
JustBench: A Framework for OWL
Benchmarking

Samantha Bail, Bijan Parsia, Ulrike Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL

{bails,bparsia,sattler@cs.man.ac.uk}

Abstract. Analysing the performance of OWL reasoners on expressive
OWL ontologies is an ongoing challenge. In this paper, we present a new
approach to performance analysis based on justifications for entailments
of OWL ontologies. Justifications are minimal subsets of an ontology that
are sufficient for an entailment to hold, and are commonly used to debug
OWL ontologies. In JustBench, justifications form the key unit of test,
which means that individual justifications are tested for correctness and
reasoner performance instead of entire ontologies or random subsets. Jus-
tifications are generally small and relatively easy to analyse, which makes
them very suitable for transparent analytic micro-benchmarks. Further-
more, the JustBench approach also allows us to isolate reasoner errors
and inconsistent behaviour. We present the results of initial experiments
using JustBench with FaCT++, HermiT, and Pellet. Finally, we show
how JustBench can be used by reasoner developers and ontology engi-
neers seeking to understand and improve the performance characteristics
of reasoners and ontologies.

1 Introduction

The Web Ontology Language (OWL) notoriously has very bad worse case com-
plexity for key inference problems, at least, OWL Lite (EXPTIME-complete
for satisfiability), OWL DL 1 & 2 (NEXPTIME-complete), and OWL Full (un-
decidable) (see [5] for an overview). While there are several highly optimised
reasoners (FaCT++, HermiT, KAON2, Pellet, and Racer) for the NEXPTIME
logics, it remains the case that it is frustratingly easy for ontology developers
to get unacceptable or unpredictable performance from them on their ontolo-
gies. Reasoner developers continually tune their reasoners to user needs in order
to remain competitive with other reasoners. However, communication between
reasoner developers and users is tricky and, especially on the user side, often
mystifying and unsatisfying.

Practical OWL DL reasoners are significantly complex pieces of software,
even just considering the core satisfiability testing engine. The basic calculi un-
derlying them are daunting given that they involve over a dozen inference rules
with complex conditions to ensure termination. Add in the extensive set of op-
timisations and it is quite difficult for non-active reasoner developers to have a



reasonable mental model of the behaviour of reasoners. Middleware issues in-
troduce additional layers of complexity ranging from further optimisations (for
example, classification vs. isolated subsumption tests) to the surprising effects
of different parsers on system performance.

In this paper, we present a new approach to analysing the behaviour of
reasoners by focusing on justifications of entailments. Justifications—minimal
entailing subsets of an ontology—already play a key role in debugging unwanted
entailments, and thus are reasonably familiar to users. They are small and clearly
defined subsets of the ontology that can be analysed manually if necessary, which
reduces user effort when attempting to understand the source of an error in the
ontology or unwanted reasoner behaviour. We present results from analysing six
ontologies and three reasoners and argue that justifications provide a reasonable
starting point for developing empirically-driven analytical micro-benchmarks.

2 Reasoner Behaviour Analysis

2.1 Approaches to Understanding Reasoner Behaviour

Consider five approaches to understanding the behaviour of reasoners on a given
ontology, especially by ontology modellers:

1. Training In addition to the challenges of promulgating detailed understand-
ing of the performance implications of the suite of calculi and associated
optimisations (remembering that new calculi or variants thereof are crop-
ping up all the time), it is unrealistic to expect even sophisticated users to
master the engineering issues in particular implementations. Furthermore,
it is not clear that the requisite knowledge is available to be disseminated:
New ontologies easily raise new performance issues which require substantial
fundamental research to resolve.

2. Tractable logics In recent years, there has been a renaissance in the field
of tractable description logics which is reflected in the recent set of tractable
OWL 2 profiles.1 These logics tend to not only have good worst case be-
haviour but to be “robust” in their performance profile especially with re-
gard to scalability. While a reasonable choice for many applications, they
gain their performance benefits by sacrificing expressivity which might be
required.

3. Approximation Another approach is to give up on soundness or complete-
ness when one or the other is not strictly required by an application, or, in
general, when some result is better than nothing. Approximation [17, 3, 16]
can either be external (e.g., a tool which takes as input an OWL DL ontology
and produces an approximate OWL EL ontology) or internal (e.g., anytime
computation or more sophisticated profile approximation). A notable diffi-
culty of approximation approaches is that they require more sophistication
on the part of users and sophistication of a new kind. In particular, they

1 http://www.w3.org/TR/2009/REC-owl2-profiles-20091027



need to understand the semantic implications of the approximation. For ex-
ample, it would be quite simple to make existing reasoners return partial
results for classification—classification is inherently anytime. But then users
must recognise that the absence of an entailment no longer reliably indicates
non-entailment. In certain UIs (such as the ubiquitous tree representations),
it is difficult to represent this additional state.

4. Fixed rules of thumb These may occur as a variant or result of training or
be embodied in so-called “lint” tools [12]. The latter is to be much preferred
as such tools can evolve as reasoners do, whereas “folk knowledge” often
changes slowly or promulgates misunderstanding. For example, the rules of
thumb “inverses are hard” and “open world negation is less efficient than
negation as failure”2 do not help a user determine which (if either) is causing
problems in their particular ontology/reasoner combination. This leads users
to start ripping out axioms with the “dangerous” constructs in them which,
e.g., for negation in the form of disjointness axioms, may in fact make things
worse. Lint tools fare better in this case but do not support exploration of
the behaviour of a reasoner/ontology combination, especially when one or
the other does not fall under the lint tools coverage. Finally, rules of thumb
lead to manual approximation which can distort modelling.

5. Analytical tools The major families of analytical tools are profilers and
benchmarks. Obviously, one can use standard software profilers to analyse
reasoner/ontology behaviour, and since many current reasoners are open
source, one can do quite well here. This, however, requires a level of sophis-
tication with programming and specific code bases that is unreasonable to
demand of most users. While there has been some work on OWL specific
profilers [19], there are none, to our knowledge, under active development.
Benchmarks, additionally, provide a common target for reasoner develop-
ers to work for, hopefully leading to convergence in behaviour. On the flip
side, benchmarks cannot cover all cases and excessive “benchmark tuning”
can inflate reasoner performance with respect to the benchmarks without
improving general behaviour in real cases.

2.2 Benchmarks

Application and Analytical Benchmarks For our current purposes, a bench-
mark is simply a reasoning problem, typically consisting of an ontology and an
associated entailment. A benchmark suite, although often called a benchmark or
benchmarks, is a set of benchmarks.

We can distinguish benchmark suites by three characteristics: their focus,
their realism, and their method of generation. With regard to focus, the classic
distinction is between analytical benchmarks and application benchmarks.

Analytical benchmarks attempt to determine the presence or absence of cer-
tain performance related features, e.g., the presence of a query optimiser in a

2 This latter rule of thumb is actually false in general. Non-monotonic features gen-
erally increase worst case complexity, often quite significantly.



relational database can be detected3 by testing a query written in sub-optimal
form. More generally, they attempt to isolate particular behaviours of the system
being analysed.

Application benchmarks attempt to predict the behaviour of a system on
certain classes of application by testing an example (or select examples) of that
class. The simplest form of an application benchmarking is retrospective record-
ing of the behaviour of the application on the system in question in real deploy-
ment (i.e., performance measurement). Analytical benchmarks aim to provide
a more precise understanding of the tested system, but that precision may not
help predict how the system will perform in production. After all, an analyti-
cal benchmark does not say which part of the system will be stressed by any
given application. Application benchmarks aim for better predictions of actual
behaviour in production, but often this is at the expense of understanding. Ac-
cidental or irrelevant features might dominate the benchmark, or the example
application may not be sufficiently representative.

In both cases, benchmark suites might target particular classes of problem,
for example, conjunctive query answering at scale in the presence of SHIQ
TBoxes.

Choice of Reasoning Problems In order to be reasonably analytic, bench-
marks need to be understandable enough so that the investigator can correlate
the benchmark and features thereof with the behaviour observed either on the-
oretical grounds, e.g., the selectivity of a query, or by experimentation, e.g. by
making small modifications to the test and observing the result. If we have a
good theoretical understanding, then individual benchmarks need not be small.
However, we do not have a good theoretical understanding of the behaviour of
reasoners on real ontologies and, worse, real ontologies tend to be extremely het-
erogenous in structure, which makes sensible uniform global modifications rather
difficult. While we we can measure and compare the performance of reasoners on
real ontologies, we often cannot understand or analyse why some (parts of) on-
tologies are particularly hard for a certain reasoner—or even isolate these parts.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
atomic subsumptions, which will be discussed in section 3.

Artificial subsets Realism forms an axis with completely artificial problems at
one pole, and naturally occurring examples at the other. The classic example
of an artificial problem is the kSAT problem for propositional, modal, and de-
scription logics [7, 18, 10, 11]. kSAT benchmark suites are presented in terms of
how to generate random formulae (to test for satisfiability) according to certain
parameters. Some of the parameters can be fixed for any test situation (e.g.

3 The retrospective on the Wisconsin Benchmark [6] for relational databases has a
good discussion of this.



clause length which is typically 3) and others are allowed to vary within bounds.
Such benchmarks are comparatively easy to analyse theoretically4 as well as
empirically.

However, these problems may not even look like real problems (kSAT formu-
lae have no recognisable subsumption or equivalence axioms), so extrapolating
from one to the other is quite difficult. One can always use naturally occurring
ontologies when available, but they introduce many confounding factors. This
includes the fact that users tend to modify their ontologies to perform well on
their reasoner of choice. Furthermore, it is not clear that existing ontologies will
resemble future ontologies in useful ways. This is especially difficult in the case
of OWL DL due to the fragility of reasoner behaviour: seemingly innocuous
changes can have severe performance effects. Also, for some purposes, existing
ontologies are not hugely useful—for example, for determining scalability, as
existing ontologies can only test for scalability up to their actual size.

The realism of a benchmark suite can constrain its method of generation.
While artificial problems (in general) can be hand built or generated by a pro-
gram, naturally occurring examples have to be found (with the exception of
naturally occurring examples which are generated e.g., from text or by reduc-
tion of some other problem to OWL). Similarly, application benchmarks must be
at least “realistic” in order to be remotely useful for predicting system behaviour
on real applications.

Modules A module is a subset of an ontology which captures “everything” an
ontology has to say about a particular subsignature of the ontology [4], that is,
a subset which entails everything that the whole ontology entails which can be
expressed in the signature of the module itself. Modules are attractive for a num-
ber of reasons including the fact that they capture all the relevant entailments
and support a principled removal of “slow” parts of an ontology. However, most
existing accounts of modularity are very fine grained with respect to signature
choice, which preclude blind examination of all modules of an ontology.

If we restrict attention to modules for the signature of an atomic subsumption
(which corresponds more closely to justifications for atomic subsumptions) we
find that modules can be too big. First, at least by current methods, modules
contain all justifications for all entailments expressible in their signature. As
we can see in the Not-Galen ontology, this can lead to very large sets even
just considering one subsumption. Second, current and prospective techniques
involve various sorts of approximation which brings in additional axioms. While
this excess is reasonable for many purposes, and might be more realistic as
a model for a stand alone ontology, it interferes with the analysability of the
derived benchmark. That being said, modules clearly have several potential roles
for benchmarking, and incorporating them into JustBench is part of our future
work.

4 “Easy” in the sense of possible and feasible enough that analyses eventually emerge.



2.3 Existing OWL Benchmarks

The most popular reasoner benchmark, at least in terms of citation count, is
the Lehigh University Benchmark (LUBM) [9]. LUBM is designed primarily to
test the scalability of conjunctive query and consists of a small, simple, hand-
built “realistic” ontology, a program for generating data conforming to that
ontology, and a set of 14 hand-built “realistic” queries. LUBM is an application
focused, realistic benchmark suite with artificial generation. LUBM’s ontology
and data were notoriously weak, for example, the ontology lacked coverage of
many OWL features, a fact that the University Ontology Benchmark (UOBM)
[13] was invented to rectify. For an extensive discussion and critique of existing
synthetic OWL benchmarks see [20].

Several benchmarks suites, notable those described in [14, 8], make use of
naturally occurring ontologies, but do not attempt fine grained analysis of how
the reasoners and ontologies interact. Generally, it can be argued that the area
of transparent micro-benchmarks based on real (subsets of) OWL ontologies, as
opposed to comprehensive (scalabiliy-, system-, or application) benchmarks is
currently neglected.

3 Justification-Based Reasoner Benchmarking

Our goal is to develop a framework for benchmarking ontology TBoxes which
is analytic, uses real ontologies, and supports the generation of problems. In
order to be reasonably analytic, particular benchmarks need to be understand-
able enough so that the investigator can correlate the benchmark and features
thereof with the behaviour observed either on theoretical grounds, e.g., the se-
lectivity of a query, or by experimentation, e.g., by making small modifications
to the test and observing the result. If we have a good theoretical understand-
ing, then individual benchmarks need not be small. However, we do not have
a good theoretical understanding of the behaviour of reasoners on (arbitrary)
real ontologies and, worse, real ontologies tend to be extremely heterogenous
in structure, which makes sensible uniform global modifications rather difficult.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
entailments, e.g., of atomic subsumptions.

Definition 1 (Justification) A set of axioms J ⊆ O is a justification for O |= η
if J |= η and, for all J ′ ⊂ J , it holds that J ′ 2 η.

As an example, the following ontology5 entails the atomic subsumption C
SubClassOf: owl:Nothing, but only the first three axioms are necessary for the

5 We use the Manchester OWL Syntax for all examples, omitting auxiliary declarations
of entities for space and legibility reasons.



entailment to hold. Therefore, the set {C SubClassOf: A and D, A SubClassOf: E
and B, B SubClassOf not D and r some D} is a justification for this entailment.

O = { C SubClassOf: A and D,
A SubClassOf: E and B,
B SubClassOf: not D and r some D,
F SubClassOf: r only A,
D SubClassOf: s some owl:Thing }

The size of a justification can range, in principle, from a single axiom to
the number of all axioms in the ontology, with, in one study, an average of ap-
proximately 2 axioms per justification [1]. The number of justifications for an
entailment can be exponential in the size of the ontology, and multiple (po-
tentially overlapping) justifications for a single entailment occur frequently in
ontologies used in practice.

An explanation framework that provides methods to exhaustively compute
all justifications for a given entailment has been developed for the OWL API
v3,6 which we use in our benchmarking framework.

3.1 Limitations of this selection method

Justifications, while having several attractive features as benchmarks, also have
drawbacks including: First, we can only generate test sets if computing at least
some of the entailments and at least some of their justifications for them is feasi-
ble with at least one reasoner. Choice of entailment is critical as well, although,
on the one hand, we have a standard set of entailments (atomic subsumptions,
instantiations, etc.) and on the other hand we can analyse arbitrary sets of entail-
ments (e.g., conjunctive queries derived from an application). As the test cases
are generated by a reasoner, their correctness is determined by the correctness
of the reasoner, which itself is often at issue. This problem is mitigated by check-
ing individual justifications on all reasoners (for soundness) and using different
reasoners to generate all entailments and their justifications (for completeness).
The latter is very time consuming and infeasible for some ontologies.

Second, justification-based tests do not test scalability, nor do they test in-
teractions between unrelated axioms, nor do they easily test non-entailment
finding, nor do they test other global effects. With regard to scalability, we have
two points: 1) Not every performance analysis needs to tackle scalability. For
example, even if a reasoner can handle an ontology (thus, it scales to that ontol-
ogy), its performance might be less than ideal. 2) Analysis of scalability problems
needs to distinguish between reasoner weaknesses that are merely due to scale
and those that are not. For example, if a reasoner cannot handle a particular
two line ontology, it will not be able to handle that ontology with an additional
400 axioms. Thus, micro-benchmarks are still useful even if scalability is not
relevant.

6 http://owlapi.sourceforge.net



Finally, in the first instance, justification test successful entailment finding,
but much of what an OWL reasoner does is find non-entailments. Non-entailment
testing is a difficult matter to support analytically, however, even their justifica-
tions offer some promise. For example, we could work with repaired justifications.

3.2 JustBench: System Description

The JustBench framework is built in Java using the OWL API v3 and con-
sists of two main modules that generate the justifications for an ontology and
perform the benchmarks respectively. The generator loads an ontology from
the input directory, finds entailments using the InferredOntologyGenerator class
of the OWL API and generates justifications for these entailments with the
explanation interface. The entailments in question are by adding specific In-
ferredAxiomGenerators to the ontology generator. For example, one can add In-
ferredSubClassAxiomGenerator to get all subsumptions between named classes
and InferredClassAssertionAxiomGenerator to get all atomic instantiations. By
default, we just look for atomic subsumptions and unsatisfiable classes. The jus-
tifications and entailments are saved in individual OWL files which makes them
ready for further processing by the benchmarking module.

For each performance measurement, a new instance of the OWLReasoner
class is created which loads the justification and checks whether it entails the
subsumption saved as SubClassOf axiom in the entailment ontology. We measure
the times to create the reasoner and load the ontology, the entailment check using
the isEntailed() call to the respective reasoner, and the removal of the reasoner
instance with dispose(). Regarding the small run-times of the entailment checks,
there exists a trade-off between fine-grained, transparent micro-benchmarks and
large test cases, where the results may be more robust to interference, but also
harder to interpret for users. Limiting the impact that actions in the Java run-
time and the operating system have on the measurements is an important issue
when benchmarking software performance [2], which we take into account in our
framework. In order to minimise measurement variation, the sequence of load,
check, dispose is repeated a large number of times (1000 in our current setting)
and the median of the values measured after a warm-up phase is taken as the
final result. In preliminary tests it was detected that the mean value of the mea-
surements was distorted due to a small number of outliers that differed from
the majority of the measured values by several orders of magnitude, which was
presumably caused by the JVM garbage collection. Basing the measurement on
the median instead proved to yield stable and more reliable results.

We also experimented with a slightly different test involving a one-off call
to prepareReasoner() is included before the measured entailment check. prepar-
eReasoner() triggers a complete classification of the justification. Thus, we can
isolate the time required to do a simple “lookup” for the atomic subsumption
in the entailment. The times for loading, entailment checking and disposing are
then saved along with the results of the entailment checks. Since the tested on-
tologies are justifications for the individual entailments, this should naturally



return true for all entailment checks if the reasoner works correctly. As we will
show in the next section, a false result here can indicate a reasoner error.

4 Experiments and Evaluation

4.1 Experimental Setup

The test sets were generated using JustBench and FaCT++ 1.4.0 on a Mac
Pro desktop system (2.66 GHz Dual-Core Intel Xeon processor, 16 GB physical
RAM) with 2GB of memory allocated to the Java virtual machine. The tested
ontologies were Building, Chemical, Not-Galen (a modified version of the Galen
ontology), DOLCE Lite, Wine and MiniTambis.7 This small test set can already
be regarded as sufficient to demonstrate our approach and show how its trans-
parency and restriction to small subsets of the ontologies helps to isolate and
understand reasoner behavior, as well as quickly trace the sources of errors.

Most test sets could be generated by our system within a few minutes, how-
ever, for the Not-Galen ontology the process was aborted after it had generated
several hundred explanations for a single entailment. In order to limit the pro-
cessing time, a reasoner time out was introduced, as well as a restriction on the
number of justifications to be generated. Thus, the justifications for Not-Galen
are not complete, and we assume that generating all explanations for all entail-
ments of this particular ontology is not feasible in practical time. The number
of justifications for each entailment ranged from 1 to over 300, as in the case of
Not-Galen, with the largest containing 36 axioms.

The benchmarking was performed on the same system as the test set gen-
eration using three reasoners that are currently compatible with the OWL API
version 3, namely FaCT++ 1.4.0, HermiT 1.2.3, and Pellet 2.0.1.

4.2 Results and Discussion

Reasoner Performance The measurements for the justifications generated
from our five test ontologies show a clear trend regarding the reasoner perfor-
mance. Generally, it has to be noted that the performance of all three reasoners
can be regarded as suitably on these ontolgoies, and there are no obvious hard
test cases in this test set. On average, FaCT++ consistently performs best in
almost all checks, with HermiT being slowest in most cases. Pellet exhibits sur-
prising behaviour, as it starts out with a performance close to that of FaCT++
for smaller justifications and then approximates or even “overtakes” HermiT for
justifications with a larger number of axioms. This behaviour, e.g., as shown in
figure 1, is seen in all the ontologies tested.

Generally, the time required for an entailment check grows with the size of
the justification for all three reasoners, as shown in figure 2—justifications with
a size larger than 13 are all obtained from the Not-Galen ontology. Again, Pellet

7 All ontologies that were used in the experiments may be found online:
http://owl.cs.man.ac.uk/explanation/justbenchmarks.



Fig. 1. Reasoner performance on justifications of the MiniTambis ontology

exhibits the behaviour mentioned above and eventually “overtakes” HermiT.
The dip at size 16 is caused by the existence of only one justification of this size
and can be neglected here.

HermiT in particular starts out with a higher baseline than the other reason-
ers, but only increases slowly with growing justification size. We are investigating
further to pinpoint the exact factors in play.

For the atomic subsumptions in our examples, the expressivity—which seems
quite wide ranging—does not significantly affect performance. The average time
for each size group indicates that the hardest expressivities for all reasoners are
ALCN and ALCON . We expect that a analysis of the laconic versions of these
justifications i.e., that only contain the axiom parts that are relevant to the
entailment) will reveal to which extent the performance is affected by the use of
expressive constructors.

Reasoner Errors While the system returns true for nearly all entailment
checks, a small subset of Not-Galen is wrongly identified as not entailed by
Pellet after adding a call to prepareReasoner() to force a full classification of the
justification. All the misclassified justifications have the DL expressivity ALEH,
indicating that they contain subproperty hierarchies. On closer inspection it can
be found that Pellet produces an error for the justifications that have axioms of
the form



Fig. 2. Performance of reasoners depending on size of justifications

Tears SubClassOf:
NAMEDBodySubstance, isActedOnSpecificallyBy some
(Secretion and (isFunctionOf some LachrymalGland))

where isActedOnSpecificallyBy is a subproperty of some other property that
is necessary for the entailment to hold. Communication with Pellet developers
revealed that the problem is due to an error in the optimizations of the classi-
fication process and not in the core satisfiability check. This demonstrates the
need to test all code paths.

By using justifications for the testing process, we detected and isolated and
error which affects the correctness of the reasoner but was not otherwise visible.
Performing an entailment check on the whole ontology would not exhibit this be-
haviour, as several other justifications for the entailment masked the entailment
failure.

Errors Caused by Signature Handling We also identified a problem in how
FaCT++ handles missing class declarations when performing entailment checks.
For some justifications FaCT++ aborts the program execution with an “invalid
memory access error”, which is not shown by Pellet and HermiT. We isolated the
erroneous justifications and perform entailment checks outside the benchmarking
framework to verify that the problem was not caused by any of the additional
calls to the OWL API made by JustBench. We found that the subsumptions were



all entailed due to the superclass being equivalent to owl:Thing in the ontology.
Consider the following entailment:

NerveAgentSpecificPublishedWork
SubClassOf: PublishedWork

and the justification for it consists of the following three axioms:

refersToPrecursor
Domain: PublishedWork

NerveAgentRelatedPublishedWork
SubClassOf: PublishedWork

VR RelatedPublishedWork
EquivalentTo: refersToPrecursor only VR Precursor
SubClassOf: NerveAgentRelatedPublishedWork

The subclass NerveAgentSpecificPublishedWork does not occur in the jus-
tification, as the entailment follows from Class: PublishedWork EquivalentTo:
owl:Thing and therefore the subclass would not be declared in the justification.
How should an OWL reasoner handle this case? Pellet and HermiT accept the
ontologies and verify the entailment, whereas FaCT++ requires the signature of
the entailment to be a subset of the signature of the justification. This causes
FaCT++ to not even perform an entailment check and abort with the error “Un-
able to register ‘NerveAgentSpecificPublishedWork’ as a concept”. While this is
not a correctness bug per se, it is a subtle interoperability issue.

4.3 Additional Tests and Discussion

Performance for Full Classification In order to compare our justification-
based approach to typical benchmarking methods, we measure a full classifica-
tion of each of our test ontologies. Therefore, an instance of the OWL API’s
InferredOntologyGenerator class is generated and the time required for a call to
its fillOntology() method is measured to retrieve all inferred atomic subsump-
tions from the respective ontology. Surprisingly, the rankings based on the indi-
vidual justifications are inverted here: FaCT++ performed worst for all tested
ontologies (except for Wine, where the reasoner cannot handle a “PositiveIn-
teger” datatype and crashes), with an average of 1.84 s to retrieve all atomic
subsumptions. HermiT and Pellet do this form of classification in much shorter
time (0.98 s and 1.16 s respectively), but the loading times for HermiT (a call
to createReasoner()) are an order of magnitude larger than those of FaCT++.

Additional Entailments Choice of entailments makes a big difference to the
analysis of the ontology. For example, we examined an additional ontology which



has a substantial number of individuals. For full classification of the ontology,
both HermiT and Pellet performed significantly worse than FaCT++. Using
JustBench with justifications for all entailed atomic subsumptions of the on-
tology did not lead to any explanation for this behaviour: all three reasoners
performed well on the justifications and the sum of their justification reasoning
times was much less than their classification time. However, after adding the jus-
tifications for inferred class assertions to the test set, the time HermiT takes for
entailment checks for these justifications is an order of magnitude larger than for
the other reasoners. The isolation of the classes of entailment, as well as shared
characteristics of entailments in each class, falls out quite naturally by looking
at their justification. In this case, it is evident that there is a specific issue with
HermiT’s instantiation reasoning and we have small test cases to examine and
compare with each other.

An Artificially Generated Ontology In an additional test with an artificially
generated ontology we attempt to verify our claim about loading and classifica-
tion times of the three reasoners. The ontology contains over 200 subsumptions
of the form

A1EquivalentTo: A2
and (p some (not (A2)))

with entailments being atomic subsumptions of the type A1 SubClassOf: A2, A2
SubClassOf: A3 . . . A1 SubClassOf: A210. Justifications for 62 of these entail-
ments were generated before the system ran out of memory, and the entailments
were checked against their respective justifications and the full ontology. The
right chart of figure 3 shows clearly how the performance of both Pellet and
FaCT++ for an entailment check worsens with growing ontology size, whereas
HermiT has an almost consistently flat curve. FaCT++ in particular shows al-
most exponential growth. In contrast, the loading times for larger ontologies only
grow minimally for Pellet and FaCT++, while HermiT’s loading time increases
rapidly, as can be seen in the left chart of figure 3.

All three reasoners perform much worse on the artificial ontology than on the
“real-life” ones (except for Not-Galen). This is a bit surprising, considering that
the expressivity of this ontology is only ALC, as opposed to the more expressive
ALCF(D), SHIF , SHOIN (D), andALCN respectively of the other ontologies.
The justifications for its entailments however are disproportionally large (up to
209 axioms for Class: A1 SubClassOf: A210 ) whereas those occurring in the
other “real” ontologies have a maximum size of only 13 axioms. This indicates
that a complex justificatory structure with a large number of axioms in the
justifications poses a more difficult challenge for the reasoners.

The measurements based on the artificial ontology indicate that HermiT per-
forms more preparations in its createReasoner() method and has only minimal
lookup times, which confirms our results from the entailment checks following a
call to prepareReasoner(). We can conclude that, once the ontology is loaded and
fully classified, HermiT performs well for larger ontologies, whereas FaCT++



Fig. 3. Reasoner performance on an artificially generated ontology

suffers from quickly growing classification times. With respect to the lookup
performance of FaCT++, is very likely that the JNI used in order to access the
reasoner’s native C++ code over the OWL API acts as a bottleneck that affects
it negatively. The use of C++ code clearly affects the times for the calls to dis-
pose(), as the FaCT++ framework has to perform actual memory management
tasks in contrast to the two Java reasoners Pellet and HermiT which defer them
indefinitely.

4.4 Application of JustBench

We propose our framework as a tool that helps reasoner developers as well as on-
tology engineers check the correctness and performance of reasoners on specific
ontologies. With respect to ontology development, the framework allows ontol-
ogy engineers to carry out fine-grained performance analysis of their ontologies
and to isolate problems. While measuring the time for a full classification can
give the developer information about the overall performance, it does not as-
sist in finding out why the ontology is easy or hard for a particular reasoner.
JustBench isolates minimal subsets of the ontology, which can then be analysed
manually to find out which particular properties are hard for which reasoners.
One strategy for mitigating performance problems is to introduce redundancy.
Adding the entailments of particularly hard justifications to the ontology causes
them to “mask” other, potentially harder, justifications for the entailment. This
leads to the reasoner finding the easier justifications first, which may improve
its performance when attempting to find out whether an entailment holds in an
ontology.

Reasoner developers also benefit from the aforementioned level of detail of
justification-based reasoner analysis. By restricting the analysis to small subsets,
developers can detect reasoner weaknesses and trace the sources by inspecting



the respective justifications, which will help understanding and improving rea-
soner behaviour. Additionally, as shown in the previous section, the method also
detects unsound reasoning which may not be exhibited otherwise.

5 Conclusion and Future Work

To our knowledge, JustBench is the first framework for analytic, realistic bench-
marking of reasoning over OWL ontologies. Even though we have currently only
examined a few ontologies, we find the general procedure of using meaningful
subsets of real ontologies to be insightful and highly systematic. At the very
least, it is a different way of interacting with an ontology and the reasoners.

Our current selection principle (i.e., selecting justifications) has proven fruit-
ful: While justifications alone are not analytically complete (e.g., they fail to
test non-entailment features), they score high on understandability and manip-
ulability and can be related to overall ontology performance. Thus, arguably,
justifications are a good “front line” kind of test for ontology developers.

Future work includes:

– Improving the software: While we believe we have achieved good inde-
pendence from irrelevant system noise, we believe this can be refined further,
which is critical given the typically small times we are working with. Further-
more, some OWL API functions (such as prepareReasoner()) do not have a
tightly specified functionality. We will work with reasoner developers to en-
sure the telemetry functions we use are precisely described and comparable
across reasoners.

– Testing more ontologies: We intend to examine a wide range of ontolo-
gies. Even our limited set revealed interesting phenomena. Working with
substantively more ontologies will help refine our methodology and, we ex-
pect, support broader generalisations about ontology difficulty and reasoner
performance.

– More analytics: Currently, we have been doing fairly crude correlations
between “reasoner performance” and gross features of justifications (e.g.,
size). This can be considerably improved.

– New selection principles: As we have mentioned, modules are an obvious
candidate, though there are significant challenges, not the least that the
actual number of modules in real ontologies tends to be exponential in the
size of the ontology [15]. Thus, we need a principle for determining and
computing “interesting” modules. Other possible selection principles include
“repaired” justifications and unions of justifications.

Furthermore, we intend to experiment with exposing users to our analysis
methodology to see if this improves their experience of dealing with performance
problems.



References

1. S. Bail, B. Parsia, and U. Sattler. The justificatory structure of OWL ontologies.
In OWLED, 2010.

2. B. Boyer. Robust Java benchmarking. www.ibm.com/developerworks/java/library/j-
benchmark1.html, 2008.

3. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In Proc. of KR-02. Morgan Kaufmann Publishers, 2002.

4. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of on-
tologies: Theory and practice. J. of Artificial Intelligence Research, 31:273–318,
2008.

5. B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sat-
tler. OWL 2: The next step for OWL. J. of Web Semantics, 6(4):309–322, 2008.

6. D. J. Dewitt. The Wisconsin benchmark: Past, present, and future. In J. Gray, ed-
itor, The Benchmark Handbook for Database and Transaction Processing Systems.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

7. J. V. Franco. On the probabilistic performance of algorithms for the satisfiability
problem. Inf. Process. Lett., 23(2):103–106, 1986.

8. T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison
of description logic reasoners. In International Semantic Web Conference, pages
654–667, 2006.

9. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web,
3(2-3):158 – 182, 2005.

10. I. Horrocks and P. F. Patel-Schneider. Evaluating optimized decision procedures
for propositional modal K(m) satisfiability. J. Autom. Reasoning, 28(2):173–204,
2002.

11. U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic de-
cision procedures. In D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A.
Williams, editors, KR, pages 533–546. Morgan Kaufmann, 2002.

12. H. Lin and E. Sirin. Pellint - a performance lint tool for pellet. In C. Dolbear,
A. Ruttenberg, and U. Sattler, editors, OWLED, volume 432 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

13. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete OWL
ontology benchmark. In Y. Sure and J. Domingue, editors, ESWC, volume 4011
of Lecture Notes in Computer Science, pages 125–139. Springer, 2006.

14. Z. Pan. Benchmarking DL reasoners using realistic ontologies. In OWLED, 2005.
15. B. Parsia and T. Schneider. The modular structure of an ontology: An empirical

study. In F. Lin, U. Sattler, and M. Truszczynski, editors, KR. AAAI Press, 2010.
16. S. Rudolph, T. Tserendorj, and P. Hitzler. What is approximate reasoning? In

D. Calvanese and G. Lausen, editors, RR, volume 5341 of Lecture Notes in Com-
puter Science, pages 150–164. Springer, 2008.

17. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial
Intelligence, 74:249–310, 1995.

18. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability
problems. Artif. Intell., 81(1-2):17–29, 1996.

19. T. Wang and B. Parsia. Ontology performance profiling and model examination:
first steps. Lecture Notes in Computer Science, 4825:595, 2007.

20. T. Weithöner, T. Liebig, M. Luther, and S. Böhm. What’s wrong with OWL
benchmarks? In SSWS, 2006.


