Descrbmg Computation wihm RDF

ChrisGoad
The Behavior Engine Com pamny
10 Sixth Street, Suite 108
Agoria, OR 97103
ag@ behaviorengine com

Abstract. A programm Ing language is described which is built within RDF . s code,
finctions, and classes are formalized as RDF resources. Program s may e expressed
directly using sandard RDF syntax, or via a conventional JavaScriptbassed syntax.
RDF consdtutes not only the means of expression, but also the subject matter of
programs: the native obkcts and classes of the language are RDF resources and
DAM L+0 IL classes, respectively. The form alization of computation within RDF allows
actve content to be ntegrated seamlessly nto RDF repositories, and provides a
programm ing environm entwhich sim plifies the m anipulation of RD F when compared to
use of a conventional language via an API. The nam e of the language is "Fabl".

1. Introduction

Fabl is a progmmm ing nguage which is built w ithin RDF [1]. The constiuents of the
nguage - is code, fimctions, and chsses - are form alized as RDF resources, as is the data
overw hich com putation tgkes plce. This m eans that program s reside w ithin the world ofRDF
content ather than beig rekgated t© a sgpamate realn connected to RDF va an API. The
starting point for the form alization sDAM L+0 IL 2].

The nguage provies an efficint mperative programm g framework for the RDF
domain. Program s may be expressed as RDF obcts ushg stendard RDF syntax, or va a
conventional syntax whith mght be descrbbed as JavaScrpt enhanced wih types and
qualified property names. The Enguage is desgned to be easy © kam for programmers
fam fliar w th the conventional JavaScrbtH TM L XM LOOM web-programm ing model. Tn
fact, the conoeptual ckanlness of RD F m akes the nguage and is sem antics far sim pler than
this conventional m odel. The idal mplm entation is sin ibr I untim e efficiency to other
Scripting envionm ents.

A s a com putational form alism for RDF, the neighboring points of com parison for Fabl are
the RDF APIs (g B], A]), m which computation is expressed i conventional w ays, but the
subctm atter of the com putation is expressed 1 RD F . Fablhas several advantages overA PIs:

1. Sinpliciy ofprogramm Ing.
2. Functions and program s can be managed, nspected, manjpulted, and annotated 1 the
sam e m anner as any otherRD F resources; they are first-class citizens of the RD F word.

3. Fablk type system explbits the RD F property—centric style. This yelds a system of a kind
different, and I som e w ays m ore expressive and flexible, than those found i the man thread
of obect-orentad type system s mnning from Sinulk through C++, Java, C#, and Curl

4. Fablprogram s are formalized w ihin RDF In a manner that provides an open fiam ew ork
for extension of the language. The Inplem entation of Fabl is, w ih the exception of a few ow

Evelutlites, w ritten 1 Fabl i=elf. Further, the process by which program s are analyzed and
converted nto an efficiently executabk form can be extended by addition ofnew RD F content.
This means that extension of Fabl to clide new bnguage facilites, such as new contiol
stuctures, new syntax, ornew typig system s buil on different principles can all be carried
out n the RDF gyke: by extending the base of RD F files w hich descrioe the Bnguage.

A Tthough Fabl defines a particulbr @bei, extensbl) textual fom at for program s on the
one hand, and nplm ents a partculbr byte-code and virtualm ache for hterpretation on the
other, the core of the design is is formaliam for descrbing I perative com putation as RDF.
This ntegrates com putation o the RDF rean of disdbuted sem antic description, decoupled
from any particular source nguage and from any particular execution technique. Concretely,
active entities, from sinplk goreadsheets to complx simulbtions, can be formalized h RDF,
and made avaibbk t© any agent that has a use for them , Independent of the lnguage (©r
graphical nterface) from which they w ere created.

W hether or not the particular form alisn htroduced here is the right one, RDF can and
should be used as a vehick for sandardizing com putation asw ell as passive content. If nothing
elee, Fablshow s the practicaliy of this dea.

2.Application Scenarios

C b= ntegration of com putation w th RD F can benefit both sides of the ntegration. M ost
trivially, RDF mechanism s can be used to ammotate program s - or exampk by ushg the
Dubln Cor[5] to assert nformation about date, author, and publisher of code. W ih the
developm ent of simplk com putational ontolbgis, metadata about code of the sort useful ©
software engheeers can be asserted I RDF; examplks hclide call trees, traces, and
perfomance nformation. The opemmess of RDF, which albws conttmally evolring
vocabulries and tools to be applied to presxistng data, shouldd benefit the realn of
programm g asmuch as ary otherdom ain.

Beyond annotation, the form alization of fimctions and code as RDF resources is the first
step I ntegrating aorithm ic com putation and hference n an RD F setting . The com bination
of inference and algorithm ic com putation m htbe applied to autom atic assem bly of program s
from avaibblk components, and t© problkem solving which m xes Ihference and aloriim ic
computaton When a subproblemn is hferred © be solvabk by an avaibblke algoritm , the
aborithm is ivoked) . This direction of w ork requires m ore com plx com putational ontolgis
which fom alize the kinds of statem ents about com putational obcts needed t© support usefiil
Iference.

Gong 11 the other direction, thorough ntegration of com putation w ith RDF faciliates the
develbbpm ent of active RDF content. The hital application to which we are appying Fabl
provides an exampk. W e have defned rhtively simplk ontolbgis for geography (them ed
maps, as I GIS), and for events bcated 1 a geographical context. This geographical and
historical nform ation is depicted by hteractive w eb-delvered m gps 1n the M acrom edi& Flash
format (see curweb site] for exampks). The active agpect of our RDF repository consists

prin arily of handlrs w hich generate nteractive m aps from the underlying geographical and
hisorical nform ation, and which m aintath congistency betw een the data and is depiction as
changes are made. The handkers are RDF resources and their rehtionship to other daa is
expressed by RD F statem ents. Regubrites (g all resources in this class have thathander) are
asserted by DAM L+0 IL restrictions.

This application provides a tEmphte or a w de range of possbk applications, wherein
compkx shuations are mpresented i RDF, and where oconsistency constants are
autom atically m aintaned by associted constrant propogation m echanian s which are at least
partly aorithm ic (ather than strictly deductive) 1 nature. The kind of com pkte htegration
proposed here is not the only possibke approach o this kind of application, butw e w ould argue
that fistchss satus or computational entities I the RDF world removes a hyer of
directness and com pkxiy thatw ould otherw ise be necessary.

3.AnExampl

Conesier the the sinpkst of data stuctures, a point on the pkne w ith two coordhates,
which can be expressed 11 Java by:

public class Point {
double xc;
double yc;

}

Here & an extract from a Fabl RDF fike at http:/purlock orghet/fablexam plsgeom
defining the sam e stucture:

<rdf :RDF
xmlns:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.0rg/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:fabl="http://purl.oclc.org/net/nurl/fabl/"
xmlns:nurl="http://purl.oclc.org/net/nurl/"

>

<daml :DatatypeProperty rdf:ID="xc"/>

<daml :DatatypeProperty rdf:ID="yc"/>

<rdfs:subClassOf>
<daml :Restriction>
<daml :onProperty rdf:resource="#xc"/>
<daml :toClass
rdf :resource="http://www.w3.0rg/2000/10/XMLSchema#double" />
<daml:cardinality>l</daml:cardinality>
</daml :Restriction>
<daml :Restriction>
<daml :onProperty rdf:resource="#yc"/>
<daml :toClass
rdf :resource="http://www.w3.0rg/2000/10/XMLSchema#double" />
<daml:cardinality>1l</daml:cardinality>
</daml :Restriction>
</rdfs:Class>

The Fabl type system makes use of the M arch, 2001 version of DAM L+0 IL . The above
RDF asserts that every member of Polnt has xc and yc properties, and that these properties
each have exactly one value of type doubk. A Tl of the exampks 1 this paper use the name
goace dechrations given jast above, which w ill be abreviated b what folow s by [sandard-
nam egpace-declarations] . H ere is vectoradditon forponts:

<rdf :RDF

[standard-namespace-declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"

>

<fabl:code>
geom:Point function plus(geom:Point x,y)

{

var geom:Point rs;

rs = new(geom:Point) ;

rs . geom:XC = X.geom:XC + y.geom:XcC;
rs . geom:yc = xX.geom:yc + y.geom:ycC;
return rs;

}

</fabl :code>
</rdf :RDF>

The above text is not, of course, Egal RDF. Rather, i mpresents the contents of a fik
htended for analysis by the Fabl processor, which converts i nto RDF triplks. The pssudo-
tag <f@bl:code> enclses Fabl source code; everything not enclosed by the tag should be kgal
RDF.

Note that the syntax resambles that of JavaScript, except that varBbkes and functions are
typed. Fabl types are RDF clhsses, and are named usihg XM L qualified [7] or ungualified
names detailsbebw).

H ere are the contents of the file http :/purlock orghet/fablexam pks/colbr:

<rdf :RDF
[standard-namespace-declarations] >

<daml:Class rdf:ID="Color"/>

<Color rdf:ID="yellow"/>

<Color rdf:ID="blue"/>

<rdf :Property rdf:ID="colorOf">
<rdfs:range rdf:resource="#Color"/>

<rdf:/Property>

The olow Ing fiagm ent assigns a cobr to an existing Pont: yelbw if is x coordnate is
positive, and blue otherw ise:

<rdf :RDF

[standard-namespace-declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"
xmlns:color="http://purl.oclc.org/net/fabl/examples/color#"

>

<fabl:code>
fabl:void function setColor (geom:Point x)

{

if (x . geom:xc > 0) x.color:colorOf = color:yellow;
else x.color:colorOf = color:blue;

</fabl :code>

The expression fabl:void m ay only be used 1 a context w here the retum type of a fimction
s Ihdicated. Tk sonifies that the fimction 1 question does not retum a value. Note that
fablvoid is not a clhss, and 1 partcular is should not be dentified w ih dam 1Nothing. A
fimction w ih r=tum type dam 1Nothing would hdicate that the function r=tums a value
bebnging to dam 1N othing - an in possioility .

The s=tCobr exampk illustates the central difference between an RDF clhss and is
counterparts 1 the obpct-orented programm g traditon. An RD F clss is an assertion about
properties possessed by a resource, which does not preclide the resource fiom having
additonal properties not m entioned 1 the class, nor from belonging t© other classes, nor even
from aquirihg new properties and class m em berships as tin e goes on. The progression of data
types I programm Ing languages exhiis grow Ing freedom of type m embers: C or Pascal types
exactly determ e the stucture of theirm em bers; C++ and Java classes determ 1ne the soucture
ofmembers to a degree, butalbw extension by subclhsses; the RD F m odel kaves the stucture
ofm em bers free except as explicitly lim ied by the class definiton.

Unlkss a property has been explicitly constrained t© have only one valie, Fabl terprets the
valie of a property selection:

x.P

as a bag. In the olow g exam pk, the first finction retums the num ber of colors assigned
to an obect, and the Btter retums its unigue color I has only one, and a nulvalie otherw ise.

xsd:int function numColors (daml:Thing x)

{
}

color:Color function theColorOf (daml:Thing x)

{

return cardinality(x.color:colorOf) ;

var BagOf (color:Color) cls;

cls = x.color:coloxrOf;

if (cardinality(cls)==1) return cls[0];
else return fabl:undefined;

}

fablundefined is a specil dentifier w hich denotes no RD F value, but rather ndicates the
absence of any RD F value i the contexts w here it appears.

4.RDF Com putation in Fabl

RDF gyntax and sem antics can be view ed as having three layers: (1) a byerwhich assigns
concrete gyntax (usually XM L) © RDF assertions, () the data model yer, h which RDF
content is represented as a set of tripkes over UR Is and literals, and 3) a semantic model,
congisting of the obects and properties to which RDF assertions refer. DAM L+0 IL specifies

sem antics [8] constraining the rehtionship betw een the data m odeland the sem antic m odel

The proper Evel of description for com putation overRD F is the data m odel; the state of an
RDF computation is a sst of tripkes <subjectpredicate cbjects . This tripke set 1 tum can be
constued as a directed BHoelked graph whose nodes are UR Is and lierals, and whose arcs are
Bbekd by the UR Is of properties.

Fabl is executed by a virtualm achtne. An Invocation of the FablVM creates an niialRDF
graph which is I effect Fabls own self description: the graph contains nodes for the basic
fimctions and constants m akig up the Fabl nguage. Subsequent activity m odifies the RDF
graph m aintained by the VM , called the "active graph'. The Fabl nterpreter can acoept fnput
from a command shell, or can be confgurad as a server I a manner approprate t© the
application.

The unwerse of RDF files on the web plhys the ok of the persistent store for Fabl The
comm and

loadRdf (U)

adds the tripke setdescrived nthe RDF file atURL U to the active graph.

The active graph is partitoned nto pages. The data definihg a page nclides: (1) the
external URL (ff any) from which the page was baded, () the sst of RDF trples which the
page contaiis, () a dictionary w hich m aps the 1ds appearing 1n the page (@s values assigned t©
the df D attrbute) to the resources w hich they dentify, and @) a set of nam egpace definittons
oindings of URIs t namegpace prefixes). M any pages are the htemal representations of
externalRD F pages, butnew pages can be created w hich are not yet stored extemally.

saveRdf (x,U)

saves the page upon w hich x lies at the file U . The current in plem entation hiteracts w ih the
external world of RDF via sinpk badig and saving of pages, but there are Iteresting
additional possibilides o ving distrouted com putation, w hich are outlned 11 a bter section

A gbbal varibke or constant X w ih valie V is represented by a dam 1-UniqueProperty
nam ed X whose valie on the URTI fablglobal 8V . (ft doesm tm atter w hat values the property
assum es when agpplied to other resources, nor does fablglobal phy any other k. For
exam pk, the ©low g fragm ent defines the globalpi:

<daml :DatatypeProperty rdf:ID="pi">
<rdf:type
rdf :resource="http://www.daml .org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2000/10/XMLSchema#double"/>
</daml :DatatypeProperty >

<daml :Class rdf:about="http://purl.oclc.org/net/nurl/fabl/global">
<pi>3.14159265358979323846 </pi>
</daml:Class>

The values of gbbal properties can be referred to directly by name i1 Fabl For exam pk,
sice http:/fpurlock orghet/fablexam plsfgeom mcludes the Ines above defining pi, the
follow g fragm ent ustrates reference © piasa gbbal:

<rdf :RDF

[standard-namespace-declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"

>

<fabl:code>
xsd:double function timesPi(xsd:double x){return x * geom:pi}
</fabl :code>

As hdicated I the niBl exampk above, basic manpuktion of the active graph is
acoom plished via conventional property access syntax: If P is the qualified nam e of a property,
and x evaluates to an obfct, then

x.P

retums a bag of the known values of P on x, that is, the set of values V such that the trioke
<x P V> ispresent 1 the actve graph. However, if P is asserted t© be unwvalied - if twas
htroduced as a UniqueProperty, or has a cardnality restriction to one value - then

x.P

evaluates to the unigue valie nstead . The assigm ent

X.P = E

foran expression E adds the tripke <x P valie €)> to the active graph, unkss P has been
asserted to be a unvalued, 1 which case the new trbke replhcoes the previbus tripke (i any)
w hich assigned a value to P on x. The command:

var Type name;
Sequivalntto:
<daml :UniqueProperty rdf:ID="name"s>

<rdfs:range rdf:resource="Type"/>
</daml :UniqueProperty >

The fimction:
new (Type)

creates anew node N In the active graph, and adds the triple <N xdf:type,Type> . nitally,
nodes created w ih the new operator lck an associated URI.How ever, Fablalow sUR Is o be
access=d and set as Fthey w ere properties, via the pssudo-property uri.

x.uri
I the cunent UR T ofx if has one, and fabl:uundefined ifnot.

x.uri = newURI;

assgns a new URIto x. fnewURT is already assined to another node y i the active
graph, x ismerged w ith y. The m exged node w il possess the union of the properties possessed
by x and y priorto the m erge.

5.RDF Computation Via an API: A Com parison

The Java code bebw uses the Jena API4] to mmpkment the finction presented at the
begiming of section 3 : vector additon of points. This sampk is cluded o give the reader a
concrete senge of the difference between Fabl code, which expresses elementary RDF
operations directly as basic operations of the lnguage, and code using an API, ih which the
sam e elem entary operations m ust be expressed as explicit m anjpulbtions of a representation of
RDF content i the host Bnguage here, Java) . This is the only purpose of the sampk, and the
details are not rekvant o anything that appears bter 1 this paper. A ko, the ponhts m ade here
apply equally to otherRDF APIs.

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;

// The class GeomResources initializes variables
// xc, yc, and Point to RDF resources of the right kind.
public class GeomResources {
protected static final String URI =
"http://purl.oclc.org/net/fabl/examples/geom#" ;
public static String getURI () {return URI;}
public static Property xc = null;
public static Property yc = null;
public static Resource Point = null;
static {
try {
xc = new PropertyImpl (URI, "xc");
yc = new PropertyImpl (URI, "yc");
Point = new ResourceImpl (URI+"Point") ;
} catch (Exception e) ({
System.out.println ("exception: " + e);

}

public class GeomFunctions {
// PointPlus is vector addition
public static Resource PointPlus (Resource x,Resource y)
Resource rs = x.getModel () .createResource() ;
rs.addProperty (RDF.type, GeomResources.Point) ;
rs.addProperty (GeomResources.xc,
x.getProperty (GeomResources.xc) .getDouble () +
y.getProperty (GeomResources.xc) . getDouble ()) ;
rs.addProperty (GeomResources.yc,
x.getProperty (GeomResources.yc) .getDouble () +
y.getProperty (GeomResources.yc) .getDouble ()) ;
return rs;

}
}

The Fabl inplm entation, w e would argue, is eagier to understand and easier to code. The
difference isnot due t© any defect of the Jena A PT, but to the hherent directness of the APT
approach. Further, the direct expression of RD F prin ihves 1n Fabl is less than half the story

w ih regards to ease of use. M o significant is the fact that Fabl types are DAM L+0 IL
clhsses, and type checking and polymomhian at the RDF kvel are mplkmented w ithn the
nguage. W hen using an A PT, type checking at the RDF kvel is the users regponsiility . For
examplk, Java will not comphbhih at compie tine @mor mmn time) i the method
GeomFunctonsPointPlus i appled t© reoures which are not members of
G eom R esourcesPoint.

6.Nurls

I nomal RDF usage, bcators (that is URLs) are offten used as UR Is w hether or not the
entites they denote exist on the w eb. H ow ever, nothing prevents the use of UR Is which are
com pktely unrelbted © any w eb ocation, forexample:

<rdf :Description rdf:about= "my green sedan"s>

Tentifying an entity Ih a mamner which does not make use ofa WW W bcator has two
advantages. First, the question of w here to find mform ation about the entdty is decoupled from
nam g the entity, which aTow s all of the different varieties of nform ation about the entity t©
evolve w ithout disturbing the manner I which the entity is nam ed. Among other things, this
sim plifies the versioning of RD F data. Second, use of non-bcating UR Is frees up the content
of the UR T for expressing hierarchy form ation about the entitbes descrioed .

T the Fabl in plem entation, the tripke

<X, fabl:describedBy,U>

means that U denotes an RDF fie whith pmovides nfomation about X.
(rdfs:iD efinedBy 9] has a cbsely rehted, but not quie dentical ntent; descriptions need not
alw ays qualify as defnitons). U is alo taken as rkvant to any subpct Y whose URT
(regarded as a pathname, w ith "." and "/' as delin iers) extends that of X . For examplk, if
my green sedan I descrbed by U, then s ar my green sedanengie, and
my green sedan/nginebutnotmy green sedan attenna.The Fablcommand:

getRdAf (Y) ;

bads the fikes known to describe the resource Y ; that is those files F for which the trpke
<X jfabldescrbedBy F> is present In the active graph,and Y is an extension of X . A typical
Fabl mialization sequence nwolves first badig a oonfgumtion fike containing
fabldescrbedBy statem ents w hich ndicate where to find Ihform ation about basic resources.
Then, as additonal resources becom e relkevant © com putation, vocations of getR dfbring the
needed data o the active graph. In future, zy soategies may be inplm ented 1 which, for
examplk, getRAfK) is automatically Invoked on the first access to a property of X . Ao,
nothing precludes fiture developm ent of com plkx discovery technolbgy for finding rekvant
RDF, matherthan relying only on the sin pk describbedBy m echanian .

It is desirable that non-Icating UR Is not conflict w ith URLs. For Fabl applications, we
have reserved the UR I http :/purlock orghethurl/as a oot UR Iw hose descendants w illnever
serve as bcators. This Ine gppears 1 our standard nam egpace dechration::

xmlns:nurl="http://purl.olc.org/net/nurl”

Nurl stands for Wota URL". The folbow Ing fragm ent tells the FablVM where to find the
description of the Fabl bnguage, and ilustrates the points justm ade:

<rdf :Description about= "http://purl.oclc.org/net/nurl/fabl">
<fabl :describedBy
rdf :resource="http://purl.oclc.org/net/fabl/languagev0" />
</rdf :Description>

To access a future wrkase of the Bnguage which resides at .../anguageVl, only the
configuration fike need change; RDF which m entions bnguage prin itives via the nam espace
prefix "fEbl:" m ay be Eff unchanged.

If U i the soure URL of a page 1 the actve gmph, and the tpk
<X jfabldescrbedBy U > is present Ih the active graph, then X is sa1d to be a subjct of the
page. That is, the page has as is subfct m atter the part of the hierarchical URT nam e space
moted atX . A page m ay have m ore than one subfct. W hen anew tripke <A P B> IScrated n
the course of computation, and the URTIof A is an extension of the subjct of a page, the new
trpk is albcated t© that page. Slghtly more compkx miks - not covered here - govem the
case w here the subcts of pages overkp)

7. Identifiers

Tdentifiers 1n Fabl represent XM L qualified or unqualified nam es. H ow ever, since the "."
character i reserved for property sekction, "." is wpheed by "\ when an XM L name is
transcribed nto Fabl. Forexam pk:

fablex:automobiles\ford

Is the Fabl Hentifier w hich w ould have been rendered as

fablex:automobiles. ford

I XM L. The hterpretation of unqualified nam es is govemed by the path and the home
namegpace. The path i a sequence of namespaces. W hen an unqualified name U i
encountered, the Fabl interpreter searches through the path for a namespace N such that N U
represents a node already present I the active graph. W hen a new ungqualified name U is
encountered, i is Iterpreted asH U, where H is the hom e nam egpace. N om ally, the "f2bl:"
and "xgd:" namespaces are hiclided 1 the path, enabling ungqualified r=ference to Fabl
lnguage prin iives and XM L Schem a datatypes[10].

8.Types
AnyRDF type isa kgalFabltype.
X.rdf:type = T;

asserts that X belbngs to the type T ; that i i adds the trbke <X rdf:itype,T > o the actire
graph. (This satement is galonly f T is a dam 1.Class, not an XM L Schema datatype). O £
course, a value m ay have m any types.

Fablalo icludes is own prin ives for constucting new types, that is, for hbroducing new
resources whose type is rdfs:C lass. The folbow g Ines of Fabl ntroduce the type Ponnt
w hich w as discussed earlier.

class('Point') ;

var xsd:double geom:xc;

var xsd:double geom:yc;
endClass () ;

The constuctors BagO £(T'), ListO £(T'), SeqgO £(T'), and Function O L,...Ly) generate
param etric types denoting the set of allbags (e . lists,sequences) w th members n type T,
and of all functions from Tputtypes L,.... Iy t© outputtypeO , respectively.

Except for the param etric types, any Fabl satem ent w hich introduces a type is equivakent to
a s=stof DAM L+0 IL statem ents about the type. This w as flustated by the definitton of Point
which appeared earlier. Only a part of the DAM L+0 Il formalian is used for this purpose. A
new Fabl chss can be ntroduced by subchssing a dam lRestriction. W ithn the
dam 1R estriction, properties may be restricted ether (1) by dam lhasvalue, or @) by
dam 1:toC lass w ih an optional dam 1m axC ardnality or dam licardinality restriction w ih
valie 1. The effect is that properties m ay be assioned values, ormay be assigned types. If a
property is assigned a type, i may optionally be restricted to have ether exactly one, or at
most one valie of that type. A new clhss may alo be ntroduced as a dam LintersectionO £
existing chsses. Any DAM L+0 IL clss may appear as a kgal Fabl type, because any RDF
type atall can =0 appear, but Fabl syntax w ill only generate types 1n the subset just described,
and Fabls type deduction m echanism s w ill not fully explbi avaibbk hfomation 1 types
outside the subset. Coverage ofmore of DAM L+0 IL: can be Inplm ented 1 future extensions
of Fablw ithout disturbing the correctness of code w ritten forthe current subset.

Here are the details. A Fablchss definiton sartsw ih

class('classname') ;

and endsw ih

endClass () ;

W ihin the definiton, satem ents of the form
var pathname = expression;

called an assignm entand

var [qualifier] [type] pathname;

called an assertion may appear. The possble values of the optional qualifier are exists,
optional, and muldvaluied (exists is the defauly). A pattmame is a sequence of names of
propertes, sspamted by dots ("."). and represents sequential sekction of the values of
properties albng the path. The assertion:

var [qualifier] type pathname;

means that, for all ekements X of the class being defined, If v is a value of X pathnam e,
then v bebngs to type. The qualifier exists (egp. optional, mulivalied) means that
X pathnam e musthave exactly one value (esp.atmostone value, any num berofvalies).

var [qualifier] pathname;

makes no chin about the type of X pathnam e, only about the cardiality of the set of
valuesw hich assum es ([depending on the qualifier) .
The assignm ent

var pathname = expression;

m eans that the value of the sbt denoted by the patiinam e is nitalized to the value of the
expression at the tine when the member X is created, or when the clhss is nsaled (see
bebw) .Here are exam pks:

class ('Rectangle') ;

var Point geom:center;

var geom:width; //already declared to be a xsd:double in geom:
var geom:height; //already declared to be a xsd:double in geom:
endClass () ;

class ('RedObject') ;
var color:color = color:red;
endClass () ;

class ('RedRectangleCenteredOnXaxis') ;
var Rectangle && RedObject this;

var geom:center.geom:xc = 0.0;
endClass () ;

I the st exampk, The & & operator denotes conjunction, and the pathnam e this refers to
m em bers of the class being defined, so that

var class this;

m eans that the class w ithin w hose definiton the statem ent appears is a subchss of class.

The transhtion of Fabl chss defnitons imto DAML+OIL RDF is staghtforward.
Assertons tanshte nto t©Class mwesrictions, and ther qualifiers to cardmality or
m axC ardinality restrictions. Assgnments transhte o hasvalie restrictions. The only
m hor com plication is that, when pathnam es of Iength greater than one appear, helper classes
are autom atically generated which express the consttants on htemedite valies I path
traversal detailsomm ited).

9.Dynam ic Installation of C lasses

Recallthat

x.rdf:type = C;

asserts that x bebngs to dam I.Clss C . Such satements can be executed at any tine,
thereby dynam ically adding class m em berships. The effect of the satem ent is not jast to add

the triple asserting class m em bership, but also t© apply the consrantswhich C imposes on is
m em bers. Consider, forexamplk:

var rect = new(Rectangle) ;

rect.rdf :type = RedRectangleCenteredOnXaxis;

Recall that RedRectangleCenteredOnXaxis asserts oonsant vales for sbts
geom :center geom xc and color:color. Consequently, after the assertion that x belongs t© this
chss, the folbw Ing tripkes are added t© the graph:

<x,rdf:type,RedRectangleCenteredOnXaxis>
<x,color:colorOf, color:red>,
<X,geom:center, center-uris,
<center-uri, rdf :type, geom:Point>
<center-uri,geom:xc,0.0>

Here, center-uri represents an anonym ous node w hich has been created to represent the
value of the geom centerproperty ofx.

10.Im plem entation of Param etric Types

Here is the definiton ofBagO £:

class ('BagOf') ;

var daml:Class this;
var memberType;
endClass () ;

daml:Class function BagOf (rdfs:Class tp)

var BagOf rs;

rs = new(BagOf) ;

rs . memberType = tp;

rs . uri = 'nurl:fablParametricTypes/' + 'BagOf (' + uriEncode(tp.uri) +

return rs;

This definitton appears wihn the Fabl lnguage definiton, where m em berType has
already been declred to be a UniqueProperty of type rdfs:C lass. The opemtor uriEncode
encodes reserved characters (such as ":" and "/) as descrbed 1 the URI sendard [11]. Note
that BagO £ mpkm ents a one-to-onemap from the URIsoftypes T o the URIsofBago £(T').
The mpkmentation of the other parmmetric types ListOF, SeqgO f, and Function are
anabgous. Fabl programmers can htroduce thelr own parametric types usihg the same

stategy .

11.Typesof FablE xpressions

Fabl is not just a lnguage 11 which types may be created and manijulbted, but a typed
nguage 1n the more usual senee that each Fabl expression E is assigned an rdfs.Class. O£

oourse, any partcubr Fablvalie (i node 1 the active graph) m ay have artbirarily m any types,
but a Fabl expression is assigned one of the types which the values of the expression is
expected to assum e. Types of fimction applications are deduced I the usualway. If a Fabl
fimction £ is defined by

O function f(I, ag, ... Iy ax)

{

then the type of £(k,..4y) 80 i i,..0y have types I ... Iy . Range assertions are expbied 1n
type deduction conceming property selections. If the tripke

<P, rdfs:range, T>

Ispresent 1 the active graph forproperty P, the expression

X.P;

Isgiven type BagO £(T'), unless P is asserted to be unwvalied, n which case the type of x P

i T. (If mor than one range type I assbned to P, this is equivalent t assigning the
conjunction of the range types.)

E~T

perform s a type cast of the expression E o type T . Type casts are checked at untin e: if the
valie of E doesnot e n T when E~T is executed, an enor is thrown. Sinpk coercion rmuks

are aloo mpkmnented; Or examplke hts coerce to doubks, and conjmctions coerce to their
oconjuncts.

12 .Functonsand M ethods

A finction definiton :

O function fname (I, ag, ... Iy ax))

{

adds a fimction t© the active graph under the decorated nam e

'f’+hash(uri encode(I,.uri),...uri encode(Iy.uri), fname)+' '+fname;

The purpose of decoration is to support polymomphim by assgning different URIs to
fimctions w hose 1put types differ. If the fimction definition appearsw ihin the scope of a class
defnion, the fimcton is added beneath the URI of the chss, and is mvoked 1 the usual
mammer ofm ethods: <objects fnam e(...). If preceded by the optional keyw ord final a m ethod
carmot be overridden. The effect of a Java abstract m ethod is obtained by cluding a property
of functional type I a clss definition. O verriding of m ethods takes plce as a side effect of
clhss nsaThtion when the clhss being hisalled assigns values to fimctional properties. This
simpk treatment of method overriding is more flexblk than conventional treatments; for

exam plk, dynam i s@alhtion of clhsses m ay change the set of m ethods nstalled 1n an obect
at any tin e, not only at obpct-creation tine as i Java or C++ . These ponts are ustrated by
exam pls justbebw . The Fablexpression:

f[IOr . . -In]

denotes the variant of £ wih the given Input types. For exam plktw ice [SegO f&sd :int)]
denotes the varent of tw ice w hich takes sequences of nts as input. The Fabloperator:

supplyArguments (functionalValue,ay, .. .ay)

retums the function which resuls from fixing the first N argum ents to functionalv alue at
the valuesof ay,..ay .Now , consider the foTow 1ng code:

class('Displayable') ;
var Function(fabl:void) Displayable\display;

endClass () ;

N ote that by giving D igplayable\digplay as the nam e of the functional property, w e have
albcated a URT for that property 11 the hirarchy beneath the URT for D igplayable. This
tedhnique can be used 1 any context where a property which pertains © only one clhss is
w anted. Consideralso a concrete variant w hich digplays rectangles:

fabl:void function display(Rectangle r)

{
}
Then, w 1h

class('DisplayableRectangle') ;

var Displayable && Rectangle this;

var Displayable\display = supplyArguments (display[Rectangle], this);
endClass () ;

a clhbss is defined which is a subclhss of both Rectangle and D igplayable, and which
assigns concrete fimctions t© the conesponding finctional properties 1 the btter class. This is
sin fbr t© what happens when a C++ or Java chss contahs a virtual method which is
Inplem ented by am ethod defined 1 a subchss. A s noted earlier, the w iring of virtuialm ethods
to their in plem entations can only take plhce at obct creation tine 1 Java or C++, and cannot
be undone thereafter, whereas Fabl albws wirng of fimctional propertes to ther
Inplm entations to take plhace atany tin e during a com putation, via, orexampk

someRectanglePreviouslyUndisplayable.rdf :type = DisplayableRectangle;

Fabl supports assertion of constaints as part of clhss definitions - constaits which are
appled to members at chss nsalbton tine, and mahtaned thersafter by a constrant
propagation m echanism . The constrant facility is beyond the scope of this paper.

13.CodeasRDF

The foregoing discussion has described how Fabl data and types are rendered as sets of
RDF trpks. The rem aining varkety of Fablentity w hich needs expression n RD F is code.

Code is represented by elem ents of the class fablXob K ob = "eX ecutabk ocbEct"). X b
has subchsses for representing the atoms of code (gbbal varibks, bcal vareblks, and
constants), and for the supported control stuctures blbdcks, if-else, bops, et). Here is the
chssXob:

class('Xob') ;

//atomic Xob classes such as Xlocal do not require flattening
var optional Function (Xob,Xob) Xob\flatten;

var rdfs:Class Xob\valueType;

endClass () ;

Subchsses of X ob mclide:

class ('Xconstant'); //Constant appearing in code
var Xob this;

var Xconstant\value;

endClass () ;

class ('Xlocal'); //Local variable
var Xob this;

var xsd:string Xlocall\name;
endClass () ;

class ('Xif"') ;

var Xob this;

var Xob Xif\condition;

var Xob Xif\true;

var optional Xob Xif\false;
endClass () ;

class ('Xapply'); //application of a function to arguments
var Xob this;

var AnyFunction Xapply\function;

var SeqOf (Xob) Xapply\arguments;

endClass () ;

(The type AnyFuncton mpresnts the unibn of all of the functon types
Function © ,I..Iy)) The Fabl statem ent

if (test(x)) action(2);

transhtes to the X ob given by thisRD F':

<fabl:Xif>
<fabl:Xif.conditions>
<fabl:Xapply>
<fabl:Xapply.function rdf:resource="#£001lale6f test"/>
<fabl :Xapply.arguments>
<rdf:seqg>
<rdf:1li>
<fabl:Xlocal>
<fabl:Xlocal .name>x</fabl:Xlocal .name>
</ fabl:Xlocal>
</rdf:1li>
</rdf :seqg>
</ fabl :Xapply.arguments >
</fabl :Xapply>
</fabl:Xif.condition>

<fabl:Xif.true>
<fabl:Xapply>
<fabl:Xapply.function rdf:resource="#£001lale6f action"/>
<fabl :Xapply.arguments>
<rdf:seqg>
<rdf:1li>
< fabl :Xconstant Xconstant.value=2/>
</rdf:1li>
</rdf :seqg>
</ fabl :Xapply.arguments >
</fabl :Xapply>
</fabl:Xif.trues>
<fabl:Xif>

f001a0e6f action is the decorated nam e of the varint of action which takes an xsd:int as
Tput. V etbose as this is, - om is the X ob properties. Corecting this om ission for the X local
woul add the folbw g Ines in the scope of the X Jocalekm ent:

<rdf :type rdf:resource = "http://purl.oclc.org/net/nurl/fabl/Xob"/>
<fabl :Xob.valueType rdf:resource =
"http://www.w3.0rg/2000/10/XMLSchema:int"/>

(The X ob\flatten property does not appear because X locals do not require flatening). A
1Tl exposition of the set of all X ob classes is beyond the soope of this paper, but the above
exam pks should ndicate the sin pk and direct approach taken. The class

class ('Xfunction') ;

var xsd:string Xfunction\name;

var rdfs:Class Xfunction\returnType;

var SeqOf (Xlocal) Xfunction\parameters;
var SeqOf (Xlocal) Xfunction\localVariables;
var Xob Xfunction\code;

var SeqOf (xsd:byte) Xfunction\byteCode;
endClass () ;

defines an Inplkmentation of a function. W hen a Fabl function is defined, the code is
analyzed, producing an X fiincton as result. This X function is assined as the value of the
decorated nam e of the fumction.

The folow g steps are Ivolved I transhting the source code of a Fabl fimction or
comm and nto an X function :

Source code [Parser] ->

Parse tree [Analyzer] -»>

Type-analyzed form (Xob) [Flattener]->
Flattened form (Xob) [Assembler] ->

Byte Code (executed by the Fabl virtual machine)

AT of these steps are Inplkm ented 1 Fabl. The parse tree is a hierarchical list soucture 1n
the Lip traditon w hose kaves are tokens; a token 1 tum is a literal anmotated by its syntactic
category.A flatX ob is one n which all control stuctures have been unw ound, resuting h a
flat bbck of code whose only control prin tives are conditonal and uncondiional jum ps.
Separating out flattenng as a ssparate step 1 analysis supports extensiboility by new contiol
suctures, asw illbe seen . amom ent.

The analysis step is tBbk driven: i s mpkmented by an extensble collection of
constructors for ndvidual tokens. The constructor property of a token is a fimction of type
Function X ob dam 1.1, ist) w hich, w hen supplied w ih a parse tree w hose operator is the token,
retums the analysis of that tree. H ere is the code for the constructor for if. The parse of an if
satement isa Iistof the form (If <conditons> <actions).

Xob function if tf (daml:List x)

{

var Xob cnd,ift,Xif rs;

cnd = analyze(x[1]); //the condition

if (cnd.Xob\valueType!=xsd:boolean) error('Test in IF not boolean');
ift = analyze (x[2]);

rs = new(Xif) ;

rs . Xif\condition = cnd;

rs . Xif\true = ift; //no value need be assigned for Xif\false
return rs;

}
x N] sekects the N th elem ent of the Iist. Then, the smtEment

ifToken.constructor = if tf[daml:List];

assions this fimction as the consttuctor for the if token. M ore than one constuctormay be
assigned to a token; each is tried 1 tum untilone succeeds.

The X if chss, Ike other non-prin iive control souctures, nclides a method for flattening
aw ay occurences of the class nto a pattem of jum ps and gotos details om ited) . C onstuctors
and flattening m ethods =l on a lTorary of utdlides form anjpulbting X obs, such as the finction
m etaA pply, which constucts an application of a fimction t© argum ents, and m etaC ast w hich
yEedsa X ob w ih a different type, but representing the sam e com putation, as is argum ent.

This sin pk archiecture inplm ents the whole of the Fabl lnguage. The crucil agoect of
the archiecture is that it is fully open to extension w thin RDF.New contiol stuctures, type
constuctors, param etrically polym ophic operators, annotations for purposes such as agoect-
orented programm Ing [12], and other varieties of nguage features can all be htroduced by
bading RDF files containing their descriptions. The core Fabl inplm entation iself comes
it being w hen the defaul configuration fike bads the rekvant RD F; a different configuration
file draw g on a different supply of RD F w ould yEl anothervarient of the language. This is
the sense h w hich the In plem entation provides an open fram ew ork for describing com putation
N RDF, mather than a fixed language.

Finally, note once again that X cbs provide a fomalian for representing com putation i
RDF which does not depend for is definiton on any particulr source nguage nor on arty
particulr m ethod for execution. That is, it form alizes com putation within RDF, as prom is=ed
by the title of the paper, and can yEH the benefits sketched 1 the htioduction.

14 .Im plem entation

The practicality of an RD F-based com putational form alim is a central issue for this paper,
SO size and performm ance data forour nibal in plm entation are relevant.

The inplmentation consists of a anall kemel writen In C . The size of the kemel as a
W IiTel executebke i 120 kibbytes. The kemel ncludes the byte-code ntewreter, a
generation-scavengig gatbage collector, and a bader for our bhary format for RDF. The
rem ainder of the in plem entation consists of FablsRD F self description, w hich consum es 700
kibbytes m our RDF biary format. A oompressed self-hsalling verson of the
mpkmnentation, which includes the Fabl self description, consumes 310 kibbytes. Startup
tine (that is, oad of the Fabl s=lf description) is about one third of a second on a 400M HZ
Pentim II. Prin idve benchm arks show perform ance sin fbr to scrpting briguages such as
JavaScript (@s nplkmented 1 Itemet Explrer 5.0 by Jscript) and Python. H ow ever, further
work on performance should yild much better results, shoe the lnguage is stongly typed,
and am enabke t© m any of the sam e perform ance tednigques as Java.

The full value of fom alizing computation w ithin RDF w ill be r=alized only by an open
standard. W e regard Fablas a proof-of-concept for such a fom alization. In the context of a
standards effort, we would be w illing t© contrbute as O pen Source w hatever part of Fabls
Inplm entation is found t© be relvant.

15.FutureW ork

The current Fabl in plem entation treats the external RD F world asa store of RD F trpke sets,
which are activated explicitly via loadR df or getR df. How ever, an hteresting direction for
future work is the definiton of a rem ote nvocation m echanism for RD F-based com putation.
H ere is an outlne of one possibility .

V alues of the fabl:describedBy property m ght inclide URL s w hich denote serversaswell
asRDF pages. In this case, getRdfU) would not bad any RD F . Instead, a connection would
e made to the server (or servers) S designated by the value () of fabl:describedBy on U . In
this scenarbo, the responsibiliy of S is t evaluate properties, ghblbals, and fimctions n the URT
hierarchy ooted at U . W henever a propetty E P, a gbbal G , ora fimction application F &) is
evaluated In the client C, and the URTIof E, G, or F is an extenson of U, a r=quest i
forw arded to the server S, w hich perform s the needed com putation, and retums the result. The
comm unication protocolwould iself be RD F-based, abng the Ines proposed on the www —
rdf- nterestm ailing List[13]. Such an approach would provide simplk and transparent access to
disodouted com putational resources to the programmer, whik retaihng full decouplng of
description of computation N RD F from choices about source language and in plm entation.

16.0 ther XM L D escriptions of C om putation

Inperative com putational constructs appear I several XM L Bnguages. Two prom ent
exampls are SM IL [14] and XSLT [15], m which, for examplk, condiional execution of
statem ents is represented by the <sw itch> and <xsl:ifs> tags, respectively. The ain s of these
form alizations are Iin i=d to specialized varieties of com putation which the lnguages target.
Scripting nguages encoded n XM L include XM L Script[16] and X FA Scrt[17].

Footnotes

1.Fabl™ ia tradem ark of The B ehavirEngie Com pany, and is pronounced "Ebk".
2. The standardization of JavaScript SECM A script[18]

R eferences

[l1W 3C RDF M odeland Syntax W orking G roup . R esource D escription Framew otk RD F) M odeland Syntax
Specification, http :/Avww w3 org/TR REC -rdf-syntax/, February 1999

] Ian H onocks, Frank van H amm ekn, Peter Patel Schnetdder, eds.DAM L+0O IL. M arch 2001),

http :/Avww dam Lorg2001 /03 Aam I+ oil-index, M arch 2001

B] ChrisW aterson.RD F: back-end archiecture,

http :/Avww m ozilla orgdfback-end-architecture htm 1, A ugust 1999

4] BranM cBride.Jena -A JavaAPIforRDF,

http :/Avww—uk hplhp com foeoplefowm Adf/ena/mndexhim ,M ay 2001 (bstupdate)

5] Tin Bray, D ave H ollbander, Andrew Layman, eds.Namegpaces XM L,

http :/Avww w3 org/TR REC -xm }-nam es/, January, 1999

[6] The Dubln Core M etadata Tnitative, hitp :/Aublincore org, July 2001 (Bstupdate)

[7] The B ehavior Engie Com pany, http :/Avww behaviorengine com , July 2001 (astupdate)

[8] Ian H onocks, Frank van H amm ekn, Peter PatelScdmeider, eds. A M odelTheoretic Sem antics for

DAM L+OIL M arch2001),

http :/Avww dam 1org/2001 03 /m odel-theoretic-sam anticshim 1, M arch 2001

Pl DanBrickEy,R .V .Guha, eds.Resource D escription Fram ew otk RD F) Schem a Specification 1 .0,
http:/Avww w3 org/TR 2000, R-rdf-schem a-20000327/,M arch 2000

[10]PaulV .Bion, A shok M ahotra, eds. XM L Schem a Part 2 : D atatypes,

http:/frww w3 org/TR £2001/REC —xm lschema—2-20010502/,M ay 2001

[11] T.Bemers-Lee.Uniform Resource Identifiers (UR 1) : G eneric Syntax, http :/Avww Jdetf org Afo 2396 txt,
August 1998

[12] G rrgorK iczaks, John Lam ping, Anutag M endhekarand ChrisM aeda, C ristina Lopes, Jean-M arc Lohgtier
and John Tw 1n. A gpect-0 riented Programm Ing , 11th European Conference on O biect-0 riented Programm g,
LNCS,vol 1241, SpringerV erbg, 1997

[13] KenM acL.eod, and respondents. Toyig w th an dea:RD F Protocol,

http :/lists w3 org/Archives/PublicAivww-rdf-nteres/2001M ar/0196 him 1, M arch 2001

[14] JeffAyarsetal, eds. Synchronized M ultin ediz ntegration Language (SM IL 2 .0) Specification,

http :/Avww w3 org/TR /2001 D —sm 1120-20010301/,M arch 2001

[15] Jam es C lark, ed. X SL Transform ations K SLT), htip:/Avww w3 org/TR /Aslt, N ovem ber 1999

[16] D ecisbnSoft Lin ied, XM L Script, http :/Avww xm lscriptorg/M ay 2001

[17] XM L ForA 1, Tnc.X FA Scrit, hitp:/Avww xm Iforall.com ogik@a?X FAScript, M ay 2001

[18] ECM A .Standard ECM A -262 — ECM A Script Language Specification,

http:/Avww eana ch/ean al Aand eana—262 him , D ecem ber 1999

