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Abstract. Ontologies have been used for formal representation of knowledge
for many years now. One possible knowledge representation language for on-
tologies is the OWL 2 Web Ontology Language, informally OWL 2. The OWL
specification includes the definition of variants of OWL, with different levels of
expressiveness. OWL DL and OWL Lite are based on Description Logics, for
which sound and complete reasoners exits. Unfortunately, all these reasoners are
too complex for embedded systems. But since evaluation of ontologies on these
resource constrained devices becomes more and more necessary (e.g. for diagnos-
tics) we developed an OWL reasoner for embedded devices. We use the OWL 2
sub language OWL 2 RL, which can be implemented using rule-based reasoning
engines. In this paper we present our used embedded hardware, the implemented
reasoning component, and results regarding performance and memory consump-
tion.

1 Introduction

Ontologies have been used for formal representation of knowledge for many years now.
An ontology is an engineering artifact consisting of a vocabulary used to describe some
domain. Additional constraints capture additional knowledge about the domain. One
possible knowledge representation language for ontologies is the OWL 2 Web Ontol-
ogy Language, informally OWL 2. The OWL specification includes the definition of
variants of OWL, with different levels of expressiveness. To answer queries over ontol-
ogy classes and instances some reasoning mechanism is needed. OWL DL and OWL
Lite are based on Description Logics, for which sound and complete reasoners exits.
Unfortunately, all these reasoners are too complex for embedded systems. But since
evaluation of ontologies on these resource constrained devices becomes more and more
necessary (e.g. for diagnostics) we developed an OWL reasoner for embedded devices.

A possible use case for embedded reasoning is industrial diagnosis, for example
in a car. A car has several system elements like the engine and tires. These elements
have physical characteristics, e.g. a tire has a pressure and the engine has a temperature
and specific fuel efficiency. Sensor nodes can measure these physical characteristics
and deliver the measurement values to a control unit. An ontology specifies all known
problems and how to detect them. To create such an ontology, a predefined language is
used. With the help of the ontology and the measured data, the software can find the root



cause of the error and may give suggestions how to fix it. To realize these possibilities,
in many cases it is important that the software is executable on limited hardware like an
embedded system. This work answers the questions of whether reasoning on embedded
hardware is possible and how it can be implemented.

The paper is organized as follows. The next section presents already existing ap-
proaches for embedded reasoning. This is followed by a detailed explanation of our
activities to use an existing DL reasoner on embedded hardware. After this, our rule-
based approach is introduced. We present an architecture and the reasoning process in
the next section. In the evaluation section, we show the results of the evaluation process.
The paper concludes with a summary and a future outlook.

2 Related Work

Various implementations of OWL reasoners exist, e.g. Pellet, FaCT++ and RacerPro.
But the memory requirements for installation and at runtime are quite high. Some of
them are limited to use on desktop systems or servers only. In the following, we present
some approaches that focus on embedded hardware.

SweetRules [5] pioneered rule-based implementation of DL with rule engines. Sweet-
Rules does not implement OWL 2, but it supports inferencing in Description Logic
Programs subset of DL via translation of first DAML, then OWL 1, into rule engines
(Jess/CLIPS).

Bossam[15] is a RETE-based example of a DL reasoner. Bossam is based on a
forward chaining production rule engine, which only needs 750Kb runtime memory. In
2007 Bossam has been performance-tuned and released in a new version. The meta-
reasoning approach of Bossam was to be changed to a translation-based approach. The
results of this work were never released.

One further embedded reasoner is Pocket KRHyper[9]. The core of the system is a
first order theorem prover and model generator based on the hyper tableaux calculus.
But the development of Pocket KRHyper stopped years ago. This reasoner is not up to
date and no support is provided. Documentation on how exactly KRHyper was designed
and implemented is also not available.

Another embedded reasoner is ©OR[1]. It is a lightweight OWL description logic
reasoner for Biomedical Engineering. It was developed for resource-constrained de-
vices in order to enrich them with knowledge processing and reasoning capabilities. To
express semantic queries efficiently, the team of 4OR has developed SCENT, which is a
Semantic Device Language for N-Triples. This approach is similar to but different from
ours. #OR is more complex and comes with more overhead. Also it is only designed
for OWL Lite and not for OWL 2. For this reason, only a few parts are further pursued
in this work.

The first popular approach to emulate a reasoner using CLIPS is described in [13].
Here the object oriented extension of CLIPS, called COOL, was used to build a reasoner
for the OWL1 Lite[23] sub-language. This reasoner, called O-DEVICE, is a knowledge
base system for reasoning and querying OWL ontologies by implementing RDF/OWL
entailments in the form of production rules in order to apply the formal semantics of
the language. O-Device is an OWL 1 reasoner which is very powerful and has a lot of



features. Its complexity makes it hard to optimize this reasoner for the use on embedded
hardware.

The authors in [14] describe an OWL 2 RL reasoner based on Jena and Pellet, both
of which are based on Java.

As described in [12], another approach exists to dynamically perform reasoning
depending on the specified query. The authors create rules dynamically for the given
ontology. In the case of the deterministic end state of OWL 2 RL reasoning, the com-
plexity of this approach resembles our approach. Therefore, the worst-case memory
usage is equal to the first approach because in a specially designed case it can be possi-
ble to draw every possible conclusion of the ontology.

3 Reasoning on an Embedded Device with Standard DL Reasoners

There are already a lot of implemented DL reasoners. In this section, we analyze whether
the most used reasoners can be executed on embedded hardware. As an embedded sys-
tem, we use a Gumstix Verdex Pro [6], as shown in Figure 1. We opt for the Gumstix

Fig. 1. Gumstix Verdex Pro

because of its modular hardware architecture and its compact size and weight. Addi-
tionally, it is best suited for industrial applications because of its supported operating
temperature up to 85 °C. The Gumstix can also be used in vibrating environments which
often occurs if the embedded device is e.g. attached to motors or moving machines. The
key features of this stick are: Marvell PXA270 CPU with XScale @ 400 MHz, 64 MB
RAM, and 16 MB Flash. The Gumstix was designed to run with a stand alone Linux
root image. Additional software can be downloaded or compiled using the OpenEm-
bedded framework.

In the following, the compatibility of the DL reasoners Pellet, Fact++, and CEL
with the Gumstix is analyzed.

3.1 Pellet

Pellet is an open source OWL 2 reasoner for Java. Pellet supports OWL 2 profiles
including OWL 2 EL. It incorporates optimizations for nominals, conjunctive query
answering, and incremental reasoning [16]. For these tests, Pellet 2.0.2 was used. Pellet



is a very powerfully reasoner which uses the tableau reasoning algorithm[7], supports
consistency checking, SWRL[17], and DL Safe Rules.

Because of its complexity, Pellet is rather resource intensive. It needs at least 512
MB of RAM at startup plus memory for the Java environment. Anyhow we tried to
adapt Pellet to our embedded system. The startup was modified so that Pellet only may
use 40 MB of RAM at startup. Unfortunately, the Java virtual machine on the Gumstix
is not fully compatible with current Sun Java and Pellet also needs these unsupported
functions. Thus, at the moment there is no possibility to reason with the Pellet reasoner
on the Gumstix Verdex Pro.

There are other Java DL reasoner, like HOOLET, which cannot be executed on our
hardware for the same reasons like Pellet.

3.2 FaCT++

FaCT++ is an open source OWL-DL reasoner written in C++ [20]. For this evaluation
the FaCT++ version 1.3.0 is used. After compiling FaCT++ on the embedded hardware
three possibilities exist to interact with FaCT++: (i) FaCT++ as an HTTP DIG reasoner,
(ii) FaCT++ as an OWL reasoner with HTTP interface, (iii) Standalone FaCT++ with a
Lisp-like interface.

First we describe the connection via DIG interface [3], which is a standardized
XML interface to Description Logic systems. The DIG language is an XML based
representation of ontological entities such as classes, properties, and individuals, and
also axioms such as subclass axioms, disjoint axioms, and equivalent class axioms.
Unfortunately, there is no useful tool for creating these files for the embedded hardware
platform. For that reason the DIG Interface is not considered for our approach.

The next possibility to connect with FaCT++ is the OWL API[8]. The OWL API is
a Java API for creating, manipulating and serializing OWL ontologies. Since the OWL
API is implemented in Java, the Java native interface (JNI) is necessary. But Java is not
completely supported, and the OWL API is not applicable.

The third way to use FaCT++ is as a stand-alone version. For this, an ontology in
a special format has to be created, which can be done by an online OWL Ontology
converter, e.g. [22]. This procedure works well on a normal x86 computer, on the em-
bedded hardware there are I/O problems while reading the input data. The problem is
caused by the ARM architecture.

Since none of the three approaches work, FaCT++ cannot be used for reasoning on
embedded systems.

33 CEL

CEL [2] is a polynomial-time classifier written in Allegro Common Lisp, which is a
closed source, commercial Common Lisp development system and not available for
the ARM architecture. On that account CEL unfortunately cannot run on the Gumstix
hardware until a version for a free common lisp implementation is published.



4 Rule-based OWL Reasoning

In the last section we analyzed various reasoners. Unfortunately, non of the above men-
tioned reasoner can currently be executed on the chosen embedded hardware. One rea-
son is the complexity of the underlying description logic. Therefore, we decided to
concentrate on an OWL DL subset to make it tractable.

Fortunately, with the advent of OWL 2 new profiles were introduced by the W3C.
Currently the following profiles are defined: OWL 2 EL, OWL 2 QL and OWL 2 RL.
OWL 2 EL serves polynomial time algorithms for standard reasoning tasks especially
for applications which need very large ontologies. It is based on the description logic
EL++. All known approaches for EL reasoning are O(n*)[11]. OWL 2 QL handles
conjunctive queries to be answered in LogSpace. It is designed for lightweight ontolo-
gies with a large number of individuals. OWL 2 RL is the profile which is used for
the reasoner in this paper. It enables polynomial time reasoning using rule engines and
operating directly on RDF triples[24]. The complexity of the RL sub language is O(n?)
for standard reasoning. The mathematical proof for that can be done similar to [10].
Therefore OWL 2 RL is the best documented profile. Since it is processable with a
standard rule engine, we decided to implement this subset for embedded reasoning.

4.1 CLIPS

In this paper a rule-based system for inferencing and querying OWL ontologies is con-
sidered. For this, CLIPS [19] the well-known production rule engine is used because of
the small size of CLIPS and its programming language which makes it possible to port
it to almost any embedded system. Additionally, it is fast, efficient, and open source.
CLIPS is based on a fact database and production rules. When the conditions of a
rule match the existing facts, the rule is placed in the conflict set. A conflict resolution
mechanism selects a rule for firing its action which may alter the fact database. Rule
condition matching is performed incrementally using the RETE[4] algorithm.

4.2 Rule-based Reasoning

The concept of our rule-based reasoner is based on a concept-ontology and an instance-
ontology which should be reasoned with and a query which should be answered. The
rules for the reasoning process can be found in [24]. They are subdivided into 6 parts:
i the Semantics of Equality, ii the Semantics of Axioms about Properties, iii the Se-
mantics of Classes, iv the Semantics of Class Axioms, v the Semantics of Data types,
and vi the Semantics of Schema Vocabulary. The rules are described by the W3C in the
following style:

’Name \If \Then ‘
leq-sym|T (7, owl : sameAs, 7y)|T (?y, owl : sameAs, 7))

Every rule has a name, some if-conditions, and some then-parts. It is also possible
to have no if-conditions. This means that the rule should be executed at program start.



For the embedded reasoning process, we transformed all of the 80 rules of the W3C to
the CLIPS syntax. In CLIPS the rule from above is expressed with the following syntax:

(defrule eq—sym
(. ?7x owl:sameAs ?y)
=>
(assert (. ?y owl:sameAs ?x))

4.3 Reasoning Component

We use CLIPS as a key element for our embedded reasoning component. Nevertheless,
additional modules are necessary. The complete architecture of the reasoning compo-
nent is shown in Figure 2. The reasoning component is written in C++ which uses
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Fig. 2. System architecture

CLIPS functions internally. In order to get the OWL 2 RL functions into our system,



the rules defined in [24] by the W3C were converted into CLIPS rules and are stored in
the file Rules.clp.

Another important element which must be processed is the ontology. We assume the
OWL ontology is available in an XML based format. This OWL file is inserted in the
tool Raptor[18]. In this step the ontology is checked for correctness and converted into
a format called ntriples[26]. In this format facts are saved as collections of triples with
subject, predicate, and object. Together with the rules and the facts CLIPS performs the
reasoning. This means that the facts are input data for the OWL RL rules. When all
possible facts are added, the reasoning process is finished and a complete materialized
knowledge base is created. This means that no new information can be drawn of the
existing information and the reasoning process is finished. This knowledge base is based
on OWL 2 RL which is included in the rules. The only exception is the semantics
of data types. This information causes massive performance problems, because these
rules generate too many facts, which finally overflows the memory. Therefore, we only
specify which literal is of which data type. This is done by a separate rule.

The test whether a literal is defined from a type which is not contained in the value
space is also performed during parsing the OWL RDF file to an ntriples file using the
tool Raptor. If there is any syntactical data type error in the ontology, raptor will find it
at parsing time. To interact with this knowledge base an interface is necessary to enable
the insertion of queries. Executing queries is only possible using a further rule. This
rule must be manually created and contains CLIPS code. The syntax of the query is not
conform to other knowledge based query languages like SPARQL[25]. Furthermore the
rule which contains the query must exist before the reasoning begins.

4.4 Queries

To send a query to the system the simplest way is to create a new rule in CLIPS which
fires if the query conditions are passed. For example to identify which student takes the
math course the query rule looks like:

(defrule abfrage
(. 7?7x rdf:type Student)
(. ?x takesCourse math)
=>
(printout t "Query 1:

"

?7x  crlf)

)

That prints out appropriate facts that pass the conditions. We are currently working on
a SPARQL - CLIPS transformation that allows specifying standard SPARQL queries to
our system.

4.5 Formal Analysis

When reasoning is performed it is important to observe the worst-case memory usage.
Embedded systems do not have something like swap space. Therefore the complete
calculation has to fit in the RAM. For example the reasoner needs 80 MB of memory
for a full materialization and only 30 MB for a dynamical result calculation, for an



example query. In this case it is possible to run this calculation dynamically on a system
with only 60 MB of free memory. But if the calculated results are cached the size of
memory will raise up the 80 MB because the possible answers are the same as in a fully
materialized knowledge base and it cannot be assumed that some requests will never be
part of the knowledge base. Therefore an approach with caching the data comes with
no benefit, although it can save memory. But this memory cannot be used for anything
because it might be needed for further requests. The situation is different if the results
are not cached after calculating. Here only the worst case memory usage in a single
query is important.

To compare the first approach in which all calculations are performed a priori and
the second approach which calculates the results only when they are requested, a theo-
retical analysis is necessary.

When looking at the first approach, the worst case memory usage depends on the
given ontology. Since the ontology is completely materialized the memory consump-
tion is constantly maximal. There are no relevant differences in memory consumption
depending on the requests. In the second approach the worst-case memory usage after
the reasoning process is the same as in the first approach. This means that there is no
difference for memory usage if the reasoning is performed a priori or dynamically after
a request.

To prove this hypothesis we apply graph theory and use a strongly connected graph.
A directed graph is called strongly connected if there is a path from each vertex in
the graph to every other vertex. We create the graph from the rules provided by the
W3C [24]. The vertices of the graph are OWL 2 RL statements like subClassOf,
sameAs, or range. The edges are defined by the rules. If a rule transforms an OWL
statement in another an edge in the graph is drawn. To keep the graph as simple as
possible only statements are considered which are in the If and Else part of rules.
If a statement appears only in one side it cannot trigger other statements and it is not
added by other statements and can be ignored. Statements with the same expression in
the If and Else condition in one rule, are also ignored because this does not affect
the connectivity of the graph. For illustration, a sample part of the graph, defined by the
rule prp — rng:

’Name \If \Then ‘

T(?p,rdf s : range, ?c)
PPIE|T (22, 7p, 7y)

T(?y, rdf : type,?c)

This rule defines the following node relationship in a graph:

e o @

Fig. 3. Representation of the OWL 2 RL rules in a graph



For all OWL rules, the graph is successively built. The resulting graph is strongly
connected, which means no information is insignificant for answering a query. There-
fore for answering a request nearly all rules and facts are needed. Exceptions are rules
which check the consistency of the ontology. The else statement of these rules contains
only false. To get a correct answer these rules can be ignored theoretically but it is
not recommended because they ensure that the ontology is correct. This shows that the
second approach needs in the long run generally the same memory amount as the first
approach.

There is only a theoretical case in which the worst-case memory usage of the sec-
ond approach is smaller. When it occurs that the graph is subdivided into two or more
subgraphs the worst case memory usage for a given request is the fully materialized
subgraph. In this case it can be assured that in no case more memory than the largest
fully materialized subgraph is needed and the remaining memory could be used. It is a
very unlikely case in which the efficiency of the reasoning could be increased.

5 [Evaluation

In this section the evaluation of our rule-based reasoning approach is presented. At first
the evaluation environment is introduced. After this, the evaluation results are shown.
Generally, we focused on performance and memory usage of the embedded system in
contrast to implementing the solution on a system without hardware restrictions.

5.1 Evaluation Environment

The performance of our system has been tested with the Lehigh University Benchmark
(LUBM). We use LUBM, because the results can be compared to the results of other
reasoners. It is a benchmark developed to evaluate the performance of several Semantic
Web repositories in a standardized way. LUBM contains a university domain ontology
(Univ-Bench), customizable synthetic data, and a set of test queries. This ontology con-
tains 309 triples and an additional data generator called UBA exists. This tool generates
syntactic OWL data based on the Univ-Bench ontology. We only consider the OWL 2
RL part of the ontology for our evaluation purposes.

For our use cases we identified a number of data sets from a few hundred up to a
maximum of 25.000 and we started tests with three different benchmark files. Every
benchmark contains 309 concept triples. After the reasoning step, some queries from
[21] are tested on the data set to determine if the reasoning was correct.

During the tests, the performance of the systems, the memory from the CLIPS rea-
soner is observed. The unit for the CPU time is m/1" [million Ticks]. One million ticks
are equal to one second calculation time in the cpu and only the time when the CPU
works on this process is measured. The time information in the diagrams in the follow-
ing section is specified in CPU-seconds.

The situation for the memory measurement is similar. Analyzing the memory usage
of a reasoning process with and without calculating the CLIPS memory usage shows
that the measurement itself needs less than 10KB of memory.



As primary benchmark setup the University0_0 is taken. This is called "bench1" and
contains 1657 class instances and 6896 property instances. Together with University0_1
there are 2984 class instances and 12260 property instances, which is called "bench2".
This and Universityl_1 have 4430 class instances and 18246 property instances and
called "bench3".

After the reasoning step, the queries 1, 2 and 5 from [21] tested on the data set.

For comparing our results with PC based reasoning, we use an Intel Pentium 4 @
3200 Mhz and hyper threading, 1 GB of RAM, 4 GB of swap space and Linux (Ubuntu
9.10).

5.2 Evaluation Results

In the following, the performance and memory analysis is presented.

Performance Analysis Figure 4 shows the complete runtime of the reasoner at the
workstation (¢y7) and the Gumstix (¢¢). The graphs are nearly linear. In fact the runtime
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Fig. 4. CPU Time of the rule-based reasoning approach

can be approximated on the workstation by
tw(x) = 1.9-107%2% — 0.016z + 100,

in which tyy is the runtime and x the number of triples. On the Gumstix the runtime ¢¢
can be approximated by

ta(x) = 3.4- 107z — 0.4x 4 2279.



The complexity of the reasoner is polynomial. Therefore the approximated runtime
on the Gumstix can be calculated from the time on the workstation by

ta(tw) =2.8-107% -3, + 13-ty — 9.8.

An execution on the workstation is therefore approximately 12 to 14 times faster
than on the Gumstix. This is acceptable considering that the workstation has an eight
times higher clock frequency.

For the further evaluation five different measuring points are defined: (1) after all
facts are loaded, (2) after the processing, (3) after the first query, (4) after the second
query, and (5) after the third query. These points are depicted in the Figures. Most time
is needed for the processing, see Figure 5. Here all facts are calculated and all rules have
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Fig. 5. CPU-Time on Gumstix

fired. The executions of the queries normally does not need much time, the first query
nevertheless needs still a long time. The explanation for this is that CLIPS internally
builds some kind of trees or hash tables to find the facts quicker.

Memory Analysis More important than the performance evaluation is the memory
consumption of our approach. The amount of time, the reasoning process takes plays
often only a minor role, because it can be done in the background and real time process-
ing is currently not our focus. The memory consumption is therefore more important
because it is a criterion for exclusion. If the ontology is too large, it cannot be processed
at all. Therefore we need to know how our approach behaves.

In order to reduce the memory usage of CLIPS its memory allocation system was
inspected. CLIPS has an integrated garbage collection. This allocates and de-allocates



numerous types of data structures during runtime and only reserves new memory if it is
actually needed.

Additionally, CLIPS has a special function which tries explicitly to release all mem-
ory which is currently not needed. When this function is called after the reasoning pro-
cess, it can release some memory.

Therefore CLIPS can be forced to use memory economically. This is activated by a
flag. If it is enabled, CLIPS will not save information about the pretty printing of facts.
This disables only formatting and can be deactivated without problems. Activating the
memory release function saves about 5.8% of memory for all facts and improves our
system additionally.

In Figure 6 the memory usage of the Gumstix can be seen. To calculate the approx-
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Fig. 6. Memory of rule-based reasoning approach

imate memory usage the formula
mempoly () = 4.2 - 107522 + 0.69z + 3459,
or for only a few data sets:
memyin(x) = 22 — 5565,

in which mem is the size of needed memory in kilo bytes and z the number of triples.
It is possible to calculate how many triples can be reasoned with a specified memory
size. For this approximation the following formula holds:

triples(z) = —5.3 - 107 %22 + 0.792 — 357.

This is very important for us, since we plan to implement various industrial applications
and with this information we can tailor our needed hardware accordingly.



5.3 Evaluation Summary

In the end of this section we provide some detailed facts of our evaluation. This is
summarized in Table 1.

lNumber of facts[CPU time System II{Mem System II|CPU time System I|Mem System |

8864 8.5mT 7470 kb 80.24 mT 11194 kb
15557 27.54 mT 12686 kb 21446 mT 18932 kb
22991 59.24 mT 18463 kb 437.89 mT 27482 kb

Table 1. Detailed evaluation results

On the right hand side the data for our System I is shown. We made some additional
performance tuning, e.g. compiler options, rule rewriting. This data is shown on the
left side, entitled with System II. The performance gain is considerable. The calculation
time has been reduced to about 12% from the original calculation time, the memory
usage is reduced to about 67%.

Finally, we compared the embedded with a desktop approach. A test ontology took
us 8.5 seconds on the embedded hardware. If we use Fact++, the ontology takes about
6 seconds to process the ontology. Thus, the implementation is only a bit slower on the
embedded hardware, which is a really good result.

6 Embedded Reasoning Applications

We apply the above presented reasoning approach in some sample applications. Key
concept is a digital product memory, which stores product relevant data of the complete
product life cycle. With the reasoning approach we work with the stored data, analyze
them, infer new date and perform appropriate actions.

6.1 Predictive Maintenance

A possible benefit of a product memory is the detection of technical issues when the
product is already deployed in the field. Since the product memory contains a lot of
sensor data, an analysis is useful for diagnostics and predictive maintenance.

An example is an industrial robot that moves a work piece from one machine to an-
other. The robot is equipped with an acceleration sensor. While the robot moves the
work pieces, the sensor values are continuously (every 20 ms) recorded in the digital
product memory of the robot. On basis of this data, an evaluation of the robots product
memory can detect, if the robot still works properly or whether an execution has oc-
curred. A more sophisticated method is not only to detect errors if they have occurred,
but to detect slight changes in the normal behavior. An anomaly detector should report
if new measured data of certain sensors have a different pattern or are beyond the nor-
mal sensor values. The basis for an abnormality detector are sensor values and a domain



ontology which specifies normal behavior. With the embedded reasoner we try to per-
form a mapping of sensor value to machine states. On this basis it can be decided, if the
current state is an allowed one or whether an alarm must be triggered.

6.2 Decentralized Manufacturing Control

The need of products which are tailored to customers’ needs, results in a reduction
of the lot size and implies a more flexible production and the associated processes. In
the course of an increased diversification the changeover time will be a critical cost
factor. This essentially needed flexibility is hard to realize with traditional central con-
trol architectures that can be found in nowadays automation systems. One solution is
a decentralized production control, done by the product itself. The goal is to operate
autonomous working stations and all data that is needed to assemble the product is kept
on the product in the digital product memory. If a product enters the vicinity of a work-
ing station the necessary machine configuration information is sent from the product
memory to the machine and the station accomplishes the necessary tasks.

Thus, if a product is assembled in multiple steps, the necessary data is written to the
product memory when the order is entered into the order system. The data contains the
description of the single production steps with all its parameters, e.g. the position of
bore holes or welds, the used materials, the size or the color. The memory is read by
the machine (e. g. via RFID) and the machine is parameterized and set up accordingly.
If a production step is finished, the product itself is responsible for the routing to the
next station. Depending on its weight and shape either an automated guided vehicle or
a conveyer belt can be used. This inference step is done by our embedded reasoning
component and is therefore an essential step for next generation automation systems.

6.3 Situation Recognition in Assisted Living

Due to the dramatic growth of elderly population, we additionally aim at research of
near-future systems providing elderly people a safe and comfort life during daily liv-
ing. The people have the possibility to stay either at home or still being mobile and
could be relatively healthy or having some physical disabilities or medical liabilities.
The diversity and breadth of these scenarios and realistic approaches make this target
challenging, assuming the use of various medical devices, different home and mobile
systems, heterogeneous and data-rich environments.

A core functionality of such assisted living systems is the conclusion of knowledge
about the activities of the user and the current situation in the environment from low-
level sensor data and to plan the appropriate short-term and long-term reaction. This
reaction on the situations and activities to be recognized are based on situational models
that have to keep reasoning system safe for people using it and preserve the relevancy of
reactions to the situations respectively. Typical reaction aims at recognizing and/or pre-
venting an urgency situation, defined in form of situation rules within ontology-based
situation understanding system.

A small embedded device which can be easily worn on the wrist was chosen. Sensors
are needed that monitor the health state of a person. Thus, the product memory becomes
a patient memory. It records the vital signs and activities of the senior, does some basic



evaluation and executes finally necessary tasks, e.g. informing the patient or sending
text messages to doctors.

Additional rules specify the interaction with the environment, because other objects
in the smart home environment may be equipped with a product memory as well. This
eases the detection of certain situations, e.g. when the temperature of a kettle changes,
maybe tea is prepared. Such activities and interdependencies can be optimally expressed
with rules.

7 Conclusion

This paper shows that it is currently not possible to use a standard OWL reasoner on
the specified embedded system, because existing OWL reasoner are too resource inten-
sive and difficult to port to embedded and source restricted architectures. Therefore, we
use a rule-based approach to achieve OWL reasoning on embedded devices. We apply
OWL 2 RL rules to the rule engine CLIPS to accomplish the OWL behavior. We inte-
grate the rule engine in an embedded architecture to enable ontology processing in an
comfortable and easy way. Several methods for reducing calculation time and memory
consumption were reviewed and selected methods were implemented. The created rea-
soner is compatible with OWL 2 RL with the exception of the semantics of data types
which are deleted due to performance reasons. Performance evaluations and the results
of our approach are very satisfying. Additionally, we are able to calculate the necessary
amount of memory for a given number of facts.

In the future, we will extend our embedded reasoning system. To improve the ex-
pressive power of the reasoner, it can be extended for reasoning with OWL 2 EL using
the work from [11]. Although this will increase the calculation time and the complexity
of reasoning, more complex problems can be addressed.
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