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Abstract

The Coalition Agents Experiment (CoAX) is an international collaboration carried
out under the auspices of DARPA’s Control of Agent-Based Systems (CoABS)
programme. The overall aim of CoAX is to demonstrate how an agent-enabled
infrastructure, based upon the CoABS Grid, can enhance interoperability between
heterogeneous components, including actual military systems, in a realistic
scenario. The scenario is based on a peace-enforcement operation in the year 2012
in ‘Binni’ (a mythical state in Africa) which requires a mix of Coalition forces to
work together.

The agent infrastructure allows the construction of a coalition command
support system, with agents grouped into domains to reflect real-world
organisational and national boundaries. Each domain is a community of agents that
has its own secure communications, capabilities and information spaces, and is
governed by policies at the domain, host, virtual machine and agent levels.

Communications between agents, whilst given some minimal semantic
grounding via the use of conversation policies, should in future utilise emerging
Semantic Web technology. In particular, the Resource Description Framework
(RDF) and the DARPA Agent Mark-up Language (DAML) promise to deliver a
greater degree of semantic interoperability. This paper describes practical
experiences taking initial steps towards this goal, implementing agents that use a
query language to exchange data between RDF models and implementing a
prototype RDF browser. We discuss the specific requirements for querying,
merging and attributing of RDF data by agents in a coalition environment, and the
particular restrictions affecting agents on controlled networks, rather than on the
Web. Finally, some challenges and requirements for the future are outlined.



1. Introduction

In order to demonstrate how planning, visualisation and execution activities in coalition
operations can be augmented by agent technology, a collaborative programme of work has been
put together under DARPA's Control of Agent-Based Systems programme (CoABS). This work
involves 16 partner organisations, and is entitled the Coalition Agents Experiment (CoAX) [1,2].

This paper begins with an introduction to the challenges of coalition operations and
our technical approach to solving them, and gives an overview of the CoAX demonstrations. It
then outlines the infrastructure and systems in the current demonstration and the techniques used
to integrate them. In evaluating this demonstration, areas that would benefit from Semantic Web
technology are noted.

Our initial work on implementing agents that use RDF, including a basic query
language and a RDF browser, is then described. This is followed by discussion of the benefits
gained from this approach and the limitations of the current technology, in particular the
querying and merging of RDF models and the attribution of data via the reification mechanism.
The importance of software tools for rapid integration is emphasised. Finally, we note the
potential advantages of the emerging DAML language [3] over RDF, and discuss future work.

2. Background

The year is 2012, and climate change in the Sudanese plain of East Africa has enabled the
production and export of wheat in large quantities. The only way to transport this increasing
volume of food to the European market is by sea. Competition over sea port access has led the
government of Gao to launch a pre-emptive strike to open a corridor to the sea, declaring the
annexed area to be the independent country of Binni. This action has incensed the government of
neighbouring Agadez, who have launched repeated guerrilla activities to dislodge the Gao
forces. Because of this dangerously unstable situation in Binni, the UN has passed a Resolution
to create and deploy a UN War Avoidance Force for Binni (UNWAFB).

"Binni - Gateway to the Golden Bowl of Africa" [4] is a hypothetical scenario based
on the Sudanese Plain. The countries of Gao, Agadez and Binni are fictitious, as are the events,
organisations and personalities that lead to the crisis requiring UN intervention.

The vignette used for the CoAX experiment concerns a specific operation in which
the UN forces are attempting to keep mutually hostile forces apart long enough to enable peace
negotiations (figure 1). Incomplete, changing information, as well as deliberate misinformation
from some parties hampers the UN efforts.

2.1 Coalition operations

Coalition military operations will become an increasingly important feature in future years. In
any military operation, enabling commanders to have access to timely and relevant information
is crucially important to a successful outcome. The difficulties are compounded in the virtual
organisation of the coalition since there will be a mixture of equipment, operational procedures,
languages, etc. Moreover, there is a pressing need to set up such organisations rapidly in order to
respond decisively to emerging crises.



Figure 1. The fictional nation of Binni. The UN forces are considering a controversial firestorm to separate the
warring forces of Gao and Agadez. Misinformation from Gao agents initially leads the UN to believe that the forces

are further to the west than is in fact the case.

2.2 Technical approach

From a technical perspective, coping with the inherent heterogeneity and tight time-scales are
major challenges. Traditional approaches to software integration are too inflexible to share
information between such disparate command systems at short notice. Agent-oriented
approaches are believed to offer advantages in such environments [5].

The principal motivation of the CoAX experiment is to investigate the conjecture that
software agent technology can provide an advanced infrastructure able to support the demanding
information, Command and Control requirements of a coalition force [2].

For the purposes of this research, an agent is defined as a software entity acting on
behalf of, or mediating the actions of, a human user and having the ability to autonomously carry
out tasks to achieve goals or support the activities of the user. Here, agents are supporting a
community of human experts; they must not ‘take over’ or become obtrusive or obstructive.
Their purpose is to help people cope with the complexities of working collaboratively in a
distributed information environment. Agents operate mostly behind the scenes, integrated into
familiar tools and methods of working, linking and fusing disparate sources of information as
available — tasks well-matched with Semantic Web technologies.  The CoAX project is
producing a series of staged demonstrations of increasing complexity, showing agents and agent-



wrapped legacy systems communicating over the CoABS Grid [6], developed at Global InfoTek,
Inc (GITI). The Grid is a framework for federating heterogeneous systems. Although the Grid is
being developed with a military application in mind, it is a general-purpose agent framework
with potential use by a variety of applications.

In recent demonstrations, agents are grouped into domains, using the Knowledgeable
Agent-oriented System (KAoS) from Boeing and the University of West Florida’s Institute for
Human and Machine Cognition (IHMC) [7]. This system enables domain policies to be changed
at runtime; for example, to cut off communications with a domain containing hostile agents or to
drastically reduce CPU and network resources to agents launching a denial-of-service attack.

The current demonstration at the time of writing has grown to 25 agents grouped into
6 domains; elements of this demonstration are outlined below. The full demonstration
(documents, images and video) may be seen in detail on the CoAX web-site [1]. The
demonstration is genuinely heterogeneous, comprising systems and agents from at least 6
different organisations (including two real military systems) with more to be added in future
demonstrations for 2001 and beyond.

3. Current demonstration

3.1 CoABS Grid Infrastructure

At the most basic level, the agents and systems to be integrated require infrastructure for
discovery of other agents, and messaging between agents. This is provided by the CoABS Grid.
Based on Sun's Jini services [8], the Grid allows registration and advertisement of agent
capabilities, and communication by message passing. Agents can be added or removed, or their
advertisements updated, without reconfiguration of the network. Agents are automatically purged
from the registry after a short time if they fail.  Multiple lookup services may be used, located by
multicast or unicast protocols.

In addition, the Grid provides functionality such as logging, visualisation, encryption
and authentication.

3.2 Knowledgeable Agent-oriented System (KAoS)

At a higher level, the KAoS framework is used to group agents into domains, to facilitate policy
administration. Agents in a domain are subject to the policies of that domain. A given domain
can extend across host boundaries and, conversely, multiple domains can exist concurrently on
the same host. Policies can be scoped variously to individual agent instances, agents of a given
class, agents running on a given host or instance of a platform (e.g., a single Java VM), or agents
in a given domain or sub-domain [7]. The KAoS Policy Administration Tool (KPAT), a
graphical user interface to domain management functionality, has been developed to make policy
specification, revision, and application easier for administrators without specialized training.

The concept of policy-based management necessarily extends beyond typical
security concerns. For example, KAoS policies will ultimately be used to represent not only
authorization, encryption, access and resource control policies, but also conversation policies,
mobility policies, domain registration policies, and various forms of obligation policies. The



Figure 2. Agents are shown grouped into domains. Each domain contains two specialised agents: the Domain
Manager (DM) and Matchmaker (MM). There are domains for countries (the US, and the fictional country of Gao),
for coalition structures (such as the Joint Forces Air Component HQ), and for functional groups (Observers). Some

agents (shown below the line) are not domain-aware, but have proxies within the domains. Various agents are
associated with databases (DB).  Other agents (MBP, Intel, CAMPS, WeatherViz, PP) are described below.

KAoS policy representation is currently very simple but an implementation of a more
sophisticated DAML-based policy representation will be available later this year.
The domain structure of the current demonstration is shown in figure 2. Each domain contains
two specialised agents, the Domain Manager, which enforces (directly or indirectly) the domain
policies, and the Matchmaker, which provides functionality similar to the Grid registry.

KAoS also provides support for defining and using conversation policies: the
structuring of messages for particular purposes or speech acts, such as Inform, Query, Request
and others. Each basic policy forms a finite state machine, where each message, labelled with a
verb identifying its purpose, represents a transition between states [9]. More general constraint-
based DAML policy representations and mechanisms incorporating additional communications
aspects, such as time limits, and the ability to compose policies from smaller fragments, are
under development [10].

3.3 Systems integrated

The demonstration, at the time of writing, includes 25 agents from about six different
organisations, grouped into six domains, written using three different programming languages.
Some of the main elements are described briefly below.

3.3.1 Master Battle Planner (MBP)

A core agent in the demonstration is MBP – a highly effective visual planning-tool
for air operations. MBP assists air planners by providing them with an intuitive visualisation on
which they can manipulate the air intelligence information, assets, targets and missions, using a
map-based graphical user interface (figure 3).



Figure 3. Master Battle Planner map display of the fictional countries of Binni, Gao and Agadez. A selected mission
is highlighted in yellow; proceeding from an airbase, to refuelling tanker, via waypoints and airspaces to the target,

and back to base by a different route.

The operator can interact with these operational entities and can plan individual air missions (or
complex packages of missions) by dragging and dropping offensive units onto targets on the
map. Supporting / defensive elements are added in the same way. The system provides the
operator with analytical tools to assess the planned air operations.

MBP is a monolithic C++ application, which has been agent-enabled by wrapping it
in Java code, using the Java Native Interface, and providing a proxy agent which communicates
with the wrapper using the JavaSpaces API [11]. The agent enabling of MBP allows it to receive
scenario data (targets, assets, airspaces etc) from other agents (Intel, figure 2), and update this
information continuously. Information concerning other air missions can be accepted and merged
with missions planned within MBP; export of mission data to other agents is under development.

3.3.2 Consolidated Air Mobility Planning System (CAMPS)

The second real military system integrated into the demonstration is Air Force Research
Laboratories’ CAMPS Mission Planner. CAMPS develops notional schedules for aircraft to pick
up and deliver cargo within specified time windows. It takes into account numerous constraints
on aircraft capabilities, port capabilities, etc. [12–14].

In the demonstration scenario, CAMPS schedules airlifts of cargo into Binni. These
airlift flights could potentially conflict with offensive air missions, so the scheduled flights are
requested from the CAMPS agent, translated by another agent, and sent to MBP, forming part of



the normal MBP air visualisation.
This is an interesting example, as only partial translation is possible; CAMPS and

MBP differ fundamentally in their definition of air missions. A CAMPS mission consists of an
arbitrary collection of flights, where a flight is a single journey from A to B by a single aircraft.
However, an MBP mission consists of a starting point and a route, which must return to the
starting point (perhaps by a different path), and may consist of multiple aircraft. CAMPS can
therefore produce routes that have no fully valid representation in MBP, although they could be
partially represented or indicated graphically. This is a fundamental limit on the achievable
degree of interoperability.

3.3.3 Ariadne

In a similar manner, weather information extracted from web-sites by the Ariadne system from
USC/ISI is gathered by the WeatherViz agent (figure 2). It is translated and forwarded to MBP,
again forming part of the normal picture of the air situation. Ariadne facilitates access to web-
based data sources via a wrapper/mediator approach [15,16]. Wrappers that make Web sources
look like databases can be rapidly constructed; these interpret a request (expressed in SQL or
some other structured language) against a Web source and return a structured reply. The
mediator software answers queries efficiently using these sources as if they formed a single
database. Translation of the XML from Ariadne into the XML expected by MBP was initially
handled by custom code, but can now be performed more easily using XSL Transformations
[17].

3.3.4 Process Panel

The Artificial Intelligence Applications Institute (AIAI) of the University of Edinburgh has
provided its IP2 Process Panel agent (PP, figure 2), which provides user level, configurable task
and process management aids for inter-agent co-operation [18]. Each user may have their own
panel to reflect their role in a co-operative process. The Process Panel keeps track of the air
planning process through inter-agent messages.

3.3.5 NOMADS agents

The NOMADS mobile agent system from IHMC is used in the demonstration to allow untrusted
agents (Gao Observer) to run in the Observer domain alongside trusted agents (DGO, DAO,
figure 2). The Aroma virtual machine provides dynamic resource control mechanisms, protecting
the host from a malicious or buggy agent [19]. When a denial-of-service attack is mounted by an
agent from Gao, the excessive usage of CPU, disk and network is detected and a change of
policy is automatically executed, in concert with the KAoS domain management mechanisms. A
human operator can then choose to lower the resource limits even further using KPAT.

3.3.6 Future additions

Future demonstrations for 2001 and beyond have introduced further agent systems and
capabilities. These include a multi-level co-ordination agent from the University of Michigan
[20]; a field observation system using Dartmouth College’s D’Agents technology [21]; and
eGents (agents communicating over e-mail) from Object Services and Consulting, Inc [22]. This
demonstration extends into the execution phase of coalition operations, showing near real-time



visualisation of air operations based upon data from agents.

4. Evaluation of demonstration

4.1 Aims and achievements

The aim of this demonstration was to investigate how software agent technology can provide an
advanced coalition infrastructure. We were successful in integrating a variety of real military
systems and agents, and were able to demonstrate increased functionality and interoperability
between previously stand-alone systems. The systems were written separately by different
organisations, in different languages, under different operating systems. Dynamic data sources
were an important feature, removing the reliance on static data files. Agents also integrated data
from disparate systems seamlessly as far as the user was concerned; weather and airlift missions
were merged into the MBP view of air operations, for example.

Agent enabling of real legacy systems via wrappers was found viable, even where the
original system made no allowance for integration with other systems.

Using KAoS, the ability to group agents into domains was demonstrated, and to
change the domain policies dynamically; for example, to cut off communications with a domain
containing hostile agents. Using KAoS domain management tools in conjunction with the Aroma
virtual machine also allowed dynamic resource limits to be applied to individual agents to
prevent denial-of-service attacks.

4.2 What is missing?

However, the vision of the CoAX project is to achieve rapid, dynamic coalition formation, in
which agent domains are created and removed on-the-fly, and agents come and go.
Interoperability between agents should be achieved very rapidly, with as little human
intervention as possible. Agent interoperability was achieved relatively easily, due to the
discovery and messaging facilities provided by the CoABS Grid, but message structures,
primarily in XML, were pre-agreed, or translators were hand-coded. This process is time-
consuming. Tools such as XSLT can accelerate the process (and for rapid integration, graphical
tools based on languages such as XSLT may still be valuable) but are still human driven. A
fundamental problem for such agents is that there is no mechanism for sharing terms and
relations (via shared or partially shared ontologies). Consequently, messages have no
unambiguous meaning (even to humans) outside of the agent that generates them. XML provides
shared syntax, but not shared meaning.

4.3 How can Semantic Web technology help?

Berners-Lee et al write: [23] "Some low-level service-discovery schemes are currently available,
such as Microsoft's Universal Plug and Play, which focuses on connecting different types of
devices, and Sun Microsystems's Jini, which aims to connect services. These initiatives,
however, attack the problem at a structural or syntactic level and rely heavily on standardisation
of a predetermined set of functionality descriptions. Standardisation can only go so far, because
we can't anticipate all possible future needs. The Semantic Web, in contrast, is more flexible."

The CoABS Grid infrastructure used in this work is based upon Sun’s Jini, but



requires only one standard interface – the ‘AgentRep’ which provides inter-agent messaging
functionality, with arbitrary message content. It is therefore possible to combine the discovery
services of Jini and the messaging, security, logging and other services of the CoABS Grid with
machine-understandable semantics by writing messages in emerging Semantic Web languages
such as the Resource Description Framework (RDF) and the DARPA Agent Mark-up Language
(DAML).

5. Initial work

The aim of this initial work was to implement simple agents using a Semantic Web language to
exchange data about the demonstration scenario. Practical experience with RDF and RDF
Schema will assist in understanding the issues involved and assessing the current technology.

5.1 Special features of the Coalition domain

There are some differences between the Web and the networks expected in a command
information system.

Hendler [24] predicts that on the Web we will not see large complex consistent
ontologies, carefully constructed by expert AI researchers, and shared by a great number of
users. Rather, we will see a great number of small ontological components largely created of
pointers to each other and developed by Web users in much the same way that Web content is
currently created. There has been little work so far on developing explicit ontologies for coalition
operations; we expect that the situation will improve as benefits from the initial Semantic Web
technology are realised.

A coalition network could perhaps be regarded as being ‘on the edge of the Web’,
consisting of multiple fire-walled networks with guarded portals between them, and between
them and the Web itself. A greater degree of control will be present. Medium size ontologies
would be expected, constructed with care by individual coalition members and groups of
members, but not all directly interoperable or consistent with each other. The challenge is to map
between them at short notice. In a best-case scenario, many of these ontologies would use
standard ontology libraries developed over time for common domains. Complete mapping is not
always possible, as noted in the description earlier (section 3.3.2) of mapping data between MBP
and CAMPS. There is a need for techniques and tools to handle this, perhaps detecting and
flagging the problematic elements for human attention. Hendler [24] notes that there are many
possible techniques to map between ontologies, and that this is an interesting challenge for the
future.

Some of the initial interest in Semantic Web technology has focussed on the mark-up
of conventional web pages with semantic metadata for improved search engines and web-
crawling agents. In a coalition system, some data may be utilised in this way, but the main focus
is on inter-agent messages expressed directly in RDF or another Semantic Web language. It is
important to note that not all agents in a command system will have direct access to the WWW,
for obvious security reasons.

5.2 Resource Description Framework (RDF)

Our initial work was based on RDF and RDF Schema (RDFS), following the initial W3C



Recommendation and the release of a number of parsers, APIs and frameworks for RDF. Due to
the time scales of this project, it was essential to investigate technologies available now, as well
as potential for the future. We regard RDF as an initial test-bed for investigating Semantic Web
issues, and a stepping-stone to future technologies.

DAML promises a far greater level of power but is still at an early stage of
development as far as tools are concerned. For rapid coalition integration, effective tools are the
essential requirement. A powerful and expressive language is not useful in practice until it can be
written, modified and applied rapidly, by those without expertise in logic: “A crucial aspect of
creating the Semantic Web is to enable users who are not logic experts to create machine-
readable Web content” [24].

There is also an interesting correspondence between RDF and DCADM (Defence
Command and Army Data Model), the UK Ministry of Defence’s preferred – and indeed in
many cases, mandated – solution [25]. DCADM is a combination of two technologies. The first
is an innovative immutable datastore. In most datastores when a record is modified the old
version is overwritten by the new version. In the DCADM immutable datastore, both versions
are preserved. This has considerable potential advantages in the sort of Command and Control
systems that are envisaged as the primary applications of DCADM. The datastore can support
multiple competing values, reflecting the uncertainty factor present in the 'fog of war', and it
maintains a complete audit trail of who changed what values and when.

The second component of DCADM is a metadata model that can be used to describe
the data models that form the basis for interoperability. In this respect, DCADM and RDF
provide essentially equivalent facilities. Data models developed in DCADM are readily
translated into RDF, and vice versa.

We have implemented simple agents, running on the CoABS Grid inside KAoS
domains, which can store and query RDF databases. They make use of basic RDF Schema
ontologies for defining the class and property hierarchy and the range and domain constraints on
properties and their values. The entities in the scenario fall into a number of superclasses, such as
mobile or fixed objects, natural features or man-made installations, locations, airspaces, or
activities. Basic constraints apply: physical objects possess a location; vehicles can have a speed;
airfields have runways. RDF Schema cannot however express many other features of the
domain; even the fact that friends are disjoint from enemies.

The agents need to acquire information from other agents, and from their own
databases. We have therefore implemented a simple RDF query language and query engine with
an SQL-like syntax, similar to other recent query languages [26,27]. Most RDF query language
proposals appear to be client-server oriented, assuming fast access by the client to a local
database in-memory or on disk. However, with a mainly peer-to-peer model, where access via
messages over a network may be slow, special features may be required.

As an alternative to returning individual values of properties matched by a query, the
query engine can return the sub-graph of triples matched by the query, as a complete RDF
document, using a query of the form:

select triples where <constraint list>

This allows the returned data to be directly parsed and merged into an agent’s database.
Returning complete RDF documents in this way supplies the context necessary when using
asynchronous messaging; if individual context-free values were returned they would have to be
somehow matched up with large numbers of outstanding queries.



Queries may be formed which return the sub-graph accessible from a specified
resource, so an agent can ask for everything known about a resource in a single query, using the
form:

select reachable where <constraint list>

Without this feature, a potentially very large number of queries would be required.
Reading or editing raw RDF syntax is difficult, and rapidly becomes impractical as

the number of triples increases. In the process of developing the experimental schemas, a
prototype RDF browser has been implemented. This allows the user to seamlessly navigate
through both the schema and data, searching for resources either by type or via the query
language. All resources are clickable hotlinks, and a history is kept, allowing navigation of an
RDF graph in the now-familiar style of a Web browser.  Namespaces are automatically
abbreviated to namespace prefixes, e.g. 'rdf:type'. In figure 4, scenario data from the CoAX
demonstration is being queried for resources of a specified type; the properties of a selected
resource can then be viewed. In figure 5, the classes in the corresponding RDF Schema are being
examined; super-classes and properties related to the selected class are shown.

This browser was not intended to replace dedicated ontology editors, but to provide
tighter support for the specific features of RDF, to handle data and schema seamlessly, and
handle large numbers of instances. Some ontology editors do not support features of RDF such
as the sub-property hierarchy, global properties, and multiple domains and ranges for properties;
in general they cannot handle arbitrary RDF.  The aim is to facilitate the creation and
examination of models without having to hand-code RDF in XML; there is a lack of mature tools
for this at present.

Desirable enhancements to the browser include:
• support for reification and containers (creation, and checking of imported data for all 4

properties of a reification quad; checking and repairing collection properties (_1, _2,...)
for correctness; filtering data by origin and timestamp;

• enhanced namespaces support including filtering by namespace;
• explicit support for properties (subPropertyOf relationship, range and domain);
• editing support (selection of sub-graphs and multiple nodes; clean deletion of entire

objects, collections, and reified statements);
• graphical display of portions of an RDF graph.



Figure 4. RDF browser. A search for resources of a specified type has been performed; these resources are listed on
the left. All the properties of the selected resource (Bandar Airbase) are shown – these form hotlinks that can be

explored further by clicking on them. Literals are not hotlinks, of course; these are shown in black.

Figure 5. RDF Browser class display, showing superclasses, properties of the class (both direct and inherited) and
usage of this class by other properties.



6. Discussion

6.1 Advantages of RDF

RDF provides a formal data model for representing entities (resources) and the relations between
them, and a syntax for XML serialisation of data models. RDF describes directed labelled
graphs, rather than just labelled trees as in XML. The use of RDF is a move away from inflexible
XML data structures and DTDs, allowing more natural handling of partial data, which inevitably
occur in uncertain military environments. For example, a system that represents an entity such as
a radar installation may store many attributes such as location, allegiance, range, type and so on;
yet if a radar is detected electronically at a great distance, we know very little about it and cannot
'fill in all the blanks' of a database form or XML DTD. Rather, data arrive gradually from
disparate sources and must be merged together. Partial data records or changes in document
structure can be problematic when handling XML, although more recent XML technologies such
as XPath and XQuery have increased flexibility to some extent. These advances also counter the
size and complexity of code previously required to handle XML trees.

RDF Schema adds a very basic ontological framework, although it appears from the
many discussions on the RDF mailing lists that the semantics of RDF and RDFS are unclear in
the current specifications [28]. This may be hindering the development of systems with formal
semantics on the top of RDF, such as DAML. Very basic inference is possible using the RDFS
class and property hierarchy definitions, and property restrictions [24]. This is already used to
some extent by current query engines.

Although this seems trivial, it offers a substantial improvement over the keyword
searches that Web users suffer at present, and a qualitatively different capability from semantics-
free XML data. In many cases, the level of power needed to achieve significant benefits in
interoperability is quite small, and so RDF and RDF Schema are useful in themselves. For
example, in this coalition scenario, it is easy to search for data about any damaged friendly
ground units, without needing to know their exact type. One could also learn their exact types
(subclasses of the class GroundUnit) in the same query. Simple constraints on properties would
also allow queries to specify particular regions in space or time. A flexible query interface to
agents creates possibilities for all kinds of useful (and perhaps unforeseen) interactions between
systems, in contrast with rigid one-to-one message links.

6.2 Current limitations

The growing industry support for XML points to an XML-based solution for semantic mark-up,
yet RDF is verbose and not easily readable or writeable by humans. ‘Notation 3’ [29] is an
interesting experiment with a more concise syntax (with additional logic elements). Authoring
and processing tools would of course make the syntax less of an issue.

For rapid integration of agents, tools are the emphasis, not languages. A more
powerful language is of no use in this domain if it cannot be deployed easily. Tools and APIs are
needed throughout the lifecycle of the data – creation, checking, storing, querying and inference,
mapping and converting.

Judging from the large volume of debate on the RDF mailing lists, the development
of such tools appears to be suffering delays due to the substantial number of unresolved issues
concerning the RDF and RDF Schema standards, and their interpretation [28].



A practical problem encountered is that there is an assumption in some APIs and
parsers that schemas will always be loaded over the Web from their home site (rather than being
cached) which is not realistic on a coalition network.

6.3 Querying requirements

A query language allows agents to seek and exchange information, especially when enhanced by
a schema/ontology, but of course we rely on agents understanding the same query language, and
there is no standard query language for RDF.

A standard language is of less importance when querying local databases or Web
documents; any suitable language could be used. In a community of heterogeneous agents there
is a need to talk to other agents in a common tongue, or at least translate down to some ‘lowest
common denominator’.

A variety of languages have been developed [26, 27, 30–33] with differing
capabilities. Many do not yet deal with some of the more controversial aspects of RDF such as
reification and collections. Kokkelink [34] has suggested work on standard RDF querying by
attempting to re-use previous experience with XML in the development of XPath, XQuery and
XSL Transformations.

In the absence of a standard query language, a simple technique for gaining rapid
interoperability at the expense of increased messaging load is the use of a remote model
interface. The majority of current RDF frameworks allow an RDF graph (model) to be queried
using a single triple where each of the subject, predicate and/or object can be a wildcard. This
can be regarded as the lowest common denominator for querying. Instead of sending complex
queries for a remote agent to process, the work could be done locally, sending multiple messages
invoking only the basic query method of the remote agent. As far as the initiating agent is
concerned, the process is the same as querying a local (albeit very slow) model database (figure
6). Primitive agents can be made to support complex queries, and agents using differing query
languages can be rapidly integrated, although the load on the network will greatly increase.

One could also send a mobile agent implementing complex queries to a remote host,
interrogate agents there using low-level messages, and return the results. This could reduce the
network load but requires more sophisticated infrastructure, especially for security issues.

Figure 6. Use of a remote model interface, allowing Agent 1 to perform complex querying of the more primitive
Agent 2, which only supports matching of single wild-carded triples.



6.4 Merging models

A fundamental process in a command information system is the collection and fusion of data
from many sources. Merging data from multiple RDF sources (agents) into a single model raises
several issues. Firstly, the identification of redundant anonymous resources. Anonymous
resources are usually assigned locally unique identifiers by the parser; if the data in an RDF
model originates from multiple documents, the same (anonymous) resource in different
documents will normally receive two different identifiers. For example, figure 7 shows data
obtained from three separate sources, which require merging.
Unfortunately, it does not seem possible to determine in general whether the duplication is
intended, and therefore whether the redundancy can safely be eliminated. Cardinality restrictions,
available in DAML, could help to resolve this issue. For example, in RDF, either of the graphs in
figure 8 might be chosen. Can John Smith only have one weight? It might initially appear so, but
suppose the data track his weight during a diet! Each weight would then be valid for a particular
point in time, and could possess equivalent values in various units.

Figure 7. Three RDF data models which we are attempting to merge. The anonymous middle nodes are assigned a
locally unique identifier by the parser, but we cannot determine unambiguously whether they are in fact the same

resource.

Figure 8. Two possible results of merging the models in figure 7.



Secondly, merging of RDF Bags or Alternatives cannot be achieved without renumbering all the
member attributes (rdf:_n) of one of the collections. Merging of Sequences does not necessarily
make sense in general. Other problems with the RDF containers have been identified [28]; for
example, adding an element to an RDF Bag requires one to know all the existing elements.

6.5 Attribution

As mentioned earlier, it is valuable for an agent operating in an uncertain environment to store
multiple competing values, and maintain an audit trail of changes. As levels of trust and other
factors change, the most reliable or up-to-date data can be selected. In a military coalition
context this ability is essential.

Reification provides part of the solution; we can reify statements and attach
additional data (timestamp, origin, trust values) to them. In the example above, it would then be
possible to determine that John Smith weighed 200 pounds (91 Kg) last year but only 180
pounds last week, although the initial value was measured by his doctor and the recent value is
his own optimistic claim! However, once the criteria for selecting competing data values have
been chosen, we still need to query the data as easily as if it were ‘flat’. Most current APIs and
query languages do not appear to provide a solution yet. Reification is a contentious issue in
RDF with a number of problems identified. The concept of contexts has been introduced as an
improvement [28,35].

In practical cases, it may be that no decision can be made automatically; to assist
human decisions, there is a need for ways of visualising the changes in data according to time, or
source.

6.6 DAML versus RDF(S)

The case for DAML is strongly made in several recent papers [24,36], and centres on DAML’s
greater expressive power and formal semantics. RDF(S) is not considered to provide sufficient
expressive power for many applications.

DAML+OIL, an ontology language based upon description logics and encoded in
RDF, provides a rich set of constructs not available in RDF(S). In addition to defining classes
and properties, one can express the disjointness or equivalence of classes and a variety of
restrictions on the usage of classes and properties, such as cardinality. Additional information
can be expressed about properties, for example stating that they are transitive. New classes can
be constructed by taking the complement of another class or the intersection of other classes. A
Property can be declared as the inverse of other properties. In recent versions, DAML+OIL has
also been integrated with the XML Schema datatypes. A logical language, DAML-L, is under
development.

There are some incompatibilities between RDF(S) and DAML. Firstly, the semantics
of domain and range are different from those in RDF Schema. Secondly, the RDF Schema
specification demands that the subclass relation between classes must be acyclic. DAML+OIL
deliberately has no such restriction. Finally, parsers based on the current RDF specification will
not support the daml:collection parse type, although a pre-processing stage can overcome this
problem. The DAML collections address the previously mentioned problems with RDF Bags
(section 6.4).



6.7 What next ?

Initial proof-of-concept contributions to the CoAX experiment will involve replacing some of the
XML communication links with RDF to compare the relative complexity and robustness of the
code. The simple agents used for this will provide a test-bed for showing the increased flexibility
of RDF(S), for example assembling partial data from several sources to form a complete
description, and queries assisted by the class hierarchy defined in the schema. Agents supporting
a common query language, or a remote model interface, are far more accessible to other agents,
greatly increasing the interaction possibilities.

We also wish to explore the use of RDF Reification or Contexts [35] for tagging data
with their origin, reliability, timestamp etc. This is obviously of crucial importance in a
command information system where it is essential to be able to roll back or exclude false or
inaccurate data. There is much scope here for work on tools to visualise the data, providing
different views of the data filtered by time, origin, etc.

A further step would be the interoperation of agents without fully shared
terminology, via translator agents. There are interesting practical issues in handling the agent
conversation policies with interruptions to request translation of terms.

Further steps, such as more expressive ontologies and the use of inference rules,
move into the territory of DAML; we expect that emerging DAML tools and the DAML-L logic
language will provide us with an opportunity to explore these capabilities. As previously noted,
we are collaborating with IHMC on specification and implementation of a DAML-based policy
representation (KAoS Policy Language, or KPL), which will used to represent both simple
atomic policies (e.g., Java permissions) and complex constructions. Representation of both
authorizations (i.e., permitting, permitting with qualification, or forbidding some action) and
obligations (i.e., requiring some action to be performed) will be possible. We expect that an
initial specification of KPL will be available later this year.

7. Conclusions

Although RDF and RDF Schema have a number of flaws, they are useable for a variety of
applications and for agent experimentation. In the context of CoAX, for example, they allow
richer interactions between agents, and more useful and complex queries. Thus, RDF and RDF
Schema still offer interesting possibilities and can contribute significantly to agent
interoperability in a coalition setting. Alongside the development of languages, tools and agents,
expertise in constructing ontologies for coalition operations will be needed. Some of the flaws
will be addressed by the emerging DAML family of languages; others relate to the RDF data
model and syntax; these need to be addressed. There is also a profusion of RDF query languages,
although work toward a standard has been proposed.

DAML adds the formal semantics and expressiveness demanded by the logic
community, but is incomplete as yet; we look forward to future developments, particularly in the
area of tools for creating, parsing, checking, querying and reasoning with the languages.

One of the greatest challenges ahead lies in the development of mechanisms for
merging or mapping between ontologies automatically, as far as possible, and fusing data from
disparate sources, enabling heterogeneous agent systems to interoperate rapidly and effectively.
It is important to acknowledge that any fundamental differences between systems (such as
described in section 3.2.2 will always be a barrier to complete interoperability.
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