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Abstract. Many applications make use of named entity classification.
Machine learning is the preferred technique adopted for many named en-
tity classification methods where the choice of features is critical to final
performance. Existing approaches explore only the features derived from
the characteristic of the named entity itself or its linguistic context. With
the development of the Semantic Web, a large number of data sources are
published and connected across the Web as Linked Open Data (LOD).
LOD provides rich a priori knowledge about entity type information,
knowledge that can be a valuable asset when used in connection with
named entity classification. In this paper, we explore the use of LOD to
enhance named entity classification. Our method extracts information
from LOD and builds a type knowledge base which is used to score a
(named entity string, type) pair. This score is then injected as one or
more features into the existing classifier in order to improve its perfor-
mance. We conducted a thorough experimental study and report the
results, which confirm the effectiveness of our proposed method.
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1 Introduction

Automatically classifying named entities from text is a crucial step in several
applications. For example, in the Question Answering system [17], one important
step is to determine whether a candidate answer is of the correct type given
the question, and in the Information Extraction system [9], the first step is to
identify the named entities and their types from the text. As devices linked to
the Internet proliferate, the amount of information available on the Web rapidly
grows. At the same time, there is a trend to scaling applications to the Web. For
example, the MULDER Question Answering system [19] is designed to answer
open-domain questions from the Web, and the TextRunner system is designed to
extract open information from the Web [6]. To satisfy the requirements of such
Web-scale applications, named entity classification is evolving from a simple
three-category classification system to one in which a large number of classes
are specified by an ontology or by a taxonomy [8], clearly a more challenging
task.



Most proposed approaches for named entity classification adopt machine-
learning techniques. The choice of features is critical to obtaining a good clas-
sification of named entities. Traditional classification approaches focus on the
word-level characters or the context information of the named entities [20] with-
out exploiting in any way the valuable classification information available for the
large number of entities provided by Linked Open Data (LOD) on the Web. As of
this writing, the Linked Data project [1] includes more than 100 datasets which
together contain about 4.2 billion triples, and the datasets cover such various
domains as Wikipedia, IMDb, and Geonames. Given a named entity, it is highly
likely that some type assertions can be found in LOD. Thus, knowledge from
LOD can provide good features for named entity classification. Features used
in existing methods can be considered as context-dependent linguistic features,
and the machine-learning technique makes use of statistic information based on
these features to obtain a posteriori knowledge, while the features from LOD
are considered as context-independent features that explore a priori knowledge.
Our proposed method is to integrate the a priori knowledge with the a posteriori
knowledge to improve named entity classification.

In this work we examine how to make use of the type information from LOD
to improve named entity classification. It is not a trivial task due to the follow-
ing challenges. First, because LOD may contain noisy information and it may be
incomplete with respect to the information required to determine named entities
and their potential types, we need to improve the precision and completeness of
the type information. Second, for the extracted and cleaned type information for
named entities, we need a mechanism to store it and to guarantee the efficiency
of the method used to process the large, unwieldy LOD for use in real appli-
cations. Third, LOD from various sources have various taxonomies, and named
entity classification also has its own taxonomies; therefore, we need a mechanism
to solve the type similarity problem among these multiple taxonomies. The fi-
nal challenge is to provide a scoring strategy given the multiple possible type
information for a named entity.

Organization. The remainder of this paper is organized as follows. Section 2
gives an overview of our proposed method; Section 3 presents the method we use
to prepare the linked data and store the potential type information; the scoring
method is discussed in Section 4; Section 5 presents our experimental evaluation
of the feature; related work is discussed in Section 6, and the conclusion and
future work are discussed in Section 7.

2 Overview

The key idea of our approach is to leverage the knowledge base from the LOD
to generate a score to measure the probability that the given named entity
could be classified as the target type. The scores can then be used by exist-
ing machine-learning methods as additional features to improve named entity
classification. Let us use < f1,...,fn > to denote the feature vector for a
named entity in the existing approach. Our method appends a set of features



derived from LOD to the end of that vector to obtain a new feature vector
< f1,---s fn, F1,..., F >. The new generated feature vectors are used by the
classifiers for named entity classification. The rationale behind this method is
to combine context-independent, a priori knowledge from LOD with linguistic
contextual information in a single feature vector and let the machine-learning
algorithm determine how to best combine them statistically.

Fig 1 shows the architecture of the component to compute the LOD feature.
In order to efficiently compute the additional feature, our system is divided into
online and offline components. For the offline components, the LOD Preproces-
sor is used to extract the type information from the various LOD sources and
precompute the type knowledge base in a format that best suits our algorithms.
For the online components, the Type Retrieval is used to retrieve all type in-
formation of a given named entity string from the type knowledge base. The
LOD scorer takes charge of computing the probability scores for the retrieved
types of the named entity and the target type. An intermediate taxonomy is
used to calculate the similarity between each type that is provided by LOD and
the target type. Finally, the obtained score, together with other feature scores,
are given to the classifier.
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Fig. 1. The Architecture of the Component for Computing LOD feature.

3 Type Knowledge Base Generation

The type knowledge base is needed for two reasons. First, the LOD may contain
noise and may be incomplete; thus, we need to remove the noisy information and
make the type information more complete. Second, to ensure the efficiency of
the online scoring, the type information should be pre-computed and indexed in
a format that supports fast retrieval. This section describes the method used to
generate the type knowledge base. The goal is to enumerate all possible (name
string, type) pairs from the LOD.



LOD uses a Uniform Resource Identifier (URI) to identify each instance, and
type assertions are provided for each URI. For example, for an instance having
the URI dbpedia:John_F._Kennedy', one triple from DBpedia indicates that the
instance dbpedia:John_F. Kennedy belongs to type President:

(dbpedia:John_F._Kennedy, rdf:type, President).

For the instance dbpedia:John_F._Kennedy, we have another triple from DBpedia
to indicate one of its names:

(dbpedia:John_F._Kennedy, rdfs:label, “John F. Kennedy”).

Based on these two triples, we obtain the (name string, type) pair (John F.
Kennedy, President) to specify that the name string “John F. Kennedy” belongs
to category “President”. From DBpedia, we have another triple which indicates
another possible name for the instance dbpedia:John_F. Kennedy:

(dbpedia:John_F._Kennedy, dbpedia:birthName, “John Fitzgerald Kennedy”).
From this we obtain another (name string, type) pair, (John Fitzgerald Kennedy,
President).

As the type knowledge base requires the type information for each named
entity, one problem we needed to solve is how to generate all possible name
variants for each instance. Traditional approaches leverage the string similarity
to determine whether some name variants correspond to one instance. However,
the name variants of one instance may not always be similar. For example,
ping-pong and table-tennis are the name variants for the same instance. In our
method, we propose to use various name properties and certain relationships in
LOD to enumerate all possible names variants for an instance.

3.1 Leverage the Name Properties.

Thanks to the broad coverage of LOD, most name variants for an instance that
may be mentioned in some text are likely to be specified by some name proper-
ties. We analyze the properties used in LOD sources and identify the ones that
may describe the name information. For example, in terms of the definition from
RDF schema, the property rdfs:label provides a human-readable description of a
resource, making it a good candidate for name properties. We observe that there
are many name properties in LOD, e.g., DBpedia has 106 properties about such
names as dbpedia:name and dbpedia:fullname. To get maximal coverage on all
possible names of an entity, we tried to use most of these properties. However,
experimental results showed that they lead to many errors due to noisy LOD.
For example, from DBpedia we have the following triples:

(dbpedia: Chrysler_New_Yorker, dbpedia:name, 1982)

(dbpedia: Chrysler_New_Yorker, rdf:type, Automobile)
We can then obtain the pair (1982, Automobile) which is not correct. Based on
these experiments, we make use of only the properties that exactly describe the
names, such as rdfs:label and foaf:name.

! The dbpedia: stands for the prefix for the URI from DBpedia



3.2 Leverage the Relationships.

In LOD, some relationships may connect two data instances where one data
instance could be considered as providing another name variant of the other
instance. We have identified three relationships and make use of them to enrich
the name variants of the instances.

Redirects Relationship. The redirects relationship is used in DBpedia and
links one URI, which has no description, to another URI that has a description.
The purpose of creating and maintaining the redirects relationship is because the
former URI has the relationships, including alternative name, less- and more-
specific forms of names, abbreviations, etc. [3] with the later URI If URI;
redirects to U RIs, then the name of URI; can be considered as a name variant
of the instance of U RI5. Therefore, for each (name string, type) pair, i.e., (names,
type), that is derived from the type assertions for URIs, we generate another
pair (namey, type).

dbpedia:Ping-pong dbpedia:Table_tennis dbpedia-owl:Sport

redirect rdf:type 'Q
rdfs:label rdfs:label

“ping pong” “table tennis”

Fig. 2. The Example RDF Data for Redirect Relationship

Ezxample 3.1. Let us use an example to illustrate this. Suppose we have a set of
RDF triples, and their graph representation is shown in Fig 2. There is a redirect
relationship from the URI dbpedia:Ping-pong to dbpedia:Table_tennis, meaning
that ping-pong is a name variant of dbpedia:Table_tennis. From the description
of dbpedia:Table_tennis, we obtain a pair (table tennis, Sport), and we then
generate another pair (ping-pong, Sport) due to the redirects relationship. O

owl:sameAs Relationship. According to the OWL specification, the owl:sameAs
indicates that two URI references actually refer to the same thing. Therefore, if
URI; owl:sameAs U RI5, we combine them as one instance. The instance has the
name variants from both URI; and URI; and has the types from both URI;
and URIs.

Disambiguates Relationship. The disambiguates relationship is used in DB-
pedia. A disambiguation URI has many disambiguates relationships with other
different URIs which could, in principle, have the same name as that of the
disambiguation URI. For example, we have (dbpedia:Joker disambiguates dbpe-
dia:Joker_butterfly) and (dbpedia:Joker disambiguates dbpedia:The_ Joker’s_-Wild).
It means that dbpedia:Joker_butterfly and dbpedia:The_Joker’s_Wild can have
the same name Joker. Joker is then a name variant of dbpedia:Joker_butterfly



and is also a name variant of dbpedia:The_Joker’s_Wild. For all type assertions
about dbpedia:Joker_butterfly and dbpedia:The_Joker’s_Wild, we generate cor-
responding (name string, type) pairs for the name Joker. For example, we know
that dbpedia:Joker_butterfly belongs to the type Insect, then we generate a pair
(Joker, Insect).

The enrichment using these relationships may not be 100% reliable because
there may exist incorrect relationships due to the current quality level of LOD.
However, we have conducted experiments that verify that the above enrichment
helps improve the scoring accuracy.

3.3 Structure of the Type Knowledge Base

Given the (name string, type) pairs extracted from LOD, we need a mechanism
to store and index them in order to guarantee the efficient retrieval for online
scoring. The inverted list is used to store such information where the name
string is the key. Different data instances may have the same name, but the
scoring mechanism needs to distinguish the types for different instances (which
will be introduced in detail in Section 4). Thus, the type information for a single
name string is separated in terms of the data instance, i.e., the URI to which it
corresponds. Fig. 3 shows the structure of the inverted list for storing the type
information for name strings where the element (¢}, ... ,t;m( ;) for entry Ny
stores all possible types of the j** instance SJ1 that has the name string Nj.

s

/—/%
Ny _.‘ (4, t11m(1)) l» 4" (t1j1 ---- t11'"10)) }— (t1p1 """ t1pvv|(p))

Ny _'( (40, tk1m(1)) }* 4" (tkq1,..., tkqm(q)) ‘

Fig. 3. The Inverted List for Type Knowledge Base

We could have used services like Sindice and Sigma? instead of building the
inverted index on our own, but considering the complicated preprocessing we
need to perform and the networking latency to use these services, we decided to
build our own indexes.

In our work, we have generated a type knowledge base that includes LOD
from DBpedia, IMDDb, and GeoNames. The statistical information is shown in
Table 1.

4 Scoring Method

Given a named entity string and a target type, the scoring is performed by
computing a metric that measures the probability that the named entity can be

2 Sindice : http://sindice.com, Sigma:http://sig.ma



Dataset  |#instances #name properties|#name variants|#type assertions
(millions) (millions) (millions)

DBpeida (3.2 4 4.7 7.9
IMDb 24.5 8 12.0 24.4
GeoNames|6.7 3 8.4 6.5

Table 1. Statistic Information for the Type Knowledge Base

classified as the target type using the type information from the type knowledge
base. There are three main challenges to doing this: (1) given a named entity
string, how to find the matched names in the type knowledge base and get all
possible type information for them; (2) because the types from LOD and the
target type may be from different taxonomies, we need a strategy to precisely
compute the similarity between these types; (3) because one named entity may
correspond to multiple instances with multiple types, we need a mechanism to
determine a final score. In the following sections, we introduce the details of the
techniques used to meet these challenges.

4.1 Retrieving Types for the Named Entity String from Type
Knowledge Base

To retrieve the possible type information, one simple method is to use the given
named entity string as the key to find the corresponding types from the inverted
lists. However, for the same entity, the given name may not be exactly the same
as the names indexed in the type knowledge base. There are two reasons that
can cause a name mismatch.

The entity itself has various names. For example, for President John F.
Kennedy, one may use the full name John Fitzgerald Kennedy. As mentioned in
Section 3, during the generation of the type knowledge base, we make use of the
properties of names of instances to generate all possible names of an instance.
Additionally, we make use of three types of relationships in LOD to enrich the
possible names. With the help of all name properties of an instance and the
relationships, our type knowledge base is likely to have a broad coverage of all
possible names of an instance. Then, given a named entity string, a simple index
lookup is enough to find its type information.

The names are presented in different format. For example, the indexed
name is tomato while the given name is tomatoes. To solve this problem, we
conduct the normalization on both the indexed names and the given names
using the following rules: (1) perform word stemming on the names; (2) convert
the names to lowercase; (3) remove any articles from names.

4.2 Matching the Target Type with the Retrieved Type

The types provided by LOD are considered as from open-domain. According to
data publishers’ requirements, new types can be added to describe new instances.



Meanwhile, the types generated by data publishers are more flexible; for instance,
a type can be represented by a phrase, such as the category jewish american film
directors from DBpedia. Even more, each data source in LOD may have its own
type system. On the other side, the target type would also be considered as
from open-domain because of the requirement of scaling information extraction
and question answering to the Web. It is very difficult to match various types
from open-domain taxonomies. We propose an intermediate ontology (denoted
as O) to compute the similarity. First, the target type and the retrieved type are
linguistically matched to some nodes in O, and we then compute the semantic
distance between the two matched nodes in O and use this distance measurement
as the similarity score.

Intermediate Ontology. One simple method for the intermediate ontology
is to leverage an existing, well-defined general taxonomy. WordNet [11] is a
well-defined general taxonomy widely used by the natural-language processing
community. However, WordNet lacks a formal constraint on classes; for example,
WordNet does not provide information about disjoint classes which could help us
determine that a named entity does not belong to a type. Additionally, WordNet
contains word senses that are too diverse, and a very rarely used word sense may
incur a negative effect on the similarity computation. The Al community has
also built general-purpose ontologies, such as Cyc [2], with formal logic theories.
However, the ontology is very complex and lacks linguistic features. Considering
the drawbacks of existing taxonomies, in our work we built a simple intermediate
ontology. The ontology is designed in terms of the following principles: (1) the
ontology covers the most frequently used concepts; (2) the ontology captures the
disjoint axioms between classes such that we can obtain a score to measure how
the named entity does not conform to the target type. For example, people and
organization are disjointed classes. Our ontology is relatively small so if some
type cannot be matched, we revert back to using WordNet.

Calculating the Similarity Score. The created ontology O is used as an
intermediate ontology to link the target type and the retrieved type. The first
step is to find the corresponding types of the target type and the retrieved type
in O. If T denotes the target type/retrieved type, and the corresponding type in
O is denoted as T”, then T” should stand for the same concept as T'. If a node in
O exactly matches the type T', then the node is considered the best match for
T. However, because of the flexibility of types from the open-domain, especially
types from linked data, some types can be a phrase with adjective qualifiers that
are not covered in O. To match these types for which no exactly matched nodes
exist in O, we perform a normalization on the type phrase to get the headword.
By analyzing type phrases from the linked data, we observed that the qualifiers
are mainly presented in three ways: (1) an adjective is used to qualify a noun, for
example, “Australian anthropologists”; (2) a qualifier phrase beginning with of
zzz is used, such as “people of the French and Indian war”; (3) a qualifier phrase
with from zzz is used, such as “people from St. Louis, Missouri”. Given the type
T, we remove the qualifiers for the above three cases to get the headword of



T, denoted as Tj.,o¢- Finally, the node in O that matches T, exactly is the
corresponding type of T in O.

Suppose, Tyyger and T} 4500 arve the corresponding types of the target type
and the retrieved type, respectively. The similarity score (denoted as s) is com-

puted as follows:

are the same node, then s = 1.
are disjointed in terms of the ontology, then s = —1.
are on the same path and there exists n steps between

3 / /
- if Ttarget and Tret’rieve
3 / !
- T ger and Ty,
: ! !
- if Ttarget and Tretrie'ue
them, then s = 1/n.
g / Lo
- if Tigpger and T}y are in different paths and n; and ny are the number

of steps to their lowest common ancestors, then s = 1/(ny + ng).

etrieve

It is possible that Tjeqq cannot be exactly matched by some node in the
ontology O because our created ontology cannot cover all possible kinds of types.
For these cases, we make use of the online resource WordNet to calculate the
similarity score. Given a word, WordNet provides an API to get matched nodes.
We then use the method proposed in [5] to calculate the semantic similarity
between nodes in WordNet.

4.3 Determining the Final Score

Given a named entity N (i), it may correspond to multiple data instances S?,
o S5, .,Sﬁb(i), and for each data instanc_e S, it may belong to multiple types
Ti oo Ty - T;m(j). For each type Ty, we calculate a score with respect
to the target type 1" using the mechanism discussed in the previous section. For
the named entity string N (), we then obtain multiple scores, which are divided
into subsets according to the instances they describe. In this paper, we propose
a two-step strategy to determine the final score. The first step is to compute the
score for each data instance S; given the scores for {Tj?l, v Ty ,T]?m(j)};
after that, we compute the score for the named entity N (i) given the scores
for {S%,..., S%, .85 (1)}. The advantage of the two-step strategy is as follows.
By considering the characteristic of a single instance, we can avoid some noisy
scores, making the score for a single instance more precise. The precise score for
each instance is indispensable to obtaining a precise final score.

Determining the score for an instance S;. Given a certain instance S;, it can
be stated that there should not be any conflicts within all of the type information
for that instance. Therefore, for all scores of an instance, it is unlikely that some
are positive (i.e., conform to the target type to some degree) and some are
negative (i.e., conflict with the target type to some degree). However, due to
the fuzzy match in the type-matching step and possible noise in the linked data,
conflicts may occur. We propose the use of a vote strategy to solve this problem.
For an instance S;, if most of its types get positive scores, then the largest score
is picked as the score for S;; otherwise, if most of its types get negative scores,
then the smallest score is picked as the score for .S;.
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Determining the score for N(i). Given multiple data instances for a named
entity, if we know its URI, then the score for the data instance with the matched
URI is used as the final score. This situation may occur in some Web-based
question-answering applications in which Wikipedia is used as the corpora [4].
When the title of the Wikipedia page is selected as a candidate answer, the
URI of the page is considered as the URI of the named entity and corresponds
directly to a DBpedia URL.

In cases where there is no URI for the named entity and we cannot know
which instance is indicated for this named entity, then we can use the following
strategies to determine the final score. (1) The aggressive strategy: Considering
that the named entity could be any one of the indexed data instances, one
aggressive heuristic is that if the maximum score is larger than 0, then we pick
the largest score; else if the maximum score is smaller than 0, then we pick the
smallest score; otherwise the final score is 0. The aggressive strategy tends to
give an exact score, either exactly matched or exactly unmatched. The score will
be distinguishable. (2) The average strategy: We assume that the named entity
has the same probability to match each indexed data instance, then the average
of the total scores is used as the final score. An experimental study is provided
in Section 5 to compare the above two strategies.

4.4 Applying the Score in Machine Learning

This section introduces how to use the score (which measures the probability
of whether the named entity belongs to the target type) as a feature in the
machine-learning step.

We can simply add one feature, which is called TyCorLOD (Type Coercion
using LOD) in machine learning, and the generated score is used as the fea-
ture score. The score range for the TyCorLOD feature would then be [-1,1].
The higher score indicates that the named entity is more likely to belong to
the target type. However, the problem with this method is that we cannot give
different weights on the positive effect and negative effect. Therefore, we devel-
oped another method. In the machine-learning step, we split the score into two
features (we call them TyCorLOD and AnTyCorLOD). The TyCorLOD feature
indicates the likelihood that the named entity conforms to the target type,
while the AnTyCorLOD feature indicates the likelihood that the named entity
conflicts with the target type. These two feature scores are generated in terms
of the final score S using the following strategy: If S >= 0, then we give the
score S for TyCorLOD and 0 for AnTyCorLOD; otherwise (i.e., S < 0), we give
the score 0 for TyCorLOD and |S| for AnTyCorLOD. The comparison of the
above two options is discussed in Section 5.

5 Experimental Study

To verify our proposed feature using LOD for named entity classification, we con-
ducted extensive experiments to demonstrate the effectiveness of our proposed
method.
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5.1 Experimental Setup

Datasets. We have tested our proposed method on two datasets. The first
dataset (denoted as Datag) is extracted from an IBM question-answering system
for open-domain factoid questions. We randomly selected 400 questions. For
each question we manually labeled the type of entity that was expected as an
answer to the question (i.e., the target type) and we also extracted the top
10 candidate answers that were generated by the system. We asked one test
person to determine whether the candidate answer belongs to the target type.
For all candidate answers that belonged to the target types, we generated a list
of (candidate answer, type) pairs, called ground-truth (denoted as Datag“e); for
all candidate answers that did not belong to the target types, we generated a list
of (candidate answer, type) pairs, called ground-wrong (denoted as Datag,"™"?).
We obtained 1,967 pairs for ground-truth and 3,053 pairs for ground-wrong.
There are 114 distinguishing target types, which reflects the fact that the data
was from open-domain. The second dataset (denoted as Datap) is the People
Ontology, which is a benchmark in [16], [15]. It was extracted from WordNet
and contained 1,657 distinct person instances arranged in a multilevel taxonomy
having 10 fine-grained categories, such as chemist or actor. Each instance and its
category could also be considered as a pair in ground-truth. From this dataset,
we obtained 1,618 pairs for ground-truth. The obtained dataset is denoted as
Data'sve.

Evaluation Metric. We conducted two types of evaluations. First, we measured
how our feature and scoring method performed on ground-truth/ground-wrong.
The three metrics used here, i.e., accuracy, false-rate, and unknown-rate, are
described in Table 2, where N stands for total number of pairs.

Metric Name |Description  |Measurement Remarks

accuracy #(correctly |correctness per-|for ground-truth (resp. ground-wrong)
scored centage of the|dataset, the positive scores (resp. negative
pairs)/N scoring method  [scores) are considered as correct

unknown-rate|#(pairs with|the coverage of|if the named entity is not indexed in the
score 0)/N |the linked data |type knowledge base, we give the score 0

false-rate #(incorrectly |incorrectness for ground-truth (resp. ground-wrong)
scored percentage of the|dataset, the negative scores (resp. positive
pairs)/N scoring method  |[scores) are considered as incorrect

Table 2. Descriptions for Used Metrics

Second, we wanted to illustrate how our proposed feature helps to improve
the performance of named entity classification. To do this, we compared the
precision/recall of the classification with and without our feature.
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5.2 Scoring Accuracy

This section demonstrates the scoring accuracy of LOD feature on the ground-
true/wrong dataset. As introduced in Section 4.3, we have two strategies to
determine the final score, i.e., the aggressive strategy and the average strategy.
We compared the performance of these two strategies on the ground-true/wrong
of Datag and Datap using the metrics introduced in Table 2. The results for
the aggressive strategy and for the average strategy are shown in Table 3.

Aggressive Average
Data Set |accuracy|unknown-rate|false-rate||accuracy|unknown-rate|false-rate
Datag“ 83.4% 10.2% 6.35% 71.9% 12.6% 15.5%
Datag'ong 50.6% 25.9% 23.5% 53.9% 26.2% 19.9%
Data’™ | 91.5% 7.85% 0.65% 88.3% 9.88% 1.83%

Table 3. The Scoring Performance on the Ground-Truth/Wrong Dataset

We first observed that the aggressive strategy resulted in high accuracy, i.e.,
83.4% for Datagy"® and 91.5% for Datai" on ground-true data. This indicates
that the linked data provides high-quality type information with good coverage
and that our scoring method measures the type similarity quite well. Second,
it shows that the accuracy for the ground-wrong data from Datag is a little
lower. For the higher unknown-rate, although in a question-answering project
the correct response should be a fact, the extracted candidate answers may
not all be fact entities, for example, “Germany history” or “the best movie.”
Therefore, these candidates are not covered by the linked data. Actually, named
entity classification does not target for this kind of entity. For the higher false-
rate, there are two main reasons: (1) our strategy for final score gives higher
preference on the positive score. One name may correspond to multiple instances
in our type knowledge base, and we do not know which instance the named entity
corresponds to. Giving a relaxed score is safer for our linked data feature. With
the additional context information of the named entity, information that can be
used as additional features in named entity classification, the false-rate could be
reduced; (2) the type knowledge base contains only more general types than the
target type. For example, the named entity has a type person, and the target
type is actor. The named entity may not be an actor, but as the type person
is not disjoint with the type actor, we could not give a negative score for this
named entity with respect to the type actor. This may incur the false-positive
cases.

To compare the aggressive strategy with the average strategy, we observed
that the aggressive strategy outperforms the average strategy for the ground-
true data while the average strategy outperforms the aggressive strategy for the
ground-wrong data. Because the aggressive strategy gives a higher priority on the
positive score, the ground-true pairs benefit more from this strategy. For ground-
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wrong data, as mentioned in the previous paragraph, the false-positive instances
may occur due to the more general types in the type knowledge base. Using the
aggressive strategy, this false-positive instance will affect the final score; while
using the average strategy, the false-positive instance may be compensated by
other correctly scored instances. That is why the average strategy is better than
the aggressive strategy for ground-wrong data. When combining the ground-true
and ground-wrong data together for Datag, the aggressive strategy is better in
general.
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Fig. 4. Score Distribution on the Dataset

Fig. 4(a) and (b) illustrate the distribution of the scores between the range [-
1,1] for the ground-true and ground-wrong datasets from Datag. We can observe
that for correct scores (i.e., positive scores for ground-true and negative scores for
ground-wrong), most are exactly correct (i.e., score 1 for ground-true and score
-1 for ground-wrong). This indicates the accuracy of our scoring. To compare
the aggressive strategy and the average strategy, it shows that the aggressive
strategy gives more exact scores and the average aggressive tends to be more
balanced. The reason is that the average strategy computes the average of all
instance scores, so the exact score may be reduced by other scores. Considering
both the accuracy and the distribution, we suggest using the aggressive strategy.

5.3 Impact on the Machine Learning for Classification

This section reports the results of adding our proposed feature into the feature
space of an existing named entity classification method using latent semantic
kernels (LSI) [15]. We use LSI to denote the existing approach and LSI+LOD to
denote the approach with our feature. Given each instance from the people ontol-
ogy, the multi-context is derived by collecting 100 English snippets by querying
Google™ | The proximity matrices are derived from 200,000 Wikipedia articles.
and the features are then generated using jLSI code [14]. With respect to our
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LOD feature, for each target class i, one feature is added to measure the proba-
bility of whether the instance belongs to the class i. Therefore, for 10 classes, we
need to add 10 features. We use the KNN (k=1) method to do the classification.
Fig. 5(a) compares the precision/recall/f-measure between the approaches LSI
and LSI4+LOD. It is shown that LSI4+LOD outperforms the LSI on both preci-
sion and recall, and then f-measure. Specifically, the precision is improved from
81% to 84.3%, the recall is improved from 80.3% to 84.3%, and the f-measure is
improved from 80.5% to 84.3%.
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precisaon recall f-measure precision recall f-measure
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and LSI+LOD Datap the Number of Classes Datap

Fig. 5. Effectiveness of Linked Data Feature

Fig. 5(b) illustrates the performance on different numbers of target classes.
The bars with N = 5 are the results for the 5-class dataset where we select 5
classes from the 10 classes and extract the corresponding instances to generate
the dataset. The bars with N = 10 are the results for the 10-class dataset. It
shows that the improvement of LSI+LOD over LSI is larger on the dataset with
N = 10 than the dataset with NV = 5. Specifically, for N = 5, the f-measure is
improved by 1.1% using LSI+LOD, and for N = 10, the f-measure is improved
by 4.7% using LSI+LOD. This indicates that as the number of target classes
grows larger, the improvement using our LOD feature becomes greater. The
reason is that as the number of classes becomes larger, the classification accuracy
using traditional features, such as word characteristic and word context, becomes
lower. However, as the linked data knowledge base provides more fine-grained
type information, the scoring is still accurate for fine-grained classes. Therefore,
the improvement of the method using the LOD features becomes greater.

We also conducted the experiments on a dataset from an IBM question-
and-answering system to compare the performance of using feature TyCorLOD
only or using both TyCorLLOD and AnTyCorLLOD, as discussed in Section 4.4.
The results verify that the strategy to use both TyCorLOD and AnTyCorLOD
outperforms the strategy of using only TyCorLOD. Due to space limitations, we
omit the detailed results here.
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6 Related Work

Named entity classification has been studied by many researchers [13], [10], [15],
[12], [16]. The early named entity classification task considered a limited num-
ber of classes. For example, the MUC named entity task [18] distinguishes three
classes, i.e., PERSON, LOCATION and ORGANIZATION, and the CoNLL-
2003 adds one more class, i.e., MISC. The dominant technique for addressing
this task is supervised learning where the labeled training data for the set of
classes is provided [7]. Recently, a more fine-grained categorization of named
entities has been studied. Fleischman and Hovy [12] examined different features
and learning algorithms to automatically subcategorize person names into eight
fine-grained classes. Cimiano and Vélker [8] have leveraged the context of named
entities and used unsupervised learning to categorize named entities with respect
to an ontology. In short, machine-learning approaches are widely adopted by the
proposed approaches and the features used for the learning method can be clas-
sified into three categories: (1) the word-level feature [7], such as the word case
or digit pattern; (2) handcrafted resources, such as gazetteers or lists [13], [12];
(3) the context of the named entities [8], [15].

The feature proposed in this paper is different from these existing approaches.
It exploits a resourceful knowledge base, i.e., linked open data. This knowledge
base is different from precomplied lists for classifying certain categories, as used
in [13]. The linked data is published by various data providers and has a broad
coverage. Because information in the linked data is still growing, more type
information will be available in the future. The linked data feature is orthogonal
with existing features and can be combined with them in order to improve the
performance of named entity classification, including both the three-class task
and fine-grained classification.

7 Conclusion and Future Work

In this paper, we proposed to explore the extensive type information provided
by LOD to generate additional features, and these new features, together with
existing features, can be used in machine-learning techniques for named entity
classification. Specifically, in the first step, we proposed a mechanism to generate
a type knowledge base that precisely and completely captures the type informa-
tion for all possible named entity strings. We then proposed scoring strategies to
generate feature scores based on the precomputed type information. Our exper-
imental results verified the effectiveness of the proposed method and indicated
that the improvement margin becomes larger as the number of target classes
grows. In the future, we plan to investigate more data sources for LOD in order
to provide better coverage.
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