
Towards Semantic Annotation Supported by
Dependency Linguistics and ILP

Jan Dědek

Department of Software Engineering, Charles University,
Prague, Czech Republic
dedek@ksi.mff.cuni.cz

Abstract. In this paper we present a method for semantic annotation of
texts, which is based on a deep linguistic analysis (DLA) and Inductive
Logic Programming (ILP). The combination of DLA and ILP have fol-
lowing benefits: Manual selection of learning features is not needed. The
learning procedure has full available linguistic information at its disposal
and it is capable to select relevant parts itself. Learned extraction rules
can be easily visualized, understood and adapted by human. A descrip-
tion, implementation and initial evaluation of the method are the main
contributions of the paper.

Keywords: Semantic Annotation, Dependency Linguistics, Inductive
Logic Programming, Information Extraction, Machine Learning

1 Introduction

Automated semantic annotation (SA) is considered to be one of the most im-
portant elements in the evolution of the Semantic Web. Besides that, SA can
provide great help in the process of data and information integration and it could
also be a basis for intelligent search and navigation.

In this paper we present main results and reflections of our ongoing PhD
project, a method for classical and semantic information extraction and anno-
tation of texts, which is based on a deep linguistic analysis and Inductive Logic
Programming (ILP). This approach is quite novel because it directly combines
deep linguistic parsing with machine learning (ML). This combination and the
use of ILP as a ML engine have following benefits: Manual selection of learn-
ing features is not needed. The learning procedure has full available linguistic
information at its disposal and it is capable to select relevant parts itself. Ex-
traction rules learned by ILP can be easily visualized, understood and adapted
by human.

A description, implementation and initial evaluation of the method are the
main contributions of the paper.

2 Related Work

There are many users of ILP in the linguistic and information extraction area.
Authors of [12] summarized some basic principles of using ILP for learning from



2 Jan Dědek

text without any linguistic preprocessing. One of the most related approaches
to ours can be found in [1]. The authors use ILP for extraction of information
about chemical compounds and other concepts related to global warming and
they try to express the extracted information in terms of ontology. They use only
the part of speech analysis and named entity recognition in the preprocessing
step. But their inductive procedure uses also additional domain knowledge for
the extraction. In [17] ILP was used to construct good features for propositional
learners like SVM to do information extraction. It was discovered that this ap-
proach is a little bit more successful than a direct use of ILP but it is also more
complicated. The later two approaches could be also employed in our solution.

There are other approaches that use deep parsing, but they often use the
syntactic structure only for relation extraction and either do not use machine
learning at all (extraction rules have to be handcrafted) [19], [9], [4] or do some
kind of similarity search based on the syntactic structure [8], [18] or the syntactic
structure plays only very specific role in the process of feature selection for
propositional learners [3].

There is also a long row of information extraction approaches that use clas-
sical propositional learners like SVM on a set of features manually selected from
input text. We do not cite them here. We just refer to [13] – using machine
learning facilities in GATE. This is the software component (Machine Learning
PR) to that we have compared our solution. Our solution is also based on GATE
(See next sections.)

Last category of related works goes in the direction of semantics and ontolo-
gies. Because we do not develop this topic in this paper, we just refer to the
ontology features in GATE [2], which can be easily used to populate an ontology
with the extracted data. We discus this topic later in Section 4.4.

3 Exploited Methods – Linguistics and ILP

In our solution we have exploited several tools and formalisms. These can be
divided into two groups: linguistics and (inductive) logic programming. First we
describe the linguistic tools and formalisms, the rest will follow.

3.1 GATE

GATE1 [5] is probably the most widely used tool for text processing. In our solu-
tion the capabilities of document and annotation management, utility resources
for annotation processing, JAPE grammar rules [6], machine learning facilities
and performance evaluation tools are the most helpful features of GATE that
we have used.

3.2 PDT and TectoMT

As we have started with our native language – Czech (a language with rich
morphology and free word order), we had to make tools for processing Czech
1 http://gate.ac.uk/



Semantic Annotation with Dependency Linguistics and ILP 3

available in GATE. We have implemented a wrapper for the TectoMT system2

[20] to GATE. TectoMT is a Czech project that contains many linguistic analyz-
ers for different languages including Czech and English. We have used a majority
of applicable tools from TectoMT: a tokeniser, a sentence splitter, morphologi-
cal analyzers (including POS tagger), a syntactic parser and the deep syntactic
(tectogrammatical) parser. All the tools are based on the dependency based lin-
guistic theory and formalism of the Prague Dependency Treebank project [10].
So far our solution does not include any coreference and discourse analysis.

3.3 Inductive Logic Programming

Inductive Logic Programming (ILP) [16] is a machine learning technique based
on logic programming. Given an encoding of the known background knowledge
(in our case linguistic structure of all sentences) and a set of examples represented
as a logical database of facts (in our case tokens annotated with the target
annotation type are positive examples and the remaining tokens negative ones),
an ILP system will derive a hypothesized logic program (in our case extraction
rules) which entails all the positive and none of the negative examples.

As an ILP tool we have used “A Learning Engine for Proposing Hypotheses”
(Aleph v5)3, which we consider very practical. It uses quite effective method of
inverse entailment [15] and keeps all handy features of a Prolog system (we have
used YAP Prolog4) in its background.

From our experiments (Section 5) can be seen that ILP is capable to find
complex and meaningful rules that cover the intended information.

4 Implementation

Here we just briefly describe implementation of our system. The system consists
of several modules, all integrated in GATE as processing resources.

4.1 TectoMT Wrapper (Linguistic Analysis)

First is the TectoMT wrapper, which takes the text of a GATE document, sends
it to TectoMT linguistic analyzers, parses the results and converts the results to
the form of GATE annotations.

4.2 ILP Wrapper (Machine Learning)

After a human annotator have annotated several documents with desired target
annotations, machine learning takes place. This consists of two steps:

1. learning of extraction rules from the target annotations and
2 http://ufal.mff.cuni.cz/tectomt/
3 http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
4 http://www.dcc.fc.up.pt/~vsc/Yap/



4 Jan Dědek

2. application of the extraction rules on new documents.

In both steps the linguistic analysis has to be done before and in both steps
background knowledge (a logical database of facts) is constructed from linguis-
tic structures of documents that are being processed. We call the process of
background knowledge construction as ILP serialization. Although this topic is
quite interesting we do not present details here because of space limitations.

After the ILP serialization is done, in the learning case, positive and negative
examples are constructed from target annotations and the machine learning ILP
inductive procedure is executed to obtain extraction rules.

In the application case a Prolog system is used to check if the extraction
rules entail any of target annotation candidates.

The learning examples and annotation candidates are usually constructed
from all document tokens (and we did so in the present solution), but it can
be optionally changed to any other textual unit, for example only numerals or
tectogrammatical nodes (words with lexical meaning) can be selected. This can
be done easily with the help of Machine Learning PR (LM PR) from GATE5.

ML PR provides an interface for exchange of features (including target class)
between annotated texts and propositional learners in both directions – during
learning as well as during application. We have used ML PR and developed
our ILP Wrapper for it. The implementation was a little complicated because
complex linguistic structures cannot be easily passed as propositional features,
so in our solution we use the ML PR interface only for exchange of the class
attribute and annotation id and we access the linguistic structures directly in a
document.

4.3 Root/Subtree Preprocessing/Postprocessing

Sometimes annotations span over more than one token. This situation compli-
cates the process of machine learning and this situation is often called as “chunk
learning”. Either we have to split a single annotation to multiple learning in-
stances and after application we have to merge them back together, or we can
change the learning task from learning annotated tokens to learning borders of
annotations (start tokens and end tokens). The later approach is implemented
in GATE in Batch Learning PR in the ‘SURROUND’ mode.

We have used another approach to solve this issue. Our approach is based
on syntactic structure of a sentence and we call it “root/subtree preprocess-
ing/postprocessing”. The idea is based on the observation that tokens of a multi-
token annotation usually have a common parent node in a syntactic tree. So we
can

1. extract the parent nodes (in dependency linguistics this node is also a token
and it is usually one of the tokens inside the annotation),

5 Machine Learning PR is an old GATE interface for ML and it is almost obsolete
but in contrast to the new Batch Learning PR the LM PR is easy to extend for a
new ML engine.



Semantic Annotation with Dependency Linguistics and ILP 5

2. learn extraction rules for parent nodes only and
3. span annotations over the whole subtrees of root tokens found during the

application of extraction rules.

We call the first point as root preprocessing and the last point as subtree post-
processing. We have successfully used this technique for the ‘damage’ task of our
evaluation corpus (See Section 5 for details.)

4.4 Semantic Interpretation

Information extraction can solve the task “how to get documents annotated”,
but as we aim on the semantic annotation, there is a second step of “semantic
interpretation” that has to be done. In this step we have to interpret the anno-
tations in terms of a standard ontology. On a very coarse level this can be done
easily. Thanks to GATE ontology tools [2] we can convert all the annotations to
ontology instances with a quite simple JAPE [6] rule, which takes the content
of an annotation and saves it as a label of a new instance or as a value of some
property of a shared instance. For example in our case of traffic and fire acci-
dents, there will be a new instance of an accident class for each document and
the annotations would be attached to this instance as values of its properties.
Thus from all annotations of the same type, instances of the same ontology class
or values of the same property would be constructed. This is very inaccurate
form of semantic interpretation but still it can be useful. It is similar to the
GoodRelation [11] design principle of incremental enrichment6: “...you can still
publish the data, even if not yet perfect. The Web will do the rest – new tools
and people.”

But of course we are not satisfied with this fashion of semantic interpretation
and we plan to further develop the semantic interpretation step as a sophisticated
“annotation → ontology” transformation process that we have proposed in one
of our previous works [7].

4.5 How to Download

So far we do not provide our solution as a ready-made installable tool. But a
middle experienced Java programmer can build it from source codes in our SVN
repository7.

5 Evaluation

We have evaluated our state of the art solution on a small dataset that we use
for development. It is a collection of 50 Czech texts that are reporting on some
accidents (car accidents and other actions of fire rescue services). These reports

6 http://www.ebusiness-unibw.org/wiki/Modeling_Product_Models#Recipe:

_.22Incremental_Enrichment.22
7 Follow the instructions at http://czsem.berlios.de/



6 Jan Dědek

task/method matching missing excessive overlap prec.% recall% F1.0%

damage/ILP 14 0 7 6 51.85 70.00 59.57

damage/ILP – lenient measures 74.07 100.00 85.11

dam./ILP-roots 16 4 2 0 88.89 80.00 84.21

damage/Paum 20 0 6 0 76.92 100.00 86.96

injuries/ILP 15 18 11 0 57.69 45.45 50.85

injuries/Paum 25 8 54 0 31.65 75.76 44.64

inj./Paum-afun 24 9 38 0 38.71 72.73 50.53
Table 1. Evaluation results

come from the web of Fire rescue service of Czech Republic8. The labeled corpus
is publically available on the web of our project9. The corpus is structured such
that each document represents one event (accident) and several attributes of the
accident are marked in text. For the evaluation we selected two attributes of
different kind. The first one is ‘damage’ – an amount (in CZK - Czech Crowns)
of summarized damage arisen during a reported accident. The second one is
‘injuries’, it marks mentions of people injured during an accident. These two
attributes differ. Injuries annotations always cover only a single token, while
damage annotations usually consist of two or three tokens – one or two numerals
express the amount and one extra token is for currency.

To compare our solution with other alternatives we took the Paum proposi-
tional learner from GATE [14]. The quality of propositional learning from texts
is strongly dependent on the selection of right features. We obtained quite good
results with features of a window of two preceding and two following token
lemmas and morphological tags. The precision was further improved by adding
the feature of analytical function from the syntactic parser (see the last row of
Table 1).

Results of a 10-fold cross validation are summarized in Table 1. We used
standard information retrieval performance measures: precision, recall and F1

measure and also theirs lenient variants (overlapping annotations are added to
the correctly matching ones, the measures are the same if no overlapping anno-
tations are present).

In the first task (‘damage’) the methods obtained much higher scores then in
the second (‘injuries’) because the second task is more difficult. In the first task
also the root/subtree preprocessing/postprocessing improved results of ILP such
that afterwards, annotation borders were all placed precisely. The ILP method
had better precision and worse recall than the Paum learner but the F1 score
was very similar in both cases.

In Figure 1 we present some examples of the rules learned from the whole
dataset. The rules demonstrate a connection of a target token with other parts
of a sentence through linguistic syntax structures. For example the first rule con-
nects a root numeral (n.quant.def ) of ‘damage’ with a mention of ‘investigator’
that stated the mount. In the last rule only a positive occurrence of the verb
‘injure’ is allowed.
8 http://www.hzscr.cz/hasicien/
9 http://czsem.berlios.de/



Semantic Annotation with Dependency Linguistics and ILP 7

[Rule 1] [Pos cover = 14 Neg cover = 0]
damage_root(A) :- lex_rf(B,A), has_sempos(B,’n.quant.def’), tDependency(C,B),

tDependency(C,D), has_t_lemma(D,’investigator’).

[Rule 2] [Pos cover = 13 Neg cover = 0]
damage_root(A) :- lex_rf(B,A), has_functor(B,’TOWH’), tDependency(C,B),

tDependency(C,D), has_t_lemma(D,’damage’).

[Rule 1] [Pos cover = 7 Neg cover = 0]
injuries(A) :- lex_rf(B,A), has_functor(B,’PAT’), has_gender(B,anim),

tDependency(B,C), has_t_lemma(C,’injured’).

[Rule 8] [Pos cover = 6 Neg cover = 0]
injuries(A) :- lex_rf(B,A), has_gender(B,anim), tDependency(C,B),

has_t_lemma(C,’injure’), has_negation(C,neg0).

Fig. 1. Examples of learned rules, Czech words are translated.

6 Conclusion and Future Work

From our experiments can be seen that ILP is capable to find complex and mean-
ingful rules that cover the intended information. But in terms of the performance
measures the results are not better than those from a propositional learner. This
is quite surprising observation because Czech is a language with free word order
and we would expect much better results of the dependency approach than those
of the position based approach, which was used by the propositional learner.

Our method is still missing an intelligent semantic interpretation procedure
and it should be evaluated on bigger datasets (e.g. MUC, ACE, TAC, CoNLL)
and other languages. So far we also do not provide a method for classical rela-
tion extraction (like e.g. in [3]). In the present solution we deal with relations
implicitly. The method has to be adapted for explicit learning of relations in the
form of “subject predicate object”.

Our method can also provide a comparison of linguistic formalisms and tools
because on the same data we could run our method using different linguistic
analyzers and compare the results.

Acknowledgments
This work was partially supported by Czech projects: GACR P202/10/0761,
GACR-201/09/H057, GAUK 31009 and MSM-0021620838. The author would
like to thank his supervisor Peter Vojtáš for the guidance of the PhD thesis.

References

1. Aitken, S.: Learning information extraction rules: An inductive logic programming
approach. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference
on Artificial Intelligence. IOS Press, Amsterdam (2002)

2. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering
10(3/4), 349—373 (2004)

3. Bunescu, R., Mooney, R.: Extracting relations from text: From word sequences to
dependency paths. In: Kao, A., Poteet, S.R. (eds.) Natural Language Processing
and Text Mining, chap. 3, pp. 29–44. Springer, London (2007)



8 Jan Dědek

4. Buyko, E., Faessler, E., Wermter, J., Hahn, U.: Event extraction from trimmed
dependency graphs. In: BioNLP ’09: Proceedings of the Workshop on BioNLP. pp.
19–27. Association for Computational Linguistics, Morristown, NJ, USA (2009)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the ACL (2002)

6. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine. Tech. rep., Department of Computer Science, The University of Sheffield
(2000), http://www.dcs.shef.ac.uk/intranet/research/resmes/CS0010.pdf

7. Dědek, J., Vojtáš, P.: Computing aggregations from linguistic web resources: a
case study in czech republic sector/traffic accidents. In: Dini, C. (ed.) Second In-
ternational Conference on Advanced Engineering Computing and Applications in
Sciences. pp. 7–12. IEEE Computer Society (2008), http://www2.computer.org/
portal/web/csdl/doi/10.1109/ADVCOMP.2008.17

8. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction
from the web. Commun. ACM 51(12), 68–74 (2008)

9. Fundel, K., Küffner, R., Zimmer, R.: Relex—relation extraction using dependency
parse trees. Bioinformatics 23(3), 365–371 (y 07)

10. Hajič, J., Hajičová, E., Hlaváčová, J., Klimeš, V., Mı́rovský, J., Pajas, P., Štěpánek,
J., Vidová-Hladká, B., Žabokrtský, Z.: Prague dependency treebank 2.0 cd–rom.
Linguistic Data Consortium LDC2006T01, Philadelphia 2006 (2006)

11. Hepp, M.: Goodrelations: An ontology for describing products and services offers
on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW. Lecture Notes in Computer
Science, vol. 5268, pp. 329–346. Springer (2008)

12. Junker, M., Sintek, M., Sintek, M., Rinck, M.: Learning for text categorization and
information extraction with ilp. In: In Proc. Workshop on Learning Language in
Logic. pp. 84–93. Springer, LNCS (1999)

13. Li, Y., Bontcheva, K., Cunningham, H.: Adapting SVM for Data Sparseness and
Imbalance: A Case Study on Information Extraction. Natural Language Engineer-
ing 15(02), 241–271 (2009), http://journals.cambridge.org/repo_A45LfkBD

14. Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.S.: The percep-
tron algorithm with uneven margins. In: ICML ’02: Proceedings of the Nineteenth
International Conference on Machine Learning. pp. 379–386. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2002)

15. Muggleton, S.: Inverse entailment and progol. New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

16. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4),
295–318 (1991), http://dx.doi.org/10.1007/BF03037089

17. Ramakrishnan, G., Joshi, S., Balakrishnan, S., Srinivasan, A.: Using ilp to con-
struct features for information extraction from semi-structured text. In: ILP’07:
Proceedings of the 17th international conference on Inductive logic programming.
pp. 211–224. Springer-Verlag, Berlin, Heidelberg (2008)

18. Wang, R., Neumann, G.: Recognizing textual entailment using sentence similarity
based on dependency tree skeletons. In: RTE ’07: Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing. pp. 36–41. Association for
Computational Linguistics, Morristown, NJ, USA (2007)

19. Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event extraction from biomedical
papers using a full parser. Pac Symp Biocomput pp. 408–419 (2001)

20. Žabokrtský, Z., Ptáček, J., Pajas, P.: TectoMT: Highly modular MT system with
tectogrammatics used as transfer layer. In: Proceedings of the 3rd Workshop on
Statistical Machine Translation. pp. 167–170. ACL, Columbus, OH, USA (2008)


