
EvoPat – Pattern-Based Evolution and
Refactoring of RDF Knowledge Bases

Christoph Rieß, Norman Heino, Sebastian Tramp, and Sören Auer

AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig
{lastname}@informatik.uni-leipzig.de

http://aksw.org

Abstract. Facilitating the seamless evolution of RDF knowledge bases
on the Semantic Web presents still a major challenge. In this work we
devise EvoPat – a pattern-based approach for the evolution and refactor-
ing of knowledge bases. The approach is based on the definition of basic
evolution patterns, which are represented declaratively and can capture
simple evolution and refactoring operations on both data and schema lev-
els. For more advanced and domain-specific evolution and refactorings,
several simple evolution patterns can be combined into a compound one.
We performed a comprehensive survey of possible evolution patterns with
a combinatorial analysis of all possible before/after combinations, result-
ing in an extensive catalog of usable evolution patterns. Our approach
was implemented as an extension for the OntoWiki semantic collabora-
tion platform and framework.

1 Introduction

The challenge of facilitating the smooth evolution of knowledge bases on the Se-
mantic Web is still a major one. The importance of addressing this challenge is
amplified by the shift towards employing agile knowledge engineering methodolo-
gies (such as Semantic Wikis), which particularly stress the evolutionary aspect
of the knowledge engineering process.

The EvoPat approach is inspired by software refactoring. In software engi-
neering, refactoring techniques are applied to improve software quality, to accom-
modate new requirements or to represent domain changes. The term refactoring
refers to the process of making persistent and incremental changes to a system’s
internal structure without changing its observable behavior, yet improving the
quality of its design and/or implementation [5]. Refactoring is based on two key
concepts: code smells and refactorings. Code smells are an informal but still
useful characterization of patterns of bad source code. Examples of code smells
are “too long method” and “duplicate code”. Refactorings are piecemeal trans-
formations of source code which keep the semantics while removing (totally or
partly) a code smell. For example, the “extract method” refactoring extracts a
section of a “long method” into a new method and replaces it by a call to the
new method, thus making the original method shorter (and clearer).



Compared to software source code refactoring, where refactorings have to
be performed manually or with limited programmatic support, the situation in
knowledge base evolution on the Semantic Web is slightly more advantageous.
On the Semantic Web we have a unified data model, the RDF data model,
which is the basis for both, data and ontologies. In this work we exploit the
RDF data model by devising a pattern-based approach for the data evolution
and ontology refactoring of RDF knowledge bases. The approach is based on
the definition of basic evolution patterns, which are represented declaratively
and can capture atomic evolution and refactoring operations on the data and
schema levels. In essence, a basic evolution pattern consists of two main compo-
nents: 1) a SPARQL SELECT query template for selecting objects, which will
be changed and 2) a SPARQL/Update query template, which is executed for
every returned result of the SELECT query. In order to accommodate more ad-
vanced and domain-specific data evolution and refactoring strategies, we define
a compound evolution pattern as a linear combination of several simple ones.

To obtain a comprehensive catalog of evolution patterns, we performed a sur-
vey of possible evolution patterns with a combinatorial analysis of all possible
before/after combinations. Starting with the basic constituents of a knowledge
base (i. e. graphs, properties and classes), we consider all possible combinations of
the elements potentially being affected by an evolution pattern and the prospec-
tive result after application of the evolution pattern. This analysis led to a com-
prehensive library of 24 basic and compound evolution patterns. The catalog is
not meant to be exhaustive but covers the most common knowledge base evo-
lution scenarios as confirmed by a series of interviews with domain experts and
knowledge engineers. The EvoPat approach was implemented as an extension
for the OntoWiki semantic collaboration platform and framework.

Compared to existing approaches for knowledge base evolution, our declara-
tive, pattern-based approach has a number of advantages:

– EvoPat is a unified method, which works for both data evolution and ontology
refactoring.

– The modularized, declarative definition of evolution patterns is relatively
simple compared to an imperative description of evolution. It allows domain
experts and knowledge engineers to amend the ontology structure and modify
data with just a few clicks.

– Combined with our RDF representation of evolution patterns and their ex-
posure on the Linked Data Web, EvoPat facilitates the development of an
evolution pattern ecosystem, where patterns can be shared and reused on the
Data Web.

– The declarative definition of bad smells and corresponding evolution patterns
promotes the (semi-)automatic improvement of information quality.

This paper is structured as follows: We describe the evolution pattern con-
cepts in Section 2 and survey possible evolution patterns in Section 3. We show-
case our implementation in Section 4 while we present our work in the light of
related approaches in Section 5 and conclude with an outlook on future work in
Section 6.



2 Concepts

The EvoPat approach is based on the rationale of working as closely as possi-
ble with the RDF data model and the common ontology construction elements,
i. e. classes, instances as well as datatype and object properties. With EvoPat
we also aim at delegating bulk of the work during evolution processing to the
underlying triple store. Hence, for the definition of evolution patterns we employ
a combination of different SPARQL query templates. In order to ensure modu-
larity and facilitate reusability of evolution patterns our definition of evolution
patterns is twofold: basic evolution patterns accommodate atomic ontology evo-
lution and data migration operations, while compound evolution patterns repre-
sent sequences of either basic or other compound evolution patterns in order to
capture more complex and domain specific evolution scenarios. The application
of a particular evolution pattern to a concrete knowledge base is performed with
the help of the EvoPat pattern execution algorithm. In order to optimally assist
a knowledge engineer we also define the concept of a bad smell in a knowledge
base. We describe these individual EvoPat components in more detail in the
remainder of this paper.

2.1 Evolution Pattern

Figure 1 describes the general composition of EvoPat evolution patterns. Bad
smells (depicted in the lower left of Figure 1 have a number of basic or com-
pound evolution patterns associated, which are triggered once a bad smell is
traced. Basic and compound evolution patterns can be annotated with descrip-
tive attributes, such as a label for the pattern, a textual description and other
metadata such as the author of the pattern the creation date, revision etc.

Basic Evolution Pattern (BP). A basic evolution pattern consists of two main
components: 1. a SPARQL SELECT query template for selecting objects, which
will be changed and 2. a SPARQL/Update query template, which is executed for
every returned result of the SELECT query. In addition, the placeholders con-
tained in both query templates are typed in order to facilitate the classification
and choreography of different evolution patterns. Please note, that in the follow-
ing we will use the term variable for placeholders contained in SPARQL query
templates. These should not be confused with variables contained in SPARQL
graph patterns, which, however, do not play any particular role in this article.
The following definition describes basic evolution patterns formally:

Definition 1 (Basic Evolution Pattern). A basic evolution pattern is a tuple
(V, S, U), where V is a set of typed variables, S is a SPARQL query template
with placeholders for the variables from V , and U is a SPARQL/Update query
template with placeholders referring to a result set which is generated by the
SPARQL query template S.



 functional attributes

1

m

bad smells

1 n

1

*

1

n

1

m

1

1

compound pattern (CP)

 descriptive attributes

 description; title

 functional attributes

Vi CPi 0<i≤n

 descriptive attributes

 description; title

 functional attributes

V S U

basic pattern (BP)

Pj μj 0<j≤m

SPARQL
query

SPARQL Query Variable
to Pattern Variable

Mapping

S

SPARQL
query

 descriptive attributes

 description

 functional attributes

type name

variable

 functional attributes

update query

US

UG

UP UO

1 1

1

*

Fig. 1. Pattern composition with descriptive attributes, functional attributes and car-
dinality restrictions

1 V: dtProp type: PROPERTY

2 objProp type: PROPERTY

3 p type: TEMP

4 o type: TEMP

5 S: SELECT DISTINCT * WHERE {

6 %dtProp% %p% %o% .

7 FILTER (

8 !sameTerm (%p%, rdfs:range) &&

9 !sameTerm (%p%, rdf:type)

10 )

11 }

12 U: INSERT: %objProp% %p% %o% .

13 DELETE: %dtProp% %p% %o% .

Listing 1. Basic Evolution Pattern example: moving axioms from one property
to another.

Listing 1 shows a basic evolution pattern, which moves axioms from one
property to another. Lines 1-4 define the typed variables used in the pattern.
Lines 5-11 contain the SELECT query template, while lines 12-13 contain the
SPARQL/Update query template to be executed for each result of the SELECT
query.



Query preprocessor. In order to give a SPARQL query for previously unknown
entities (since they are selected by the pattern SPARQL query), we introduce
an extension to SPARQL that defines two additional types of variables and
preprocessor functions:

– Pattern variables are enclosed in % characters and will be replaced with the
corresponding entity. Input variables are defined by the user applying the
pattern (e. g. on which entity the pattern is to operate.). Temp variables are
variables to which query results from the pattern SPARQL query are bound.
They can be used in the SPARQL/Update query of the same pattern to
describe triple updates. In Listing 1, line 12 the variable %objProp% is used
to bind the newly created object property.

– Preprocessor functions are a means of performing certain actions with the
entities bound to a variable. If e. g. the user wants URIs of a certain format
or change the datatype of a created literal value, those functions can be
used. We provide a number of pre-defined functions for the most common
use cases.

Compound Evolution Pattern (CP). Basic evolution patterns alone are not suffi-
cient to cover arbitrary evolution scenarios. Especially on higher abstraction lev-
els of represented domain knowledge, it is feasible to represent ontology changes
on the same level of abstraction. To this end, we define compound evolution
patterns, consisting of several evolution patterns that are subsequently applied
to a knowledge base.

Definition 2 (Compound Evolution Pattern). Let 0 < i ≤ n, Pi be (basic
or compound) patterns and Vi the corresponding sets of unbound variables in Pi.
A sequence CP := (Vi,Pi) of patterns is called a compound pattern (CP).

An example of a compound pattern for transforming a datatype property into an
object property (including instance transformation) is given in listing 2. It con-
sists of the following four basic sub patterns: moving property axioms, deleting
datatype property, transforming instance data and creating object property.

1 // Sub pattern 1: (move axioms from dtProp to objProp)

2 V: dtProp type: PROPERTY

3 objProp type: PROPERTY

4 p type: TEMP

5 o type: TEMP

6 S: SELECT DISTINCT * WHERE {

7 %dtProp% %p% %o% .

8 FILTER (

9 !sameTerm (%p%,rdfs:range) &&

10 !sameTerm (%p%,rdf:type)

11 )

12 }

13 U: INSERT: %objProp% %p% %o% .

14 DELETE: %dtProp% %p% %o% .



15

16 // Sub pattern 2: (delete dtProp)

17 V: dtProp type: PROPERTY

18 p type: TEMP

19 o type: TEMP

20 S: SELECT DISTINCT * WHERE {

21 %dtProp% %p% %o% .

22 }

23 U: DELETE: %dtProp% %p% %o% .

24

25 // Sub pattern 3: (transform instance data)

26 V: dtProp type: PROPERTY

27 inst type: TEMP

28 o type: TEMP

29 objProp: PROPERTY

30 S: SELECT DISTINCT * WHERE {

31 %inst% %dtProp% %o% .

32 }

33 U: INSERT:

34 %inst% %objProp% getTempUri(getNamespace (% objProp %),%o%).

35 getTempUri(getNamespace (% objProp %),%o%) rdfs:label %o%.

36 DELETE: %inst% %dtProp% %o%

37

38 // Sub pattern 4: (create property)

39 V: objProp type: PROPERTY

40 S:

41 U: INSERT: %objProp% rdf:type owl:ObjectProperty .

Listing 2. Compound Evolution Pattern example: transforming a datatype into
an object property while maintaining instance consistency.

2.2 Evolution Pattern Processing

Algorithm 2.2 outlines the evolution pattern processing. The algorithm uses
an evolution pattern P , a graph G and a set of variable bindings B as input.
Depending on the type of pattern (basic or compound) the following steps are
performed.

Basic pattern. If P is a basic pattern, the variables in the query are substituted
with respect to their binding in B. Each of the update patterns contained in P
is processed as follows:

1. If the update pattern sets an explicit graph, the active graph is set to that
graph, else it is set to the default graph.

2. The variables in the update pattern are substituted according to B
3. Changes are determined by executing the SPARQL query in P on G.
4. The changes are then applied to the active graph.



Compound pattern. Compound patterns are resolved to basic patterns. For each
of the basic patterns the above steps are performed. The output of the algorithm
is a set of changes on the respective graphs.

Algorithm 1 Pattern execution sequence

Require: Pattern P
Require: RDF graph G
Require: Variable bindings B

if P is Basic Pattern then
substitute variables in SPARQL Query according to B
execute preprocessor functions in P
QR := SPARQL query result of P on G
for all update patterns of P as UP do

if UP has graph then
active graph AG = graph of UP

else
active graph AG = default graph G

end if
substitute variables in UP according to B
generate changes CS of UP on AG with QR
apply changes CS to AG

end for
else

for all basic patterns in compound pattern P as SP do //maintain correct order
execute Base Pattern SP //see above

end for
end if

2.3 Bad Smells

In order to assist knowledge engineers and domain experts as much as possible
with the evolution of a knowledge base we also provide a formal definition for
a bad smell in a certain knowledge base. In essence, a bad smell is represented
via a SPARQL SELECT query, which detects a suspicious structure in a knowl-
edge base. In most scenarios, there will be one (or multiple) evolution patterns
addressing exactly the issue raised by a certain bad smell. Hence, we allow to
assign one (or multiple) evolution patterns to the bad smell for resolving that
issue. In order to further automatize the resolving of bad smells each evolution
pattern can be assigned with a mapping from the bad smells result set to the
variables used in the evolution patterns.

Definition 3 (Bad smell). A bad smell is a tuple (S, (Pi, µi)), where S is a
SPARQL query and (Pi, µi) is a list of possible evolution patterns Pi for resolving
the bad smell with an associated mapping µi, which maps results of S to the
variables in Pi.



1 SELECT ?s ?p ?o

2 WHERE {

3 ?s ?p ?o .

4 ?p a owl:DatatypeProperty .

5 ?p rdfs:range ?range .

6 FILTER (DATATYPE (?o) != ?range)

7 }

Listing 3. Bad smell example: selecting statements for which the datatype of
the object doesn’t match the rdfs:range of the property.

An example of a bad smell is given in listing 3. It selects all statements whose
object is a literal with a datatype that does not match the rdfs:range of the
property of that statement. The result set from the bad smell query can be
directly applied as input to a pattern that typecasts literal values to the correct
datatype.

In certain cases a knowledge base evolution can be even performed completely
automatically. This is the case if and only if both of the following conditions are
met.

– The bad smell can only be resolved by exactly one evolution pattern and
– the mapping to the evolution pattern’s variables is complete in the sense

that all variables will be assigned values from the bad smell’s query result
set.

2.4 Serialization in RDF

To facilitate the exchange and reuse of previously defined evolution patterns we
developed an RDF serialization, i. e. an RDF vocabulary for representing evolu-
tion patterns1. Together with an updated log publishing (such as e.g. proposed in
[1]) on the Linked Data Web this facilitates the creation of an evolution ecosys-
tem, where generic and domain specific evolution patterns are shared and reused
and data cleansing and migration strategies can be also performed in network
of linked knowledge bases.

3 Pattern Survey and Classification

In order to obtain a comprehensive catalog of evolution patterns we pursued
a three-fold strategy: (1) we performed a comprehensive literature review, (2)
we looked at all combinatorial combinations of before/after states and (3) we
conducted a number of interviews with knowledge engineers and domain experts,
which were involved in medium-scale knowledge base construction projects and
retrospectively reviewed the evolution of these knowledge bases.

1 The vocabulary for representing evolution patterns is available at:
http://ns.aksw.org/Evolution/



∅ C + P+ G+ PC PG CG

∅ ok ok ok ok
C + ok ok ok invalid invalid invalid ok
P+ ok ok ok invalid ok ok invalid
G+ ok invalid invalid ok invalid invalid invalid
PC invalid ok invalid invalid invalid
PG invalid ok invalid invalid invalid
CG ok invalid invalid invalid invalid

Table 1. Combinatorially possible before/after evolution states. C, P, G stand for
class, property, graph respectively. The ’+’ indicates that multiple entities of the same
type participate in the evolution pattern. Impossible combinations are blackened out.

Literature review. Most work concerned with ontology evolution patterns iden-
tifies a number of useful patterns but gives only an informal description which
cannot be used for implementing an evolution software system. In [10], evolu-
tion patterns that work on the ontology level are identified. A classification of
evolution patterns in four levels of abstraction is presented in [7]. The levels
identified by the authors helped us in our classification system. In the inter-
views we conducted, the need for representational changes was identified. Thus,
we added another layer that deals with syntactic changes to resources (i. e. re-
naming a URI). The authors of [3] present a number of patterns with formally
defined participants and execution steps. We extended the approach, providing
a pattern behavior in the form of SPARQL/Update queries that can directly be
built into Semantic Web applications.

Combinatorial analysis. In order to ensure, that we achieved a comprehensive
coverage of all possible evaluation patterns we followed a combinatorial analy-
sis. We considered all possible combinations of ontology construction elements
(i. e. classes, properties and (sub-)graphs) which are potentially affected by the
application of a basic evolution pattern and the possible combinations of re-
maining elements after the pattern has been applied. All possible combinations
are displayed in Table 1. For each of the potentially possible combinations we
performed an analysis whether evolution patterns actually exist in practice. The
results of this analysis are also summarized in Table 2. Combinations where pos-
sible patterns can be represented as combinations of basic evolution patterns are
marked with a white background. Those combinations were no basic evolution
patterns exist are blackened out.

Interviews and retrospective coverage checks. In order to ground our findings
from the literature review and combinatorial analysis, we had an in-depth look
at several medium- to large-scale knowledge base construction projects. These
included in particular the Vakantieland e-tourism knowledge base for the Nether-
lands [9], the Leipzig Professors Catalog [2] and the development of an ontology
for the energy sector, which was performed by our industry partner Business In-



information flow

flow of control

Legend:

Frontend: OntoWiki extension 
(browsing, editing and applying patterns)

Backend: triple store

LOD Cloud

Pa
tte

rn
 M

an
ag

em
en

t

User Interaction

Pattern Processing

SPARQL Support

Pattern Control

Pattern 
Deserialization
Statement-level 

Support Pa
tte

rn
 E

ng
in

e

Fig. 2. System architecture with internal functional units and provided services. Pat-
terns are exposed as Linked Data.

telligence GmbH. We also retrospectively reviewed the evolution of these knowl-
edge bases and analyzed to what extend the previously defined evolution patterns
would cover the found evolution steps.

4 Implementation

The EvoPat approach was implemented as an extension to OntoWiki – a tool
for browsing and collaboratively editing RDF knowledge bases. It differs from
other Semantic Wikis insofar as OntoWiki uses RDF as its natural data model
instead of Wiki texts. Information in OntoWiki is always represented according
to the RDF statement paradigm and can be browsed and edited by means of
views. These views are generated automatically by employing ontology features
such as class hierarchies or domain and range restrictions. OntoWiki adheres to
the Wiki principles by striving to make the editing of information as simple as
possible and by maintaining a comprehensive revision history. This history is also
based on the RDF statement paradigm and allows to roll back prior change sets.
OntoWiki has recently been extended to incorporate a number of Linked Data
features, such as exposing all information stored in OntoWiki as Linked Data as
well as retrieving background information from the Linked Data Web [6]. Apart
from providing a comprehensive user interface, OntoWiki also contains a number
of components for the rapid development of Semantic Web applications, such as



Ontology level (OWL)
Before After Description

∅ ∅ Trivial empty pattern (no actions taken)
∅ C+, P+ or G+ Creating class, property or graph
C+, P+ or G+ ∅ Deleting class, property or graph
C+ C+ Subclassing, union, merging, splitting classes
P+ P+ Property axioms (functional, symmetric, domain,

range, etc.)
G+ G+ Graph merging and splitting, graph annotation
C+ P+ Remodeling from class membership to distinct

property value
P+ C+ Remodeling from distinct property value to class

membership
C+ CG Class extraction from named graph
CG C+ Merging classes into graph
P PC Converting datatype to object property
PC P Converting object to datatype property (incl. ax-

ioms)

Instance and data level (RDFS)
Input Output Description

I∗ I Instances merging
I∗, C∗ I∗ Instances reclassification
I∗, P,O I∗ Adding data to instances
I∗, P, P ∗ I∗ Generating data from existing instances data
I∗, L∗ I∗ Converting literal property values to resources
I∗, R∗ I∗ Converting resources to literal property values
I∗(, P ∗, O∗) I∗ Moving data (predicates and objects) from one

instance to another

Entity level (RDF)
Input Function Description

Literal, datatype Setting datatype
on literal

Datatype added, changed or removed

Literal, language Setting language
on literal

Literal language added, changed or removed

RegExp search/
replace

regexp replace Performs a regular expression search and replace
on literal value

Syntactic/representational level (RDF/XML, N3, etc.)
Input Function Description

URI, namespace Set URI prefix Changes prefixes for a resource
URI, local name Set local name Changes local name of a resource

Table 2. Overview of valid evolution patterns on four levels of abstraction.



the RDF API Erfurt2, methods for authentication, access control, caching and
various visualization components.

The general architecture of the EvoPat extension is depicted in Figure 2.
It consists of four distinct components. Core of the EvoPat implementation is
the pattern engine, which in particular handles processing, storing, versioning
and exposing evolution patterns as Linked Data on the data web. It interacts
via SPARQL with a triple store representing the EvoPat backend. The EvoPat
frontend facilitates the user friendly browsing/selection, configuration and ap-
plication of evolution patterns. The pattern management component as a logical
component spans several architectural layers. It implements the required APIs
needed by the user interface and backend for managing patterns.

Different versions of ontologies resulting from applying evolution patterns
can be managed through OntoWiki’s versioning component. Similar to database
transactions, the changes on the statement level that result from applying a
certain evolution pattern can be grouped and versioned as a single change.

Fig. 3. EvoPat user interface showing pattern editor (right) and pattern execution view
(left).

2 http://aksw.org/Projects/Erfurt/



Figure 3 showcases the EvoPat user interface with the pattern editor and
the pattern execution. The pattern editor allows to create basic and compound
evolution patterns. A user friendly form is generated, where the descriptive at-
tributes, the variables used in the pattern and the respective SPARQL SELECT
and UPDATE queries can be filled in. For pattern execution (as shown in the
upper left part of Figure 3), the EvoPat implementation generates a form based
on the variables definition of the evolution pattern at hand. Employing the typ-
ing of the variable a type ahead search simplifies the selection of concrete values
for the variables.

Scalability evaluation. One of the main goals of developing EvoPat was to push
as much of the evolution pattern processing down to the triple store. In order to
evaluate whether EvoPat lives up to this promise we evaluated the processing
of selected evolution patterns with different knowledge base sizes. The results
of the evaluation are summarized in Table 3. We used the Catalogus Professo-
rum Lipiensis knowledge base and simply created three different versions of it
in different sizes, by simply copying the data. The results of the performance
evaluation show, that the evolution pattern processing grows linearly with the
knowledge base size. As a consequence, EvoPat can be used with arbitrarily large
knowledge bases, the performance of the evolution pattern processing primarily
depends on the speed of the underlying triple store.

pattern exec. [s] affect. rsrc. [pcs] throughput [pcs
s

]

KB size: 1 × 150K triples
Datatype to Object Property 8.593 1300 151.3
Class merging 5.949 1500 252.1

KB size: 3 × 150K triples
Datatype to Object Property 24.813 3900 157.2
Class merging 17.753 4500 253.4

KB size: 5 × 150K triples
Datatype to Object Property 39.822 6500 163.2
Class merging 30.603 7500 245.1

Table 3. Scalability evaluation with two compound patterns on Catalogus Professo-
rum Lipsiensis. The benchmarks were performed in three different sizes of the original
knowledge base: original size (150K triples), 3 × the size (450K triples), 5 × the size
(750K triples). Figures are quoted for two patterns each KB size.

5 Related Work

Ontology evolution has constantly been under research during the past two
decades. In recent years a ramp-up could be observed due to Semantic Web
research activity, thus providing a more user-centric view on ontology evolution.



A comprehensive overview on the field of ontology change is given in [4]. The
authors conduct an extensive literature review, extracting and defining common
vocabulary as a base for discussion. They define ontology evolution as a “response
to a change in the domain or conceptualization”. The term ontology evolution, as
used in this paper, covers what Flouris et al. refer to as ontology translation and
by which they mean changes in the syntactical representation of the ontology
(e. g. changing the URI of a resource).

To the best of our knowledge, there is no existing approach for formally
specifying modular evolution patterns in a declarative manner. The most closely
related approach in this regard is a categorization of pattern-based change oper-
ators in [7]. The paper defines four levels of abstraction of an ontology (element,
element context, domain-specific and generic abstract level) to whose elements
the said operators can be applied. Taking into account the Semantic Web infras-
tructure, our approach defines an additional level on the representation layer.

Stojanovic et al. in [12] define three requirements for ontology evolution: 1)
ensuring consistency, 2) allowing the user supervision of evolution and 3) advice
for continuous ontology refinement. In addition, the authors identify six phases
of ontology evolution, namely 1) capturing, 2) representation, 3) semantics of
change, 4) implementation, 5) propagation and 6) validation of changes. The
KAON API3, implementing the approach, also introduced by the authors. Fur-
thermore, they identify the need for representing changes on different levels of
granularity. To cope with different methods of applying changes to an ontology,
they introduce basic evolution strategies, which define the steps of a complex
evolution process. For a given change request there are usually more than on
applicable strategy, resulting in different ontologies. Seen in a broader sense,
these basic evolution strategies can be combined into so called advanced evolu-
tion strategies, of which they introduce four. Our compound patterns are similar
in nature to Stojanovic’s basic evolution strategies, but differ in the inclusion of
explicit declarative semantics by means of SPARQL/Update queries.

An interesting approach to ontology evolution with particular respect to con-
sistency management is given by Djedidi and Aufaure [3]. They propose a process
model, an attached pattern and a versioning layer. If applying a change pattern
results in a match to an inconsistency pattern, an alternative pattern is automat-
ically applied by the proposed system. Furthermore, a quality assessment step
is integrated into the process. The system can thus alleviate the need for user
interaction by applying quality-improving patterns in an automated fashion.

Noy and Klein determine in [10] to what extent ontology evolution resem-
bles schema evolution, which has been extensively researched in the database
community. By arguing that different versions of an ontology have to be kept
in parallel, they conclude that the traditional distinction between schema evolu-
tion and schema versioning is not applicable to ontology evolution and ontology
versioning. Even though, EvoPat distinguishes between versioning and evolu-
tion, both subsystems are closely related and cannot be used exclusively. All

3 http://kaon.semanticweb.org/developers



evolutionary changes are automatically versioned and can be reverted at any
time.

A declarative update language for RDF graphs, named RUL is defined in [8].
RUL is based on RQL and RVL and ensures consistency on the RDF and RDFS
levels. It, therefore, contains primitive, set-oriented and complex updates as
compositions of primitive or complex ones. Primitive RUL updates are simi-
lar in expressiveness to SPARQL 1.1 updates. Complex updates are expressed
by means of fine-grained updates on class and property instance level. Our ba-
sic evolution patterns with variable placeholders are similar to the set-oriented
RUL updates (i. e. repeating the same query for several bindings). Additionally,
we, however, define a functional extension that allows for arbitrarily replacing
entities in a preprocessor-like manner.

Finally, applying the software engineering concept of code smell [5] to ontolo-
gies has been inspired by the work of Rosenfeld et al. [11]. They use bad smells
in a Semantic Wiki context for triggering refactoring operations.

6 Conclusion and Future Work

We introduced an approach to pattern-based evolution of RDF knowledge bases.
By considering the complete stack of Semantic Web knowledge representation
techniques including its syntactic infrastructure as opposed to just the ontology
layer, our approach fulfills additional requirements identified for example in user
interviews (cf. Section 3). We provide a concrete implementation that leverages
the plug-in architecture of OntoWiki4, our semantic collaboration platform and
framework. Thus, our implementation can make use of existing functionality of
the OntoWiki framework like versioning of RDF knowledge bases.

Currently, EvoPat only ensures consistency through the definition of con-
sistency-preserving patterns by the knowledge engineer. User-defined patterns
can, however, lead to inconsistent knowledge bases. An approach that ensures
consistency by proposing only those patterns whose application will not result
in an inconsistent ontology, would thus be desirable. A straightforward (but
admittedly not very scalable) solution to this problem is to combined EvoPat
with a reasoner and test the application of a pattern employing the reasoner
before its actual application in order to ensure correctness.

As opposed to bad smells, which indicate modeling problems, a promising
approach is also to share and reuse modeling best practices. A problem which
has to be solved in this regard, is the formalization and elicitation of a user’s
modeling requirements. A related idea for future work is the consumption of
Linked Data. Our current implementation publishes evolution patterns on the
Data Web but makes no use of gathering further information about resources.
Doing so, could deliver hints for the applicability of specific patterns.

In a number of application projects we learned, that a key factor for the
success of a knowledge engineering project is the efficient co-design of knowledge-
bases and knowledge-based applications. Through the declarative definition of

4 Online at http://code.google.com/p/ontowiki/wiki/ExtensionCookbook



evolution with EvoPat it becomes possible to (semi-)automatize this co-design,
since a knowledge base refactoring can trigger code refactoring and vice versa.

References

1. Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David
Aumueller. Triplify: light-weight linked data publication from relational databases.
In Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl, editors,
Proceedings of the 18th International Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009, pages 621–630. ACM, 2009.

2. Christian Augustin, Beatrix Kuchta, Ulf Morgenstern, and Thomas Riechert.
Datenbank und website catalogus professorum lipsiensis. ein sozialstatistisches
analyseinstrumentarium und seine repräsentation im netz. In Martina Schat-
tkowsky and Frank Metasch, editors, Biografische Lexika im Internet, number 14 in
Bausteine, pages 167–184. TUDPress, Verlag der Wissenschaften GmbH, Dresden,
2009.

3. Rim Djedidi and Marie-Aude Aufaure. ONTO-EVOAL an Ontology Evolution
Approach Guided by Pattern Modeling and Quality Evaluation. In Sebastian
Link and Henri Prade, editors, FoIKS, volume 5956 of Lecture Notes in Computer
Science, pages 286–305. Springer, 2010.

4. Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plex-
ousakis, and Grigoris Antoniou. Ontology change: classification and survey. Knowl-
edge Eng. Review, 23(2):117–152, 2008.

5. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

6. Norman Heino, Sebastian Dietzold, Michael Martin, and Sören Auer. Developing
Semantic Web Applications with the OntoWiki Framework. In Networked Knowl-
edge – Networked Media. Springer Berlin/Heidelberg, 2009.

7. Muhammad Javed, Yalemisew M. Abgaz, and Claus Pahl. A Pattern-Based Frame-
work of Change Operators for Ontology Evolution. In Robert Meersman, Pilar
Herrero, and Tharam S. Dillon, editors, OTM Workshops, volume 5872 of Lecture
Notes in Computer Science, pages 544–553. Springer, 2009.

8. M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. RUL: A Declar-
ative Update Language for RDF. In Proceedings of the 4th International Semantic
Web Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005, 2005.

9. Michael Martin. Exploring the netherlands on a semantic path. In Sören Auer,
Christian Bizer, Claudia Müller, and Anna Zhdanova, editors, Proceedings of the
1st Conference on Social Semantic Web, volume P-113 of GI-Edition - Lecture
Notes in Informatics (LNI), ISSN 1617-5468, pages 179–, Leipzig, Germany, 2007.
Bonner Köllen Verlag.

10. Natalya Fridman Noy and Michel C. A. Klein. Ontology Evolution: Not the Same
as Schema Evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.

11. Mart́ın Rosenfeld, Alejandro Fernández, and Alicia Dı́az. Semantic Wiki Refac-
toring. A strategy to assist Semantic Wiki evolution. In Proceedings of the Fifth
Workshop on Semantic Wikis (SemWiki 2010), co-located with 7th European Se-
mantic Web Conference (ESWC 2010), 2010.

12. Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Stojanovic. User-
Driven Ontology Evolution Management. In Proceedings of the 13th International
Conference, EKAW 2002 Sigüenza, Spain, October 1–4, 2002, 2002.


