
Query strategy for sequential ontology debugging

Kostyantyn Shchekotykhin and Gerhard Friedrich ?

Universitaet Klagenfurt
Universitaetsstrasse 65-67
9020 Klagenfurt, Austria

firstname.lastname@ifit.uni-klu.ac.at

Abstract. Debugging is an important prerequisite for the wide-spread applica-
tion of ontologies, especially in areas that rely upon everyday users to create and
maintain knowledge bases, such as the Semantic Web. Most recent approaches
use diagnosis methods to identify sources of inconsistency. However, in most de-
bugging cases these methods return many alternative diagnoses, thus placing the
burden of fault localization on the user. This paper demonstrates how the target
diagnosis can be identified by performing a sequence of observations, that is, by
querying an oracle about entailments of the target ontology. We exploit probabil-
ities of typical user errors to formulate information theoretic concepts for query
selection. Our evaluation showed that the suggested method reduces the number
of required observations compared to myopic strategies.

1 Introduction

The application of semantic systems, including the Semantic Web technology, is largely
based on the assumption that the development of ontologies can be accomplished ef-
ficiently even by every day users. However, studies in cognitive psychology, like [1],
discovered that humans make systematic errors while formulating or interpreting log-
ical descriptions. Results presented in [10, 12] confirmed these observations regarding
ontology development. Therefore it is essential to create methods that can identify and
correct erroneous ontological definitions. Ontology debugging tools simplify the devel-
opment of ontologies by localizing a set of axioms that should be modified in order to
formulate the intended target ontology.

To debug an ontology a user must specify some requirements such as coherence
and/or consistency. Additionally, one can provide test cases [3] which must be fulfilled
by the target ontology Ot. A number of ontology diagnosis methods have been de-
veloped [13, 6, 3] to pinpoint alternative sets of possibly faulty axioms (called a set of
diagnoses). A user has to change at least all of the axioms of one diagnosis in order to
satisfy all of the requirements and test cases.

However, the diagnosis methods can return many alternative diagnoses for a given
set of test cases and requirements. A sample study of real-world inconsistent ontologies
presented in Table 1 shows that even a small number of irreducible sets of axioms that
are together inconsistent/incoherent (conflict sets) can be a source of a large number
of diagnoses. For instance only 8 conflict sets in the Economy ontology resulted in
? The research project is funded by grants of the Austrian Science Fund (Project V-Know, con-

tract 19996)

2 Kostyantyn Shchekotykhin and Gerhard Friedrich

Ontology Axioms #C/#P/#I #CS/min/max #D/min/max Domain
1. Chemical 114 48/20/0 6/5/6 6/1/3 Chemical elements
2. Sweet-JPL 2579 1537/121/50 8/1/13 13/8/8 Earthscience
3. University 50 30/12/4 4/3/5 90/3/4 Training
4. Tambis 596 395/100/0 7/3/9 147/3/7 Biological science
5. Economy 1781 339/53/482 8/3/4 864/4/9 Mid-level
6. Transport 1300 445/93/183 9/2/6 1782/6/9 Mid-level
Table 1. Dianosis results for some real-world ontologies presented in [6]. #C/#P/#I are the num-
bers of concepts, properties, and individuals in an ontology. #CS/min/max are the number of
conflict sets, their minimum and maximum cardinality. The same notation is used for diagnoses
#D/min/max. These ontologies are available upon request

864 diagnoses. In the case of Transportation ontology the diagnosis method was able
to identify 1782 diagnoses. In such situations simple visualization of all alternative
changes of the ontology is ineffective.

A possible solution would be to introduce an ordering using some preference crite-
ria. For instance, Kalyanpur et al. [7] suggest measures to rank the axioms of a diag-
nosis depending on their structure, occurrence in test cases, etc. Only the top ranking
diagnoses are then presented to the user. Of course this set of diagnoses will contain the
target one only in the case when a faulty ontology, the given requirements and test cases,
provide sufficient data to appropriate heuristics. However, in most debugging sessions
a user has to provide additional information (e.g. in the form of tests) to identify the
target diagnosis.

In this paper we present an approach to acquisition of additional information by
generating a sequence of queries, which should be answered by some oracle such as a
user, an information extraction system, etc. Our method uses each answer to a query
to reduce the set of diagnoses until finally it identifies the target diagnosis. In order to
construct queries we exploit the property that different diagnoses imply unequal sets
of axioms. Consequently, we can differentiate between diagnoses by asking the oracle
if the target ontology should imply an axiom or not. These axioms can be generated
by classification and realization services provided in description logic reasoning sys-
tems [15, 4]. In particular, the classification process computes a subsumption hierarchy
(sometimes also called “inheritance hierarchy” of parents and children) for each con-
cept name mentioned in a TBox. For each individual mentioned in an ABox, realiza-
tion computes the atomic concepts (or concept names) of which the individual is an
instance [15].

In order to generate the most informative query we exploit the fact that some di-
agnoses are more likely than others because of typical user errors. The probabilities of
these errors can be used to estimate the change in entropy of the set of diagnoses if a
particular query is answered. We select those queries which minimize the expected en-
tropy, i.e. maximize the information gain. An oracle should answer these queries until
a diagnosis is identified whose probability is significantly higher than those of all other
diagnoses. This diagnosis is the most likely to be the target one.

We compare our entropy-based method with a greedy approach that selects those
queries which try to cut the number of diagnoses in half as well as with a “random”
strategy when the algorithm selects queries to be asked completely randomly. The eval-
uation was performed using the set of ontologies presented in Table 1 and generated

Query strategy for sequential ontology debugging 3

examples. Its results show that on average the suggested entropy-based approach is at
least 50% better than the greedy one.

The remainder of the paper is organized as follows: Section 2 presents two intro-
ductory examples as well as the basic concepts. The details of the entropy-based query
selection method are given in Section 3. Section 4 describes the implementation of the
approach and is followed by evaluation results in Section 5. The paper concludes with
an overview of related work.

2 Motivating examples and basic concepts

In order to explain the fundamentals of our approach let us introduce two examples.

Example 1 Consider a simple ontology O with the terminology T :

ax 1 : A v B ax 2 : B v C ax 3 : C v Q ax 4 : Q v R

and the background theory A : {A(w),¬R(w)}. Let the user explicitly define that the
two assertional axioms should be considered as correct.

The ontology O is inconsistent and the only irreducible set of axioms (minimal
conflict set) that preserves the inconsistency is CS : {〈ax 1, ax 2, ax 3, ax 4〉}. That is
one has to modify or remove the axioms of at least one diagnosis:

D1 : [ax 1] D2 : [ax 2] D3 : [ax 3] D4 : [ax 4]

to restore the consistency of the ontology. However it is unclear, which diagnosis from
the set D : {D1 . . .D4} corresponds to the target one.

In order to focus on the essentials of our approach we employ the following simpli-
fied definition of diagnosis without limiting its generality. A more detailed version can
be found in [3].

We allow the user to define a background theory (represented as a set of axioms)
which is considered to be correct, a set of logical sentences which must be implied by
the target ontology and a set of logical sentences which must not be implied by the
target ontology. Following the standard definition of the diagnosis [11, 8], we assume
that each axiom ax j ∈ Di is faulty whereas each axiom axk /∈ Di is correct.

Definition 1. Given a diagnosis problem
〈
O, B, T |=, T 6|=〉 where O is an ontology, B

a background theory, T |= a set of logical sentences which must be implied by the target
ontology Ot, and T 6|= a set of logical sentences which must not be implied by Ot.

A diagnosis is a set of axioms D ⊆ O such that the set of axioms O \ D can be
extended by a logical description EX and (O \ D) ∪B ∪ EX |= t|= for all t|= ∈ T |=

and (O \ D) ∪B ∪ EX 6|= t6|= for all t 6|= ∈ T 6|=.

A diagnosis D is minimal if there is no proper subset of the faulty axioms D′ ⊂ D such
that D′ is a diagnosis. The following proposition allows us to characterize diagnoses
without the extension EX . The idea is to use the sentences which must be implied to
approximate EX .

Corollary 1. Given a diagnosis problem
〈
O, B, T |=, T 6|=〉, a set of axioms D ⊆ O is a

diagnosis iff (O \ D) ∪B ∪ {
∧

t|=∈T |= t|=} ∪ ¬t 6|= consistent for all t6|= ∈ T 6|=.

4 Kostyantyn Shchekotykhin and Gerhard Friedrich

In the following we assume that a diagnosis always exists under the (reasonable)
condition that the background theory together with the axioms in T |= and the negation
of axioms in T 6|= are mutually consistent. For the computation of diagnoses the set of
conflicts is usually employed.

Definition 2. Given a diagnosis problem
〈
O, B, T |=, T 6|=〉, a conflict set CS ⊆ O is a

set of axioms s.t. there is a t 6|= ∈ T 6|= andCS∪B∪{
∧

t|=∈T |= t|=}∪¬t 6|= is inconsistent.

A conflict is the part of the ontology that preserves the inconsistency/incoherency. A
minimal conflictCS has no proper subset which is a conflict.D is a (minimal) diagnosis
iff D is a (minimal) hitting set of all (minimal) conflict sets [11].

In order to differentiate between the minimal diagnoses {D1 . . .D4} an oracle can
be queried for information about the entailments of the target ontology. For instance,
in our example the ontologies Oi = O \ Di have the following entailments O1 : ∅,
O2 : {B(w)}, O3 : {B(w), C(w)}, and O4 : {B(w), C(w), Q(w)} provided by the
realization of the ontology. Based on these entailments we can ask the oracle whether
the target ontology has to entail Q(w) or not (Ot 6|= Q(w)). If the answer is yes (which
we model with the boolean value 1), then Q(w) is added to T |= and D4 is the target
diagnosis. All other diagnoses are rejected because (O \ Di) ∪ B ∪ {Q(w)} for i =
1, 2, 3 is inconsistent. If the answer is no (which we model with the boolean value
0), then Q(w) is added to T 6|= and D4 is rejected as (O \ D4) ∪ B |= Q(w) (rsp.
(O \D4)∪B ∪¬Q(w) is inconsistent) and we have to ask the oracle another question.

Property 1. Given a diagnosis problem
〈
O, B, T |=, T 6|=〉, a set of diagnoses D, and a

set of logical sentences X representing the query Ot |= X :
If the oracle gives the answer 1 then every diagnosis Di ∈ D is a diagnosis for

T |= ∪X iff (O\Di)∪B ∪{
∧

t|=∈T |= t|=}∪{X}∪¬t 6|= is consistent for all t 6|= ∈ T 6|=.
If the oracle gives the answer 0 then every diagnosis Di ∈ D is a diagnosis for

T 6|= ∪ {X} iff (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} ∪ ¬X is consistent.

Note, a set X corresponds to a logical sentence where all elements of X are connected
by ∧. This defines the semantic of ¬X .

As possible queries we consider sets of entailed concept definitions provided by a
classification service and sets of individual assertions provided by realization. In fact,
the intention of classification is that a model for a specific application domain can be
verified by exploiting the subsumption hierarchy [2].

One can use different methods to select the best query in order to minimize the
number of questions asked to the oracle. “Split-in-half” heuristic is one of such methods
that prefers queries which remove half of the diagnoses from the set D. To apply this
heuristic it is essential to compute the set of diagnoses that can be rejected depending
on the query outcome. For a query X the set of diagnoses D can be partitioned in sets
of diagnoses DX, D¬X and D∅ where

– for each Di ∈ DX it holds that (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} |= X

– for each Di ∈ D¬X it holds that (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} |= ¬X
– D∅ = D \ (DX ∪D¬X)

Given a diagnosis problem we say that the diagnoses in DX predict 1 as a result
of the query X , diagnoses in D¬X predict 0, and diagnoses in D∅ do not make any
predictions.

Query strategy for sequential ontology debugging 5

Property 2. Given a diagnosis problem
〈
O, B, T |=, T 6|=〉, a set of diagnoses D, and a

query X:
If the oracle gives the answer 1 then the set of rejected diagnoses is D¬X and the

set of remaining diagnoses is DX ∪D∅.
If the oracle gives the answer 0 then the set of rejected diagnoses is DX and the set

of remaining diagnoses is D¬X ∪D∅.

For our first example let us consider three possible queries X1, X2 and X3 (see
Table 2). For each query we can partition a set of diagnoses D into three sets DX,
D¬X and D∅. Using this data and the heuristic given above we can determine that
asking the oracle if Ot |= C(w) is the best query, as two diagnoses from the set D are
removed regardless of the answer.

Let us assume that D1 is the target diagnosis, then an oracle will answer 0 to our
question (i.e. Ot 6|= C(w)). Given this feedback we can decide that Ot |= B(w) is
the next best query, which is also answered with 0 by the oracle. Consequently, we
identified that D1 is the only remaining minimal diagnosis. More generally, if n is the
number of diagnoses and we can split the set of diagnoses in half by each query then
the minimum number of queries is log2n. However, if the probabilities of diagnoses
are known we can reduce this number of queries by using two effects: (1) We can
exploit diagnoses probabilities to asses the probabilities of answers and the change in
information content after an answer is given. (2) Even if there are multiple diagnoses in
the set of remaining diagnoses we can stop further query generation if one diagnosis is
highly probable and all other remaining diagnoses are highly improbable.

Query DX D¬X D∅

X1 : {B(w)} {D2,D3,D4} {D1} ∅
X2 : {C(w)} {D3,D4} {D1,D2} ∅
X3 : {Q(w)} {D4} {D1,D2,D3} ∅

Table 2. Possible queries in Example 1

Example 2 Consider an ontology O with the terminology T :

ax 1 : A1 v A2 uM1 uM2 ax 4 :M2 v ∀s.A u C
ax 2 : A2 v ¬∃s.M3 u ∃s.M2 ax 5 :M3 ≡ B t C
ax 3 :M1 v ¬A uB

and the background theory A : {A1(w), A1(u), s(u,w)}. The ontology is inconsistent
and includes two minimal conflict sets: {〈ax 1, ax 3, ax 4〉 , 〈ax 1, ax 2, ax 3, ax 5〉}. To
restore consistency, the user should modify all axioms of at least one minimal diagnosis:

D1 : [ax 1] D2 : [ax 3] D3 : [ax 4, ax 5] D4 : [ax 4, ax 2]

Following the same approach as in the first example, we compute entailments for
each ontology Oi = O \ Di for all minimal diagnoses Di ∈ D. To construct a query
we select a DX ⊂ D and determine the common set X of concept instantiations and
concept subsumption axioms, which are entailed by eachOi = O\Di, whereDi ∈ DX.
If the set X is empty, the query is rejected. For each accepted query the remaining
diagnoses Dj ∈ D \DX are partitioned into three sets DX, D¬X, and D∅ as defined
above. If the the ontology Oj = O \ Dj is inconsistent with X then we add Dj to the

6 Kostyantyn Shchekotykhin and Gerhard Friedrich

Query DX D¬X D∅

X1 : {B vM3} {D1,D2,D4} {D3} ∅
X2 : {B(w)} {D3,D4} {D2} {D1}
X3 : {M1 v B} {D1,D3,D4} {D2} ∅
X4 : {M1(w),M2(u)} {D2,D3,D4} {D1} ∅
X5 : {A(w)} {D2} {D3,D4} {D1}
X6 : {M2 v D} {D1,D2} ∅ {D3,D4}
X7 : {M3(u)} {D4} ∅ {D1,D2,D3}

Table 3. Possible queries in Example 2

set D¬X. In the case when Oj ∪ {¬X} is inconsistent Dj is added to DX. Otherwise
we add Dj to the set D∅.

For instance, ontologies Oi = O \ Di obtained for diagnoses D2, D3 and D4 have
the following set of common entailments:

X ′
4 : {A1 v A2, A1 vM1, A1 vM2, A2(u),M1(u),M2(u), A2(w),M1(w)} (1)

Since the set X ′
4 is not empty it is considered as the query and the set DX includes

three elements {D2,D3,D4}. The ontology O \ D1 ∪ {X ′
4} is inconsistent therefore

the set D¬X = {D1} and the set D∅ = ∅. However, a query need not include all
of these axioms. If a query X ′ partitions the set of diagnoses into DX, D¬X and D∅

and there exists an irreducible set X ⊂ X ′ which preserves the partition then it is
sufficient to query X . In our example, the set X ′

4 can be reduced to its subset X4 :
{M1(w),M2(u)}. If there are multiple subsets that preserve the partition we select one
with minimal cardinality. For query generation we investigate all possible subsets of D.
This is feasible since we consider only the n most probable minimal diagnoses (e.g.
n = 12) during query generation and selection.

The possible queries presented in Table 3 partition the set of diagnoses D in a
way that makes the application of myopic strategies, such as split-in-half, inefficient. A
greedy algorithm based on such a heuristic would select the first query X1 as the next
query, since there is no query that cuts the set of diagnoses in half. If D4 is the target
diagnosis then X1 will be positively evaluated by an oracle (see Fig. 1). On the next
iteration the algorithm would also choose a suboptimal query since there is no partition
that divides the diagnoses D1, D2, and D4 into two equal groups. Consequently, it
selects the first untried query X2. The oracle answers positively, and the algorithm
identifies query X4 to differentiate between D1 and D4.

However, in real-world settings the assumption that all axioms fail with the same
probability is rarely the case. For example, Roussey et al. [12] present a list of “anti-

{D4} {D1} {D1} {D2}

{D1,D4} : X4 {D1,D2} : X3

{D1,D2,D4} : X2 {D3}

{D1,D2,D3,D4} : X1

1zz 0 $$ 1zz 0 $$

1uu
0

$$

0 $$
1

zz

Fig. 1. Greedy algorithm

Query strategy for sequential ontology debugging 7

patterns”. Each anti-pattern is a set of axioms, like {C1 v ∀R.C2, C1 v ∀R.C3, C2 ≡
¬C3}, that correspond to a minimal conflict set. The study performed by the authors
shows that such conflict sets occur often in practice and therefore can be used to com-
pute probabilities of diagnoses.

The approach that we follow in this paper was suggested by Rector at al. [10] and
considers the syntax of the description logics, such as quantifiers, conjunction, negation,
etc., rather than axioms to describe a failure pattern. For instance, if a user modifies a
quantifier of one of the roles to restore coherency, then we can assume that axioms
including universal quantifier are more probable to fail than the other ones. In [10] the
authors report that in most cases inconsistent ontologies were created because users
(a) mix up ∀r.S and ∃r.S, (b) mix up ¬∃r.S and ∃r.¬S, (c) mix up t and u, (d)
wrongly assume that classes are disjoint by default or overuse disjointness, (e) wrongly
apply negation. Observing that misuses of quantifiers are more likely than other failure
patterns one might find that the axioms ax 2 and ax 4 are more likely to be faulty than
ax 3 (because of the use of quantifiers), whereas ax 3 is more likely to be faulty than
ax 5 and ax 1 (because of the use of negation). Therefore, diagnosis D2 is the most
probable one, followed closely by D4 although it is a double fault diagnosis. D1 and
D3 are significantly less probable because ax 1 and ax 5 have a significantly lower fault
probability than ax 3. A detailed justification based on probability is given in the next
section.

Taking into account the information about user faults provided in [10], it is almost
useless to ask query X1 because it is highly probable that the target diagnosis is either
D2 orD4 and therefore it is highly probable that the oracle will respond with 1. Instead,
asking X3 is more informative because given any possible answer we can exclude one
of the highly probable diagnoses, i.e. either D2 or D4. If the oracle responds to X3

with 0 then D2 is the only remaining diagnosis. However, if the oracle responds with 1,
diagnoses D4, D3, and D1 remain, where D4 is significantly more probable compared
to diagnoses D3 and D1. We can stop, since the difference between the probabilities
of the diagnoses is high enough such that D1 can be accepted as the target diagnosis.
In other situations additional questions may be required. This strategy can lead to a
substantial reduction in the number of queries compared to myopic approaches as we
will show in our evaluation.

Note that in real-world application scenarios failure patterns and their probabilities
can be discovered by analyzing actions of a user in an ontology editor, like Protégé,
while debugging an ontology or just repairing an inconsistency/incoherency. In this
case it is possible to “personalize” the debugging algorithm such that it will prefer user-
specific faults.

3 Entropy-based query selection

To select the best query we make the assumption that knowledge is available about the
a-priori failure probabilities in specifying axioms. Such probabilities can be estimated
either by studies such as [10, 12] or can be personalized by observing the typical failures
of specific users working with an ontology development tool. In the last case an ontol-
ogy editor should just save logs of debugging sessions, as well as user actions taken to
restore the consistency/coherency of an ontology. Such observations can be then used to

8 Kostyantyn Shchekotykhin and Gerhard Friedrich

identify typical failures of a particular user. Using observations about failure patterns,
for instance obtained from an ontology editor as described above, we can calculate the
initial probability of each axiom p(ax i) containing a failure. If no information about
failures is available then the debugger can initialize all probabilities p(ax i) with some
small number.

Given the failure probabilities p(ax i) of axioms, the diagnosis algorithm first cal-
culates the a-priori probability p(Dj) that Dj is the target diagnosis. Since all axioms
fail independently, this probability can be computed as [8]:

p(Dj) =
∏

axn ∈Dj

p(axn)
∏

axm 6∈Dj

1− p(axm) (2)

The prior probabilities for diagnoses are then used to initialize an iterative algo-
rithm that includes two main steps: (a) selection of the best query and (b) update of the
diagnoses probabilities given the query feedback.

According to information theory the best query is the one that, given the answer of
an oracle, minimizes the expected entropy of a the set of diagnoses [8]. Let p(Xi = vik)
where vi0 = 0 and vi1 = 1 be the probability that query Xi is answered with either 0
or 1. Let p(Dj |Xi = vik) be the probability of diagnosis Dj after the oracle answers
Xi = vik. The expected entropy after querying Xi is:

He(Xi) =

1∑
k=0

p(Xi = vik)×−
∑

Dj∈D

p(Dj |Xi = vik) log2 p(Dj |Xi = vik)

The query which minimizes the expected entropy is the best one based on a one-
step-look-ahead information theoretic measure. This formula can be simplified to the
following score function [8] which we use to evaluate all available queries and select
the one with the minimum score to maximize information gain:

sc(Xi) =

1∑
k=0

p(Xi = vik) log2 p(Xi = vik) + p(D∅
i) + 1 (3)

where D∅
i is the set of diagnoses which do not make any predictions for the query Xi.

p(D∅
i) is the total probability of the diagnoses that predict no value for the query Xi.

Since, for a queryXi the set of diagnoses D can be partitioned into the sets DXi , D¬Xi

and D∅
i , the probability that an oracle will answer a query Xi with either 1 or 0 can be

computed as:
p(Xi = vik) = p(Sik) + p(D∅

i)/2 (4)

where Sik corresponds to the set of diagnoses that predicts the outcome of a query, e.g.
Si0 = D¬Xi for Xi = 0 and Si1 = DXi in the other case. Under the assumption
that both outcomes are equally likely the probability that a set of diagnoses D∅

i predicts
Xi = vik is p(D∅

i)/2.
Since by Definition 1 each diagnosis is a unique partition of all axioms in an ontol-

ogy O into correct and faulty, we consider all diagnoses as mutually exclusive events.
Therefore the probabilities of their sets can be calculated as:

p(D∅
i) =

∑
Dj∈D∅

i

p(Dj) p(Sik) =
∑

Dj∈Sik

p(Dj)

Query strategy for sequential ontology debugging 9

Given the feedback v of an oracle to the selected query Xs, i.e. Xs = v we have to
update the probabilities of the diagnoses to take the new information into account. The
update is made using Bayes’ rule for each Dj ∈ D:

p(Dj |Xs = v) =
p(Xs = v|Dj)p(Dj)

p(Xs = v)
(5)

where the denominator p(Xs = v) is known from the query selection step (Equation 4)
and p(Dj) is either a prior probability (Equation 2) or is a probability calculated using
Equation 5 during the previous iteration of the debugging algorithm. We assign p(Xs =
v|Dj) as follows:

p(Xs = v|Dj) =


1, if Dj predicted Xs = v;
0, if Dj is rejected by Xs = v;
1
2 , if Dj ∈ D∅

s

Example 1 (continued) Suppose that the debugger is not provided with any infor-
mation about possible failures and therefore it assumes that all axioms fail with the
same probability p(ax i) = 0.01. Using Equation 2 we can calculate probabilities for
each diagnosis. For instance, D1 suggests that only one axiom ax 1 should be modi-
fied by the user. Hence, we can calculate the probability of diagnosis D1 as follows
p(D1) = p(ax 1)(1 − p(ax 2))(1 − p(ax 3))(1 − p(ax 4)) = 0.0097. All other minimal
diagnoses have the same probability, since every other minimal diagnosis suggests the
modification of one axiom. To simplify the discussion we only consider minimal diag-
noses for the query selection. Therefore, the prior probabilities of the diagnoses can be
normalized to p(Dj) = p(Dj)/

∑
Dj∈D p(Dj) and are equal to 0.25.

Given the prior probabilities of the diagnoses and a set of queries (see Table 2)
we evaluate the score function (Equation 3) for each query. E.g. for the first query
X1 : {B(w)} the probability p(D∅) = 0 and the probabilities of both the positive and
negative outcomes are: p(X1 = 1) = p(D2) + p(D3) + p(D4) = 0.75 and p(X1 =
0) = p(D1) = 0.25. Therefore the query score is sc(X1) = 0.1887.

The scores computed during the initial stage (see Table 4) suggest thatX2 is the best
query. Taking into account that D1 is the target diagnosis the oracle answers 0 to the
query. The additional information obtained from the answer is then used to update the
probabilities of diagnoses using the Equation 5. SinceD1 andD2 predicted this answer,
their probabilities are updated, p(D1) = p(D2) = 1/p(X2 = 1) = 0.5. The proba-
bilities of diagnoses D3 and D4 which are rejected by the outcome are also updated,
p(D3) = p(D4) = 0.

On the next iteration the algorithm recomputes the scores using the updated proba-
bilities. The results show thatX1 is the best query. The other two queriesX2 andX3 are

Query Initial score X2 = 1
X1 : {B(w)} 0.1887 0
X2 : {C(w)} 0 1
X3 : {Q(w)} 0.1887 1

Table 4. Expected scores for queries
(p(ax i) = 0.01)

Query Initial score
X1 : {B(w)} 0.250
X2 : {C(w)} 0.408
X3 : {Q(w)} 0.629

Table 5. Expected scores for queries
(p(ax1) = 0.025, p(ax2) = p(ax3) =
p(ax4) = 0.01)

10 Kostyantyn Shchekotykhin and Gerhard Friedrich

Answers D1 D2 D3 D4

Prior 0.0970 0.5874 0.0026 0.3130
X3 = 1 0.2352 0 0.0063 0.7585
X3 = 1, X4 = 1 0 0 0.0082 0.9918
X3 = 1, X4 = 1, X1 = 1 0 0 0 1

Table 6. Probabilities of diagnoses after answers

Queries Initial X3 = 1 X3 = 1, X4 = 1
X1 : {B vM3} 0.974 0.945 0.931
X2 : {B(w)} 0.151 0.713 1
X3 : {M1 v B} 0.022 1 1
X4 : {M1(w),M2(u)} 0.540 0.213 1
X5 : {A(w)} 0.151 0.713 1
X6 : {M2 v D} 0.686 0.805 1
X7 : {M3(u)} 0.759 0.710 0.970

Table 7. Expected scores for queries

irrelevant since no information will be gained if they are performed. Given the negative
feedback of an oracle to X1, we update the probabilities p(D1) = 1 and p(D2) = 0. In
this case the target diagnosis D1 was identified using the same number of steps as the
split-in-half heuristic.

However, if the first axiom is more likely to fail, e.g. p(ax 1) = 0.025, then the first
query will be X1 : {B(w)} (see Table 5). The recalculation of the probabilities given
the negative outcome X1 = 0 sets p(D1) = 1 and p(D2) = p(D3) = p(D4) = 0.
Therefore the debugger identifies the target diagnosis only in one step.

Example 2 (continued) Suppose that in ax 4 the user specified ∀s.A instead of ∃s.A
and ¬∃s.M3 instead of ∃s.¬M3 in ax 2. Therefore D4 is the target diagnosis. More-
over, the debugger is provided with observations of three types of failures: (1) conjunc-
tion/disjunction occurs with probability p1 = 0.001, (2) negation p2 = 0.01, and (3)
restrictions p3 = 0.05. Using the probability addition rule for non-mutually exclusive
events we can calculate the probability of the axioms containing an error: p(ax 1) =
0.0019, p(ax 2) = 0.1074, p(ax 3) = 0.012, p(ax 4) = 0.051, and p(ax 5) = 0.001.
These probabilities are exploited to calculate the prior probabilities of the diagnoses
(see Table 6) and to initialize the query selection process.

On the first iteration the algorithm determines that X3 is the best query and asks an
oracle whether Ot |=M1 v B is true or not (see Table 7). The obtained information is
then used to recalculate the probabilities of the diagnoses and to compute the next best
query X4, and so on. The query process stops after the third query, since D4 is the only
diagnosis that has the probability p(D4) > 0.

Given the feedback of the oracleX4 = 1 for the second query, the updated probabil-
ities of the diagnoses show that the target diagnosis has a probability of p(D4) = 0.9918
whereas p(D3) is only 0.0082. In order to reduce the number of queries a user can spec-
ify a threshold, e.g. σ = 0.95. If the probability of some diagnosis is greater than this
threshold, the query process stops and returns the most probable diagnosis. Note, that
even after the first answer X3 = 1 the most probable diagnosis D3 is three times more

Query strategy for sequential ontology debugging 11

Algorithm 1: Ontology debugging algorithm
Input: ontology O, set of background axioms B, set of fault probabilities for axioms FP ,

maximum number of most probable minimal diagnoses n, acceptance threshold σ
Output: a diagnosis D

1 DP ← ∅; DS ← ∅; T |= ← ∅; T 6|= ← ∅; D← ∅; s← 0;
2 while belowThreshold(DP, σ) ∧ s 6= 1 do
3 D← getDiagnoses(HS-Tree(O, B ∪ T |=, T 6|=, n));
4 DS ← computeDataSet(DS,D);
5 DP ← computePriors(D, FP);
6 DP ← uptateProbablities(DP,DS, T |=, T 6|=);
7 s← getMinimalScore(DS,DP);
8

〈
X,DX,D¬X

〉
← selectQuery(DS, s);

9 if getAnswer(Ot |= X) then T |= ← T |= ∪X;
10 else T 6|= ← T 6|= ∪ ¬X;

11 return mostProbableDiagnosis(D, DP);

likely than the second most probable diagnosis D1. Given such a great difference we
could suggest to stop the query process after the first answer. Thus, in this example the
debugger requires less queries than the split-in-half heuristic.

4 Implementation details

The ontology debugger (Algorithm 1) takes an ontology O as input. Optionally, a user
can provide a set of axioms B that are known to be correct, a set FP of fault probabil-
ities for axioms ax i ∈ O, a maximum number n of most probable minimal diagnoses
that should be considered by the algorithm, and a diagnosis acceptance threshold σ.
The fault probabilities of axioms are computed as described by exploiting knowledge
about typical user errors. Parameters n and σ are used to speed up the computations. In
Algorithm 1 we approximate the set of the n most probable diagnoses with the set of
the n most probable minimal diagnoses, i.e. we neglect non-minimal diagnoses which
are more probable than some minimal ones. This approximation is correct, under a
reasonable assumption that probability of each axiom p(ax i) < 0.5. In this case for
every non-minimal diagnosis ND, a minimal diagnosis D ⊂ ND exists which from
Equation 2 is more probable than ND. Consequently the query selection algorithm op-
erates on the set of minimal diagnoses instead of all diagnoses (including non-minimal
ones). However, the algorithm can be adapted with moderate effort to also consider
non-minimal diagnoses.

We implemented the computation of diagnoses following the approach proposed by
Friedrich et al. [3]. The authors employ the combination of two algorithms, QUICKX-
PLAIN [5] and HS-TREE [11]. The latter is a search algorithm that takes an ontology
O, a set of correct axioms, a set of axioms T 6|= which must not be implied by the target
ontology, and the maximal number of most probable minimal diagnoses n as an input.
HS-TREE implements a breadth-first search strategy to compute a set of minimal hit-
ting sets from the set of all minimal conflicts in O. As suggested in [3] it ignores all
branches of the search tree that correspond to hitting sets inconsistent with at least one

12 Kostyantyn Shchekotykhin and Gerhard Friedrich

element of T 6|=. HS-TREE terminates if either it identifies the n most probable minimal
diagnoses or there are no further diagnoses which are more probable than the already
computed ones. Note, HS-TREE often calculates only a small number of minimal con-
flict sets in order to generate the n most probable minimal hitting sets (i.e. minimal
diagnoses), since only a subset of all minimal diagnoses is required.

The search algorithm computes minimal conflicts using QUICKXPLAIN. This al-
gorithm, given a set of axioms AX and a set of correct axioms B returns a minimal
conflict set CS ⊆ AX , or ∅ if axioms AX ∪ B are consistent. Minimal conflicts are
computed on-demand by HS-TREE while exploring the search space. The set of min-
imal hitting sets returned by HS-TREE is used by GETDIAGNOSES to create a set D
with at most n minimal diagnoses.

At the beginning of the main loop the algorithm calls COMPUTEDATASET function
to generate a set of ontologies O : {Oi} for each diagnosis Di ∈ D by removing all
elements of a diagnosis from O. The algorithm uses this set to generate data sets like
the ones presented in Tables 2 and 3. For each ontologyOi ∈ O the algorithm gets a set
of entailments from the reasoner and associates them with the corresponding diagnosis
Di. The algorithm uses the set of diagnoses/entailments pairs to compute the set of
queries. For each query Xi it partitions the set D into DXi , D¬Xi and D∅

i , as defined
in Section 2. Then Xi is iteratively reduced by applying QUICKXPLAIN such that sets
DXi and D¬Xi are preserved.

In the next step COMPUTEPRIORS computes prior probabilities for a set of diag-
noses given the fault probabilities of the axioms contained in FP . To take past answers
into account the algorithm updates the prior probabilities of the diagnoses by evaluating
Equation 5 for each diagnosis in D (UPDATEPROBABILITIES). All data required for the
update is stored in sets DS, T |=, and T 6|=.

The function GETMINIMALSCORE evaluates the scoring function (Equation 3) for
each element of DS and returns the minimal score.

In the query-selection phase the algorithm selects a set of axioms that should be
evaluated by an oracle. SELECTQUERY retrieves a triple

〈
X,DX,D¬X

〉
∈ DS that

corresponds to the best (minimal) score s. The set of axioms X is then presented to the
oracle. If there are multiple queries with a minimal score SELECTQUERY returns the
triple where X has the smallest cardinality in order to reduce the answering effort.

Depending on the answer of the oracle, the algorithm extends either set T |= or
T 6|=. This is done to exclude corresponding diagnoses from the results of HS-TREE
in further iterations. Note, the algorithm can be easily extended to allow the oracle to
reject a query if the answer is unknown. In this case the algorithm proceeds with the
next best query until no further queries are available.

The algorithm stops if there is a diagnosis probability above the acceptance thresh-
old σ or if no query can be used to differentiate between the remaining diagnoses (i.e.
all scores are 1). The most probable diagnosis is then returned to the user. If it is im-
possible to differentiate between a number of highly probable minimal diagnoses, the
algorithm returns a set that includes all of them.

5 Evaluation

The evaluation of our approach was performed using generated examples and real-
world ontologies presented in Table 1. We employed generated examples to perform

Query strategy for sequential ontology debugging 13

controlled experiments where the number of minimal diagnoses and their cardinality
could be varied to make the identification of the target diagnosis more difficult. The
main goal of the experiment using ontologies is to demonstrate applicability of our
approach in the real-world settings.

For the first test we created a generator which takes a consistent and coherent on-
tology, a set of fault patterns together with their probabilities, the minimum number
of minimal diagnoses m, and the required minimum cardinality of these minimal di-
agnoses |Dt| as inputs. The output was an alteration of the input ontology for which
at least the given number of minimal diagnoses with the required cardinality exist. In
order to introduce inconsistencies and incoherences, the generator applied fault patterns
randomly to the input ontology depending on their probabilities.

In this experiment we took five fault patterns from a case study reported by Rector
at al. [10] and assigned fault probabilities according to their observations of typical user
errors. Thus we assumed that in cases (a) and (b) (see Section 2, when an axiom includes
some roles (i.e. property assertions), axiom descriptions are faulty with a probability of
0.025, in cases (c) and (d) 0.01 and in case (e) 0.001. In each iteration the generator
randomly selected an axiom to be altered and applied a fault pattern to this axiom. Next
it selected another axiom using the concept taxonomy and altered it correspondingly to
introduce an incoherency/inconsistency. The fault patterns were randomly selected in
each step using the probabilities given above.

For instance, given the description of a randomly selected concept A and the fault
pattern “misuse of negation”, we added the construct u¬X to the description of A,
where X is a new concept name. Next, we randomly selected concepts B and S such
that S v A and S v B and added uX to the description of B. During the gen-
eration process, we applied the HS-TREE algorithm after each introduction of a in-
coherency/inconsistency to control two parameters: the minimum number of minimal
diagnoses in the ontology and their minimum cardinality. The generator continued to in-
troduce incoherences/inconsistencies until the specified parameter values were reached.
For instance, if the minimum number of minimal diagnoses equals to m = 6 and their
cardinality to |Dt| = 4, then the generated ontology will include at least 6 diagnoses of
cardinality 4 and some additional number of diagnoses of higher cardinalities.

The resulting faulty ontology as well as the fault patterns and their probabilities
were inputs for the ontology debugger. The acceptance threshold σ was set to 0.95 and
the number of most probable minimal diagnoses n was set to 12. One of the minimal
diagnoses with the required cardinality was randomly selected as the target diagnosis.
Note, the target ontology is not equal to the original ontology, but rather is a corrected
version of the altered one, in which the faulty axioms were repaired by replacing them
with their original (correct) versions according to the target diagnosis. The tests were
done on ontologies bike2 to bike9, bcs3, galen and galen2 from Racer’s benchmark
suite1.

The average results of the evaluation performed on each test suite (depicted in
Fig. 2) show that the entropy-based approach outperforms the split-in-half method
described in Section 2 as well as random query selection by more than 50% for the
|Dt| = 2 case due to its ability to estimate the probabilities of diagnoses. On average
the algorithm required 8 seconds to generate a query. Figure 2 also shows that the car-

1 http://www.racer-systems.com/products/download/benchmark.phtml

14 Kostyantyn Shchekotykhin and Gerhard Friedrich

1

2

3

4

5

6

7

8

9

4 6 8 10 12

Re
qu

ire
d

qu
er

ie
s

Random Split-in-half
|Dt|=2 |Dt|=4 |Dt|=8Entropy-based:

Required number of minimal diagnoses in a faulty ontology

Fig. 2. Number of queries required to select the target diagnosis Dt with threshold σ = 0.95.
Random and “split-in-half” are shown for the cardinality of minimal diagnoses |Dt| = 2.

dinality of the target diagnosis increases as the number of required queries increases.
This holds for the random and split-in-half methods (not depicted) as well. However,
the entropy-based approach is still better than the split-in-half method even for diag-
noses with increasing cardinality. The approach required more queries to discriminate
between high cardinality diagnoses because the prior probabilities of these diagnoses
tend to converge.

In the tests performed on the real-world ontologies we initialized the input param-
eters n and σ of Algorithm 1 with the same values as in the test with generated exam-
ples. Also we used the same five fault patterns together with their probabilities as given
above. Before the experiment each ontology was analyzed by the HS-TREE algorithm
and all minimal diagnoses of these ontologies were identified. In each test for a given
ontology we selected randomly one of its minimal diagnoses as the target one and ap-
plied our approach using both split-in-half and entropy-based strategies. The evaluation
of queries was done automatically by verifying if a query is also entailed by the target
ontology obtained by removing all axioms of the target diagnosis from the input ontol-
ogy. For each ontology we performed 20 tests and on each iteration the target diagnosis
was randomly reselected.

The results of this experiment are presented in Tables 8 and 9 and show that in terms
of queries, the entropy-based approach outperformed split-in-half. As the number of
diagnoses grew we observed that the difference between the two strategies increased.
In the best case for the entropy-based strategy, when the target diagnoses were assigned
a high a-priori fault probability, the number of queries was usually twice as low as
required by the split-in-half strategy. Also in the worst case, when the target diagnoses
were assigned a low a-priori fault probability, the entropy-based strategy performed
better than split-in-half, because it was able to adapt the a-posteriori fault probabilities
using Bayes rule and the oracle’s feedback to queries. In this case the entropy-based
strategy corresponds to active learning [14] applied to learn fault probabilities which

Query strategy for sequential ontology debugging 15

Split-in-half Entropy-based
Ontology min max avg min max avg

1. Chemical 3 4 3 1 3 2
2. Sweet-JPL 4 5 4 1 4 2
3. University 7 9 8 2 7 4
4. Tambis 8 10 8 2 7 5
5. Economy 10 12 11 3 10 6
6. Transport 11 14 12 4 11 7

Table 8. Number of queries required to identify a target diagnosis

Ontology Diagnoses Query
12 all avg

1. Chemical 0,97 1,39 1,50
2. Sweet-JPL 31,97 36,47 5,48
3. University 0,27 0,61 1,12
4. Tambis 80,29 286,11 3,91
5. Economy 8,33 55,70 1,87
6. Transport 6,70 99,02 2,39

Table 9. Time in seconds required to calculate 12 first and all minimal diagnoses as well as an
average time used to generate a query

is not exploited in the split-in-half strategy. The more queries are asked, the better the
entropy-based method can predict the target diagnosis.

6 Related work

To the best of our knowledge no sequential ontology debugging methods (neither em-
ploying split-in-half nor entropy-based methods) have been proposed to debug faulty
ontologies so far. Diagnosis methods for ontologies are introduced in [13, 6, 3]. Rank-
ing of diagnoses and proposing a target diagnosis is presented in [7]. This method uses
a number of measures such as: (a) the frequency with which an axiom appears in con-
flict sets, (b) impact on an ontology in terms of its “lost” entailments when some axiom
is modified or removed, (c) ranking of test cases, (d) provenance information about the
axiom, and (e) syntactic relevance. All these measures are evaluated for each axiom in
a conflict set. The scores are then combined in a rank value which is associated with the
corresponding axiom. These ranks are then used by a modified HS-TREE algorithm that
identifies diagnoses with a minimal rank. In this work no query generation and selection
strategy is proposed if the target diagnosis cannot be determined reliably with the given
a-priori knowledge. In our work additional information is acquired until the target di-
agnosis can be identified with confidence. In general, the work of [7] can be combined
with the one presented in this paper as axiom ranks can be taken into account together
with other observations while calculating the prior probabilities of the diagnoses.

The idea of selecting the next best query based on the expected entropy was ex-
ploited in the generation of decisions trees [9] and further refined for selecting mea-
surements in the model-based diagnosis of circuits [8]. We extended these methods to
query selection in the domain of ontology debugging.

16 Kostyantyn Shchekotykhin and Gerhard Friedrich

7 Conclusions

In this paper we presented an approach to the sequential diagnosis of ontologies. We
showed that the axioms generated by classification and realization can be used to build
queries which differentiate between diagnoses. To rank the utility of these queries we
employ knowledge about typical user errors in ontology axioms. Based on the likeli-
hood of an ontology axi om containing an error we predict the information gain pro-
duced by a query result, enabling us to select the next best query according to a one-
step-lookahead entropy-based scoring function. We outlined the implementation of a
sequential debugging algorithm and compared our proposed method with a split-in-
half strategy. Our experiments showed a significant reduction in the number of queries
required to identify the target diagnosis.

References
1. Ceraso, J., Provitera, A.: Sources of error in syllogistic reasoning. Cognitive Psychology

2(4), 400–410 (1971)
2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The

Description Logic Handbook. Cambridge University Press, New York, 2nd edn. (2007)
3. Friedrich, G., Shchekotykhin, K.: A General Diagnosis Method for Ontologies. In: 4th Inter-

national Semantic Web Conference (ISWC-05). pp. 232–246. Springer (2005)
4. Haarslev, V., Müller, R.: RACER System Description. In: 1st International Joint Conference

on Automated Reasoning (IJCAR-01). pp. 701–705. Springer (2001)
5. Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained

Problems. In: Association for the Advancement of Artificial Intelligence (AAAI-04). pp.
167–172. AAAI (2004)

6. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of OWL DL
Entailments. In: 6th International Semantic Web Conference and 2nd Asian Semantic Web
Conference (ISWC/ASWC-07) pp. 267–280. Springer (2007)

7. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing Unsatisfiable Concepts in
OWL Ontologies. In: 3rd European Semantic Web Conference (ESWC-06). pp. 170–184.
Springer (2006)

8. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130
(Apr 1987)

9. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (Mar 1986)
10. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,

H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors &
Common Patterns. In: 14th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW-04). pp. 63–81. Springer (2004)

11. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 23, 57–95
(Apr 1987)

12. Roussey, C., Corcho, O., Vilches-Blázquez, L.M.: A catalogue of OWL ontology antipat-
terns. In: 5th International Conference On Knowledge Capture (K-CAP-09). pp. 205–206.
ACM (2009)

13. Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging Incoherent Terminologies.
Journal of Automated Reasoning 39(3), 317–349 (Oct 2007)

14. Settles, B.: Active Learning Literature Survey. Computer sciences technical report 1648,
University of Wisconsin-Madison (2009)

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 5(2),
51–53 (Jun 2007)

