Using Reformulation Trees to Optimize Queries
over Distributed Heterogeneous Sources

Yingjie Li and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.
{yil308, heflin}@cse.lehigh.edu

Abstract. In order to effectively and quickly answer queries in envi-
ronments with distributed RDF/OWL, we present a query optimization
algorithm to identify the potentially relevant Semantic Web data sources
using structural query features and a term index. This algorithm is based
on the observation that the join selectivity of a pair of query triple pat-
terns is often higher than the overall selectivity of these two patterns
treated independently. Given a rule goal tree that expresses the reformu-
lation of a conjunctive query, our algorithm uses a bottom-up approach
to estimate the selectivity of each node. It then prioritizes loading of se-
lective nodes and uses the information from these sources to further con-
strain other nodes. Finally, we use an OWL reasoner to answer queries
over the selected sources and their corresponding ontologies. We have
evaluated our system using both a synthetic data set and a subset of the
real-world Billion Triple Challenge data.

Keywords: information integration, query optimization, query refor-
mulation, source selectivity

1 Introduction

In the Semantic Web, the definitions of resources and the relationship between re-
sources are described by ontologies. The resources in the Web are independently
generated and distributed in many locations. Under such an environment, there
is often the need to integrate the ontologies and their data sources and access
them without regard to the heterogeneity and the dispersion of the ontologies.
Although recent research has led to the development of knowledge bases (KBs)
and/or triple stores to support this need, such systems have many disadvantages.
First, centralized knowledge bases will become stale unless they are frequently
reloaded with fresh data; this can be especially expensive if the knowledge-bases
rely on forward-chaining. Second, they can require significant disk space, espe-
cially for triple stores that use multiple triple indices to optimize queries. For
example, Hexastore [16] replicates each triple six times. Finally, there may be
legal or policy issues that prevent one from copying data or storing it in a central-
ized place. For this reason, we believe it is important to investigate algorithms
that allow data to reside in its original location, and that use summary indexes to

2 Y. Li and J. Heflin

determine which locations contain data relevant to a particular query. In partic-
ular, we have proposed an inverted index-based mechanism that indicates which
documents mention certain URIs and/or literal strings [5]. This simple mecha-
nism is clearly space efficient, but also surprisingly selective for many queries.
However, because this index only indicates if URIs or literal strings are present
in a document, specific answers to a subgoal of the given query cannot be cal-
culated until the sources are physically accessed - an expensive operation given
disk /network latency. To further complicate matters, ontology heterogeneity can
lead to query answers being expressed in ontologies different from those used to
express the query. To solve these issues, we further proposed a flat-structure
query optimization algorithm that selects and processes sources given a set of
conjunctive query rewritings [4]. For each rewriting, this algorithm employs a
source selection strategy that prioritizes selective subgoals of the query and uses
the sources that are relevant to these subgoals to provide constraints that could
make other subgoals more selective. However, there are two key problems with
this algorithm: 1) the number of rewrites can be exponential in the size of the
query, especially when there are complex ontology axioms and 2) the selectivity
of the algorithm is inhibited by its reliance on local information.

To solve the above issues, we present a novel algorithm for optimizing the
selection of sources in ontology-based information integration systems. Like our
prior work, this approach relies on an inverted index; however, the main contri-
butions of this paper are:

— We present a tree-structure algorithm that performs optimizations that con-
sider the structure of a reformulation tree. Using this tree and the term
index, it estimates the most selective subgoals, incrementally loads the rele-
vant sources, and uses the data from the sources to further constrain related
subgoals.

— We demonstrate that this new algorithm outperforms the algorithms pro-
posed in [4] and [5] on both a synthetic data set with 20 ontologies having
significant heterogeneity and a real world data set with 73,889,151 triples
distributed in 21,008,285 documents.

The remainder of the paper is organized as follows: Section 2 reviews related
work. In Section 3, we describe the tree-structure source selection algorithm for
ontology-based information integration. Section 4 describes our experiments and
in Section 5, we conclude and discuss future work.

2 Related Work

Currently, there are mainly three areas of work related with our paper: database
query optimization, RDF query optimization and query answering over dis-
tributed ontologies.

Query optimization has been extensively studied by traditional database re-
searchers since the classic work by Selinger et al. [9]. Variations of these ideas are
still common practice in relational optimizers: use statistics about the database

Using Reformulation Trees to Optimize Queries 3

instance to estimate the cost of a query plan; consider plans with binary joins
in which the inner relation is a base relation (left-deep plans); and postpone
Cartesian product after joins with predicate. Following this, a number of opti-
mization techniques for databases systems were proposed. The representatives
include join-ordering strategies, and techniques that combine a bottom-up eval-
uation with top-down propagation of query variable bindings in the spirit of
the Magic-Sets algorithm [8]. Join-ordering strategies may be heuristic-based or
cost-based; some cost-based approaches depend on the estimation of the join
selectivity; others rely on the fan-out of a literal [12]. All of these database
query optimization techniques are designed for situations where data of different
database relations are stored in the same file. However, in the Semantic Web, it
is very common that data from the same relation is spread among many files.
If the available indices do not completely specify the triples contained in a doc-
ument, then high latency makes determining the extensions of the relations in
these files very expensive. In such situations, query plans need to be developed
incrementally.

In RDF query optimization, RDF data can be serialized and stored in a
database and a SPARQL query can be executed as an SQL join, hence recently
a lot of database join query optimization techniques such as creating indexes have
been applied to improve the performance of SPARQL queries. In recent years,
many researchers have proposed ways of optimizing SPARQL join queries. Mon-
etDB [11] exploits the fact that RDF data typically has many fewer predicates
than triples, thereby vertically partitioning the data for each unique predicate
and sorting each predicate table on subject, object order. RDF-3X [6] and Hex-
astore [16] attempt to achieve scalability by replicating each triple six times
(SPO, SOP, PSO, POS, OPS, OSP): one for each sorting order of subject, pred-
icate and object. It has been demonstrated that this strategy results in good
response time for conjunctive queries. The major disadvantages of both of these
approaches are that they rely on centralized knowledge bases and that the in-
dexes (or replication) are quite expensive in terms of space. YARS?2 [3] is another
native RDF store and query answering system where index structures and query
processing algorithms are designed from scratch and optimized for RDF process-
ing. The novelty of the approach proposed by YARS?2 lies in the use of multiple
indexes to cover different access patterns. However, in this way, if more efficient
query processing can be achieved, more disk space will be needed. GRIN [15] is
a novel index developed specially for RDF graph-matching queries and focuses
on path-like queries that cannot be expressed using existing SPARQL syntax.
This index identifies selected central vertices and the distance of other nodes
from these vertices. However, it is still not clear how GRIN could be adapted for
a distributed context.

In query answering over distributed ontologies, T. Tran et al. [14] proposed
Hermes, which translates a keyword query provided by the user into a feder-
ated query and then decomposes this into separate SPARQL queries that are
issued to web data sources. A number of indexes are used, including a keyword
index, mapping index, and structure index. The most significant drawback to

4 Y. Li and J. Heflin

the approach is that it does not account for rich schema heterogeneity (map-
pings are basically of the subclass/equivalent class variety). Stuckenschmidt et
al. [13] proposed a global data summary for locating data matching query an-
swers in different sources and optimizing the query. However, this method does
not consider the heterogeneity of schemas of the distributed ontologies.

Most of the research on query answering over distributed schemas or ontolo-
gies are based on the P2P architecture. Piazza [2] proposes a language (based on
XQuery/XPath) to describe the semantic mapping between two different ontolo-
gies. In this work, a peer reformulates a query by using the semantic mapping
and forwards the reformulated query to another peer related by the semantic
mapping. DRAGO [10] focuses on a distributed reasoning based on the P2P-like
architecture. In DRAGO, every peer maintains a set of ontologies and the seman-
tic mapping between its local ontologies and remote ontologies located in other
peers. The semantic mapping supported in DRAGO is only the subsumption
relationship between two atomic concepts and ABox reasoning is not supported.
KAONP2P [1] also suggests the P2P-like architecture for query answering over
distributed ontologies. KAONP2P supports more extended semantic mapping
which describes the correspondence between views of two different ontologies,
where each view is represented by a conjunctive query. To support federated
query answering, it generates a virtual ontology including a target ontology to
which the query is issued and the semantic mapping between the target and the
other ontologies. Then, the query evaluation is performed against the virtual
ontology. However, all of these P2P systems have a drawback in that each node
must install system specific P2P software, presenting a barrier to adoption.

3 Query Optimization

In this section, we present some preliminary definitions regarding the distributed
environment for our algorithm, the inverted term index, and the algorithms of
our prior work. We then describe the novel tree-structure algorithm in detail.

3.1 Preliminaries

In the Semantic Web, there exist many ontologies, which can contain classes,
properties and individuals. We assume that the assertions about the ontologies
are spread across many data sources, and that mapping ontologies have been
defined to align the classes and properties of the domain ontologies. For con-
venience of analysis, we separate ontologies (i.e. the class/property definitions
and axioms that relate them) and data sources (assertions of class membership
or property values). Formally, we treat an ontology as a set of axioms and a
data source as a set of RDF triples. A collection of ontologies and data sources
constitute what we call a semantic web space:

Definition 1. (Semantic Web Space) A Semantic Web Space SWS is a tuple
(D, o0, s), where D refers to the set of document identifiers, o refers to an ontology

Using Reformulation Trees to Optimize Queries 5

function that maps D to a set of ontologies and s refers to a source function that
maps D to a set of data sources.

We have chosen to focus on conjunctive queries, which provide the logical
foundation of many query languages (SQL, SPARQL, Datalog, etc.). A conjunc-
tive query has the form (X) < B (Yl) A...N DB, (Yn) where each variable
appearing in (X) is called a distinguished variable and each B;(X;) is a query
triple pattern (QTP) (s;,p;, 0:), where s; is a URI or variable, p; is a predicate
URI, and o; is a literal, URI, or variable. Given a Semantic Web Space SWS, the
answer set ans(SW.S, a) for a conjunctive query « is the set of all substitutions
6 for all distinguished variables in « such that: SWS = af'. In this definition,
the entailment relation |= is defined in the usual way, albeit with respect to the
conjunction of every ontology and data source in the Semantic Web Space.

Our problem of interest is given a Semantic Web Space, how do we efficiently
answer a conjunctive query? Recall, we are assuming that we do not have a local
repository for the full content of data sources and due to network latency, we
need to minimize the number of sources that we will load to ascertain their
actual content. Therefore we need to prune sources that are clearly irrelevant
and focus on those that might contain useful information for answering the query.
Here, we consider a system architecture where an Indexer is periodically run to
create an index for all of the data sources and to collect the axioms from domain
and mapping ontologies. Given a conjunctive query, the Reformulator uses the
domain and mapping ontologies to produce a set of query rewritings. A Selector
takes these rewritings and uses the index to identify which sources are potentially
relevant to the query (note, since the index is an abstraction, we cannot be
certain that a source is relevant until we load it). Then the Loader reads the
selected sources together with their corresponding ontologies and inputs them
into a sound and complete OWL Reasoner, which is then queried to produce
results. Since the selected sources are loaded in their entirety into a reasoner, any
inferences due to a combination of these selected sources will also be computed
by the reasoner.

In our prior work [5], we showed that a term index could be an efficient
mechanism for locating the documents relevant to queries over distributed and
heterogeneous semantic web resources. Basically, the term index is an inverted
index, where each term is either a full URI (taken from the subject, predicate
or object of a triple) or a string literal value. Formally, for a given document d,
the terms contained in d can be expressed as following:

terms(d) = {z|(s,p,0) € dAN[x = sV =pV(oe UAx =0V (o€
L Az €lit—terms(0))]},

where (s,p,0) stands for a triple contained in document d, U is the set of
URIs, L is the set of Literals and lit-terms() is a function that extracts terms
from literals, and may involve typical IR techniques such as stemming and stop-
words. The term index can then be defined as follows:

1 a8 is a shorthand for applying 6 to the body of «, i.e., Bi10 A B2f...A B0

6 Y. Li and J. Heflin

Definition 2. (Term Index) Given a Semantic Web Space (D,o,s), the term
index is a function I : T — P(D) , where T = e p terms(s(d)).

Using the term index we can define two functions that together determine
how to select potentially relevant sources using the term index. Note that the
sources for a QTP are basically those sources that contain each constant (URI
or literal term) in the QTP.

Definition 3. (Term Evaluation) Given the set of possible query triple patterns
Q and a set of constant terms T (that appear as subjects, predicates or objects
of any q € Q), the term evaluation function gterms: Q — P(T) maps QTPs to
the (non-variable) terms that appear in them.

Definition 4. (Source Evaluation) Given the set of possible query triple pat-
terns Q and a set of document identifiers D, the source evaluation function
is gsources: @ — P(D). Given a QTP q and a term index I, qsources(q) =

ﬂchterms(q) I(C) .

Subsequently, we proposed a flat-structure query optimization algorithm [4]
where the Selector took a set conjunctive query rewrites as input and then
locally optimized each of them. Since loading sources is the primary bottleneck
of this type of system, we focused on optimizing the source selectivity — the
total number of sources loaded. We define the source selectivity of a selection
procedure sproc for a query « as the number of sources not selected divided by
the total number of sources available:

D| — |sproc(a
Se) = L2 prete) "

The flat-structure algorithm is based on the simple observation that the
join selectivity of a pair of QTPs is often higher than the overall selectivity
of these two QTPs treated independently. Consider two QTPs ¢; and gs from
the same conjunctive query that share a variable x, in database parlance this
situation is called a join condition and z is the join variable. We note that the
number of sources required to answer the query are often less than gsources(q1)U
gsources(gz). If we load the sources for ¢; first, we can find a set rs of variable
bindings for the QTP from the triples contained in the sources. We can then
apply each substitution 6 € s to g2 to generate a set of queries and get a set of
sources for g2 by doing index lookups for each: (Jy,, gsources(gzf)). It should
be clear that by adding an additional constant to each QTP, this join approach
often has a higher source selectivity than naively applying gsources to each QTP
in the query, although note that the join selectivity depends on which QTP is
processed first. The flat-structure algorithm iteratively loads the most selective
QTP and uses its substitutions to calculate the join selectivity for all remaining
QTPs.2 The two main problems with this algorithm are:

2 Here, we assume that all data sources are relatively small; the presence of very large
data sources may lead to an issue where a QTP that has high source selectivity
actually has low answer selectivity. Such problems could be addressed by keeping
additional size statistics in the index.

Using Reformulation Trees to Optimize Queries 7

— In order to avoid complications with inference impacting the number of
sources for each QTP, it repeats the source selection procedure for each
possible query rewrite. However, when there is significant heterogeneity in
the ontologies, synonymous ontology expressions can lead to an explosion
in the number of query rewrites. Processing a large number of rewrites can
slow the system down, even if we cache the results of index lookups and are
careful not to load the same source multiple times.

— The inability to use the full structure of query rewrites reduces the possible
source selectivity of the query process. Since source selection is indepen-
dently executed for each query rewriting, selectivity is based only on local
information, and does not account for the possibility that a subgoal that
initially appears selective actually is not selective once all of its rewrites are
taken into consideration.

3.2 Tree Structure Query Optimization Algorithm

To address the issues discussed in the previous section, we propose to replace
the Selector component of our previous architecture with a tree-structure query
optimization algorithm that takes a rule-goal tree expressing the query reformu-
lation as its input and performs a greedy, bottom-up analysis of which sources
to load. A rule-goal tree is basically an AND-OR graph, where goal nodes are
labeled with QTPs (or their rewritings), and rule nodes are labeled with ontol-
ogy axioms [2]. The purpose of the rule-goal tree is to encapsulate all possible
ways the required information could be represented in the sources. See Figure
1 for an example of a rule goal tree for query with three QTPs. In this ex-
ample, a property composition axiom r0 from a mapping ontology has been
used to rewrite swat:makerAffiliation as the conjunction of swrc:affiliation and
foaf:maker. Qasem et al. [7] have shown how to produce such rule-goal trees when
all ontologies are expressed in OWLII, a subset of OWL DL that is slightly more
expressive than Description Horn Logic.

We begin with an example to provide the intuition for our algorithm, and then
discuss its details subsequently. Consider the rule-goal tree in Fig. 1 for the query
@, which asks for the publications affiliated with Lehigh University (“lehigh-
univ”), complete with the ids and names of their authors. In the diagram, each
goal node has three associated costs: the initial-cost is the number of sources rel-
evant to that goal if we do not consider any axioms, the local-optimal-cost is the
number of relevant sources after applying available constant constraints and the
total-cost is the number of sources after applying available constant constraints
and collecting sources from the descendants. Additionally, the order in which we
process goal nodes is indicated by the parenthesized numbers. The first step is
to use the term index to initialize the tree with source selectivity information,
represented by initial-costs next to each goal node. We start with the QTP leaf
node that selects the fewest sources: < ¢m,akt:has-affiliation, “lehigh-univ”> (la-
beled with (1)). Since this is an OR node, we simply propagate its sources up to
its parent goal. Thus, the total-cost for < ?m,swrc:affiliation, “lehigh-univ”> is
updated to 60 (40 sources from its child plus 20 sources of itself; for simplicity of

8 Y. Li and J. Heflin

Q(?p, ?n, ?pap)

(5)
(7) . .
<?p, akt:full-name, ?n>: 4X10 /4/10 <?pap, akt:has-author, ?p>: 3X10 /20/20
(4)
<?pap, swat:makerAffiliation, “lehigh-univ”>: 20/20/105
(6)
<?p, foaf:name, ?n>: 3><106/6/6 0
() 3)
<?m, swrc:affiliation, “lehigh-univ”>: 20/20/60 <?pap, foaf:maker, ?m>: 4)(105/25/25

1)

<?m, akt:has-affiliation, “lehigh-univ’>: 40/40/40

Fig. 1. Query resolution of one sample query with notations in form of initial-
cost/local-optimal-cost /total-cost

<?p aktfull-name ?n> <?pap swat “lehigh-univ’> <?pap akt:has-author 2p>
o=} o=} o=(}
<?p akt:full-name ?n> <?pap akt:has-author ?p > <?pap swat:makerAffiliation lehigh-univ>
<?p_foaf:name ?n> Total # of srcs: 3 million <?m swrc:affilitation lehigh-univ>
Total # of srcs:7million <?m akt:has-affilitation lehigh-univ>

<. <?pap foaf:maker ?m>

S~o Total # of srcs: 105
~ */\

© ={?paplpaper1, Fpap/paper2, Yaplpaper3, pap/paperd} © = { %paplpaperL, Ypap/paper2, pap/paper3, Yaplpaperd}

<7p aktfull-name 7n> <7pap akthas-author 7p>

<?p foaf:name ?n> Total # of srcs: 20

Total # of srcs: 7 million

<?pap swat:makerAffiliation lehigh-univ>]

—_— © ={{ Wlperson2 aplpepert}, }. {lpersons papipaper3 })

0={ o={) <?p akt:full-name ?n>

<Pm swrcaaffilitation lehigh-univ> <7pap foaf-maker ?m> <?p_foaf:name ?n>

<?m akt:has-affilitation lehigh-univ> Total # of srcs: 4million Total # of srcs: 10

Total # of srcs: 60 l
o={ m/makerl, 2m/maker2, 2m/maker3,

2m/makerd, 2m/maker5}
<?pap foaf:maker ?m>
Total # of srcs: 25

© = {{ 2p/person2, pap/paperl, M/namel}, { 2o/person3, pap/paper2, M/name2},
{2n/person5, ap/paper3, /name3t

(a) (b)

Fig. 2. AND-optimization. At each level of the tree a QTP is chosen greedily, its sources
loaded and queried, and the answers applied to sibling QTPs

Using Reformulation Trees to Optimize Queries 9

exposition we are assuming that the sets of sources are disjoint, but this is not a
requirement for the algorithm). Since all children of < ?m, swre:affiliation, “lehigh-
univ”> have been processed, it joins the leaf nodes as a candidate for process-
ing, and since it’s total cost is 60, which is less than the initial costs of all
other candidates, it is the next node to be processed. Since it is a child of r0,
an AND rule node (indicated by the arc), we can use it to constrain its sib-
ling foaf:maker as shown in Fig. 2(a). First, we load all sources associated with
the goal node and issue the goal as a query for these sources. This query re-
sults in the substitutions for ?m: {?m/makerl, ?m/maker2, ...}. Each of these
substitutions is then applied to < ?pap,foaf:maker,?m>, an index lookup is per-
formed for each resulting QTP, and the total set of sources (in this case 25 of
them) is used to update the total cost of this node in Figure 1, step (3). In
step (4), the total cost of these nodes (60+25=85) is propagated to their parent
swat:makerAffiliation, and is added to its initial cost (20), resulting in a total
cost of 105. Since this node now has the best selectivity and is the child of an
AND rule node (the original query), we need to perform another AND opti-
mization as show in Fig. 2(b). As shown, once this node is selected, there are
two siblings to choose from. However, before we can determine the cost of these
nodes, we must repeat the tree process on the subtrees rooted at these nodes,
thus the number of sources for < ?p,akt:full-name,?n> is 7 million, the sum of
its sources and the sources of its child < ?p,foaf:name,?n>. We apply the sub-
stitutions from swat:makerAffiliation to each sibling, resulting in the number
of sources of akt:has-author being reduced to 20 (updating its local-optimal-
cost in Fig. 1), but not changing the sources of akt:full-name. In step (5) of
Fig. 1, we select akt:has-author, load its sources, issue a combined query with
the previous goal, and get a new set of substitutions. These substitutions are
then applied to the subtree of akt:full-name, changing the local-optimal-costs of
foaf:name and akt:full-name to 6 and 4, respectively, and changing the total-cost
of akt:full-name to 10. As a result, the total number of collected sources for the
given conjunctive query is 105 + 20 + 10 = 135, compared to over 11 million if
no optimization was done. Once all sources are loaded, we can ask the original
query of the reasoner in order to get a final set of substitutions.

The pseudo code for our algorithm is shown in Figure 3. Algorithm 1 pro-
cesses a rule-goal tree, where the parameter rs, which provides a set of substitu-
tions, is () when first called, but instantiated in recursive calls. We use frontier
to maintain a set of deepest, unprocessed goal nodes in the rule-goal tree; this
is initialized to be the set of leaf nodes. In Lines 2-4, we use the term index to
determine the initial selectivity of all goal nodes in the rule-goal tree. Then, the
most selective node n is chosen from the frontier (Line 6). We check if n is a
child of an AND rule, and if so Algorithm 2 is called to collect sources by using
the greedy strategy (Lines 7-8). If the rule is an OR mapping, the sources from
the rule children are directly broadcast upward to the rule parent goal node p
(Lines 9-10). Since this completes the processing of n, we remove it from our
frontier node set (Line 11) and if p currently has no descendants in frontier,
we add p to the frontier (Lines 12-13). When the frontier contains only the root

10 Y. Li and J. Heflin

Algorithm 1 Source selection for structure-based query ptimization

Algorithm 2 Node optimization

function getSourcelist(rtree, 7's) returns a list of sources
inputs: rtree, a given rule goal tree rtree
rs, a list of substitutions
1: Let frontier = leaf nodes of rtree,

function OptimizeANDNode(on, sibs, srcs) returns a list of sources
inputs: on, a given goal node in the rule-goal tree
sibs, a set of on’s sibling nodes
srcs, an array of sets of sources, indexed by goal nodes

sres[] = array of sets of sources, indexed by goal nodes 1: Letallsrcs = @, query = true
2: for each goal node n in rtree do 2: allsres = allsrcsUsres[on]
3 foreach§ € rsdo 3: load(srcsfon], KB)
4 sres[n] = gsources(nf) 4: do
5: do 5: Let query = query A\ on
6 Lletn=minnogee fronsier (ISTCS[N0de]|), p = getParent(n) 6: Let r's = askReasoner (KB, query)
7 if nis a child of an AND rule node r then 7: for each qtp € sibs do
8 sres[p] = sres[p] U OptimizeANDNode(n, 8 sres[qtp] = getSourcelist(subtree rooted at gtp, rs)
siblings of n,srcs) 9: Let on = ming ¢ sips that join with query (sres[t])
9: else 10: Remove on from sibs
10: sres[p] = sres[p] U sres[n] 11: allsrcs = allsresUsres[on]
11: remove n from frontier 12: load(srcs[on], KB)

12: i p has no descendants on frontier then
13: add p to frontier

14: while (frontier # {rtree.root})

15: return srcs[rtree.root]

13: while (sibs # @)
14: return allsrcs

Fig. 3. Pseudo code of tree-structure source selection algorithm

of the given rule-goal tree, the while loop terminates and our source collection
ends (Line 14). Finally, all collected sources are returned (Line 15).

In Algorithm 2 we optimize an AND node, given a most selective goal node
on, its siblings sibs, and an array of the sources for each node in the tree (the
latter is used as an output parameter to update the log of sources found for each
node). We start by loading on’s sources into the knowledge base K B. Then,
we evaluate on by asking the reasoner to get the substitutions of the variables
contained in on (Lines 5-6). These substitutions are then applied to on’s siblings
to enhance their individual selectivity (Lines 7-8). Note the recursive call to
getSourceList() in line 8; this ensures that any new constraints specified by rs
are effectively applied to the subtree rooted at each sibling. Based on the new
selectivity estimations, we choose the next most selective node that shares a join
variable with the partial query to be the next on (Line 9). Then we remove on
from sibs, add its sources to the sources retrieved so far, and load any newly
selected sources (Lines 10-12). In the next iteration, on is conjuncted with the
partial query query, the reasoner is queried, and the substitutions applied again
to the siblings. This process is repeated until all sibling nodes of the initial
given goal node are processed (Line 13). Finally, the sources collected by the
current AND mapping rule are returned (Line 14). As an aside, the flat-structure
algorithm essentially executes a variation of Algorithm 2 for every conjunctive
query rewrite.

Using Reformulation Trees to Optimize Queries 11

4 Evaluation

To evaluate our query optimization algorithm, we have conducted two experi-
ments based on a synthetic data set and a real world data set respectively. The
first experiment compares our tree-structure source selection algorithm to our
previous non-structure [5] and flat-structure [4] source selection algorithms using
a synthetic dataset with significant ontology heterogeneity. The second exper-
iment tests the scalability and practicality of our algorithm using a subset of
the real world Billion Triple Challenge (BTC) data set. For both experiments,
we use a graph-based synthetic query generator to produce a set of queries that
are guaranteed to have at least one answer each. These queries range from one
to thirteen triples, have at most nine variables each, and each QTP of each
query satisfies the join condition with at least one sibling QTP. All of our ex-
periments are done on a workstation with a Xeon 2.93G CPU and 6G memory
running UNIX. Our Indexer component is implemented using Lucene while our
Reasoner is KAON2.

4.1 Heterogeneity Evaluation Using a Synthetic Data Set

Our first experiment compares the tree-structure algorithm to the non-structure
and the flat-structure algorithms using a synthetic data generator that is de-
signed to approximate realistic conditions. First, we ensure that each generated
file is a connected graph, which is typical of most real-world RDF files. Based
on a random sample of 200 semantic web documents, we set the average num-
ber of triples in a generated document to be 50. In order to achieve a very
heterogeneous environment, we conducted experiments with 20 ontologies, 8000
data source sources, and a diameter of 6, meaning that the longest sequence of
mapping ontologies between any two domain ontologies was six. In this configu-
ration, the average number of sources committing to each ontology is 400. This
configuration resulted in an index size of 75.3MB, which was built in 21.6 sec-
onds. We issued 240 random queries, grouped by the number of unconstrained
QTPs (from 0 to 10), where an unconstrained QTP is one with variables for
both its subject and object or with an rdf:type predicate paired with a variable
subject. For each group, we computed the average query response time, average
number of selected sources and average number of index accesses. Due to the
exponential increase in query response time, we only executed queries with up to
5 unconstrained QTPs for both the non-structure and flat-structure algorithms.

Fig. 4(a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs. From this result, we can see
that the tree-structure algorithm and flat-structure algorithm are faster than
the non-structure algorithm. The reason is that unconstrained QTPs are typi-
cally the least selective; thus, the more unconstrained QTPs there are, the more
opportunities there are for the two optimization algorithms to use constraints
to enhance the selectivity of goals. However, the benefits of the tree-structure
algorithm become really noticeable for 5 or more unconstrained QTPs; in this
situation the flat-structure algorithm begins to reveal exponential behavior while

12 Y. Li and J. Heflin

_. 35000
£
< 30000
£
s 25000
3 /
§ 20000 I
Q
—— -
§ 15000 Tree-structure
> o == Flat-structure
g 10000 -
T == Non-structure
& 5000 -
°
g o-
<
01 2 3 45 6 7 8 9 10
of unconstrained query triple patterns
(a)
500
o 450
Q
2 400 A ‘,ﬂL
g 350 {
x
§ 300 I
= 250 =@ Tree-structure
: 200
® 150 == Flat-structure
E 100 == Non-structure
>
< 50 A
0 -
01 2 3 4 5 6 7 8 9 10
of unconstrained query triple patterns

(b)

2500

2000

1500

=@—Tree-structure
1000

A
d /’ ~—Flat-structure
500 == Non-structure
O -

01 2 3 4 5 6 7 8 9 10

Average # of selected sources

of unconstrained query triple patterns

(c)

Fig. 4. Synthetic Semantic Web Space experimental results. Average query response
time (a), index accesses (b) and number of selected sources (c) as the number of
unconstrained QTPs varies.

Using Reformulation Trees to Optimize Queries 13

the tree-structure algorithm remains linear. This is because complex mapping
ontologies can lead to a number of conjunctive query rewrites that is exponential
in the size of the query.

Fig. 4(b) shows how each algorithm’s average number of index accesses is
affected by the number of unconstrained QTPs. Note the index is stored on disk
and is optimized for fast lookups, but a large number of accesses can have a
noticeable impact on performance. From this result, we can see that the tree-
structure and flat-structure algorithms require more index accesses than the
non-structure algorithm: for 5 unconstrained QTPs they require 5.3x and 9.1x
more accesses, respectively. This is because both algorithms take into account
the query structure information while solving the original query and might need
several index lookups for the same query subgoal but using different substitu-
tions. However, the tree-structure algorithm has 58% fewer index accesses than
the flat-structure algorithm. The reason is that when using the flat-structure
algorithm, one QTP can appear in multiple query rewritings and receive con-
straints from different sets of siblings representing different rewrites, while in the
tree-structure algorithm the constraints of a sibling already consider all possible
rewrites of the sibling.

Fig. 4(c) shows how the number of unconstrained QTPs impact the average
number of selected sources for each algorithm. From this result, we can see the
selectivity of the tree-structure and the flat-structure algorithms are roughly
linear, while the non-structure algorithm is exponential in the number of uncon-
strained QTPs. Furthermore, the tree-structure algorithm has a gentler slope
for its source selectivity than the flat-structure algorithm. Note, loading sources
is the primary bottleneck of the system, since it requires that triples be read
from the disk or network. The similar trends in Fig. 4(a) and Fig. 4(c) reflect
the importance of source selectivity to overall query response time.

4.2 Scalability Evaluation using the BTC Data Set

In this section, we evaluate our algorithm’s scalability by using a subset of
the BTC 2009 data set (much of which comes from the Linking Open Data
Project Cloud). We have chosen four collections, as summarized in Table 1,
with a total of 73,889,151 triples. Using the provenance information in the BTC,
we re-created local N3 versions of the original files from the BTC resulting in
21,008,285 data sources. The size of these data sources varies from roughly 5
to 50 triples each. In order to integrate the four heterogeneous collections, we
manually created some mapping ontologies, primarily using rdf:subClassOf and
rdf:subPropertyOf axioms (these schemas do not have any meaningful align-
ments that are more complex). Since our algorithm does not yet select all rel-
evant sources with owl:sameAs information, we assume an environment where
any relevant owl:sameAs information is already supplied to the reasoner. We
do this by initializing the KB with the necessary owl:sameAs statements. Our
index construction time is around 58 hours and its size is around 18GB. Each
document takes around 10ms on average to be indexed. The Lucence configura-

14 Y. Li and J. Heflin

tions are 1500MB for RAMBufferSize and 1000 for MergeFactor, which are the
best tradeoff between index building and searching for our experiment.

|Data Source [Namespace|# of Sources|# of Triples|
http://data.semanticweb.org/|swrc 41,974 174,816
http://sws.geonames.org/ geonames 2,324,253 14,866,924
http://dbpedia.org dbpedia 10,615,260 48,694,372
http://dblp.rkbexplorer.com |akt 8,026,878 10,153,039
Total 21,008,285 73,889,151

Table 1. Data sources selected from the BTC 2009 dataset.

Because the non-structure algorithm does not refine goals with constraint
information from related goals, it cannot scale to the BTC data set. In fact,
most of our synthetic queries cannot be solved by this algorithm. For example,
consider the query Q:{(<?x, swrc:af filiation, “lehigh—univ”).(?xq, akt:has—
title, “Hawkeye”).(?xq, foaf:maker, Txg).(?xo, akt: full — name, ?x1)}. For the
non-structure algorithm, the number of sources that can potentially contribute
to solving (?xa, foaf:maker, ?xq) is 3,485,607, which is far too many to load
into a memory-based reasoner. However, the tree-structure and flat-structure
algorithms can deal with it because the number of sources for the same QTP
becomes 114 after variable constraints are applied. For this reason, we only
compare the tree-structure and flat-structure algorithms here.

Average # of query response Average # of index accesses Average # of selected sources
time

20 600

50 500 -
15

40 400

30 + 300 +

2 + 200 +

100 +

10 -+

Tree-structure Flat-structure Tree-structure Flat-structure Tree-structure Flat-structure

(@) (b) ()

Fig. 5. BTC data set experimental results.

We executed 150 synthetic queries with at most 10 QTPs and computed the
same metrics as for the prior experiment. As shown in Fig. 5(a), the average
query response time of the tree-structure algorithm is 35 seconds, which is a
13% improvement over the flat-structure algorithm. At the same time, it has
25% fewer index accesses as shown in Fig. 5(b). Fig. 5(c) shows that both al-
gorithms select on average between 450 and 500 sources, and the tree-structure

Using Reformulation Trees to Optimize Queries 15

algorithm only shows a 1.6% improvement over the flat-structure algorithm here.
We attribute this to the fact that the semantic mappings of the BT C experiment
are not as complex as those for the synthetic data set, which leads to a small
number of rewrites for each query. when there are potentially many rewrites for
a query. We posit that in real-world settings where more ontologies are involved,
that the superiority of the tree-structure algorithm will be more pronounced.

5 Conclusions, Limitations and Future Work

We have proposed a tree-structure optimization algorithm for integrating mil-
lions of data sources that commit to different ontologies. Given a reformulation
tree, this algorithm uses a bottom-up process to select sources and uses the
selectivity of each goal node as a heuristic to optimize and plan the query ex-
ecution. Our experiments have demonstrated that this new algorithm is better
than both of our prior algorithms [4] [5] in that not only does it demonstrate
query response time performance that is linear with respect to the number of un-
constrained QTPs, it also has better source selectivity and requires fewer index
accesses than the flat-structure algorithm. Meanwhile, we have also shown that
our algorithm scales well, allowing many complex randomly generated queries
against 20 million heterogeneous data sources to complete in 35 seconds.

Despite showing initial promise there are a number of limitations to the work
in its present form. First, the algorithm focuses on conjunctive queries, and does
not consider richer features of SPARQL such as OPTIONALSs. In addition, in
order to avoid the computational challenges of higher-order logics, it does not
allow variables in the predicate position. Second, the implementation only works
with OWLII, a subset of OWL DL, although any rewriting algorithm that pro-
duces an AND-OR reformulation tree could be used. Since finite reformulation
trees cannot express rewrites of a query whose reformulation involves cyclic rules,
completeness is only guaranteed for acyclic OWLII axioms. We note that this
algorithm is designed for a setting where there are large numbers of small RDF
files, and that it is not intended to issue queries to large SPARQL end points.
Fortunately, due to Linked Data guidelines, we note that most large SPARQL
end points expose an interface where a URL can be dereferenced to retrieve a
small set of RDF triples describing each instance. The algorithm assumes that a
correct set of mapping ontologies has been provided, and we note that any errors
in these mappings can result in a loss of “semantic fidelity.” Finally, the current
algorithm is not guaranteed to find all relevant sources if there are owl:sameAs
statements in the Semantic Web Space.

Our future work includes attempting to improve the selectivity of our al-
gorithm even further and addressing many of its limitations. We believe it is
possible to make better estimates about the selectivity of a node by maintaining
upper and lower bounds and we will also look at storing additional statistics in
our index. With respect to the limitations mentioned in the previous paragraph,
we think that the most critical need is to adapt the algorithm to locate relevant
owl:sameAs statements, which must necessarily be an iterative process in order

16

Y. Li and J. Heflin

to find their transitive closure. We believe that this paper provides a major step
towards a pragmatic solution for querying a large, distributed, and ever changing
Semantic Web.

References

1.

10.

11.

12.

13.

14.

15.

16.

P. Haase and Y. Wang. A decentralized infrastructure for query answering over
distributed ontologies. In SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pages 1351-1356, New York, NY, USA, 2007. ACM.

A.Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The
Piazza peer data management system. IEEE Trans. Knowl. Data Eng., 16(7):787—
798, 2004.

A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for
querying graph structured data from the web. The Semantic Web, pages 211-224,
2008.

Y. Li and J. Heflin. Query optimization for ontology-based information integration.
In CIKM’10. ACM, 2010.

Y. Li, A. Qasem, and J. Heflin. A scalable indexing mechanism for ontology-
based information integration. Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, 2010.

T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs.
In SIGMOD °’09: Proceedings of the 35th SIGMOD international conference on
Management of data, pages 627640, New York, NY, USA, 2009. ACM.

A. Qasem, D. A. Dimitrov, and J. Heflin. Efficient selection and integration of data
sources for answering semantic web queries. International Conference on Semantic
Computing, pages 245-252, 2008.

R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database
systems. Journal of Logic Programming, 23:125-149, 1993.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD
"79: Proceedings of the 1979 ACM SIGMOD international conference on Manage-
ment of data, pages 23-34, New York, NY, USA, 1979. ACM.

L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture for the
semantic web. In Proceedings of the European Semantic Web Conference (ESWC),
pages 361-376. Springer, 2005.

L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold. Column-
store support for rdf data management: not all swans are white. PVLDB,
1(2):1553-1563, 2008.

M. Staudt, R. Soiron, C. Quix, and M. Jarke. Query optimization for repository-
based applications. In SAC ’99: Proceedings of the 1999 ACM symposium on
Applied computing, pages 197-203, New York, NY, USA, 1999. ACM.

H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G. Houben. Towards distributed
processing of RDF path queries. Int. J. Web Eng. Technol., 2(2/3):207-230, 2005.
T. Tran, H. Wang, and P. Haase. Hermes: Data web search on a pay-as-you-go
integration infrastructure. Web Semantics, 7(3):189-203, 2009.

O. Udrea, A. Pugliese, and V. S. Subrahmanian. Grin: A graph based RDF index.
In AAAI pages 1465-1470, 2007.

C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic
web data management. PVLDB, 1(1):1008-1019, 2008.

