
ORE - A Tool for Repairing
and Enriching Knowledge Bases

Jens Lehmann and Lorenz Bühmann

AKSW research group, University of Leipzig, Germany,
lastname@informatik.uni-leipzig.de

Abstract. While the number and size of Semantic Web knowledge bases in-
creases, their maintenance and quality assurance are still difficult. In this article,
we present ORE, a tool for repairing and enriching OWL ontologies. State-of-
the-art methods in ontology debugging and supervised machine learning form
the basis of ORE and are adapted or extended so as to work well in practice. ORE
supports the detection of a variety of ontology modelling problems and guides
the user through the process of resolving them. Furthermore, the tool allows to
extend an ontology through (semi-)automatic supervised learning. A wizard-like
process helps the user to resolve potential issues after axioms are added.

1 Introduction

Over the past years, the number and size of knowledge bases in the Semantic Web has
increased significantly, which can be observed in various ontology repositories and the
LOD cloud1. One of the remaining major challenges is, however, the maintenance of
those knowledge bases and the use of expressive language features of the standard web
ontology language OWL.

The goal of the ORE (Ontology Repair and Enrichment) tool2 is to provide guidance
for knowledge engineers who want to detect problems in their knowledge base and
repair them. ORE also provides suggestions for extending a knowledge base by using
supervised machine learning on the instance data in the knowledge base. ORE takes
the web aspect of the Semantic Web into account by supporting large Web of Data
knowledge bases like OpenCyc and DBpedia.

The main contributions of the article are as follows:

– provision of a free tool for repairing and extending ontologies
– implementation and combination of state-of-the-art inconsistency detection, rank-

ing, and repair methods
– use of supervised learning for extending an ontology
– support for very large knowledge bases available as Linked Data or via SPARQL

endpoints
– application tests of ORE on real ontologies

1 http://linkeddata.org
2 See http://dl-learner.org/wiki/ORE and download at
http://sourceforge.net/projects/dl-learner/files/.

http://linkeddata.org
http://dl-learner.org/wiki/ORE
http://sourceforge.net/projects/dl-learner/files/

The article is structured as follows: In Section 2, we cover the necessary foundations
in the involved research disciplines such as description logics (DLs), ontology debug-
ging, and learning in OWL. Section 3 describes how ontology debugging methods were
implemented and adapted in ORE. Similarly, Section 4 shows how an existing frame-
work for ontology learning was incorporated. In Section 5, we describe the structure of
the ORE user interface. The evaluation of both, the repair and enrichment part, is given
in Section 6. Related work is presented in Section 7 followed by our final conclusions
in Section 8.

2 Preliminaries

We give a brief introduction into DLs and OWL as the underlying formalism, reca-
pitulate the state of the art in ontology debugging and give the definition of the class
learning problem in ontologies.

2.1 Description Logics and OWL
DLs are usually decidable fragments of first order logic and have a variable-free syn-
tax. The standard ontology language OWL 2 is based on the DL SROIQ. We briefly
introduce it and refer to [12] for details.

In SROIQ, three sets are used as the base for modelling: individual names NI ,
concept namesNC (called classes in OWL), and role names (object properties)NR. By
convention, we will use A,B (possibly with subscripts) for concept names, r for role
names, a for individuals, and C, D for complex concepts. Using those basic sets, we
can inductively build complex concepts using the following constructors:

A | > | ⊥ | {a} | C uD | C tD
| ∃r.Self | ∃r.C | ∀r.C |≤ n r.c |≥ n r.C

For instance, Manu∃hasChild.Female is a complex concept describing a man who
has a daughter. A DL knowledge base consists of a set of axioms. The signature of a
knowledge base (an axiom α) is the set S (Sig(α)) of atomic concepts, atomic roles and
individuals that occur in the knowledge base (in α). We will only mention two kinds of
axioms explicitly: Axioms of the form C v D are called general inclusion axioms. An
axiom of the form C ≡ D is called equivalence axiom. In the special case that C is a
concept name, we call the axiom a definition.

Apart from explicit knowledge, we can deduce implicit knowledge from a knowl-
edge base. Inference/reasoning algorithms extract such implicit knowledge. Typical
reasoning tasks are:

– instance check K |= C(a)? (Does a belong to C?)
– retrieval RK(C)? (Determine all instances of C.)
– subsumption C vK D? (Is C more specific than D?)
– inconsistency K |= false? (Does K contain contradictions?)
– satisfiability C ≡K ⊥? (Can C have an instance?)
– incoherence ∃C (C ≡K ⊥)? (Does K contain an unsatisfiable class?)

Throughout the paper, we use the words ontology and knowledge base as well as
complex concept and class expression synonymously.

2.2 Ontology Debugging

Finding and understanding undesired entailments such as unsatisfiable classes or incon-
sistency can be a difficult or impossible task without tool support. Even in ontologies
with a small number of logical axioms, there can be several, non-trivial causes for an en-
tailment. Therefore, interest in finding explanations for such entailments has increased
in recent years. One of the most usual kinds of explanations are justifications [15]. A
justification for an entailment is a minimal subset of axioms with respect to a given
ontology, that is sufficient for the entailment to hold. More formally, let O be a given
ontology with O |= η, then J is a justification for η if J |= η, and for all J ′ ⊂ J ,
J ′ 6|= η. In the meantime, there is support for the detection of potentially overlapping
justifications in tools like Protégé3 and Swoop4. Justifications allow the user to focus
on a small subset of the ontology for fixing a problem. However, even such a subset can
be complex, which has spurred interest in computing fine-grained justifications [11] (in
contrast to regular justifications). In particular, laconic justifications are those where
the axioms do not contain superfluous parts and are as weak as possible. A subset of
laconic justifications are precise justifications, which split larger axioms into several
smaller axioms allowing minimally invasive repair.

A possible approach to increase the efficiency of computing justifications is module
extraction [6]. Let O be an ontology and O′ ⊆ O a subset of axioms of O. O′ is a
module for an axiom α with respect to O if: O′ |= α iff O |= α. O′ is a module for
a signature S if for every axiom α with Sig(α) ⊆ S, we have that O′ is a module for
α with respect to O. Intuitively, a module is an ontology fragment, which contains all
relevant information in the ontology with respect to a given signature. One possibility
to extract such a module is syntactic locality [6]. [30] showed that such locality-based
modules contain all justifications with respect to an entailment and can provide order-
of-magnitude performance improvements.

2.3 The Class Learning Problem

The process of learning in logics, i.e. trying to find high level explanations for given
data, is also called inductive reasoning as opposed to the deductive reasoning tasks we
have introduced. The main difference is that in deductive reasoning it is formally shown
whether a statement follows from a knowledge base, whereas in inductive learning we
invent new statements. Learning problems, which are similar to the one we will analyse,
have been investigated in Inductive Logic Programming [27] and, in fact, the method
presented here can be used to solve a variety of machine learning tasks apart from
ontology engineering.

The considered supervised ontology learning problem is an adaption of the prob-
lem in Inductive Logic Programming. We learn a formal description of a class A from
inferred instances in the ontology. Let a class name A ∈ NC and an ontology O be
given. We define the class learning problem as finding a class expression C such that
RO(C) = RO(A), i.e. C covers exactly all instances of A.

3 http://protege.stanford.edu
4 http://www.mindswap.org/2004/SWOOP/

http://protege.stanford.edu
http://www.mindswap.org/2004/SWOOP/

Clearly, the learned concept C is a description of (the instances of) A. Such a con-
cept is a candidate for adding an axiom of the form A ≡ C or A v C to the knowledge
baseK. This is used in the enrichment step in ORE as we will later describe. In the case
thatA is described already via axioms of the formA v C orA ≡ C, those can be either
modified, i.e. specialised/generalised, or relearned from scratch by learning algorithms.

Machine learning algorithms usually prefer those solutions of a learning problem,
which are likely to classify unknown individuals well. For instance, using nominals
(owl:oneOf) to define the class A above as the set of its current instances is a correct
solution of the learning problem, but would classify all individuals, which are added
to the knowledge base later as not being instance of A. In many cases, the learning
problem is not perfectly solvable apart from the trivial solution using nominals. In this
case, approximations can be given by ML algorithms. It is important to note that a
knowledge engineer usually makes the final decision on whether to add one of the
suggested axioms, i.e. candidate concepts are presented to the knowledge engineer, who
can then select and possibly refine one of them.

3 Ontology Repair

For a single entailment, e.g. an unsatisfiable class, there can be many justifications.
Moreover, in real ontologies, there can be several unsatisfiable classes or several reasons
for inconsistency. While the approach described in Section 2.2 works well for small
ontologies, it is not feasible if a high number of justifications or large justifications have
to be computed. Due to the relations between entities in an ontology, several problems
can be intertwined and are difficult to separate. We briefly describe how we handle these
problems in ORE.

Root Unsatisfiability For the latter problem mentioned above, an approach [18] is to
separate between root and derived unsatisfiable classes. A derived unsatisfiable class
has a justification, which is a proper super set of a justification of another unsatisfiable
class. Intuitively, their unsatisfiability may depend on other unsatisfiable classes in the
ontology, so it can be beneficial to fix those root problems first. There are two different
approaches for determining such classes: The first approach is to compute all justifi-
cations for each unsatisfiable class and then apply the definition. The second approach
relies on a structural analysis of axioms and heuristics. Since the first approach is com-
putationally too expensive for larger ontologies, we use the second strategy as default
in ORE. The implemented approach is sound, but incomplete, i.e. not all class depen-
dencies are found, but the found ones are correct. To increase the proportion of found
dependencies, the TBox is modified in a way which preserves the subsumption hierar-
chy to a large extent. It was shown in [18] that this allows to draw further entailments
and improve the pure syntactical analysis.

Axiom Relevance Given a justification, the problem needs to be resolved by the user,
which involves the deletion or modification of axioms in it. To assist the user, ranking
methods, which highlight the most probable causes for problems, are important. Com-
mon methods (see [16] for details) are frequency (How often does the axiom appear in
justifications?), syntactic relevance (How deeply rooted is an axiom in the ontology?)

and semantic relevance (How many entailments are lost or added?5). ORE supports all
metrics and a weighted aggregation of them. For computing semantic relevance, ORE
uses the incremental classification feature of Pellet, which uses locality-based modules.
Therefore, only the relevant parts of the ontology are reclassified when determining the
effect of changes.

Consequences of Repair Step Repairing a problem involves editing or deleting an ax-
iom. Deletion has the technical advantage that it does not lead to further entailments
due to the monotonicity of DLs. However, desired entailments may be lost. In contrast,
editing axioms allows to make small changes, but it may lead to new entailments, in-
cluding inconsistencies. To support the user, ORE provides fine-grained justifications,
which only contain relevant parts of axioms and, therefore, have minimal impact on
deletion. Furthermore, ORE allows to preview new or lost entailments. The user can
then decide to preserve them, if desired.

Workflow The general workflow of the ontology repair process is depicted in Figure
1. First, all inconsistencies are resolved. Secondly, unsatisfiable classes are handled by
computing root unsatisfiable classes, as well as regular and laconic justifications, and
different ranking metrics.

Fig. 1. Workflow for debugging an ontology in ORE.

Web of Data and Scalability In order to apply ORE to existing very large knowledge
bases in the Web of Data, the tool supports using SPARQL endpoints instead of local
OWL files as input knowledge bases. To perform reasoning on those knowledge bases,
ORE implements an incremental load procedure inspired by [9].

Using SPARQL queries, the knowledge base is loaded in small chunks. In the first
step, ORE determines the size of the knowledge base by determining the number of
all types of OWL 2 axioms. In the main part of the algorithm, a priority based loading
procedure is used. This means that axioms that are empirically more likely to cause
inconsistencies in the sense that they are often part of justifications have a higher prior-
ity. In general, schema axioms have a higher loading priority than instance data. Before
loading parts of the instance data, the algorithm performs sanity checks on the data,
i.e. performs a set of simple SPARQL queries, which probe for inconsistent axiom
sets. These cases include individuals, which are instances of disjoint classes, properties
which are used on instances incompatible with their domain, etc. The algorithm can also
be configured to fetch additional information via Linked Data such that consistency of

5 Since the number of entailed axioms can be infinite, we restrict ourselves to a subset of axioms
as suggested in [16].

a knowledge base in combination with knowledge from another knowledge base can be
tested.

The algorithm converges towards loading the whole knowledge base into the rea-
soner, but can also be configured to stop automatically after the schema part and sample
instances, based on ABox summarisation techniques, of all classes have been loaded.
This is done to prevent a too high load on SPARQL endpoints and the fact that most
knowledge bases cannot be loaded into standard OWL reasoners on typical hardware
available. At the moment, the algorithm uses the incremental reasoning feature avail-
able in Pellet such that it is not required to reload the reasoner each time a chunk of data
has been received from the SPARQL endpoint.

The general idea behind this component of ORE is to apply state-of-the-art reason-
ing methods on a larger scale than was possible previously. We show this by applying
ORE on OpenCyc and DBpedia in Section 6.3. To the best of our knowledge, none of
the existing tools can compute justifications for inconsistencies on those large knowl-
edge bases. This part of ORE aims at stronger support for the “web aspect” of the
Semantic Web and the high popularity of Web of Data initiative.

4 Ontology Enrichment

Currently, ORE supports enriching an ontology with axioms of the form A ≡ C and
A v C. For suggesting such an axiom, we use the DL-Learner framework to solve the
class learning problem described in Section 2.3. In particular, we use the CELOE algo-
rithm in DL-Learner, which is optimised for class learning in an ontology engineering
scenario. It is a specialisation of the OCEL algorithm [24], which was shown to be very
competitive.

The main task of ORE is to provide an interface to the algorithm and handle the
consequences of adding a suggested axiom. In this section, we will focus on the latter
problem. The learning algorithm can produce false positives as well as false negatives,
which can lead to different consequences. In the following, assumeO to be an ontology
and A the class for which a definition A ≡ C was learned. Let n be a false positive,
i.e. O 6|= A (n) and O |= C (n). We denote the set of justifications for O |= η with Jη .
ORE would offer the following options in this case:

1. assign n to class A
2. completely delete n in O
3. modify assertions about n such that O 6|= C (n): In a first step, ORE uses several

reasoner requests to determine the partC ′ ofC, which is responsible for classifying
n as instance of C. The algorithm recursively traverses conjunctions and disjunc-
tions until it detects one of the class constructors below.

– C ′ = B (B ∈ NC): Remove the assignment of n to B, i.e. delete at least one
axiom in each justification J ∈ JB(n)

– C ′ = ∀r.D: Add at least one axiom of the form r (n, a) where a is not an
instance of D

– C ′ = ∃r.D:
(a) Remove all axioms of the form r (n, a), where a is an instance of D

(b) Remove all axioms of the form r (n, a)

– C ′ =≤ mr.D: Add axioms of the form r (n, a), in which a is instance of D,
until their number is greater than m

– C ′ =≥ mr.D: Remove axioms of the form r (n, a), where a is instance of D,
until their number is smaller than m

The steps above are an excerpt of the provided functionality of ORE. False negatives
are treated in a similar fashion. The strategy is adapted in case of learning superclass
axioms (A v C). Those steps, where axioms are added, can naturally lead to inconsis-
tencies. In such a case, a warning is displayed. If the user chooses to execute the action,
the ORE wizard can return to the inconsistency resolution step described in Section 2.2.

Fig. 2. Workflow for enriching an ontology in ORE.

Workflow The workflow for the enrichment process is shown in Figure 2. First, the user
selects a class for which he wants to learn a description. Alternatively, ORE can loop
over all classes and provides particularly interesting suggestions to the user. ORE calls
the CELOE learning algorithm and presents the 10 best suggestions to the user. If the
user decides to accept a suggestion and if there are false positives or negatives, possible
repair solutions are provided.

5 User Interface

In ORE, we decided to use a wizard-based user interface approach. This allows a user to
navigate through the dialogues step-by-step, while the dependencies between different
steps are factored in automatically. This enables the user to perform the repair and
enrichment process with only a few clicks and a low learning curve. Changes can be
rolled back if necessary. The design of ORE ensures that it can be embedded in ontology
editors. Below, we describe the most important parts of the ORE wizard.

Fig. 3. The panel for debugging the ontology.

Debugging Phase The debugging panel is separated into four parts (see Figure 3): The
left part (1) contains unsatisfiable classes for the case that the considered ontology is
consistent. Unsatisfiable root classes are marked with a symbol in front of their name.
The upper part (2) shows the computed justifications. In addition to listing the axioms,
several metrics are displayed in a table as well as the actions for removing or editing the
axiom. The axioms are displayed in Manchester OWL Syntax6. To increase readability,
key words are emphasised and the axioms are indented. Configuration options allow to
set the maximum number of explanations, which should be displayed, and their type
(regular/laconic). In (3), lost or added entailments, as a consequence of the selected
modifications, are displayed. This part of the user interface allows to preserve those
entailments, if desired. Part (4) of the debugging panel lists the axioms, which will be
added or removed. Each action can be undone. When a user is satisfied with the changes
made, they can execute the created repair plan, which results in the actual modification
of the underlying ontology.

Enrichment Phase For the enrichment phase, the panel is separated into three parts
(see Figure 4). The right part (2) allows to start or stop the underlying machine learning
algorithm, the configuration of it, and the selection whether equivalent or superclass
axioms should be learned. In part (1), the learned expressions are displayed. For each
class expression, a heuristic accuracy value provided by the underlying algorithm is
displayed. When a class expression is selected, an illustration of its coverage is shown
in part (3). The illustration is generated by analysing the instances covered by the class
expression and comparing it to the instance of the current named class.

6 http://www.w3.org/2007/OWL/wiki/ManchesterSyntax

http://www.w3.org/2007/OWL/wiki/ManchesterSyntax

Fig. 4. The panel for enriching the ontology.

Repair of Individuals Enriching the ontology can have consequences on the classifi-
cation of individuals in the ontology. For repairing unwanted consequences, a dialogue
(see Figure 5) is displayed, which is separated in three parts. The upper part (1) shows
the class expression itself. As briefly described in Section 4, the parts of the expression,
which cause the problem, are highlighted. Clicking on such a part of an expression,
opens a menu, which provides repair suggestions. The middle part (2) displays informa-
tion about the individual, which is currently repaired. This allows the ontology engineer
to observe relevant information at a glance. The lower part (3) lists the repair decisions
made and provides an undo method.

Fig. 5. The panel for repairing an erroneous instance.

6 Application to Existing Knowledge Bases

To test the ORE tool, we used the TONES and Protégé ontology repositories. We loaded
all ontologies in those repositories into the Pellet reasoner. Inconsistent and incoherent
ontologies were selected as evaluation candidates for the repair step and all ontologies
which contain at least 5 classes with at least 3 instances, were selected as candidates for
the enrichment step. Out of 216 ontologies which could be loaded into the reasoner, 3
were inconsistent, and 32 were incoherent.

Please note that we have not performed an extensive evaluation of all methods un-
derlying ORE as this has been done in the cited articles, where the methods are de-
scribed in more detail. The main objective was to find out whether the tool is applicable
to real-world ontologies with respect to usability, performance, and stability.

6.1 Repair Step

This part of our tests was performed by the authors of the article. From the 35 candi-
date ontologies, we selected 7 ontologies where we could obtain an understanding of
the domain within one working day. These ontologies and the test results are shown in
Table 1. We used ORE to resolve all occurring problems and, overall, resolved 1 in-
consistency and 135 unsatisfiable classes. Generally, the ontologies could be processed
without problems and the performance for computing justifications was sufficient. The
maximum time required per justification was one second.

ontology re
so

lv
ed

in
co

ns
is

te
nc

y

#r
es

ol
ve

d
un

sa
tis

fia
bl

e
cl

as
se

s

#r
em

ov
ed

ax
io

m
s

#a
dd

ed
ax

io
m

s

#c
ha

ng
ed

ax
io

m
s

http://protege.cim3.net/file/pub/ontologies/camera/camera.owl yes - 0 0 2
http://protege.cim3.net/file/pub/ontologies/koala/koala.owl - 3 3 0 0
http://reliant.teknowledge.com/DAML/Economy.owl - 51 11 5 0
http://www.cs.man.ac.uk/ horridgm/ontologies/complexity/UnsatCook.owl - 8 1 0 0
http://www.co-ode.org/ontologies/pizza/2007/02/12/pizza.owl - 2 3 0 0
http://www.mindswap.org/ontologies/debugging/University.owl - 9 3 1 2
http://reliant.teknowledge.com/DAML/Transportation.owl - 62 15 28 0

Table 1. Repair of ontologies from the Protégé and TONES repositories.

6.2 Enrichment Step

The test of the enrichment step was done by two researchers, who made themselves
familiar with the domain of the test ontologies. We are aware that an ideal evaluation
procedure would require OWL knowledge engineers from the respective domains, e.g.
different areas within biology, medicine, finance, and geography. Considering the bud-
get limitations, however, we believe that our method is sufficient to be able to meet
our basic test objectives for the first releases of ORE. Each researcher worked indepen-
dently and had to make 383 decisions, as described below. The time required to make
those decisions was 40 working hours per researcher.

ontology #l
og

ic
al

ax
io

m
s

#s
ug

ge
st

io
n

lis
ts

ac
ce

pt
(1

)i
n

%
re

je
ct

(2
)i

n
%

fa
il

(3
)i

n
%

se
le

ct
ed

po
si

tio
n

on
su

gg
es

tio
n

lis
t

(i
nc

l.
st

d.
de

vi
at

io
n)

#h
id

de
n

in
co

ns
is

te
nc

ie
s

#a
dd

iti
on

al
in

st
an

ce
s

http://www.mindswap.org/ontologies/SC.owl 20081 12 79 21 0 2.2±2.1 0 1771
http://www.fadyart.com/ontologies/data/Finance.owl 16057 50 52 48 0 3.6±2.6 0 1162
http://www.biopax.org/release/biopax-level2.owl 12381 34 78 22 0 2.7±2.2 1 803
http://i2geo.net/ontologies/dev/GeoSkills.owl 8803 180 56 44 0 1.6±1.2 1 295
http://reliant.teknowledge.com/DAML/Economy.owl 1625 22 74 26 0 1.5±0.9 0 77
http://www.acl.icnet.uk/ mw/MDM0.73.owl 884 77 56 44 0 3.7±2.6 1 82
http://www.co-ode.org/ontologies/.../eukariotic.owl 38 8 91 9 0 2.5±1.2 0 7
Table 2. Test results on several ontologies. On average, suggestions by the ML algo-
rithm were acepted in 60% of all cases.

From those ontologies obtained in the pre-selection step, described at the beginning
of this section, we picked ontologies, which vary in size and complexity. We wanted to
determine whether 1.) the underlying adapted learning algorithm is useful in practice,
i.e. is able to make sensible suggestions, 2.) to which extent additional information
can be inferred when enriching ontologies with suggestions by the learning algorithm
(described as hidden inconsistencies and additional instances below).

We ran ORE in an evaluation mode, which works as follows: For each class A,
the learning method generates at most ten suggestions with the best ones on top of the
list. This is done for learning superclasses (A v C) and equivalent classes (A ≡ C)
separately. If the accuracy of the best suggestion exceeds a defined threshold, we sug-
gest them to the knowledge engineer. The knowledge engineer then has three options
to choose from: 1. pick one of the suggestions by entering its number (accept), 2. de-
clare that there is no sensible suggestion for A in his opinion (reject), or 3. declare that
there is a sensible suggestion, but the algorithm failed to find it (fail). If the knowledge
engineer decides to pick a suggestion, we query whether adding it leads to an incon-
sistent ontology. We call this case the discovery of a hidden inconsistency, since it was
present before, but can now be formally detected and treated. We also measure whether
adding the suggestion increases the number of inferred instances of A. Being able to
infer additional instances of A, therefore, provides added value (see also the notion of
induction rate as defined in [5]).

We used the default settings of 5% noise and an execution time of 10 seconds for
the algorithm. The evaluation machine was a notebook with a 2 GHz CPU and 3 GB
RAM. Table 2 shows the evaluation results.

Objective 1: We can observe that the researchers picked option 1 (accept) most of
the time, i.e. in many cases the algorithm provided meaningful suggestions. This allows
us to answer the first evaluation objective positively. The researchers never declared
that the algorithm failed on finding a potential solution. The 7th column shows that
many selected expressions are amongst the top 5 (out of 10) in the suggestion list,
i.e. providing 10 suggestions appears to be a reasonable choice.

Objective 2: In 3 cases a hidden inconsistency was detected. Both researchers in-
dependently coincided on those decisions. The last column shows that in all ontolo-
gies additional instances could be inferred for the classes to describe if the new axiom
would be added to the ontology after the learning process. Overall, being able to infer
additional instances was very common and hidden inconsistencies could sometimes be
detected.

6.3 Very Large Knowledge Bases

We applied ORE to two very large knowledge bases: DBpedia [21] (live version [10])
and OpenCyc. DBpedia is a knowledge base extracted from Wikipedia in a joint effort
of the University of Leipzig, the Free University of Berlin and the company OpenLink.
It contains descriptions of over 3.4 million entities out of which 1.5 million are classified
in the DBpedia ontology. Overall, the DBpedia knowledge base consists of more than
one billion triples with more than 250 million triples in the English language edition.
OpenCyc is a part of the Cyc artificial intelligence project started in 1984, which pro-
vides a huge knowledge base of common sense knowledge. In its current OWL version,
it contains more than 50 thousand classes, 20 thousand properties, 350 thousand invi-
diduals. OpenCyc has a sophisticated and large schema, while DBpedia has a smaller
schema part and a huge amount of instance data.

Application to DBpedia Most reasoning on DBpedia focuses on very light-weight rea-
soning techniques, which are usually employed within triple stores like OpenLink Virtu-
oso. Standard OWL reasoners are not able to load or reason within DBpedia. However,
the incremental approach sketched in Section 3 allows to apply standard reasoners to
DBpedia, detect inconsistencies and compute justifications with only moderate hard-
ware requirements. Two justifications in Manchester Syntax are shown below7:

Example 1 (Incorrect Property Range in DBpedia).
Individual: dbr:Purify %28album%29 Facts: dbo:artist dbr:Axis of Advance
Individual: dbr:Axis of Advance Types: dbo:Organisation
Class: dbo:Organisation DisjointWith dbo:Person
ObjectProperty: dbo:artist Range: dbo:Person

ORE found an assertion that “Axis of Advance” created the album “Purify”. DBpe-
dia states that the range of the “artist” property is a person, hence “Axis of Advance”
must be a person. However, it is an organisation (a music band) and organisations and
persons are disjoint, so we get a contradiction. In this example, the problem can be
resolved by generalising the range of “artist”, i.e. not requiring it to be a person.

Example 2 (DBpedia Incompatible with External Ontology).
Individual: dbr:WKWS Facts: geo:long -81.76833343505859
Types: dbo:Organisation
DataProperty: geo:long Domain: geo:SpatialThing
Class: dbo:Organisation DisjointWith: geo:SpatialThing

7 Used prefixes: dbr = http://dbpedia.org/resource/, dbo = http://dbpedia.org/ontology/,
geo = http://www.w3.org/2003/01/geo/wgs84 pos#

In this example, the longitude property is used on an organisation, which is a con-
tradiction, because an organisation is itself not a spatial entity. The interesting aspect of
this example is that information from an external knowledge base (W3C Geo) is fetched
via Linked Data, which is an optional feature of ORE. The inconsistency only arises in
combination with this external knowledge.

Application to OpenCyc OpenCyc is very large, but still loadable in standard OWL
reasoners. However, only few reasoners can detect that it is not consistent. In our exper-
iments, only HermiT 1.2.3 was able to do this given sufficient memory. Nevertheless,
computing actual justifications is still not possible when considering the whole knowl-
edge base and could only be achieved using the incremental priority-based load proce-
dure in ORE. Below is an inconsistency detected by ORE in “label view”, i.e. the value
of rdfs:label is shown instead of the URIs:

Example 3 (Class Hierarchy Problems in OpenCyc).
Individual: ’PopulatedPlace’ Types: ’ArtifactualFeatureType’, ’ExistingStuffType’
Class: ’ExistingObjectType’ DisjointWith: ’ExistingStuffType’
Class: ’ArtifactualFeatureType’ SubClassOf: ’ExistingObjectType’

The example shows a problem in OpenCyc, where an individual is assigned to
classes, which can be inferred to be disjoint via the class hierarchy. (Note that “Pop-
ulatedPlace” is used as individual and class in OpenCyc, which is allowed in OWL2.)

7 Related Work

The growing interest in Semantic Technologies has led to an increasing number of on-
tologies, which has, in turn, spurred interest in techniques for ontology creation and
maintenance. In [28] and [8], methods for the detection and repair of inconsistencies
in frequently changing ontologies were developed. [29] discusses a method for axiom
pinpointing, i.e. the detection of axioms responsible for logical errors. A non proof-
theoretic method is used in OntoClean [7]. By adding meta-properties (rigidity, identity,
dependency) to each class, problems in the knowledge base taxonomy could be iden-
tified by using rules. Classes could then be moved in the hierarchy or additional ones
can be added. OntoClean supports resolving taxonomy errors, but was not designed for
detecting logical errors.

The work on the enrichment part of ORE goes back to early work on supervised
learning in DLs, e.g. [3], which used so-called least common subsumers to solve the
learning problem (a modified variant of the problem defined in this article). Later, [2]
invented a refinement operator for ALER and proposed to solve the problem by us-
ing a top-down approach. [4,13] combine both techniques and implement them in the
YINYANG tool. However, those algorithms tend to produce very long and hard-to-
understand class expressions, which are often not appropriate in an ontology enrichment
context. Therefore, ORE is based on DL-Learner [20], which allows to select between
a variety of learning algorithms [22,23,19,24]. Amongst them, CELOE is particularly
optimised for learning easy to understand expressions. DL-FOIL [5] is a similar ap-
proach mixing upward and downward refinement. Other approaches focus on learning
in hybrid language settings [26].

In (semi-)automatic ontology engineering, formal concept analysis [1] and rela-
tional exploration [32] have been used for completing knowledge bases. [33] focuses
on learning disjointness between classes in an ontology to allow for more powerful
reasoning and consistency checking. Naturally, there is also a lot of research work on
ontology learning from text. The most closely related approach in this area is [31], in
which OWL DL axioms are obtained by analysing sentences which have definitorial
character.

There are a number of related tools for ontology repair:

Swoop8[17] is a Java-based ontology editor using web browser concepts. It can com-
pute justifications for the unsatisfiability of classes and offers a repair mode. The
fine-grained justification computation algorithm is, however, incomplete. Swoop
can also compute justifications for an inconsistent ontology, but does not offer a re-
pair mode like ORE in this case. It does not extract locality-based modules, which
leads to lower performance for large ontologies.

RaDON9[14] is a plugin for the NeOn toolkit. It offers a number of techniques for
working with inconsistent or incoherent ontologies. It can compute justifications
and, similarly to Swoop, offers a repair mode. RaDON also allows to reason with in-
consistent ontologies and can handle sets of ontologies (ontology networks). Com-
pared to ORE, there is no feature to compute fine-grained justifications, and the
user gets no informations about the impact of repair.

Pellint10[25] is a Lint-based tool, which searches for common patterns which lead to
potential reasoning performance problems. In future work, we plan to integrate
support for detecting and repairing reasoning performance problems in ORE.

PION and DION11 have been developed in the SEKT project to deal with inconsisten-
cies. PION is an inconsistency tolerant reasoner, i.e. it can, unlike standard reason-
ers, return meaningful query answers in inconsistent ontologies. To achieve this,
a four-valued paraconsistent logic is used. DION offers the possibility to compute
justifications, but cannot repair inconsistent or incoherent ontologies.

Explanation Workbench12 is a Protégé plugin for reasoner requests like class unsat-
isfiability or inferred subsumption relations. It can compute regular and laconic
justifications [11], which contain only those axioms which are relevant for answer-
ing the particular reasoner request. This allows to make minimal changes to resolve
potential problems. We adapted its layout for the ORE debugging interface. Un-
like ORE, the current version of Explanation Workbench does not allow to remove
axioms in laconic justifications.

Most of those tools were designed to detect logical errors or ignore them (PION).
PellInt is an exception because it detects problems relevant for reasoning performance.
The ORE tool unites several techniques present in those tools and combines them with

8 SWOOP: http://www.mindswap.org/2004/SWOOP/
9 RaDON: http://radon.ontoware.org/demo-codr.htm

10 PellInt: http://pellet.owldl.com/pellint
11 PION: http://wasp.cs.vu.nl/sekt/pion/

DION: http://wasp.cs.vu.nl/sekt/dion/
12 http://owl.cs.manchester.ac.uk/explanation/

http://www.mindswap.org/2004/SWOOP/
http://radon.ontoware.org/demo-codr.htm
http://pellet.owldl.com/pellint
http://wasp.cs.vu.nl/sekt/pion/
http://wasp.cs.vu.nl/sekt/dion/
http://owl.cs.manchester.ac.uk/explanation/

the DL-Learner framework to enable suggestions for enrichment. It also enhances other
tools by providing support for working on SPARQL endpoints and Linked Data.

8 Conclusions and Future Work

We have presented a freely available tool for ontology repair and enrichment. It in-
tegrates state-of-the-art methods from ontology debugging and supervised learning in
OWL in an intuitive, wizard-like interface. It combines the advantages of other tools
and provides new functionality like the enrichment part of the tool. An evaluation on
real ontologies has shown the need for a repair and enrichment tool and, in particular,
the benefits of ORE.

In future work, we aim at integrating support for further modelling problems apart
from inconsistencies and unsatisfiable classes. Those problems will be ordered by sever-
ity reaching from logical problems to suggested changes for improving reasoner perfor-
mance. We plan to improve the enrichment part by suggesting other types of axioms,
e.g. disjointness. We also plan to evaluate and optimise the SPARQL/Linked Data com-
ponent of ORE. Possibly, we will provide an alternative web interface and appropriate
hardware infrastructure for ORE such that it can be used for online analysis of Web
of Data knowledge bases. In addition to those features, a constant evaluation of the
underlying methods will be performed to improve the foundations of ORE.

References

1. Franz Baader, Bernhard Ganter, Ulrike Sattler, and Baris Sertkaya. Completing description
logic knowledge bases using formal concept analysis. In IJCAI 2007. AAAI Press, 2007.

2. Liviu Badea and Shan-Hwei Nienhuys-Cheng. A refinement operator for description logics.
In ILP 2000, volume 1866 of LNAI, pages 40–59. Springer, 2000.

3. William W. Cohen and Haym Hirsh. Learning the CLASSIC description logic: Theoretical
and experimental results. In KR 94, pages 121–133. Morgan Kaufmann, 1994.

4. Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and Giovanni Semer-
aro. Knowledge-intensive induction of terminologies from metadata. In ISWC 2004, volume
3298 of LNCS, pages 441–455. Springer, 2004.

5. Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learning in de-
scription logics. In ILP 2008, volume 5194 of LNCS, pages 107–121. Springer, 2008.

6. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular reuse
of ontologies: Theory and practice. J. Artif. Intell. Res. (JAIR), 31:273–318, 2008.

7. Nicola Guarino and Christopher A. Welty. An overview of ontoclean. In Steffen Staab and
Rudi Studer, editors, Handbook on Ontologies, pages 151–172. Springer, 2004.

8. Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt, and York Sure.
A framework for handling inconsistency in changing ontologies. In ISWC 2005, volume
3729 of LNCS, pages 353–367, Galway, Ireland, 2005. Springer.

9. Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL class descriptions
on very large knowledge bases. Int. Journal on Semantic Web and Information Systems,
5(2):25–48, 2009.

10. Sebastian Hellmann, Claus Stadler, Jens Lehmann, and Sören Auer. Dbpedia live extraction.
In Proc. of 8th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE), volume 5871 of Lecture Notes in Computer Science, pages 1209–
1223, 2009.

11. Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifications in
OWL. In The Semantic Web - ISWC 2008, volume 5318 of LNCS, pages 323–338. Springer,
2008.

12. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In KR
2006, pages 57–67. AAAI Press, 2006.

13. Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on counterfactu-
als for concept learning in the semantic web. Applied Intelligence, 26(2):139–159, 2007.

14. Qiu Ji, Peter Haase, Guilin Qi, Pascal Hitzler, and Steffen Stadtmüller. Radon - repair and
diagnosis in ontology networks. In ESWC 2009, volume 5554 of LNCS, pages 863–867.
Springer, 2009.

15. Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all justifica-
tions of OWL DL entailments. In ISWC 2007, volume 4825 of LNCS, pages 267–280, Berlin,
Heidelberg, 2007. Springer.

16. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Repairing unsat-
isfiable concepts in owl ontologies. In ESWC 2006, volume 4011 of LNCS, pages 170–184,
2006.

17. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James Hendler.
Swoop: A web ontology editing browser. Journal of Web Semantics, 4(2):144–153, 2006.

18. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsatisfiable
classes in OWL ontologies. Journal of Web Semantics, 3(4):268–293, 2005.

19. Jens Lehmann. Hybrid learning of ontology classes. In MLDM 2007, volume 4571 of LNCS,
pages 883–898. Springer, 2007.

20. Jens Lehmann. DL-Learner: learning concepts in description logics. Journal of Machine
Learning Research (JMLR), 10:2639–2642, 2009.

21. Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyga-
niak, and Sebastian Hellmann. DBpedia - a crystallization point for the web of data. Journal
of Web Semantics, 7(3):154–165, 2009.

22. Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for description logics.
In ILP 2007, volume 4894 of LNCS, pages 161–174. Springer, 2008.

23. Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm for the
ALC description logic. In ILP 2007, volume 4894 of LNCS, pages 147–160. Springer, 2008.

24. Jens Lehmann and Pascal Hitzler. Concept learning in description logics using refinement
operators. Machine Learning journal, 78(1-2):203–250, 2010.

25. Harris Lin and Evren Sirin. Pellint - a performance lint tool for pellet. In OWLED 2008,
volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

26. Francesca A. Lisi. Building rules on top of ontologies for the semantic web with inductive
logic programming. TPLP, 8(3):271–300, 2008.

27. Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive Logic
Programming, volume 1228 of LNAI. Springer, 1997.

28. Peter Plessers and Olga De Troyer. Resolving inconsistencies in evolving ontologies. In
ESWC 2006, volume 4011 of LNCS, pages 200–214. Springer, 2006.

29. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In IJCAI 2003, pages 355–362. Morgan Kaufmann, 2003.

30. Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A modularization-based
approach to finding all justifications for OWL DL entailments. In ASWC 2008, volume 5367
of LNCS, pages 1–15. Springer, 2008.

31. Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of OWL DL axioms from
lexical resources. In ESWC 2007, volume 4519 of LNCS, pages 670–685. Springer, 2007.

32. Johanna Völker and Sebastian Rudolph. Fostering web intelligence by semi-automatic OWL
ontology refinement. In Web Intelligence, pages 454–460. IEEE, 2008.

33. Johanna Völker, Denny Vrandecic, York Sure, and Andreas Hotho. Learning disjointness.
In ESWC 2007, volume 4519 of LNCS, pages 175–189. Springer, 2007.

	ORE - A Tool for Repairingand Enriching Knowledge Bases
	Lehmann, Bühmann

