corresponding position
will be generated.

While this all makes it rather easy to play with the effects of RDF schema concepts and
constraints, one will soon discover that the semantics implied by RDFS are pretty general
(not to say “weak”). We therefore allow to introdusemantics on top of the basic facts and
rules which makes it possible to specify more precisely what a modeler intends with her
predicates. This can be done in two ways:

1. Either, some Prolog rules may be directly keyed into the query field, for example

assert(trans_rel(S,0):- statement(S,path,0)).
assert(trans_rel(S,0):- statement(S,path,z), trans_rel(Z,0)).

which defines the predicat@ns _rel to represent a transitive propepath . This would
allow to inquire if two resource are transitively related, or

2. the RDF-level mechanism that we provide to define the semantics of predicates within
RDF documents is used. This mechanism will be discussed in some detail in the following
subsections.

2.1 The Extension Mechanism

The mechanism to be described allows to provide the semantics for properties within RDF
schema declarations. A special predicatgisDefinedAs is available to extend the basic
rule set with additional semantics for newly defined properties (it is also possible to define
the basic rule set this way). The interpretation of the schemata will rely on a suitably chosen
host formalism. For the currentimplementation, the Prolog-flavor of first-order logic has been
selected.

The example below, defining the transitive propgréth , can be fed directly into the
RDF Schema Explorér.

<?xml version="1.0"?>

<RDF
xmlns="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

’Note, however, that to make it exiting, some resource that are related via the path property would be re-
quired.

xmlins:rdfs="http://.../TR/2000/CR-rdf-schema-20000327#">

<rdf:Property rdf:ID="path">
<rdfs:isDefinedAs rdf:parseType="Literal">
path(S,0) :- statement(S,path,O).
path(X,Z) :- statement(X,path,Y), path(Y,2).
</rdfs:isDefinedAs>
</rdf:Property>
</RDF>

Note the use oftatement above, which is meaningful because all predicates that are
defined in the basic rule set are accessible.

In the current version of the RDF Schema Explorer, dtglog codemay be provided
(to be read by SWI-Prolog in the sequence that is implied by the XML serialiZatibn
future versions, other languages (such as implementations of Description Logics [1]) may be
allowed as well.

2.2 An Advocacy for a set-algebratnge -constraint

In RDFS, the applicability and expressiveness of the range constraint is rather limited. To see
this, first a brief review of (our version of) the intended semantics of the range constraint in
the current version of RDFS is given. In [4] the range constraint has been captured as

is_range(X,P) :- statement(P,rdfs:range,X).

has_range(P) :- is_range(_,P).

range(X,P) .- is_range(C,P), instanceOf(X,C).

range_violation(S,P,0) :- statement(S,P,0), has_range(P), not(range(O,P)).
In RDFS, the following further restrictions apply.

1. At most one range constraint is allowed.

2. Only two distinguished sets of entities, namRlgysourcegandLiterals exist.

3. The semantics of subclassing can be captured with the rule

instanceOf(l,C) :- statement(l,rdf:type,C).
instanceOf(l,D) :- statement(l,rdf:type,C), subClassOf(C,D).

With an open-world assumption, not much could be deduced from a range cofistraint
cause knowing that the range of a propertig constrained to the sé&f C Resources and

8Unfortunately, in standard SLD-resolution-based Prolog, sequence does matter. This matches, however,
naturally with XML (and not quite so naturally with RDF, which does not use sequence information with the
notable exception of Seq-type containers). If one would parse the XML serialization, compute triples from
it, scramble the triple sequence and subsequently start to assert the property definitions, this might lead to a
behaviour that was not intended — however, it would conform to the notion of RDF as being set-oriented.

%We do not infer types from rangeonstraints Rationales: Two possible interpretations of taege con-
straint have been discussed (RDF-IG, Rdf-logic), (a) thastraintand the (b)axiominterpretation. Roughly,
(a) says that a properiy may (only) be applied to instances of classes that are in the rangevbfle (b)
states that, from using a resourceas a value of a range-constrained propertyt can be infered that
has the type of the range @f Formally, both interpretation can be formulatediastanceOf(O,C) «—
statement(S, P, 0), range(P, C), with the difference that, with the constraint interpretation, we have to ask
if this is a (logical)consequencef the known statements (facts) and rules (axioms) while, with the axiom
interpretation, this will be treated as one of the rules/axioms that allows us to infer type information (and no

knowing that a resourceis an element of a sét C Resources does not allow to conclude

that attaching a valueto p would violate the range constraint. This would only be reasonable

if it would be known thatX andY” are disjoint. However, this information is only available for
Literals andResourcesind is not expressible in RDF for the relation between two (or more)
arbitrary subsets dResourcesAssuming that the world is closed and complete, one could ar-
gue that two subclassé$ Y of a classk are disjoint if no entity is known that is an instance

of both classes. Nevertheless, two problems remain: schemata are mostly used to guide the
design/evolution of models, ie. not all instances will be known at schema design time — and
introducing further information may render earlier decisions inconsistent (because adding a
type information to a resource may show that two classes are in fact not distinct but overlap-
ping etc.) — SO, considering a world as complete is dangerous with respect to inter-temporal
validity. In addition, only a richer set of constraints (including set-union, set-difference and
set-disjunction) would allow to specify all constraints that seem reasonable if the range of
a property should be restricted. To see this consider the following: The are two cl@sses,
andC2, and a property. With “reasonable” we mean the following range constraints: for
x,p.y] ,range(p,Exp) may constrairy to be an element afxp defined as

Ezp:= C1lU(C2 (yinC10ORyInC?2)
Exzp:= C1NC2 (yin C1AND yin C2)
Exp:= C1\C2 (y in C'1 AND y NOT in C2)
Exp:= C2\C1 (y in C2 AND y NOT in C1)
Ezp = (C1\C2)U (C2\C1) (yinC1XORyin C2)
Exp:= 1(C1) (y notinC1)

An often suggested extension of RDFS is to allow multiple range constraints and to interpret
these constraints as binding the allowed range to the disjunction of the classes. However,
this would restrict the interpretation of multiple range constraints to one (limited) case of
the cases given abotfeBelow, we will suggest a solution that not only conforms to RDF but
also offers a flexible and general way to specify range constraints. The required interpretation
can be encoded on schema level, making it possible to specify and enforce difype=suf

range constraints in different application domains.

Below, only one range constraint will be allowed. This is sufficient if classes (or class
expressions) can be constructed from other classes (or class expressions). In this case, each
range constraint will point to exactly one class and ¢oastructionof the class directly
expresses the constraint. Above, tepterm represents the constructed class and the right
hand side gives the construction expression. An example for applying a range constraints
using a constructed class is:

validation will be possible). We adopt the practice of the examples in (Sec. 3.1, Sec. 7.1 of [2]), where types
are assigned to resources with thétyperdfs:subClassOproperties, and the range-constraint is used to “state
that a... property only ‘makes sense’ when it has a value which is an instance of the cldssallowing
for validation. This conforms to interpretation (a) above. Please note that now, no types of resources will nor
should be infered, instead it is possible to check (with the range constraint) if properties are applied to resources
of the correct type (with rdf:type, rdfs:subClassOf or subproperties of these properties as the available devices
to provide typing information).

10A solution could be to introduce specific range constraints / range constraint types for all of the above
cases. This is, however, problematic, because it does not scale very good to “mixed” range dependencies with
3,4,...,nclasses.

[C1,rdf:type,rdfs:Class]
[C2,rdf:type,rdfs:Class]
[A,rdf:type,ConstructedClass]
[AisConstructedFrom,"C2 \ C1"]
[p, rdfsirange, A]

With [X, rdfitype, C1] , X would violate the intended range constraint if it would be
chosen as a value for

If it is assumed that the object? \ c1” is modeled as a literal, the above solution can
be formulated as well-formed RDF easily. However, to interpret it, an application-level check
of the class construction semantics would be required. This is not really nice, because range
constraints seem to be too important to leave their semantics to “proprietary” vocabularies
and interpretations, but this might be a matter of taste. With respect to the intended interop-
erability based on RDF schemata, making the semantics of the constructs expressible within
RDF seems to offer a more interoperable solution. In fact, the progedystructedFrom
denotes a multi-ary relation between classes. This can be transformed (generally) into a se-
guence of (3-ary) “atomic” set-algebraic operations (expressed below as nested tuples), as in
the following example that expressds= (C'1 N C2)\C3.

[Al, intersection, [C1,C2]]
[A, difference, [Al, C3]]

In RDF, this is expressible using reification and a suitable interpretation of the reified state-
ments:

[A1, rdf:type, rdf:Statement]

[A1, rdf:isubject, C1]

[Al, rdf:predicate, rdfsets:intersection]
[A1, rdf:object, C2]

rdf:type, rdf:Statement]
rdf:subject, Al]

rdf:predicate, rdfsets:difference]
rdf:object, C3]

>>>>

Suitably interpreted, this allows to express a set algebraic range constraint like:

[p, rdfsetsirange, A]

2.3 Sharing Security Schemata — An Example

In the following we demonstrate how such set constructs can be defined in an RDF-conform
manner by applying the above introduced extensions mechanism to the domain of role-based
access control. The semantics are build upon the basic RDF rules given in [4]. In the example
below!?, the task is to decide if access to certain documents should be granted to certain users.
The decision depends on the membership of users in certain gfobjmpre 2 depicts the
specific situation.

11The RDF source of the following example is easily accessible as part of the RDF Schema Explorer on-line
demonstration [10].

2Conceptually, membership in groups or role assignment can both be represented with set-algebraic class
expression — and this is the mechanism used in this example.

Internal Users External Users

User 2

User 1 |:| = Bad Guys

Figure 2: Access shall only be granted to users in the white section of the above venn diagrabas] gays
like user 1 should not get access.

Three new predicates are introduced, nanoeipn, differenceandintersectiod®. These pred-

icates can be used to construct classes from other classes with the help of binary relations and
reification, both being completely valid RDF constructs. This will be utilized to construct
classes from set-algebraic expressions over other (constructed) classes.

The extension is based on the already introduced semantic prinsidedinedAgto ease
the demonstration, we assume that the property is indfse namespace). To make it possi-
ble to mix meta-schema, schema and instance expressions in the example below, we adopted
the following convention: if a namespadges# is introduced, the namespace abbreviation
will be omitted during the parsing process. This makes it possible to use the namespace
within the document while still being able to normalize the resource names to make them
easily useable for querying the modél.

First, a subclass afifs:Class , ConstructedClass is introduced. The rules described
above are used to define the semantics of the newly introduced predicates. Additionally, the
semantics of both thgpe and therange property are (monotonically) extended to be able
to cope with constructed classes.

<?xml version="1.0"?>

<RDF
xmins="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://.../TR/2000/CR-rdf-schema-200003274#"
xmins:rdfsets="this#">

<l-- Meta Schema definitions -->

<rdfs:Class rdf:ID="ConstructedClass">

<rdfs:subClassOf rdf:resource=
"http://.../TR/2000/CR-rdf-schema-20000327#Class"/>

</rdfs:Class>

<Description

about="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type">

<rdfs:isDefinedAs rdf:parseType="Literal">
constructed_class(C):-instanceOf(C,'ConstructedClass’).

</rdfs:isDefinedAs>

</Description>

13A NOT will not be introduced because it allows to formulate unbounded class expressions, ie. expressions
that depend on an (unknown) universal set. Set-difference contains implicit (bounded) NOT constraints and is
sufficient for most purposes.

14The reader may adopt this practice with self-developed extension schemata to make it easy to feed schemata
and instances as one document into the RDF Schema Explorer [10].

<Property rdf:ID="union">
<rdfs:isDefinedAs rdf:parseType="Literal">
in(X,S,P,0) :- P = union, instanceOfSet(X,S).
in(X,S,P,0) :- P = union, instanceOfSet(X,0).
</rdfs:isDefinedAs>
</Property>

<Property rdf:ID="difference">
<rdfs:isDefinedAs rdf:parseType="Literal">
in(X,S,P,0) :- P = difference,
instanceOfSet(X,S), not(instanceOfSet(X,0)).
</rdfs:isDefinedAs>
</Property>

<Property rdf:ID="intersection">
<rdfs:isDefinedAs rdf.parseType="Literal">
in(X,S,P,0) :- P = intersection,
instanceOfSet(X,S), instanceOfSet(X,0).
</rdfs:isDefinedAs>
</Property>

<Description about=".../CR-rdf-schema-20000327#range">
<rdfs:isDefinedAs rdf:parseType="Literal">
instanceOfSet(X,A) :- constructed_class(A),
reifies(A,S,P,0), in(X,S,P,0).
instanceOfSet(X,A) :- instanceOf(X,A).
range(X,P) :- is_range(C,P), instanceOfSet(X,C).
</rdfs:isDefinedAs>
</Description>

Now the schema definitions follow, expressing thainal _Users, External _Users, and
Bad_Guys are plain classes and that _Users andTrusted _Users are constructed classes,
with All _Users = Internal _Users U External _Users andTrusted _Users = All _Users \
Bad_Guys.

<rdfs:Class rdf:ID="Internal_Users"/>
<rdfs:Class rdf:ID="External_Users"/>
<rdfs:Class rdf:ID="Bad_Guys"/>

<rdfsets:ConstructedClass rdf:ID="All_Users">

<subject rdf:resource="#Internal_Users"/>

<predicate rdf:resource="#union"/>

<object rdf:resource="#External_Users"/>

<type rdf:resource=".../22-rdf-syntax-ns#Statement"/>
</rdfsets:ConstructedClass>

<rdfsets:ConstructedClass rdf:ID="Trusted Users">

<subject rdf:resource="#All_Users"/>

<predicate rdf:resource="#difference"/>

<object rdf:resource="#Bad_Guys"/>

<type rdf:resource=".../22-rdf-syntax-ns#Statement"/>
</rdfsets:ConstructedClass>

Access will be granted according to a closed security policy that is, all accesses have to

be allowed explicitly. This will be expressed by attaching a propettgssAllowedFor to
resources that is constrained to the rafgested _Users .

<Property rdf:ID="AccessAllowedFor">
<rdfs:range rdf:resource="#Trusted_Users"/>
</Property>

The following instance definitions will entail a range constraint violation.

<Description rdf:ID="user_1">
<type rdf:resource="#Internal_Users"/>
</Description>

<Description rdf:ID="user_1">
<type rdf:resource="#Bad_Guys"/>
</Description>

<Description rdf:ID="user_2">
<type resource="#External Users"/>
</Description>

<!-- Objects to restrict access to: -->
<rdfs:Class rdf:ID="Important_Documents"/>

<rdfsets:Important_Documents rdf:ID="Weak_Secret_1">
<rdfsets:AccessAllowedFor rdf:resource="#user_1"/>
<rdfsets:AccessAllowedFor rdf:resource="#user_2"/>

</rdfsets:Important_Documents>

</RDF>

Here,user _1 is known as a bad guy, accordingly, he should not be granted access. In fact, the
range constraint oAccessAllowedFor is violated. To see this, consider the extended rule
set for the set-algebraic range constraint:

/* RDFS rule set */

is_range(X,P) :- statement(P,rdfs:range,X).

has_range(P) :- is_range(_,P).

range(X,P) .- is_range(C,P), instanceOf(X,C).

[* Extension */
range(X,P) :- is_range(C,P), instanceOfSet(X,C).

[* Detecting the violation (from RDFS rule set) */
range_violation(S,P,0) :- statement(S,P,0), has_range(P), not(range(O,P)).

The RDF descriptions above allow to derive thedr 1 is nota member of the constructed
classTrusted _Users and thus, is not in the range acessAllowedFor

We hope that this simple example may already demonstrate that the above mechanism,
together with a Prolog engine, is a pretty powerful instrumermleiine/extend semantjds
validate documentagainst RDFS and user-provided constraints, amgigsy a model on the
knowledge levelThis may help to leave the simplistic triple structure behind and to capture
the meaning of (extended) vocabularies more precisely. It allows to develop domain specific
vocabularies build upon the formalized RDF/RDFS constraints. These vocabularies can be
re-used in schema definitions for other domains as well. The RDF Schema Explorer will
support this with dynamic loading and incremental interpretation of schema definitions (via
HTTP).

3 Discussion

The approach outlined above allows to define RDF (meta-)schemata that precisely capture
the semantic intentions if interpreted within a suitable host formalism. The approach rep-
resents the intended semantics of RDF schemata explicitly, making it possible to treat the
definition as first-class resources within RDFThe approach is paradigm-independent, as it
allows to select different host formalisms for specific purpd8e$he specific Prolog-based
instantiation of the approach is expressive as it allows to utilize the available expressiveness
of Prolog. Furthermore, production-quality implementations of Prolog are widely available.

It may be asked why pure Prolog or any other KR Language (like KIF/SKIF) has not been
chosen as an implementation language for the semantic web. We think that constraining peo-
ple to a certain implementation language may not always be a good idea. There are always
pros and cons for a certain implementation language. We propose to give an implementer
the possibility to use a suitable implementation language for her application domain. Pure
RDF/RDFS remains to be an exchange mechanism for (rudimentary) knowledge while an
implementer should have the choice to integrate this basic knowledge (for example based on
an axiomatization of RDFS) with more elaborate semantics defined on top of a suitable host
formalism (with the consequence that this part of the knowledge may not be interpretable in
different host formalisms).

To summarize: We presented a detailed example that demonstrates the use of the involved
techniques in an access control context. The Prolog-based RDF Schema Explorer that we
developed allows to validate and query such extended models. Both, the tool and a workable
version of the example are accessible on-line. Besides being able to interpret (extended) RDF
schemata, the tool is suitable to support the prototyping of domain-specific schemata, as the
semantics of the defined properties can be changed on the fly and the consequences can be
inspected utilizing the convenience predicates (suctdation , show _classes , etc.).

We expect that the interoperable definition of meta-schemata will develop into a neces-
sity, once the formulation of complex semantic constraints in various emerging application
domains such as cooperative security management, automated business contract negotiation
etc. — all involving a number of autonomous partners and, thus, exhibiting a need for se-
mantic interoperability — is identified as a key requirement for the success of the underlying
collaborations.

References
[1] Alexander Borgida. Description Logics in Data Managemen{nowledge and Data Engineering
7(5):671-682, 1995. http://citeseer.nj.nec.com/borgida95description.html.

[2] Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification 1.0. Candi-
date Recommendation, W3C, March 2000. http://www.w3.0rg/TR/2000/CR-rdf-schema-20000327.

15This allows to apply the RDF concepts to describe/relate the semantic definitions as well. For example, new
properties expressing containment, semantic dependencies, abstraction etc. can be defined and used, which may
ease to maintain and re-use the (meta-) schemata.

16Both, making the semantics of the underlying (meta-)concepts explicit and being not bound to a specific
world view / paradigm (such as, for example, ontology-based agent modeling), renders our approach different
from such languages as OIL [3, 6] or DAML [8] that offer a set of nhon-manipulable primitives whose semantics
are not expressed in the RDF-based languages themselves. This necessarily restricts the applicability of the
languages to domains/applications that exhibit a “natural” and “close” fit with the concepts the languages offer.

[3] Jeen Broekstra, Michel Klein, Dieter Fensel, Stefan Decker, and lan Horrocks. OIL: a case-study in ex-
tending RDF-Schema. Technical report, ontoknowledge.org, 2000. http://www.ontoknowledge.org/oil/oil-
rdfs.pdf.

[4] Wolfram Conen and Reinhold Klapsing. A Logical Interpretation of RDFLinkdping Elec-
tronic Articles in Computer and Information Science, ISSN 1401-98{13), December 2000.
http://www.ep.liu.se/ea/cis/2000/013/.

[5] Wolfram Conen, Reinhold Klapsing, and Eckhaidgpen. Rdf m&s revisited: From reification to nesting,
from containers to lists, from dialect to pure xml.Rroceedings of the Semantic Web Working Symposium
(SWwS)Stanford, August 2001.

[6] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a Nutshell.
Technical report, ontoknowledge.org, 2000. http://www.cs.vu.nl/ dieter/oil/oil.nutshell.pdf.

[7] Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce
Springer, Heidelberg, 2001.

[8] lan Horrocks, Frank van Harmelen, Tim Berners-Lee, Dan Brickley, Dan Connolly, Mike Dean, Stefan
Decker, Dieter Fensel, Pat Hayes, Jeff Heflin, Jim Hendler, Ora Lassila, Deb McGuinness, Peter Patel-
Schneider, and Lynn Andrea Stein. DAML+OIL Language. http://www.daml.org/2000/12/daml+oil-
index.html, December 2000.

[9] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax Specifica-
tion. Recommendation, W3C, February 1999. http://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222.

[10] Web-based RDF Schema Explorer. http://wonkituck.wi-inf.uni-essen.de/rdfs.html.
[11] SWI-Prolog. http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

