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Abstract. Formal policies allow the non-ambiguous definition of sit-
uations in which usage of certain entities are allowed, and enable the
automatic evaluation whether a situation is compliant. This is useful for
example in applications using data provided via standardized interfaces.
The low technical barriers of integrating such data sources is in contrast
to the manual evaluation of natural language policies as they currently
exist. Usage situations can themselves be regulated by policies, which
can be restricted by the policy of a used entity. Consider for example the
Google Maps API, which requires that applications using the API must
be available without a fee, i.e. the application’s policy must not require
a payment. In this paper we present a policy language that can express
such constraints on other policies, i.e. a self-policing policy language. We
validate our approach by realizing a use case scenario, using a policy
engine developed for our language.

1 Introduction

Policies are declarative descriptions of constraints and conditions that apply to
some entity (the policy subject). Formal languages allow non-ambiguous poli-
cies, that can be automatically evaluated by computers. Many existing policy
languages represent essentially an implicit access control matrix [1]. While this
is sufficient for applications such as rights management for local file systems,
there are entities that still impose constraints on their use after initial access
was granted. This often applies to data representing factual information or cre-
ative works. Examples include images that require attribution of their creator,
or real-time stock quotes that can only be published for a fee. Generally such
policies classify usage situations into compliant or non-compliant. Conditions,
required to be fulfilled by compliant situations, may restrict the policy of the
situation. Consider for example the Google Maps API, which requires that appli-
cations using the API must be made available to the public without a fee. This is
basically a constraint in the API’s policy, which restricts the application’s policy
to not grant exclusive access to paying users. There exist approaches to usage
restrictions, but our work is to the best of our knowledge the first self-policing
policy language, in the sense that it can express restrictions on other policies.
Today, vast amounts of data are published on the Internet with standardized
interfaces, e.g. as Web services or as Linked Data'. This imposes only low tech-
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nical barriers to the use and reuse of data in new ways and their composition
into new applications or data sources. In contrast the policies regulating their
allowed uses are either not made explicit at all [2], or published in natural lan-
guage, in form of terms and conditions. The former case makes it impossible, the
latter case a manual and very tedious task to evaluate if a given usage situation
is compliant or not. This may lead to frequent violations of usage restrictions,
not because of ill will, but convenience. Evidence for this assumption is delivered
e.g. by Seneviratne et al. who discovered that around 70%-90% of the reuses of
Flickr images with a Creative Commons attribution license actually violate the
license [3]. Formal policies are required to build tools that help users to check
compliance of their data usages with the same ease as just using the data.
Restrictions on other policies include testing if one policy is contained in
another. The resulting query containment problem is undecidable for many pol-
icy languages (e.g. in the presence of general negations and disjunctions). This
means that these languages cannot simply be extended with self-policing con-
ditions. Another difficulty is that simple query containment may not work, as
restrictions have to apply to policies with subjects that are unknown at specifi-
cation time. Therefore a policy structure is required that separates identifying
applicable policy subjects and required compliance conditions. Other restrictions
include checking if a partial situation description is sufficient for fulfilling a pol-
icy, possibly under further restrictions on aspects not specified in the partial
description. Such restrictions need novel algorithms. Another requirement for
the policy language is usability for the policy specifiers. Two enabling properties
for usability are an intuitive policy structure and the reuse of policy conditions.
The rest of the paper is structured as follows. After introducing a use case in
Section 2 for further motivation and evaluation of the approach, and presenting
preliminaries in Section 3, the following contributions are presented:

— A policy model with formal semantics based on unions of conjunctive queries
and RDFS (see Section 4.1).

— A model for structuring policies to improve usability and enable the reuse
of policy parts (comparable to the Creative Commons building blocks, such
as (non-)commercial use). The structure is based on RDF and RIF and is
provided with rules that map it to our policy model (see Sections 4.2 and
4.3).

— Formal definitions of useful types of policy restrictions and their integration
into policy conditions (see Section 5).

We evaluate the approach by implementing a policy engine and applying it to
policies realizing the use cases. This is described in Section 6 together with
some performance experiments. In Section 7 the policy language is compared to
existing work. In Section 8 we conclude and give an outlook to future work.

2 Use Case and Requirements

The policy language presented in this paper is thought to be applicable to dif-
ferent application scenarios. However for further motivating the features of the
language and validating how they fulfill concrete requirements, we describe a



specific application and a concrete use case in this section. The application area
we deal with is the use of services and data in dynamic and composed docu-
ments. Another thinkable application would be expressing right restrictions of
music pieces that also affect the right restrictions of a musical work that samples
the original piece.

Dynamic and composed documents are an approach for integrating data and
functionalities that are provided over standardized interfaces, e.g. as Web ser-
vices or as Linked Data. Dynamic document compositions specify links to re-
sources and how the obtained data is combined to form a final document. An
example for such a composition is a dynamic PHP page, that reads stock quotes
from a Web service and displays them in a human-friendly way. Both the Web
service and the PHP page can be equipped with a policy restricting who can ac-
cess them. The Web service could also have a clause that requires that Web pages
displaying its result, have to have the same access restrictions as the service.
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Fig. 1. Use case scenario
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For realizing the policies we use an abstract model of service and data usages
that is the base for policy conditions. The policy-aware composition tool, as
visualized in Figure 1, mediates between the concrete document composition
(e.g. the PHP page) and its abstract description in terms of the usage model.
The policy engine classifies the composition according to the policies of the
used services and returns the result to the composition tool. In future work the
classification will be accompanied with a justification that helps to fix problems,
if a situation is non-compliant.
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Fig. 2. Conceptual Model of Use Case for Policy Conditions

The abstract conceptual model for compositions and service usages is vi-
sualized in Figure 2. Situations contain actions, that can be for example uses
of services, payments or attributions. A situation can either be a direct usage,



meaning that the actions are executed and the result directly used, or a com-
position, meaning that the result of the situation is again provided as a service.
Situations are conducted by an agent, which can be optionally classified in sub-
classes. Services (including compositions) have a policy regulating their allowed
uses.

In Section 6 we will show how our policy language can be used to model the
following representative examples:

— The terms and conditions of the Google Maps API?, which require (besides
other clauses) that “Your Maps API Implementation must be generally ac-
cessible to users without charge.

— A service in a company internal scenario delivers confidential information,
thus it can only be accessed by managers; the same must hold for composi-
tions using the service.

— A service provider offers two stock quote services: one with real-time quotes
that requires a payment, and one with delayed quotes that only requires an
attribution. A service user is searching for stock quote services that can be
used without payments.

3 Preliminaries

We choose RDF Schema (RDFS [4]) as data model for situation descriptions,
as it provides desirable modeling features, but still has decidable algorithms
for conjunctive query answering and containment. Modeling features of RDFS
that are useful for describing usage situations include: (i) the use of URIs for
individuals and classes, allowing heterogeneous actors and extensibility of situa-
tion models, (ii) class memberships and subclasses, e.g. an action belonging to a
credit card payment class, fulfills the requirement of a general payment action,
and (iii) subproperties, e.g. two actions in an application that always occur to-
gether (subproperty) are also related by a property describing actions that can
possibly occur together (superproperty).

Let I, B, L, and V be disjoint infinite sets of IRIs, blank nodes, literals and
variables. In the following P(S) denotes the powerset of S.

Definition 1. An RDF graph is a finite set of triples, defined as r € P((I U
B)xIx(IUBUL)).

In Section 4, we introduce our policy model, which is based on conjunctive
queries (CQs), as defined in the following.

Definition 2. A conjunctive query cq = (x,t) is a pair of head variables x C'V
and a finite set of triple patterns t € P(IUV) x I x (IUV UL)). We denote
as Ve ={v eV | 3Ip,o (v,p,0) €tV 3Is,p (s,p,v) €t} the set of all variables in
a set of triple patterns t.

Let M be the set of all function p : TULUV — TUL, s.t. Va : (a €
IT'UL — p(a) = a). As an abbreviation we also apply a function p € M to
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a set S (u(S) = {u(s) | s € S}), to a triple or triple pattern ¢ = (s,p,0)
(u(t) = (u(s), u(p), u(o))) or to sets of triples or triple patterns.

Definition 3. The result set for a conjunctive query cq = (x,t) applied to a
RDF graphr is defined as Quq(r) = {2’ € (IUL)*|3u € M p(x) = 2/ Au(t) C r}.

Definition 4. A union of conjunctive queries (UCQ) is a set CQ of conjunctive
queries with the same head predicate. We define Qcq(r) = U gecq @eq(T)-

We assume that the we can evaluate queries on a RDF graph that is the
fixpoint according to RDFS semantics for the properties and classes used in the
queries, i.e. all implicit properties and class memberships are materialized.

In Section 5, we discuss restrictions on policies, which are partially defined
using query containment. Query containment of a query C'Q; in a query C'Qq,
denoted as CQ1 C CQ4, means that for every possible RDF graph r, every result
of CQ; is also a result of CQa, i.e. CQ1(r) C CQa(r).

Definition 5. A function h: {ULUBUV) — (IULUBUYV) is a containment
mapping from cqa = (x2,t2) to cq1 = (x1,t1), if the following conditions hold:
—Vee(IUL): h(z)=x
— Va € xg: h(x) € 1
— VY(s,p,0) Ety: (p=rdf:type —
(s, p',0') €t1:h(s) =8 Ap' =rdf:type Ao rdfs:subClass0f o)
— V(s,p,0) Eta: (p # rdf:type —
(s, p',0") €ty : h(s) = Ah(o) =0 Ap' rdf:subProperty0f p)
Note that rdfs:subClass0f and rdfs:subProperty0f are both reflexive.

Definition 6. A CQ cq; is contained in a CQ cqsz, if and only if there exists a
containment mapping h from cqa to cq1 (seef5, p. 882]).

For showing query containment of a UCQ C@; in another UCQ C(Qs, it
is sufficient to show containment on the component CQs, i.e. CQq C CQo
Veqr € CQq ega € CQs : cqr C cqo (see [5, p. 904]).

4 Policy Model

As mentioned in the introduction, we want a policy to describe the circumstances
in which it is allowed to use the entity that is the subject of the policy. We
distinguish between policy applicability and compliance. Applicability describes
the situations, which are regulated by a policy, i.e. considered a use of the policy
subject. If a situation is not applicable it is trivially compliant, otherwise only
if the situation fulfills the corresponding conditions.

This corresponds to a goal-based policy as defined by Kephart and Walsh in
[6], as only the desired states are specified. Such policies are on a higher concep-
tual level than action-based policies, which specify for every situation what has
to be done next. The notions are based on the classification of agents according
to Russel and Norvig [7]. To arrive at a compliant state based on a goal policy,
algorithms are needed that help to determine the needed actions, respectively



situation modifications. In Section 4.2 we further elaborate on this aspect, after
we describe in Section 4.1 the used formalisms for modeling descriptions and
policy conditions.

4.1 Formal Policy Model

The sets of situations that are applicable, respectively compliant for a given pol-
icy, are described by conjunctive queries. CQs allow the declarative specification
of properties that a situation must fulfill, using predicates (i.e. RDF properties
and classes) on variables and constants which are connected by conjunctions.

Consider for example a policy that requires either a payment by credit card or
if the usage is for scientific purposes, then an attribution of the service provider
is sufficient. In order to avoid having two different policies, we define policy com-
pliance conditions to be UCQs. Formally we define: a policy P = (id, cq,, CQ.),
where id € I is the IRI representing the policy entity, cq, is a CQ defining the
applicable policy subjects, and CQ. is a UCQ defining the compliant policy
subjects.

We define the two properties applicable and compliant with domain of
policy subjects and range of policies. The extensions of these properties are
defined in the following way for all policies P = (id, cq,, CQ.) and all potential
policy subjects s in an RDF graph r:

s applicable id <> (S) € Qcq, (1), and
s compliant id <> (S) € Qcq, (1) ATeqg € CQc : (5) € Qeq(r).

For the representation of such policies we employ the RIF-Core Dialect [§],
to define a policy as a group of conjunctive rules, using RIF’s annotation to link
it to the policy entity. The RIF documents specify in [9] how RIF frame formulas
of the form s [p->o0] correspond to RDF triple (patterns) of the form s’ p’ o’.

Note that the policies do not support negation. This means that for example
it is not possible to check that there is no activity with commercial purpose,
instead such an absence has to be stated and required explicitly. Approaches like
scoped negation (cf. [10]) make it possible to combine negation as failure with
RDF’s open world assumption. However, negation together with hierarchical
predicates as introduced in Section 4.2 generally leads to undecidability of query
containment.

4.2 Policy Structure

Unions of conjunctive queries (UCQs) provide a nice formal model of policies that
is suitable for evaluation. However specifying them can introduce redundancy in
the likely case that several alternatives of a union share common conditions.
Furthermore UCQs lack an hierarchical structure which eases the specification
and maintainability of policies. Therefore we allow not only the use of frame
formulas in conditions that can be directly mapped to triple patterns but also the
use of predicates with arbitrary arity that are themselves again defined as UCQs.
This essentially means that policies can be specified as non-recursive datalog
programs, which can always be expanded to UCQs using only base predicates
(i.e. RDF class memberships and properties).



Note that such predicates can also be defined externally, which enables reuse
of conditions across policies from different specifiers. This is comparable to the
Creative Commons approach, where certain standard terms are defined that
can be used to define custom policies (cf. [11]). As rules are identified by IRIs,
they can be described not only by their formal definition as RIF documents but
also by a legal or layman description, if the IRI is resolved by a Web browser
(recognized by the Accept header of the HT'TP request).

requires
Policy Condition contains Zr subclass of
applies_to [r f w
head_variable RuleBinding Container T property
maps rule l_z> 4_|
A source
— y's A
xsd:string VariableMapping Rule PolicyOR PolicyAND

destination

Fig. 3. Visualization of Policy Structures

In the following we define a conceptual model of combining policies from
predicates defined by UCQs. It is based on an RDF model that refers by IRIs to
rules defined in RIF. The model is visualized in Figure 3. A Policy applies_to
subjects that are answers to the applicability query, which is defined by a
Condition, which is either a RuleBinding, a conjunction of other Conditions
(i.e. a PolicyAND container), or a disjunction of Conditions (i.e. a PolicyOR con-
tainer). Furthermore a policy requires a condition, which represents the validity
test, and has a head_variable which defines the policy subject in the conditions.
Both PolicyAND and PolicyOR contain a number of conditions. RuleBindings
refer by the rule property to an IRI which is the id of a group in a RIF docu-
ment that defines the corresponding predicate. Note that by resolving the IRI we
expect a RIF representation containing this group. The metadata of the group
specifies via defines_predicate the head predicate of the rules. Furthermore
a RuleBinding maps a number of VariableMappings each with a source vari-
able name of the defined predicate that is mapped to the destination, which
is either a variable in the policy condition or a string representation of an IRI.

Such an hierarchical policy definition with simple boolean operators to com-
bine basic conditions is a more user friendly way to specify policies, which is
already familiar from filter creation in many email programs. Furthermore the
structuring allows users to group conditions in sensible blocks, which can be ex-
ploited for giving justifications of (mainly negative) policy decisions. Due to the
use of IRIs and metadata, the rules and policy parts can be annotated with fur-
ther useful and human-readable information. See for example the work by Kagal
et al. [12] for a policy engine that exploits policy structures for human-friendly
justifications.



4.3 Mapping the Policy Structure to the Formal Model

The mapping from the proposed structural model to a policy’s normal form (i.e.

its UCQ as defined in Section 4) is defined in a bottom-up way. The most basic

part is a rule defining a predicate based only on RDF properties. Using RIF

presentation syntax (cf. [13]) it is expressed in the following way (p: is used in

the following for the namespace of the policy vocabulary):

(* "RULEID"""rif:iri
"RULEID"~"rif:iri[p:defines_predicate->"PREDICATE" " "rif:iri] *)

Group (
Forall 7hl ... 7hn (
"PREDICATE"~"rif:iri(?h1l ... 7hn) :-
Exists 7el ... 7em (
And( s1[pil->o1]
sk [pk->0k])))
Forall ?h1l ... 7hn (
"PREDICATE"~"rif:iri(?h1l ... ?hn) :-
Exists 7el ... 7em (

And( s’1[p’1->0’1]

s’1[p’1->0’°11))))
This maps to a union of conjunctions of the following form:

CQRULEID ::{ ((h1,...,hn),{(sl,pl,ol),...,(s;c,pk,ok)}),...7
(B shn) {5 P00 (om0 }) B

where (s1,p1,01), ..., (8], p},0]) € IUV xIxIUVUL. Note that it is also possible
to use other (non-recursive) RIF predicates instead of only RDF properties.
In this case, we assume that the IRI of the used predicate resolves to a RIF
document that defines the corresponding UCQ. In this way a rule definition
can always be expanded to a union of conjunctions in terms of simple RDF
properties.
The rules are used in our policy model by RuleBindings, which has the
general form:
RB a p:RuleBinding;
p:rule RULEID;
p:maps MAP1; p:maps ...; p:maps MAPN.
We define a function fypp : VUITUL — V UI UL for each variable mapping
MAP = (source, destination) in the following way:

destination, if x = source

fuap(z) = {

x, otherwise.

We also use these functions when applied to UCQs with the meaning that it is
applied to all variables, IRIs and literals in the UCQ. Thus, we can define the
UCQ of the rule binding RB in the following way:

CQgrp = fuap1(f.. (fuapn(CQRULEID)))-



The mapping for both AND and OR containers are defined by treating them
as binary operators. Due to the associativity of these operators, the mapping
naturally applies also to containers with more components.

Conditions (e.g. rule bindings) are used in PolicyAND containers of the fol-
lowing form:

AND a p:PolicyAND;
p:contains Ci;
p:contains C2.
The corresponding UCQ is obtained by creating the union of the conjunctions
for each pair of alternatives of the two components. More formally:

CQanp = U U {(z1 Uza,t1 Uta)}.
(1,t1)€CQq (z2,t2)€CQEy
For a PolicyOR container of the following form
OR a p:PolicyOR;
p:contains C1;
p:contains C2.
we define the UCQ as the union of the two components: CQpr = CQc1 U CQea.
Finally we define the mapping for a Policy object to the formal model. Given
the following representation
POL a p:Policy;
p:head_variable HV;
p:applies_to CA;
p:requires CR. , we define a policy Ppgr, = (POL, CQcp, CQcR)-

5 Restrictions on Policies

Policies classify policy subjects into compliant, non-compliant, and inapplicable
categories. If we want to ensure that certain kinds of policy subjects are always,
respectively never, compliant with a policy, we have to restrict the policy with
regard to a specification of the policy subject. Specifying restrictions on policies
is useful for several tasks, as outlined in the following:
— Searching for an entity with a policy that allows certain situations, e.g.
searching for a service that can be used without a payment.
Validation of a policy, i.e. ensuring that it fulfills test restrictions.
— Comparison to other policies, e.g. to a previous version, in order to see, if
the policy is stricter or more lax.
— Policing other policies, if the compliance of a policy subject depends on
restrictions of the subject’s policy.
Independent of their application, we found the three types of restrictions
particularly useful, which are listed in the following, including examples of their
use:

1. Required for compliance: is it necessary that a policy subject fulfills cer-
tain conditions in order to be compliant. If we specify the required conditions
themselves as a policy, this restriction is equivalent to asking if all compli-
ant subjects of the restricted policy are also compliant with the restricting
policy. This can be solved by checking query containment of the policies.



Examples for such restrictions are: (i) a policy must always require a pay-
ment, or (ii) a policy must restrict data access to a certain class of users.

2. Not required for compliance: is it possible that a policy subject is com-
pliant without necessarily fulfilling certain conditions. This restriction is ba-
sically just the negation of the previous one, and thus can also be checked
by query containment.

Examples are: (i) can a subject be compliant without having a payment, (ii)
can a service be used without being a registered user?

3. Sufficient for compliance: can a partially described subject be compliant
by adding only further restrictions that do not affect the given description?
An example for this restriction is: can a situation, where data is provided to
the general public, be compliant? This is true if the policy does not further
restrict the data recipient, but it may for example require a payment.

The presented restrictions rely on query containment, i.e. comparison of poli-
cies. As we want to compare policies that generally can apply to different sub-
jects (i.e. the subjects of the restricted and the restricting policy), we define the
comparisons in terms of the compliance conditions of policies, and dismiss the
applicability conditions. This is one of the reasons for separating applicability
and compliance, besides avoiding redundancy as applicability is part of every
policy alternative (i.e. conjunction in the policy’s UCQ).

In order to use the above defined restrictions in policy conditions, we intro-
duce three RDF properties and formally define their extensions:

— req_for_comp (see 1. “required for compliance”),

— not_req_for_comp (see 2. “not required for compliance”, needed as we do
not support negation), and

— sufficient_for_comp (see 3., “sufficient for compliance”).

As discussed above we can reduce the first two restrictions to query contain-
ment in the following way:

P2 req_for_comp P1 ¢+ Pp1 = (P1,cqs, CQ:) A Ppg = (P2,cqs,CQ2) A CQ: T CQ:
P2 not_req_for_comp P1 <+ —(P2 req_for_comp P1)

The sufficient_for_comp property is defined between policies specifying
the sufficient condition and a target policy. The sufficient condition policy Ps =
(id®, cqs, CQ3) should only consist of a single acyclic conjunctive query ([14],
also called tree queries [15]) CQ?% = {cqs(xs,ts)}, whereas the target policy
P, = (id', eql, CQY) can be a union of CQs. P is sufficient for P, if there exists
one policy alternative cg; € CQ? for which it is sufficient. Finding out, if cqs =
(xs = {hvs}, ts) is sufficient for cq; = (x4 = {hv:},t;) can be done by doing a
tree traversal of cqs according to the following recursive condition:
suf f(egs, cqr) <> is_suf f (hvs, cgs, cqr, {(hvs, hve)}), where:

is,suff(n, Cqs, Cqt, IU/)
= (Ve € {c| (n,xdf:type,c) € t,} :
Ve € {c' | (u(n),rdf :type,c’) € t;} : ¢ rdfs:subClassOf ') A



(Vpe {p|Jo:(n,p,0) €ts}:
Vp e {p" | 30"t (u(n),p',0') € ti} :
((p’ rdfs:subProperty0f p) — (p rdfs:subProperty0f p’))) A
(V(p0) € {(p,0) | (n,p,0) €t} :
V(p',0') € {(p',0) | (1(n),p’,0') € t:} :
((p rdfs:subProperty0f p') A{(z,2') e p |z =0} =0 —
is_suf (0, cqs, cqr, p U {(0,0)}))) A
(V(s,p) € {(s:0) | (5,p,m) € 1} :
V(s p') € {(s",p") | (5,0, (n)) € ti}
((p rdfs:subProperty0f p') A {(z,2’) ep |z =s} =0 —

is_suf f(s,cqs,cqe, p U {(s, SI)})))

The definition of is_suff is divided into four conditions. The first condition
checks for a node mapping, that there are no stricter class requirements in the
target policy than in the sufficiency condition. The second condition checks that
no stricter property requirements occur (i.e. every mapping to a subproperty
must be an equivalent property). The third and fourth conditions follow the
patterns connected to a node (depending on its position as a subject or object)
and recursively apply is_suff to the newly mapped variables. As we required
the sufficiency condition to be an acyclic conjunctive query and only patterns
are followed that map previously unmapped variables, the recursion will always
come to an end.

The proposed policy restriction properties are defined to have special inter-
pretations, as defined in this section. As the definitions for query containment
and sufficiency rely on normal RDFS interpretations of properties, the restric-
tion properties cannot be freely used in policies occuring in restriction conditions.
Specifically the current definitions do not support restriction properties in suffi-
ciency conditions (i.e. Sin S sufficient_for_comp P) and containing policies
(i.e. P2 in P2 (not_)req_for_comp P1). Note that the properties can occur in
contained policies, as they just reduce the set of compliant subjects and thus
can be ignored.

6 Evaluation

In Section 2 we presented a use case and three concrete examples. We modeled
the use case using our policy language and tested it with a prototypical imple-
mentation of a policy engine, that we developed. In the following we present and
discuss interesting aspects of the example policies. The full examples in RDF
and RIF, as well as the policy engine and its source code are available online?.
At the end of the section, we elaborate on the performance of the policy engine.

3 http://code.google.com/p/seppl/



Policy for Google Maps API  In subsequent descriptions we use N3-
syntax for RDF and the abstract syntax for RIF. The URI prefix p: stands for
the policy vocabulary, and m: points to the conceptual model for compositions
and service usages. In the following we show the description of the maps pol-
icy, the policy: prefix points to a RIF file containing maps policy rules, and
generalrules: refers to a RIF file describing general rules that can be reused
by different policy specifiers.

@prefix gm: <http://example.org/googlemapsapi#> .
@prefix policy: <http://example.org/gmpolicy#> .

gm:policy a p:Policy;
p:head_variable "situation";
p:applies_to [a p:RuleBinding;
p:rule policy:apprulel;
p:requires [a p:PolicyAND;
p:contains :RegisteredUser;
p:contains [a p:PolicyOR;
p:contains [a p:PolicyAND;
p:contains <http://example.org/nopaymentreq#NoPaymentReqCondition>;
p:contains :AvailForPublic];
p:contains [a p:RuleBinding; p:rule generalrules:DirectUse]]].

:RegisteredUser a p:RuleBinding;
p:rule policy:GMRegisteredUser.

:AvailForPublic a p:RuleBinding;
p:rule policy:AvailForPublicRule.

The policy defines that applicability is determined by the apprule and requires
for compliance that (i) the actor of an applicable situation is a registered user
(rule GMRegisteredUser), and (ii) that the situation is either a direct use (rule
generalrules:DirectUse), or a composition that has a policy which makes
it available to the public (rule AvailForPublicRule) and does not require a
payment (link to external rule binding, reusing this common condition).

The apprule specifies that situations are applicable to this policy, if it uses
the Google Maps API (defined as gm:service a m:Service):

(* policy:apprule
policy:apprule([p:defines_predicate -> policy:apprulepred *)
Group (
Forall ?situation (
policy:apprulepred(?situation) :- Exists 7usage (
And ( 7situation[rdf:type -> m:Situation]
?situation[m:contains -> ?7usagel
?usage [rdf:type -> m:Usage]
7usage[m:service -> gm:service] ) ) ) )

The AvailForPublicRule has the following rule body:

And ( ?situation[rdf:type -> m:Composition]
?situation[m:policy -> ?policyl]
gm:AvailableForPublicPolicy[p:sufficient_for_comp -> ?policy] )



This means that another policy is described (gm:AvailableForPublicPolicy)
that defines a partial situation description which must be sufficient for fulfilling
the policy of a composition which is using the API. The partial situation is
defined by a binding of a rule with the following body:

And ( ?situation[m:actor -> ?7actor]
7actor [rdf:type -> m:Public] )

The partial situation is thus only sufficient if the composition’s policy allows
access by actors without requiring them to belong to any other class than
m:Public.

Confidential company internal service The policy of the confidential
service requires two rules: (i) one checking if the actor of the using situation
is a manager, and (ii) one that checks if the policy of a using composition is
contained in a policy restricting access to managers. The second rule ensures
that if the service is used in a composition, then the composition inherits the
access restrictions. For the realization of this rule, the p:req_for_comp property
was used.

Stock quotes service The policies of the stock quote services are rather
straightforward, one checking for a payment and the other one for an attribution.
The search process is realized in the following way: (i) the user creates a policy
that requires a situation that contains a payment, (ii) he asks the policy engine to
check for both stock quote services if their policy is not contained in his policy.
The engine answers the request by using the p:not_req_for_comp property,
which only holds for the delayed stock quote service.

Performance Compliance checking using our policy language corresponds to
answering unions of conjunctive queries. Conjunctive query answering is known
to be NP-complete [16] for relational databases. This result can be transferred
to RDFS knowledge bases with a materialized fixpoint, where the properties can
be treated as relations. However, in our approach special properties exist that
check restrictions on policies. The evaluation, if two instances are related by such
a property involves checking query containment, which for positive conjunctive
queries is equivalent to query answering and thus also NP-complete. Thus in
combination this means a complexity of up to X3P (i.e. NP with an NP oracle)
for policy evaluation. The theoretical complexity relates to the size of the queries
defining the policies.

For testing what the theoretical complexity means for practical purposes we
conducted some performance measurements using our (non-optimized) policy
engine. We created for both the maps API policy and the confidential service
policy each three situation descriptions: one that is compliant, one that is non-
compliant and one that is not applicable. We measured the classification time on
a laptop with an Intel Core2Duo 2.4GHz processor and 4 GB of main memory.
Furthermore we measured the search time for determining for the real-time and
the delayed stock quote services if they do not require payments. The results are
shown in Table 1.



Task/Policy time non-compliant|{time compliant|time not-applicable
Maps API 0.69 s 0.68 s 0.60 s
Confidential Service 0.53 s 0.54 s 0.38 s
Policy search 0.35 s 0.34 s n/a

Table 1. Results of the Performance Experiments

Even with our prototypical policy engine the time required for performing
policy checks are all well below 1 second. With further optimizations (e.g. caching
formal representations of policies instead of parsing them again for every policy
action), it seems feasible to integrate real-time compliance checking in a policy-
aware composition tool.

7 Related Work

XACML is a widely-used industry standard for policies [17], but lacks a formal,
declaratively defined semantics for its very extensive condition model, which in-
cludes XPath queries, string and date comparisons, arithmetic functions, logical
negation and regular expressions besides others. Especially negation in combina-
tion with arbitrary XPath queries leads to undecidability of query containment.
Another difference to our work is that XACML focuses specifically on access
control policies, whereas our proposed policy language is suitable for usage con-
trol, which does not only check if initial access to data or services is allowed, but
also restricts the ongoing usage afterwards.

WS-Policy provides a standard that can be used to specify policies that
express requirements and capabilities in systems based on Web services [18].
The policy language itself is not especially targeted at Web services and can
be extended by custom policy assertions, which are basic conditions that can be
combined to form policies (similar to using our containers). The standard is based
on XML and syntactic matching and is thus, in contrast to our approach, not
suitable for heterogeneous environments where different vocabularies are mixed.
There exist however several extensions to WS-Policy, which link assertions to
OWL concepts (e.g. [19,20]). Such policies are thus based on description logics
and therefore restricted to conditions with tree structures. The same restriction
applies to KAoS, an early semantic policy framework [21]. Our approach uses
conjunctive queries and thus can express non-tree conditions.

Accountability in RDF (AIR) is a policy language that comes with an engine
that supports RDFS models, and an extensive justification framework [12]. It
is based on N3 syntax, and supports quantified variables, as well as if-then-else
statements. The “else” path is followed if the condition does not hold, which
means that the language supports negation on non-atomic conditions. There-
fore query containment on AIR policies is not decidable and thus the policy
restrictions presented in this paper cannot be easily integrated into AIR. For
future work it is certainly interesting to see which features of AIR and our pol-
icy language can be fruitfully combined. Especially interesting is an adaption of
AIR’s justification framework, for which we already laid out the foundation by
associating policy rules with RIF metadata.

Another semantic policy language is Protune [22]. It is based on logic pro-
gramming rules, including negation. Its main focus is not on the classification



of situations, but on trust negotiation, which includes the execution of actions.
It includes the explanation facility ProtuneX [23], which supports decision jus-
tifications and different kind of policy queries, such as how-to queries that tell a
user what is needed to fulfill a policy. None of these queries can however be inte-
grated into the conditions of other policies, which is a key feature of our policy
language. Bonatti and Mogavero present a restricted version of Protune (e.g. no
negation) for which they show decidability of policy comparison, i.e. query con-
tainment [24]. Their work does not support integration of the comparisons into
policy conditions, and does not treat the “sufficient for compliance” restriction
introduced in this paper.

8 Conclusions and Future Work

We presented a policy language with the novel capability to express restrictions
on other policies given in the same language. The policy language has formal
semantics defined in terms of conjunctive queries over RDFS data. Furthermore
we described a concrete representation format being based on the W3C standards
RDF and RIF. We motivated the need for our self-policing policy language by a
use case about composed documents, including a real-world service, namely the
Google Maps API.

We implemented a policy engine for our language and used it to model the
use case. We conducted first performance measurements. The results show that
the language and engine can effectively represent the required policies. As next
steps we plan to develop a justification framework for the language and based
thereon build a policy-aware composition tool.

Furthermore we plan to extend the expressivity of the policy language in one
of the following possible directions:

— a more expressive data model, i.e. using one of the OWL 2 profiles, instead
of RDFS,
— allow some limited negation (e.g. only on basic patterns),
— allow viral policies, in the meaning that restricting policies can also include
conditions using the special policy restriction properties.
We currently evaluate, which of these extensions are most desirable in terms of
required expressivity and preservation of decidability.
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