
Combining Approximation and Relaxation in

Semantic Web Path Queries

Alexandra Poulovassilis and Peter T. Wood

London Knowledge Lab, Birkbeck, University of London, UK
{ap,ptw}@dcs.bbk.ac.uk

Abstract. We develop query relaxation techniques for regular path queries
and combine them with query approximation in order to support flex-
ible querying of RDF data when the user lacks knowledge of its full
structure or where the structure is irregular. In such circumstances, it is
helpful if the querying system can perform both approximate matching
and relaxation of the user’s query and can rank the answers according
to how closely they match the original query. Our framework incorpo-
rates both standard notions of approximation based on edit distance and
RDFS-based inference rules. The query language we adopt comprises
conjunctions of regular path queries, thus including extensions proposed
for SPARQL to allow for querying paths using regular expressions. We
provide an incremental query evaluation algorithm which runs in poly-
nomial time and returns answers to the user in ranked order.

1 Introduction

The volume of semistructured data available to users on the web continues to
grow, increasingly in the form of RDF linked data. Given the complexity and
heterogeneity of such data, users may not be aware of its full structure and
need to be assisted by querying systems which do not require that users’ queries
necessarily match exactly the data structures being queried.

In this paper we consider general semistructured data modelled as a graph,
with RDF linked data being a particular application of this model. We are inter-
ested in developing efficient algorithms which allow for both approximate match-
ing and relaxation of users’ queries on such data, with the answers to queries
being returned to users in ranked order. We restrict our query language to that
of conjunctive regular path queries [2]. A conjunctive regular path (CRP) query
Q consisting of n conjuncts is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m,
is a variable appearing in the body of Q, and each Ri, 1 ≤ i ≤ n, is a regular
expression over the alphabet from which edge labels in the graph are drawn.

The answer to a CRP query Q on a graph G, Q(G), is defined as follows. For
each conjunct (Xi, Ri, Yi), 1 ≤ i ≤ n, let ri be a binary relation over the scheme

(Xi, Yi). Let t[Xi] and t[Yi] denote the first and second components, respectively,
of any tuple t ∈ ri. There is a tuple t ∈ ri if and only if there exists a path from
node t[Xi] to node t[Yi] in G such that t[Xi] = Xi if Xi is a constant, t[Yi] = Yi

if Yi is a constant, and the concatenation of the edge labels in the path satisfies
the regular expression Ri. Then Q(G) = πZ1,...,Zm(r1 �� · · · �� rn).

Using regular expressions to query data has been much studied, e.g. [2, 17],
as have approximate query matching techniques, e.g. [4, 7, 14, 15, 18]. In [13],
we studied a combination of these and showed that approximate matching of
CRP queries can be undertaken in polynomial time. The edit operations we
allowed in approximate matching of queries were insertions, deletions, substi-
tutions, transpositions and inversions of edge labels (corresponding to reverse
traversal of edges) — each with an assumed edit cost of 1. Here, for simplicity of
exposition, we exclude inversions and transpositions — we note though that the
techniques we develop here extend straightforwardly to this more general case,
and the query complexity results still hold.

Example 1. The L4All system allows users to create and maintain a chronolog-
ical record of their learning, work and personal episodes — their “timelines”
— with the aim of supporting lifelong learners in exploring learning opportuni-
ties and in planning and reflecting on their learning [3]. Figure 1 illustrates a
fragment of data and metadata relating to a user’s timeline (where sc denotes
subclassOf). The episodes within a timeline have a start and an end date asso-
ciated with them (for simplicity these are not shown). Episodes are ordered by
their start date — as indicated by edges labelled next. There are several types
of episode, e.g. University and Work. Associated with each type of episode are
several properties — we show just two of these, qualif[ication] and job.

Suppose that Mary is studying for a BA in English and wishes to find out
what possible future career choices there are for her. Timelines may have edges
labelled prereq between episodes, indicating that the timeline’s owner believes
that undertaking an earlier episode was necessary in order for them to be able
to proceed to or achieve a later episode. So Mary might pose this query, Q1

1:

(?E2,?P)<-(?E1,type,University),(?E1,qualif.type,EnglishStudies),
(?E1,prereq+,?E2), (?E2,type,Work), (?E2,job.type,?P)

However, this will return no results relating to the timeline of Figure 1, even
though it is evident that this contains information that would be relevant to
Mary. This is because, in practice, users may or may not create prereq metadata
relating to their timelines. If Mary chooses to allow replacement of the edge label
prereq in her query by the label next, she can submit a variant of Q1:

(?E2,?P)<-(?E1,type,University), (?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,type,Work),(?E2,job.type,?P)

The regular expression prereq+ can be approximated by the regular expression
next.prereq* at edit distance 1 from prereq+. This allows the system to return

1 In our assumed concrete syntax, variable names are preceded with ‘?’.

Education Occupation

Humanities Media Professional

Travel Service Occupation Editor

Languages Editor-in-Chief

Associate Editor

English Studies Air Travel Assistant Journalist Assistant Editor

sc

sc

sc

sc
sc

sc

sc

sc

sc
sc

sc

j22 j23 j24BA English

type type type type

ep21 ep22 ep23 ep24

next next next

prereq

qualif job job job

University Work Work Work

type type type type

Fig. 1. A fragment of timeline data and metadata

the answer (ep22,AirTravelAssistant) at an edit distance 1 from Q1. Mary
may judge this not to be relevant and may seek further results, at a further level
of approximation. The regular expression next.prereq* can be approximated
by next.next.prereq*, now at edit distance 2 from Q1, allowing the following
answers (ep23,Journalist), (ep24,AssistantEditor) to be returned. Mary
may judge both of these as being relevant, and she can then request the system
to return the whole of this user’s timeline for her to explore further.

Suppose now Mary knows she wants to become an Assistant Editor and
would like to find out how she might achieve this, given that she’s done an
English degree. Mary might pose this query, Q2:

(?E2,?P)<-(?E1,type,University), (?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2), (?E2,job.type,?P)
APPROX (?E2,prereq+,?Goal), (?Goal,type,Work),
(?Goal,job.type,AssistantEditor)

At distance 0 and 1 there are no results from the timeline of Figure 1. At distance
2, the answers (ep22,AirTravelAssistant), (ep23,Journalist) are returned,
the second of which gives Mary potentially useful information.

Suppose Mary wants to know what other jobs, similar to an Assistant Editor,
might be open to her. There are many categories of jobs classified under Media
Professional but none of these will be matched by query Q2 above. What she
would like to pose instead (borrowing the ‘RELAX’ syntax of [12]) is query Q3:

(?E2,?P)<-(?E1,type,University),(?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX (?E2,prereq+,?Goal), (?Goal,type,Work),

RELAX (?Goal,job.type,AssistantEditor)

which would relax Assistant Editor to its parent concept Editor, matching
jobs such as Assistant Editor, Associate Editor, Editor-in-Chief etc., as
well as in parallel approximating the two instances of prereq+. Query results
would be returned in increasing overall distance (relaxation and approximation)
from the original query.

As a further extension, suppose another user, Joe, wants to know what
jobs similar to being an Assistant Editor might be open to someone who has
studied English or a similar subject at university. Subject disciplines are classi-
fied, e.g. English Studies under Languages which in turn is classified under
Humanities. So Joe may pose query Q4 which is identical to Q3 above but with
RELAX in front of (?E1,qualif.type,EnglishStudies). ��

In Section 2, we first consider computing approximate and relaxed answers for
regular path queries consisting of a single conjunct. We show that in both cases
answers can be computed in polynomial time in the size of the query and the
input graph, and returned to the user in ranked order. Section 3 generalises to the
case of multi-conjunct queries and shows that computation can still be achieved
in polynomial time as long as the queries are acyclic and have a fixed number
of head variables. In a multi-conjunct query, approximation and relaxation are
combined by allowing each conjunct to be qualified by either an APPROX or a
RELAX operator, as shown in the above example. Section 4 discusses related
work. Section 5 presents our conclusions and future work.

2 Single-Conjunct Regular Path Queries

In this paper we consider a semistructured data model comprising a directed
graph G = (V, E) and an ontology K = (VK , EK). V contains nodes repre-
senting entity instances or entity classes. E represents relationships between the
members of V . Each node in V is labelled with a distinct constant. Each edge in
E is labelled with a symbol drawn from a finite alphabet Σ∪{type}. VK contains
nodes representing entity classes or properties. Each node in VK is labelled with
a distinct constant. We call a node in VK representing an entity class a ‘class
node’ and a node representing a property a ‘property node’. So V ∩VK contains
the set of class nodes of V . Each edge in EK is labelled with a symbol drawn
from {sc, sp, dom, range}. We assume that Σ ∩ {type, sc, sp, dom, range} = ∅.
We also assume that the set of labels of edges in E, except for the label type,
is contained in the set of labels of property nodes in VK . We observe that this
general graph model encompasses RDF data, except that it does not allow for
the representation of RDF’s ‘blank’ nodes (but these are discouraged for linked
data [10]). It also comprises a fragment of the RDFS vocabulary: rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, which we
abbreviate by type, sc, sp, dom, range.

A single-conjunct regular path query Q over a graph G is of the form:

vars← (X, R, Y) (1)

where X and Y are constants or variables, R is a regular expression over Σ ∪
{type}, and vars is the subset of {X, Y } that are variables.

A regular expression R over Σ ∪ {type} is defined as follows:

R := ε | a | type | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ, “ ” denotes the disjunction
of all constants in Σ ∪ {type}, and the operators have their usual meaning.

A path p in G = (V, E) from x ∈ V to y ∈ V is a sequence of the form
(v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = x, vn+1 = y and for each
vi, li, vi+1, vi

li→ vi+1 ∈ E. A path p conforms to a regular expression R if
l1 · · · ln ∈ L(R), the language denoted by R.

Given a single-conjunct regular path query Q and graph G, let θ be a match-
ing from variables and constants of Q to nodes of G, that maps each constant
to itself. A tuple θ(vars) satisfies Q on G if there is a path from θ(X) to θ(Y)
which conforms to R. The answer of Q on G is the set of tuples which satisfy Q
on G. The answer can be found in polynomial time in the size of Q and G (from
Lemma 1 in [17]).

Below we first briefly review approximate matching of single-conjunct regular
path queries, from [13]. We then discuss relaxation of such queries based on
information from the ontology K. Section 3 discusses combined approximation
and relaxation for multi-conjunct queries.

2.1 Approximate Matching of Single-Conjunct Queries

The edit distance from a path p to a path p′ is the minimum cost of any sequence
of edit operations which transforms the sequence of edge labels of p to the
sequence of edge labels of p′ (note that edge labels are treated as atomic values
and it is sequences of such labels that are transformed using edit operations). The
edit operations that we consider here are insertions, deletions and substitutions
of edge labels, each with an assumed edit cost of α, for some α.

The edit distance of a path p to a regular expression R is the minimum
edit distance from p to any path that conforms to R. Given a matching θ from
variables and constants of a query Q to nodes in a graph G, where constants
must be matched to themselves, we say that the tuple θ(vars) has edit distance
edist(θ, Q) to Q, and we define this to be the minimum edit distance to R of any
path p from θ(X) to θ(Y) in G. Note that if p conforms to R, then θ(vars) has
edit distance zero to Q.

The approximate answer of Q on G is a list of pairs (θ(vars), edist(θ, Q)),
ranked in order of non-decreasing edit distance. The approximate top-k answer
of Q on G comprises the first k tuples in the approximate answer of Q on G.

We now describe how the approximate answer can be computed in time
polynomial in the size of R and G. The process is similar to that described
in [13], but differs in a number of respects which are described below:

(i) We construct a weighted NFA MR of size O(R) to recognise L(R), using
Thompson’s construction (which makes use of ε-transitions). MR has set of

states S, alphabet Σ′ = Σ∪{type}, transition relation δ, start state s0, and
final state sf . Each transition is labelled with a label from Σ′ and a weight,
or cost, which is zero in MR. If X (or, respectively, Y) in the query is a
constant n, we annotate s0 (sf) with n; otherwise we annotate s0 (sf) with
a wildcard symbol ∗ that matches any constant.

(ii) We now construct the approximate automaton AR corresponding to MR. AR

has the same set of states as MR, with the following additional transitions:
• For each state s ∈ S and label a ∈ Σ, there is a transition (s, a, α, s),

where α is the cost of insertion.
• For each transition (s, a, 0, t) in MR where a ∈ Σ, there is a transition

(s, ε, α, t), where α is the cost of deletion.
• For each transition (s, a, 0, t) in MR, where a ∈ Σ, and label b ∈ Σ

(b
= a), there is a transition (s, b, α, t), where α is the cost of substitution.
Thus AR has O(|R| · |Σ′|) transitions.

(iii) We form the weighted product automaton, H , of AR with the graph G =
(V, E), viewing each node in V as both an initial and a final state. The
states of H are of the form (s, n), s ∈ S and n ∈ V .

(iv) To evaluate query Q, if X is a node v of G, we perform a shortest path
traversal of H starting from the vertex (s0, v). Whenever we reach a vertex
(sf , m) in H we output m, provided m matches the annotation on sf . The
distance of (v, m) to Q is given by the total cost of the shortest path from
(s0, v) to (sf , m). If X is a variable, we perform such a traversal of H starting
from vertex (s0, v) for every node v of G.

This construction differs from that of [13] where the NFA for approximate match-
ing of regular expression R was constructed using a number of copies of the
NFA for recognising R, each corresponding to matching at a difference distance.
Hence, in that NFA, distance was represented implicitly by the “copy number”
of states, rather than explicitly using a weight as above. The use of annotations
on states also does not appear in [13].

Proposition 1. Let G = (V, E) be a graph and Q be a single-conjunct query
using regular expression R over alphabet Σ. The approximate answer of Q on G
can be found in time O(|R|2|V |(|Σ′||E|+ |V | log(|R||V |))).

The proof follows by using Dijkstra’s algorithm on the product automaton
H , which can be shown to have O(|R||V |) nodes and O(|R||Σ′||E|) edges.

The above query evaluation can also be accomplished “on-demand” by incre-
mentally constructing the edges of H as required, thus avoiding precomputation
and materialisation of the entire graph H . This is performed by calling a func-
tion Succ with a node (s, n) of H . The function returns a set of transitions
a,d→ (p, m), such that there is an edge in H from (s, n) to (p, m) with label a
and cost d. We show Succ below, where the function nextStates(AR, s, a) re-
turns the set of states in AR that can be reached from state s on reading input
a, along with the cost of reaching each. Note that we need either to remove
ε-transitions from AR (using a standard algorithm that potentially squares the

Procedure Succ(s, n)

Input: state s of AR and node n of G
Output: set of transitions which are successors of (s, n) in H
W ← ∅
for (n, a, m) ∈ G and (p, d) ∈ nextStates(AR, s, a) do

add
a,d→ (p,m) to W

return W

size of AR) or nextStates needs to repeatedly follow ε-transitions until it finds
a non-ε-transition, while summing costs of transitions.

A set visitedR is maintained, storing tuples of the form (v, n, s) representing
the fact that node n of G was visited in state s having started the traversal from
node v. Also maintained is a priority queue queueR containing quadruples of
the form (v, n, s, d), ordered by increasing values of d, where d is the distance
associated with visiting node n in state s having started from node v. We begin by
enqueueing the initial quadruple (v, v, s0, 0), if X is some node v, or enqueueing
a set of initial quadruples otherwise, one for each node v of G. We maintain a list
answersR containing tuples of the form (v, n, d) where d is the smallest distance
of this answer tuple to Q and ordered by non-decreasing value of d. This list is
used to avoid returning again (v, n, d′) for any d′ ≥ d.

We then call a procedure getNext to return the next query answer, in order of
non-decreasing distance from Q. getNext repeatedly dequeues the first quadru-
ple of queueR, (v, n, s, d), adding (v, n, s) to visitedR, until queueR is empty.
After dequeueing the quadruple (v, n, s, d), we enqueue (v, m, s′, d + d′) for each

transition
e,d′
→ (s′, m) returned by Succ(s, n) such that (v, m, s′)
∈ visitedR. If

s is a final state, its annotation matches n, and the answer (v, n, d′) has not been
been generated before for some d′, then the triple (v, n, d) is returned.

2.2 Ontology Relaxation of Single-Conjunct Regular Path Queries

In [12], we considered relaxation of conjunctive queries over RDF data, and the
formalisation of relaxation using RDFS entailment with respect to an RDFS
ontology K. We assumed that the predicates of triples in K are in the set
{type, dom, range, sp, sc} and we adopted an operational semantics for the no-
tion of RDFS entailment, denoted by |= and characterised by the six rules shown
in Fig. 2 (see [8, 9] for details).

We assumed infinite sets I (IRIs) and L (RDF literals). The elements in I∪L
are called RDF terms. A triple (v1, v2, v3) ∈ I × I × (I ∪ L) is called an RDF
triple. In such a triple, v1 is called the subject, v2 the predicate and v3 the object.
An RDF graph is a set of RDF triples.

For RDF graphs G1 and G2, we stated that G1 |=rule G2 if G2 can be derived
from G1 by iteratively applying the rules of Fig. 2. We used the notion of the
closure of an RDF graph G [9], denoted cl(G), which is the closure of G under

Group A (Subproperty) (1)
(a, sp, b) (b, sp, c)

(a, sp, c)
(2)

(a, sp, b) (X, a, Y)

(X, b, Y)

Group B (Subclass) (3)
(a, sc, b) (b, sc, c)

(a, sc, c)
(4)

(a, sc, b) (X, type, a)

(X, type, b)

Group C (Typing) (5)
(a, dom, c) (X, a, Y)

(X, type, c)
(6)

(a, range, c) (X, a, Y)

(Y, type, c)

Fig. 2. RDFS Inference Rules

the rules. By a result from [9], RDFS entailment (for the fragment of RDFS we
consider) can be characterized as follows: G1 |=RDFS G2 if and only if G2 ⊆ cl(G1).

Given a set of variables V disjoint from the sets I and L, a triple pattern is
a triple (v1, v2, v3) ∈ (I ∪ V)× (I ∪ V)× (I ∪ V ∪L). A graph pattern P is a set
of triple patterns. We denote the variables mentioned in P by var(P).

A conjunctive query as considered in [12] is a rule whose body is a graph
pattern. We investigated two broad classes of relaxations for such queries in
that paper: ontology relaxation and simple relaxation. Ontology relaxation en-
compasses relaxations that are entailed using information from the ontology and
are captured by the rules of Fig. 2; we note that when applying these rules to
triple patterns, rather than (ground) triples, a, b and c must be instantiated to
RDF terms, while X and Y can be instantiated to either RDF terms or vari-
ables. Simple relaxation consists of relaxations that can be entailed without an
ontology, e.g. dropping triple patterns, replacing constants with variables, and
breaking join dependencies.

In this paper, we extend the application of ontology relaxation from graph
patterns to regular path queries, leaving consideration of simple relaxation to
future work. Before proceeding further we introduce some assumptions and ter-
minology.

We consider the cost of applying rule 2 or 4 to be β, and the cost of applying
rule 5 or 6 to be γ. (Because queries and data graphs cannot contain sc and sp,
rules 1 and 3 are inapplicable as far as relaxation is concerned.) We assume that
the subgraphs of K induced by edges labelled sc and sp are acyclic; this ensures
that the transitive reduction (see below) of each of these subgraphs is unique.
We also assume that all the edges labelled with symbols from Σ ∪ {type} that
are entailed by G ∪K are included in G.

For each edge (a, type, c) in G, we also add to G the “reverse” edge (c, type−, a).
We do this because, while we do not consider reverse traversal of graph edges in
general in this paper (leaving this as an area of further work), we do allow the
reverse traversal of type edges, which we accommodate by generating reverse
edges in G labelled type−. We need these edges in order to accomodate Rule 6
of Fig. 2 without changing the position of the variable Y in the relaxed triple.
This is because (as we will see below) in our context of relaxing regular path
queries, the relaxed triples are generally part of a sequence of relaxed triples.

Thus, we use the equivalent form of (c, type−, Y) for the relaxed triple inferred
by Rule 6.

Finally, we assume that K = extRed(K), where extRed(K) is the extended
reduction of K. Given ontology K, extRed(K) can be computed as follows: (i)
compute cl(K); (ii) apply the rules of Fig. 3 in reverse until no longer applicable;
and (iii) apply rules 1 and 3 of Fig. 2 in reverse until no longer applicable.
(Applying a rule in reverse means deleting the triple deduced by the rule.) Using
this extended reduction allows us to perform what were termed direct relaxations
in [12] which correspond to the “smallest’ relaxation steps. This is necessary if
we are to return query answers to users incrementally in order of increasing cost,
which we discuss in more detail shortly.

(e1)
(b, dom, c) (a, sp, b)

(a, dom, c)
(e2)

(b, range, c) (a, sp, b)

(a, range, c)

(e3)
(a, dom, b) (b, sc, c)

(a, dom, c)
(e4)

(a, range, b) (b, sc, c)

(a, range, c)

Fig. 3. Additional rules used to compute the extended reduction of an RDFS ontology.

Let t1 and t2 be triple patterns such that t1, t2
∈ cl(G ∪K), and var(t2) =
var(t1). We say that t1 relaxes to t2 (or t2 is a relaxation of t1), denoted t1 ≤ t2

2,
if ({t1} ∪ G ∪ K) |=rule t2. Let P1 and P2 be graph patterns such that for all
t1 ∈ P1 and t2 ∈ P2, t1, t2
∈ cl(G ∪K) and var(P2) = var(P1). We say that P1

relaxes to P2 (or P2 is a relaxation of P1), denoted P1 ≤ P2, if for all t1 ∈ P1

there is a t2 ∈ P2 such that t1 ≤ t2 and for all t2 ∈ P2 there is a t1 ∈ P1 such
that t1 ≤ t2. We note that the relaxation relation is reflexive and transitive.

Example 2. If we did not use the extended reduction of an ontology K, we
could have the triples (a, dom, c), (a, dom, c′) and (c, sc, c′) in K. Given a con-
junct (X, a, w), we could apply rule 5 in order to relax (X, a, w) to (X, type, c)
with cost γ and to (X, type, c′), also with cost γ. However, the cost of relaxing
(X, a, w) to (X, type, c′) should really be γ + β, reflecting the cost of using rule
5 to relax (X, a, w) to (X, type, c) followed by the cost of using rule 4 to relax
(X, type, c) to (X, type, c′). The extended reduction of K does not contain the
triple (a, dom, c′) because of applying rule e3 in reverse; hence, although the rules
of Fig. 3 are not sound for RDFS entailment, using extRed(K) allows us finer
control over computing the cost of various relaxations. ��

Given a query Q with a single conjunct (X, R, Y), let q = l1l2 · · · ln be a
string in L(R). We define a triple form of (Q, q) as a set of triple patterns

{(X, l1, W1), (W1, l2, W2), . . . , (Wn−1, ln, Y)}
where W1, . . . , Wn−1 are variables not appearing in Q. Thus, a triple form of
(Q, q) is a graph pattern which can be relaxed to another graph pattern.
2 For notational simplicity we assume that the parameters G and K are implicit.

Example 3. Let query Q contain the single conjunct (X, R, 4), where X is a
variable, 4 is a constant, and R = (a · b · d). Assume that K contains the triples
(d, sp, e), (e, dom, c) and (c, sc, c′). There is only a single q ∈ L(R), namely
q = abd. Consider the following triple form T of (Q, q)

{(X, a, W1), (W1, b, W2), (W2, d, 4)}

and let P be the graph pattern

{(X, a, W1), (W1, b, W2), (W2, type, c
′)}

Then T relaxes to P since (W2, d, 4) ≤ (W2, type, c
′) by applying rules 2, 5 and

4. We also have that (W2, d, 4) ≤ (W2, e, 4) (by rule 2), (W2, e, 4) ≤ (W2, type, c)
(by rule 5) and (W2, type, c) ≤ (W2, type, c′) (by rule 4).

Note that, because of our requirement that variables be preserved when per-
forming relaxation, rules 4, 5 and 6 can only be applied to the first or last triple
pattern of a triple form of a string. So if, for example, (b, dom, f) ∈ K, the triple
pattern (W1, b, W2) cannot be relaxed to (W1, type, f) by rule 5. ��

We now define the relaxed semantics of such queries as follows. Let p be the
path (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), n ≥ 1, in G. We define a triple form of p
as a set of triple patterns

{(v1, l1, W1), (W1, l2, W2), . . . , (Wn−1, ln, vn+1)}

where W1, . . . , Wn−1 are variables. If p is of length zero, then p is of the form
(v, ε, v) and the only triple form of p is also (v, ε, v).

Given a query Q of the form (1) and a graph G, let θ be a matching from
variables and constants of Q to nodes of G such that θ maps each constant to
itself. We denote (θ(X), R, θ(Y)) by θ(Q). Path p in G r-conforms to θ(Q) if
there is a q ∈ L(R), a triple form Tq of (θ(Q), q) and a triple form Tp of p such
that Tq ≤ Tp. A tuple θ(vars) r-satisfies Q on G if there is a path in G that
r-conforms to θ(Q).

Note that a path in G can r-conform to a query on the basis of a triple pattern
t relaxing to a triple pattern t′ such that the constants in t and t′ differ (due to
applications of rules 5 and 6, provided Y is a constant). Hence relaxation of a
conjunct induces a mapping on constants which may not be the identity.

We now consider the cost of applying relaxations in order to be able to
return answers ordered by increasing cost. For this we need the notion of direct
relaxation. In [12] we defined the direct relaxation relation, denoted by ≺, as the
reflexive, transitive reduction of ≤. The direct relaxations of a triple pattern t
(i.e., triple patterns t′ such that t ≺ t′) are the result of the smallest steps of
relaxation. We write t, o � t′ if t′ can be derived from t and o ∈ cl(G ∪ K) by
the application of a single rule from Fig. 2. We also write t, o �i t′ if rule i was
the rule used in the derivation.

It is shown in [12] that a single application of each of the rules in Fig. 2 to a
triple pattern t and a triple o ∈ extRed(K) (where applicable) yields precisely

the direct relaxations of t with respect to K. Given graph patterns P1 and P2,
we say that P1 directly relaxes to P2, denoted P1 ≺ P2, if P1 = {t1} ∪ P and
P2 = {t2}∪P , for some (possibly empty) graph pattern P , and t1 ≺ t2; in other
words, t1, o �i t2 for some triple o ∈ extRed(K) and rule i. The cost of the
direct relaxation is the cost of applying rule i. The cost of a sequence of direct
relaxations is the sum of the costs of each relaxation in the sequence.

Given ontology K = extRed(K), path p in G, matching θ, query Q as in
(1), string q ∈ L(R), triple form Tq for (θ(Q), q), triple form Tp for p such that
Tq ≤ Tp (so p r-conforms to θ(Q)), the relaxation distance from p to (θ(Q), q)
is the minimum cost of any sequence of direct relaxations which yields Tp from
Tq. The cost of the empty sequence of direct relaxations (so that Tq is already a
triple form of p) is zero. The relaxation distance from p to θ(Q) is the minimum
relaxation distance from p to (θ(Q), q) for any string q ∈ L(R).

Given graph G, query Q and matching θ, the relaxation distance of θ(Q),
denoted rdist(θ, Q), is the minimum relaxation distance to θ(Q) from any path
p that r-conforms to θ(Q). The relaxed answer of Q on G is a list of pairs
(θ(vars), rdist(θ, Q)), where θ(vars) is an r-satisfying tuple, ranked in order of
non-decreasing relaxation distance. The relaxed top-k answer of Q on G com-
prises the first k tuples in the relaxed answer of Q on G.

Example 4. Consider the conjunct Q = (?Goal,job.type,AssistantEditor)
from query Q3 in Example 1. Suppose the graph G contains the triples
(ep24,job,j24), (j24,type,AssistantEditor) shown in Fig. 1, and also the
triples (ep33,job,j33), (j33,type,AssociateEditor) from another timeline.
Path (ep24,job,j24,type,AssistantEditor) r-conforms to θ(Q) when θ(?Goal)
= ep24with relaxation distance 0. Path (ep33,job,j33,type,AssociateEditor)
r-conforms to θ(Q) when θ(?Goal) = ep33 with relaxation distance β. So tuples
(ep24) and (ep33) both r-satisfy Q on G. ��

2.3 Computing the Relaxed Answer

We now describe how the relaxed answer can be computed, starting from the
weighted NFA MR that recognises L(R) which was described in Section 2.1.

In computing a relaxed answer, it is useful to be able to make (possibly
partial) copies of states in an automaton. Given an automaton M with a set of
states S and a state s ∈ S, a clone of s in M is a new state s′ which is added to S
such that s′ is an initial or final state if s is, and s′ has the same sets of incoming
and outgoing transitions as s. An incoming (outgoing) clone of s is a new state
s′ such that s′ is an initial or final state if s is, s′ has the same set of incoming
(outgoing) transitions as s, and has no outgoing (incoming) transitions.

Given a weighted automaton M = (S, Σ′, δ, s0, sf) and ontology K such
that K = extRed(K), we construct as described below the relaxed automaton
MK = (S′, Σ′, τ, S0, Sf) of M with respect to K. The set of states S′ includes
S as well as any new states defined below. S0 and Sf are sets of initial and final
states, respectively, with S0 including s0, Sf including sf and both possibly
including additional cloned states defined below. Each state in S0 and Sf is

annotated either with a constant or with the wildcard symbol ∗. The transition
relation τ includes δ as well as any transitions added to τ by the process defined
below. The process continues until no further changes to τ and S′ occur.

– (rule 2) For each transition (s, a, d, t) ∈ τ and (a, sp, b) ∈ K, add the transi-
tion (s, b, d + β, t) to τ .

– (rule 4 (i)) For each transition (s, type, d, t) ∈ τ , t ∈ Sf and (c, sc, c′) ∈ K
such that t is annotated with c, (i) add an outgoing clone t′ of t annotated
with c′ to S′, and (ii) add the transition (s, type, d + β, t′) to τ .

– (rule 4 (ii)) For each transition (s, type−, d, t) ∈ τ , s ∈ S0 and (c, sc, c′) ∈ K
such that s is annotated with c, (i) add an incoming clone s′ of s annotated
with c′ to S′, and (ii) add the transition (s′, type−, d + β, t) to τ .

– (rule 5) For each (s, a, d, t) ∈ τ , t ∈ Sf and (a, dom, c) ∈ K such that t is
annotated with a constant, (i) add an outgoing clone t′ of t annotated with
c to S′, and (ii) add the transition (s, type, d + γ, t′) to τ .

– (rule 6) For each (s, a, d, t) ∈ τ , s ∈ S0 and (a, range, c) ∈ K such that s is
annotated with a constant, (i) add an incoming clone s′ of s annotated with
c to S′, and (ii) add the transition (s′, type−, d + γ, t) to τ .

Given a regular expression R and ontology K = extRed(K), we denote by MK
R

the automaton obtained by first constructing the automaton MR for R and then
constructing the relaxed automaton of MR with respect to K.

Example 5. Consider again conjunct (X, R, 4), where R = (a ·b ·d), and ontology
K = {(d, sp, e), (e, dom, c), (c, sc, c′)} from Example 3. The relaxed automaton
MK

R initially comprises the states {s0, s1, s2, sf} and the transitions labelled
with cost zero between them, as shown in Fig. 4. Applying the transformation
for rule 2 to the transition labelled d, 0 and the triple (d, sp, e) ∈ K, adds the
transition labelled e, β from s2 to sf . Applying rule 5 to this transition and the
triple (e, dom, c) ∈ K, adds the outgoing clone s′f of sf , annotated with c, as
well as the transition labelled type, β + γ from s2 to s′f . Applying rule 4(i) to
this transition and the triple (c, sc, c′) ∈ K, adds the outgoing clone s′′f of s′f ,
annotated with c′, as well as the transition labelled type, 2β + γ from s2 to s′′f .

s0 s1 s2 sf

a, 0 b, 0

e, β

d, 0

s′′
f

type, 2β + γ

s′
f

type, β + γ

∗ c′

4

c

Fig. 4. Relaxed automaton MK
R for conjunct (X, (a · b · d), 4).

Given a graph G, automaton MK
R will match (i) paths labelled a · b · d from

any node to node 4 with distance 0, (ii) paths labelled a · b · e from any node to

node 4 with distance β, (iii) paths labelled a · b · type from any node to node c
with distance β + γ, and (iv) paths labelled a · b · type from any node to node
c′ with distance 2β + γ. ��

Proposition 2. Let Q be a query comprising a single conjunct (X, R, Y). Let
MK

R = (S′, Σ′, τ, S0, Sf) be the relaxed automaton for regular expression R and
ontology K = extRed(K), where the ε-transitions have been removed from MK

R .
Let G be a graph and H be the product automaton of MK

R and G. Let θ be a
matching from Q to G such that θ(X) = v0 and θ(Y) = vn. (i) There is a path
r = (v0, l1, . . . , ln, vn) in G that r-conforms to θ(Q) if and only if there is a path
p = ((s0, v0), (l1, c1), . . . , (ln, cn), (sn, vn)) in H, where s0 ∈ S0 and sn ∈ Sf .
(ii) Consider all paths of the form of p in (i). The relaxation distance from r to
(θ(Q), q), where q = l1 · · · ln, is given by the minimum value of c1 + · · ·+ cn.

The proof of (i) follows from the fact that the rules used to add transitions to
MK

R correspond to direct relaxations applied to triples. The proof of (ii) follows
from the definition of relaxation distance.

Proposition 3. Given a query Q comprising a single conjunct (X, R, Y) and
ontology K = extRed(K), the relaxed automaton MK

R has at most O(|R||K|)
states and O(|R||K|2) transitions.

The proof follows from the fact that automaton MR contains O(|R|) states,
for each of which we can potentially add O(|K|) cloned states. Each of the rules
adds no more than O(|K|) transitions for each of the O(|R||K|) states in MK

R .

Proposition 4. Let G = (V, E) be a graph, Q be a single-conjunct query using
regular expression R, and K = extRed(K) be an ontology. The relaxed answer
of Q on G can be found in time O(|R|2|K|2|V |(|E|+ |V | log(|R||K||V |))).

The proof follows from Propositions 2 and 3, along with using Dijkstra’s al-
gorithm on the product automaton H , which can be shown to have O(|R||K||V |)
nodes and O(|R||K|2|E|) edges.

In order to compute the relaxed answers incrementally, we can use the getNext
function from Section 2.1 along with the same initialisation of program variables.
The only difference is that the Succ function now uses the relaxed automaton
MK

R rather than approximate automaton AR.

3 General Queries

Combining the possibility of approximating and relaxing query conjuncts, a gen-
eral query Q is of the form
(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xj , Rj , Yj),

APPROX(Xj+1, Rj+1, Yj+1), . . . , APPROX(Xj+k, Rj+k, Yj+k),
RELAX(Xj+k+1, Rj+k+1, Yj+k+1), . . . , RELAX(Xj+k+n, Rj+k+n, Yj+k+n)

where j, k, n ≥ 0, the Xi and Yi are constants or variables, the Ri are regular

expressions, and each Zi is one of X1, . . . , Xj+k+n or Y1, . . . , Yj+k+n. In the
concrete syntax, conjuncts may be specified in any order.

Let θ be a matching from variables and constants of Q to nodes in graph G.
The distance from θ to Q, dist(θ, Q), is defined as

wA(edist(θ, (Xj+1, Rj+1, Yj+1)) + · · ·+ edist(θ, (Xj+k , Rj+k, Yj+k)))+
wR(rdist(θ, (Xj+k+1, Rj+k+1, Yj+k+1))+· · ·+rdist(θ, (Xj+k+n, Rj+k+n, Yj+k+n)))
where the coefficients wA and wR are set according to the preferences of the user.
For example, they can be set to the same value if the same “cost” is associated
with query approximation and query relaxation, or to different relative values
to penalise one or the other more. Let θ(Z1, . . . , Zm) = (a1, . . . , am). We call
θ a minimum-distance matching if for all matchings φ from Q to G such that
φ(Z1, . . . , Zm) = (a1, . . . , am), dist(θ, Q) ≤ dist(φ, Q).

The answer of Q on G is the list of pairs (θ(Z1, . . . , Zm), dist(θ, Q)), for some
minimum-distance matching θ, ranked in order of non-decreasing distance. The
top-k answer of Q on G comprises the first k tuples in the answer of Q on G.

The query Q can be evaluated by joining the answers arising from the eval-
uation of each of its conjuncts. For each APPROXed or RELAXed conjunct we
can use the techniques described in Sections 2.1 and 2.3, respectively, to incre-
mentally compute a relation ri with scheme (Xi, Yi, ED, RD). If i ≤ j, then
t[ED] = t[RD] = 0. If j < i ≤ j + k, then for any tuple t ∈ ri, t[RD] = 0 and
t[ED] is the edit distance for that tuple. If j + k < i ≤ j + k + n, then for any
tuple t ∈ ri, t[ED] = 0 and t[RD] is the relaxation distance for that tuple.

To ensure polynomial-time evaluation, we require that the conjuncts of Q are
acyclic [6]. Hence a query evaluation tree can be constructed for Q, consisting
of nodes denoting join operators and nodes representing conjuncts of Q. Given
that the answers for single conjuncts are ordered by non-decreasing distance,
we can use a pipelined execution of any rank-join operator, such as the recent
instance-optimal FRPA operator proposed in [5], to produce the answers to Q
on graph G in order of non-decreasing distance.

Example 6. Consider query Q4 from Example 1. Suppose graph G contains the
triples shown in Fig. 1 and also the triples
(ep31,type,University),(ep31,qualif,BA History),
(ep32,type,Work),(ep32,job,j32),(j32,type,Writer)
(ep33,type,Work),(ep33,job,j33),(j33,type,AssociateEditor)
(BA History,type,History),(ep31,next,ep32),(ep32,next,ep33)
from another timeline. Suppose also that in the ontology, there are triples
(History,sc,Humanities) and (Writer,sc,MediaProfessional). We set the
approximation cost α = 1, the two relaxation costs β = γ = 2 and wA = wR = 1.
Then, answers are produced for query Q4 as shown in the table below:

?E1 ?E1,RD ?E1,?E2,ED ?E2,?P ?E2,?Goal,ED ?Goal ?Goal,RD ?E2,P,D
ep21 ep21,0 ep23,ep24,0 ep22,AT ep23,ep24,0 ep22 e24,0 ep23,J,2
ep31 ep31,4 ep21,ep22,1 ep23,J ep21,ep22,1 ep23 e33,2 ep22,AT,6

ep22,ep23,1 ep24,IE ep22,ep23,1 ep24 e23,4 ep32,W,8
ep31,ep32,1 ep32,W ep31,ep32,1 ep32 e32,4
ep32,ep33,1 ep33,OE ep32,ep33,1 ep33 e22,6
ep21,ep23,2 ep21,ep23,2
ep21,ep24,2 ep21,ep24,2
ep31,ep33,2 ep31,ep33,2

The first seven columns refer to the answers produced for the individual con-
juncts of Q4. For brevity, we do not show the full four-attribute answer tuples,
only the non-zero distances and the variable instantiations. We also abbreviate
Air Travel Assistant by AT, Journalist by J, Writer by W, Assistant Editor by
IE and Associate Editor by OE. The final column shows the overall query an-
swers and distances. Tuples contributing to the first two answers are italicised
and those contributing to the third answer are bold. ��

4 Related Work

Various forms of query approximation and relaxation have been studied for a
number of data models and query languages. For approximate querying, [14] con-
sidered querying semistructured data using flexible matchings which allow paths
whose edge labels simply contain those appearing in the query to be matched.
Such semantics can be captured by the edit operations of transposition and
insertion. More generally, [7] used weighted regular transducers for performing
transformations to regular path queries (but not CRP queries) to allow them
to match semi-structured data approximately. The approximate queries of [18]
are simply selections placed on attributes of form-based web data, where value
constraints can be relaxed according to their perceived importance to the user.

In terms of query relaxation, work has been done on relaxing tree pattern
queries for XML, recently in [16]. Relaxation of conjunctive queries on RDF is
considered in [4, 12]. Rewriting rules are used on query patterns in [4] to perform
both query refinement by including user preferences as well as query relaxation.
Building on the work of [12], [11] develops a similarity measure for relaxed queries
in an attempt to improve the relevance of answers. Similarity-based querying was
also the focus of iSPARQL [15], where resources (rather than paths connecting
them) are compared using similarity measures. Flexible querying of RDF using
SPARQL and preferences expressed as fuzzy sets is investigated in [1].

In contrast to all the above, our work combines within one framework both
query approximation and query relaxation, and applies it to the more general
query language of conjunctive regular path queries on graph-structured data.

5 Concluding Remarks

We have discussed query relaxation for conjunctive regular path queries, and
have shown how this can be combined with query approximation in order to pro-
vide greater flexibility in the querying of complex, irregular seminstructured data
sets. Using the techniques proposed here, users are able to specify approxima-
tions and relaxations to be applied to their original query, and the relative costs
of these. Query results are returned incrementally, ranked in order of increas-
ing ‘distance’ from the user’s original query. We have presented polynomial-time
algorithms for incrementally computing the top-k answers to such queries.

In practice, we expect that a visual query interface would be required, provid-
ing users with readily understandable options from which to select their query

formulation, approximation and relaxation requirements, and set the relative
cost associated with each operation they have selected. Our future work includes
the design, prototyping and evaluation of such a query interface, or interfaces,
and the empirical evaluation of our query processing algorithms, in domains such
as querying of lifelong learners’ metadata and heterogeneous medical data sets.

Another direction of ongoing research is to merge the APPROX and RELAX
operations into one integrated ‘FLEX’ operation that applies concurrently both
approximation and relaxation to a regular path query. For this, we are taking
advantage of the common NFA-based approach that we have adopted.

References

1. P. Buche, J. Dibie-Barthélemy, and H. Chebil. Flexible SPARQL querying of web
data tables driven by an ontology. In Proc. FQAS, pages 345–357, 2009.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In Proc. KR, pages 176–185, 2000.

3. S. de Freitas, I. Harrison, G. Magoulas, A. Mee, F. Mohamad, M. Oliver, G. Pa-
pamarkos, and A. Poulovassilis. The development of a system for supporting the
lifelong learner. British Journal of Educational Technology, 37(6):867–880, 2006.

4. P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diederich. Relaxing RDF queries
based on user and domain preferences. J. Intell. Inf. Syst., 33(3):239–260, 2009.

5. J. Finger and N. Polyzotis. Robust and efficient algorithms for rank join evaluation.
In Proc. ACM SIGMOD, pages 415–428, 2009.

6. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 43(3):431–498, May 2001.

7. G. Grahne and A. Thomo. Regular path queries under approximate semantics.
Ann. Math. Artif. Intell., 46(1-2):165–190, 2006.

8. C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of semantic web
databases. In Proc. PODS, pages 95–106, 2004.

9. P. Hayes, editor. RDF Semantics, W3C Recommendation, 10 February 2004.
10. T. Heath, M. Hausenblas, C. Bizer, and R. Cyganiak. How to publish linked data

on the web (tutorial). In Proc. ISWC, 2008.
11. H. Huang, C. Liu, and X. Zhou. Computing relaxed answers on RDF databases.

In Proc. WISE, pages 163–175, 2008.
12. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Query relaxation in RDF. Journal

on Data Semantics, X:31–61, 2008.
13. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate answers

to semantic web queries. In Proc. ESWC, pages 263–277, 2009.
14. Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Proc. PODS,

pages 40–51, 2001.
15. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A virtual

triple approach for similarity-based semantic web tasks. In Proc. ISWC, pages
295–309, 2007.

16. C. Liu, J. Li, J. X. Yu, and R. Zhou. Adaptive relaxation for querying heteroge-
neous XML data sources. Information Systems, 35(6):688–707, 2010.

17. A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph databases.
SIAM J. Computing, 24(6):1235–1258, December 1995.

18. X. Meng, Z. M. Ma, and L. Yan. Answering approximate queries over autonomous
web databases. In Proc. WWW, pages 1021–1030, 2009.

