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Abstract. Recently, processing of queries on linked data has gained at-
tention. We identify and systematically discuss three main strategies:
a bottom-up strategy that discovers new sources during query process-
ing by following links between sources, a top-down strategy that relies
on complete knowledge about the sources to select and process relevant
sources, and a mixed strategy that assumes some incomplete knowledge
and discovers new sources at run-time. To exploit knowledge discovered
at run-time, we propose an additional step, explicitly scheduled during
query processing, called correct source ranking. Additionally, we propose
the adoption of stream-based query processing to deal with the unpre-
dictable nature of data access in the distributed Linked Data environ-
ment. In experiments, we show that our implementation of the mixed
strategy leads to early reporting of results and thus, more responsive
query processing, while not requiring complete knowledge.

1 Introduction

The amount of Linked Data on the Web is large and ever increasing. This devel-
opment is exciting, paving new ways for next generation applications on the Web.
We contribute to this development by investigating the problem of how to pro-
cess queries against Linked Data. Linked Data query processing can be seen as
a special case of federated query processing, i.e., to process queries against data
that resides in different data sources. However, the highly distributed structure
and evolving nature of Linked Data presents unique challenges.

— Volume of the Source Collection: According to the Linked Data princi-
ples [2], each URI can be dereferenced and the document returned represents
a virtual “data source”. This dramatically increases the number of Linked
Data sources that need to be considered for query processing.

— Dynamic of the Source Collection: Linked Data sources are added and
removed and sources’ content changes rapidly over time. Due to this dy-
namic, it is no longer safe to assume that information about all sources can
be obtained. In particular, sources might be a priori unknown and can only
be discovered at run-time.

— Heterogeneity of Sources, Source Descriptions and Access Options:
Sources vary in size. There might be large sources, corresponding to Web
databases today. Sources could also just comprise several RDF statements



obtained via URI lookup. Further, there is no standard for describing sources
yet. Not all sources are accompanied with a voiD! description and even if so,
they are often incomplete. Also, the range of access options is vast. Sources
can be obtained via HTTP lookup, retrieved from SPARQL endpoints or
directly loaded from a local repository or cache. Even using the same access
method, the time required to obtain the same amount of data might vary
greatly due to network latency.

Recently, Harth et al. [5] proposed a probabilistic data structure that aims
to improve the efficiency of Linked Data query processing. In order to deal with
a large number of sources, rich statistics about them are acquired and stored
locally. These statistics are used to determine relevant sources and to optimize
query processing. Hartig et al. [6] proposed a method for dealing with the dy-
namic aspect of Linked Data query processing. As opposed to [5], the strat-
egy employed here does not assume information about sources to be available.
Sources are discovered via lookups of URIs found during query processing. We
follow the direction of this line of work and make the following contributions:

— For Linked Data query processing, we identify the challenges, discuss con-
crete tasks, and derive three main strategies. There is a top-down strategy
corresponding to the approach implemented by [5], a bottom-up strategy im-
plemented by [6], and a mized strategy that as opposed to [5], does not
assume complete but only partial knowledge about the sources and unlike
[6], have to discover only some but not all sources at run-time.

We propose an implementation of the mixed strategy that is able to use run-

time information for corrective source selection and ranking. The proposed

ranking scheme can deal with different types of source descriptions containing
knowledge at varying levels of granularity.

— As an alternative to the pull-based non-blocking iterator [6], we propose the
use of push- and stream-based query processing where source data is treated
as finite streams that can arrive at any time in any order. This approach is
better suited to deal with network latency as it is driven by incoming data
and does not require temporary rejection of answers.

We implement the proposed approach and perform an evaluation where we
compare the mixed strategy with the bottom-up [6] and top-down [5] strategies.
The results suggest that the implemented mixed strategy is able to report results
much earlier than the bottom-up strategy, while not relying on the assumption
that complete knowledge is available, as opposed to the top-down strategy. First
results (25% of total results) were on average reported 42% faster than for the
bottom-up strategy.

Outline In Section 2 we discuss techniques for Linked Data query processing.
In Sections 3 & 4 we present our approach to stream-based query processing and
corrective source ranking. Finally, we present related work in Section 5 before
the discussion on evaluation results in Section 6 and the conclusions in Section 7.

! http://vocab.deri.ie/void/guide



2 Linked Data Query Processing

We begin with a discussion on Linked Data. For Linked Data query processing,
we discuss the tasks (a) source discovery, (b) source ranking and for (c) query
evaluation, we discuss the (1) top-down, (2) bottom-up and (3) mixed strategy.

2.1 Linked Data
In this work, we simply conceive Linked Data sources as sets of RDF triples [10].

Definition 1. A source s is a set of RDF triples (s,p,0) € T® where s is the
subject, p the predicate and o the object. It is uniquely identified by an URI and
can be retrieved by dereferencing that URI. A source s; links to another source
s;j if the URI of s; appears as the subject or object in at least one triple t° € T%.

The standard language for querying RDF data is SPARQL [14]. An important
part of SPARQL queries are basic graph patterns (BGP). In this work we are
concerned with answering BGP queries.

Definition 2. A basic graph pattern is a set of triple patterns (s,p,0) € T9
where every s, p and o is either a variable or a constant. Variables may interact
in an arbitrary way such that the triple patterns t9 € T? may form a graph.

An answer to a BGP query is given by p which maps patterns t¢ € T? to
triples t° € T*. By applying such a mapping, each variable in 79 is replaced by
the corresponding subject, predicate or object of triples in 7 (called a binding).
When processing queries over a set of Linked Data sources, the query is not
evaluated on a single source, but on the graph formed by the union of all retrieved
sources. A BGP query is evaluated by performing a series of joins between RDF
triples that match the triple patterns in the query. In particular, two triple
patterns that share a variable form a join pattern.

There are several types of source descriptions the system might be able to
obtain for a source: A metadata description is like a voiD description of the
content. It captures basic information such as the size of the source, the RDF
predicate it contains etc. Statistics capture detailed information that can be
derived from the source data such as triple pattern cardinality, join pattern
cardinality, histograms, etc. A representative sample of the source data might
be available.

2.2 Source Discovery

There are multiple ways for sources to be discovered: Sources can be explicitly
set in the query using special syntax or can be part of a triple pattern. The
query engine can maintain a list of known sources. This list can either be en-
tered manually or be compiled from previously executed queries. Sources can be
discovered during query processing by following links mentioned in the content
of retrieved sources.



In the first two cases, sources are known before the execution of the query.
Compile-time optimization decisions concerning source ranking and query opti-
mization (discussed in the following) are based exclusively on information derived
from these sources. In the last case, sources are dynamically added at runtime.
New information derived from these sources has an impact on the compile-time
optimization plan. This information might render the plan no longer optimal. It
is used in our work for corrective query optimization.

2.3 Source Ranking

A source is relevant if it contains data that can contribute to the final answers.
The standard optimization goal is to (1) obtain all results as fast as possible.
However, given the volume and dynamic of the Linked Data collection, it is often
infeasible to retrieve and process all sources. It is important to rank sources
by their relevancy to the query and more fine-grained optimization goals. In
particular, it might be desirable to (2) report results as early as possible, (3) to
optimize the time for obtaining the first k results, or (4) to maximize the number
of total results, given a fixed amount of time.

Source ranking uses available source descriptions that may vary in quality
and completeness, i.e., they may lack information important for ranking. This
means that it is essential to incorporate not only a priori available knowledge,
but also knowledge discovered obtained query execution.

2.4 Query Evaluation Strategies

Top-Down Query Evaluation Linked Data comprises heterogeneous data
that comes from different sources. Typically, a federated database system is used
to integrate multiple sources and systems into one single federated database. The
goal is to obtain a fully-integrated virtual database that provides transparent
access to data of all its constituent sources.

Typically, sources and databases are geographically decentralized in a fed-
erated system. However, a system, which discovers, retrieves and stores Linked
Data sources centrally, also falls into the category of a federated system. In
fact, no matter the physical location (and other characteristics) of the sources,
a source is considered if and only if the federated system knows about it. The
federated system assumes that all source descriptions are available and based
on that, compiles a query evaluation plan that specifies the relevant sources,
and the order for retrieving and processing these sources. Thus, query planning
and optimization is a one-off process performed in a top-down fashion based on
complete information.

Harth et al. [5] implement this top-down evaluation. The main focus is on
using a data structure capturing rich statistics that can be used to improve query
planning and optimization. In approaches that fall into this category, source
discovery is performed offline and source ranking is not part of the process.
In order to deal with the large amount of sources, source ranking based on



approximative triple and join pattern cardinality estimation is used to consider
only a fixed number of top-ranked sources.

Bottom-Up Query Evaluation As opposed to top-down query processing,
this strategy does not assume source descriptions to be available beforehand and
computes results in a bottom-up fashion. Without planning and optimization, it
directly evaluates the query. During this process, it (1) retrieves the sources that
are mentioned in the query, (2) discovers further sources based on source URIs
and links found in the data of the retrieved sources, (3) incorporates the content
of these discovered sources into query evaluation and (4) terminates when all
sources found to be relevant have been processed.

Systems that implement this strategy do not rely on sources or source descrip-
tions being managed centrally but discover and retrieve sources from external
locations. Source discovery and retrieval are an integral part of the online pro-
cess. These online tasks make this approach to query processing different from
traditional database approaches. They might be needed due to the Linked Data
specific challenges we have discussed. The large volume and the dynamic of the
sources and source collection render the traditional top-down approach imprac-
ticable. In particular, it cannot be applied when there are sources that are not
known beforehand and can only be discovered during online processing.

Another aspect distinct to this approach is completeness. As opposed to tra-
ditional query processing, it might not be possible to obtain complete knowledge
about all sources. In particular, processing queries against Linked Data where
sources have to be discovered online might not yield all results. Results to the
query cannot be found when they are part of sources that are unknown and can-
not be discovered during online processing. This is the case when a link between
two sources is only stored in one of the sources, meaning that the link cannot
be discovered from the other source.

This strategy is implemented in [6], using non-blocking iterators to avoid
blocking due to network delay (see Section 3.2).

Mixed Strategy Query Evaluation This strategy combines the two other
strategies by assuming that knowledge about some sources is available (the
sources’ data themselves are not necessarily locally available), and more knowl-
edge can be obtained during online query processing. Compared to the top-down
strategy, it does not rely on complete knowledge. Similar to the bottom-up strat-
egy, online source discovery is an integral part of query processing. As opposed
to that strategy, it makes use of knowledge available beforehand to do query
planning and optimization. However, the plan built at compile time might be
corrected according to newly acquired knowledge about sources. In particular,
the additional optimization tasks that have to be performed online are corrective
source ranking and join order optimization. Source ranking is not a by-product
of query optimization [5], but explicitly scheduled as an integral task.

For processing queries on Linked Data, this strategy begins with (1) “best-
effort” query planning, and based on this plan, evaluates the query. During this
process, (2) sources are retrieved, (3) new sources are discovered, (4) new sources’
content are incorporated into evaluation and in a continuous fashion, (5) new



sources’ descriptions are used for corrective source ranking and optimization.
The evaluation proceeds with the continuously refined plan and (6) terminates
when all relevant sources have been processed.

This mixed strategy explicitly addresses two of the challenges discussed pre-
viously. It uses online discovery to deal with Linked Data volume and dynamic.
Also targeting the aspect of volume, compile-time combined with evaluation-time
corrective source ranking and optimization are employed to make processing the
large amount of sources affordable.

In the following, we discuss our implementation of this strategy that addresses
also the remaining challenges. It features a novel approach for corrective source
ranking that is designed to deal with Linked Data heterogeneity by exploiting
the different types of source descriptions discussed previously. A stream-based
query processing is employed to deal with the unpredictable nature of Linked
Data resulting from different source access options, and to report results early.

3 Stream-based Linked Data Query Processing

We provide an overview of our approach to Linked Data query processing and
then discuss stream-based evaluation based on push-based symmetric hash joins.

3.1 Overview of the Process

Query Planning A query plan is constructed during query compilation. We
only consider left-deep query plans in this implementation, while in principle,
query plans with other shapes such as bushy plans are possible. Depending on
available source descriptions, basic information or detailed statistics as discussed
before can be used to plan the order of operators to be executed, and to perform
other kinds of database optimizations that might consider indexes, materialized
views, or the concrete join implementations [12]. Apart from joins, for Linked
Data query processing, the operators we consider additionally include source
discovery, source retrieval and source ranking. In this work we do not consider
the general case of operator order optimization (and join order optimization)
but focus on the specific aspect of corrective source ranking at run-time.

Query Evaluation For evaluating the query according to the query plan,
we run each operator in a separate thread. Communication between operators
is based on bounded message queues to enable parallel query processing. After
query planning, threads for all operators are started. As a first step at run-time,
local indexes are probed using the query triple patterns to obtain an initial list
of possibly relevant sources, which is then sent to the source ranker. Fig. 1 shows
an overview of the operators involved in the query excution.

Source Ranking The source ranker also runs in its own thread and receives
source URISs, either obtained through discovery or from local indexes. It ranks
the sources according to the methods described in Section 4. Ranking is per-
formed only when necessary. The source ranker checks this continuously, using
the parameters given in Section 4.4. If ranking is to be performed, the scores of



all sources are calculated and normalized. The source ranker keeps track of the
source retrieval threads and assigns them the top-ranked sources.

Source Retrieval Because of network delay it is usually necessary to request
data from several sources at once, which is accomplished by running more than
one source retrieval threads [6]. They filter the incoming data using the triple
patterns of the query and push matching triples to the join operators as soon as
they are decoded from the incoming data. This push-based join processing and
the join operator are discussed in Section 3.2.

Source Discovery In addition to retrieving sources, the retrieval threads
perform discovery of new sources based on the content of the source currently
being processed. They notify the source ranker of all sources, which are linked
from the source just found.

Termination Several termination conditions can be configured: (1) maxi-
mum discovery distance, (2) maximum number of sources to load and (3) number
of results to produce. If any of these conditions are reached, the source ranker
notifies the join operators so that query execution is terminated as soon as all
remaining intermediate results have been processed.

Source Retrieval Source Source Ranker
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Fig. 1. Join, source ranking and retrieval operators.

3.2 Push-based Symmetric Hash Join

Query processing in highly distributed environments, where data is often stored
at remote locations, presents unique challenges. These environments require flex-
ible scheduling: operators should not block, so that the query plan can make
progress when input is delayed for another part [8]. In query plans using iterator-
based (“pull-based”) operators, the next method blocks until it is able to pro-
duce a result. Non-blocking iterators [6] were proposed to address this problem in
the context of Linked Data queries. A non-blocking iterator is able to temporar-
ily reject input from iterators lower in the operator tree when it would otherwise
block because of unavailable data on the other input. On the next call to its next
method, the lower operator randomly either returns a new intermediate result
or one of the previously rejected results, for which data might now be available
in the upper iterator. This ensures that query processing can progress even if
data for a particular triple pattern is not yet available. The advantage of this
solution is that it can be used in existing query engines. However, while waiting
for input to become available the query engine essentially performs busy-waiting
in a loop by alternately asking for new results and then rejecting them. Even if
no new data arrives the query engine is active, consuming CPU time.



To alleviate this problem, we propose the adoption of a stream-based ap-
proach where source data is treated as a (finite) stream that can arrive in any
order. To process such streams, pipelined operators are required that produce
results even before the whole input has been read. Query plans using these oper-
ators can be implemented using threads and message queues, taking advantage
of multi-core and parallelization capabilities of modern CPUs.

One such operator is the symmetric hash join (SHJ), which, in constrast to
traditional hash joins, can start reporting results as soon as input tuples arrive in
the operator and does not have to wait until one of the input has been completely
read [16]. This is achieved by maintaing one hash table on each input. Instead of
a pull-based iterator, we employ the SHJ in a push-based mode where operators
are driven by their inputs. Instead of a next method that is called by operators
higher in the operator tree, the join operator has a push method for each of
its inputs. Algorithm 1 shows the operation of this method in a SHJ operator.
First, the arriving tuple t is inserted into the hash table H,, that corresponds to
the input where the tuple belongs to (i.e., H,, = Hy or Hs). Then, t is used to
probe hash table H,, for valid join combinations. All such valid join combinations
are then immediately reported to subsequent operator out by calling its push
method. Pushing is done from the operators corresponding to the leaf nodes of
the operator tree to the root operator. The root operator pushes early results to
the caller of the query evaluator. Compared to blocking operators such as the
hash join, the SHJ produces results as soon as input tuples are available and
input tuples can arrive on all inputs in any order.

Algorithm 1: SHJ: push(in,t)

Input: Operator in from which input tuple ¢ was pushed

Data: Hash tables Hi and Ha; current operator this; subsequent operator out
if in is left input then m =1, n = 2

else m = 2, n=1

Insert ¢ into hash table H,,

Probe H,, with join keys of ¢

forall valid join combinations j do out.push(this,j)

Uk W N

4 Corrective Source Ranking

The relevance of a source depends on several factors and is measured based on
the current query, any available intermediate results and an overall optimization
goals as discussed in Section 2.3. In this section, we elaborate on the source
features that are taken into account, concrete metrics derived from them, the
indexes used to compute the metrics, newly discovered information used to refine
and correct previously computed metrics, and how they are incorporated into
source ranking.

4.1 Source Features and Metrics

Triple Pattern Results A source is more relevant if it contains data that
contributes to answers of the query. Thus, a source is relevant if it contains



triples matching a query triple pattern. The estimation of triple pattern results
is based on the metrics triple pattern cardinality and triple pattern specificity.

Definition 3 (Triple Pattern Cardinality and Specificity). The triple
pattern cardinality card(s,t) gives the number of triples in source s that match
the triple pattern t. The triple pattern specificity spec(t) gives the number of
constants that occur in the triple pattern t.

Clearly, the higher the cardinality and the more specific the triple pattern,
the more relevant is a source matching that pattern. However, these two metrics
alone are yet no good indicator for the relevance of a source. Given the power-
law distribution in the Web of Data [4], some triple patterns might have a high
cardinality for all or many sources. These patterns do not discriminate sources,
just like words that frequently occur in all documents of a collection. One ex-
ample is (?x, rdf:type, 7y), which can be found in most Linked Data sources. To
alleviate this problem, we adopt the TF-IDF concept to obtain weights for triple
patterns (capturing their importance). Similarly to words in IR, the importance
of a triple pattern positively correlates with how often bindings to this pattern
occur in a source as measured by its cardinality, and negatively correlates with
how often its bindings occur in all sources of the collection. Higher weight is thus
given to discriminative triple patterns.

Definition 4 (TF-ISF). Given a source s and a triple pattern t, the triple fre-
quency - inverse source frequency (TF-ISF) measure is defined as TF-ISF(s,t) =
card(s,t) - log W where S is the set of all sources to be ranked.
Join Pattern Results A source containing data matching larger parts of
the query is more relevant. Thus, a source that contains data matching a join
pattern is considered highly relevant. However, not containing data for a join
does not render a source irrelevant as its data might be joined with data from
other sources. The join pattern cardinality estimates the results of a join pattern.

Definition 5 (Join Pattern Cardinality). Given the join pattern t; X, t;
on the shared variable v, the join pattern cardinality of a source s denoted
card(s,t;,t;,v) gives the number of results a join on the variable v between triples
retrieved from s for t; and t; produces.

Links to Results A source containing many links coming from relevant
sources is more useful. The relevance of such sources is even higher when these
links match query predicates. Note that unlike triple pattern results that can
be computed given a source, links can only be discovered by processing several
sources. A source at first considered irrelevant based on triple pattern results
might become relevant during the process. For measuring links to results, links
to other sources are extracted from sources discovered during the process.

Definition 6 (Links to Results). Let S be the set of sources already processed,
links(s;, sj) be a function that return all links between a source s; € S and the

source sj, the links to results of s; is defined as links(s;) = U, cg links(si,s;).



Retrieval cost Sources are more useful the faster they can be retrieved.

Definition 7 (Retrieval Cost). The retrieval cost of a source s is a monotonic
aggregation of the size of s and the bandwidth of a host h, defined as cost(s) =
Agg(size(s), bandwidth(h)) .

Source size is available in the source description. Bandwidth is approximately
derived for a particular host based on past experiences or, when available, average
performance recorded during the process for sources retrieved from this host.

4.2 Metric Computation

In the mixed strategy, some of the source metrics are available locally. We store
these metadata in specialized indexes (1) to select relevant sources and (2) to
compute cardinalities for these sources.

Indexes for Source Selection Given a triple pattern, these indexes return
a set of sources that contain triples matching the pattern. The only “interesting”
patterns are those with one or two variables. Patterns with no variables match
only themselves and pattern with no constants match all triples and thus, match
all sources. Three indexes are sufficient to support all patterns with one variable.
In particular, we create the indexes SP, PO and OS (where S, P,O stand for
subject, predicate and object). Each maps the indexed pattern to a set of sources.
For example, to find sources for (?x, rdf:type, foaf: Person), we use the PO index
to retrieve relevant sources. Using prefix lookup, the same indexes can be used
to cover all patterns with two variables.

Index for Cardinality Computation In [5], a probabilistic index struc-
ture is used to support triple and join pattern cardinality estimation of individual
sources. A different technique based on aggregation indexes is presented in [13].
We adopt this method, but extend it to support lookup of triple pattern car-
dinalities and estimation of join cardinalities for individual sources. Instead of
calculating the statistics and indexes for the whole dataset, we treat each source
as its own dataset and create the aggregation indexes accordingly. While we lose
the ability to perform selectivity and cardinality estimation over the indexed
data as a whole, we can now calculate estimates for individual sources, which is
what is necessary for source ranking.

4.3 Metric Correction and Refinement

During query processing as sources are retrieved and their data is processed,
more information becomes available to compute new or to refine and correct pre-
viously computed metrics. This is especially important in the case of very general
“non-discriminative” triple patterns, such as (?x, rdf:type, 7y). When such a pat-
tern is joined with another pattern, it is more or less by chance that matching
join combinations are found.

When processing queries over data that is stored and indexed locally, this
problem can be alleviated by performing index nested-loop joins. An index



nested-loop join between two triple patterns t¢i,ts uses triples that match t;
to instantiate triple pattern ¢ by replacing variables with bindings of the join
variables in triples matching ¢1. This creates more specific triple patterns which
are then used perform index lookups to retrieve further data that is guaranteed
to create join combinations.

In the case where data is not locally available, we cannot perform such joins.
However, we employ a similar technique to estimate join pattern cardinalities,
taking into account current intermediate results and information in the cardinal-
ity indexes. In particular, a triple pattern of a join is instantiated with interme-
diate results and then used to perform lookups on the triple pattern cardinality
indexes to calculate better join cardinality estimates:

Definition 8 (Join Pattern Cardinality Estimate). Let ¢;,t; be two triple
patterns, TF a set of triples in s matching the pattern t;, and T7(v) denotes
the set of bindings to the wvariable v of the triple pattern t;. Based on triple
pattern cardinalities, a cardinality estimate of a join t; X, t; is calculated as
card(s,ti,tj,v) = 3 s (y) card(s, t;.inst(v, b)), where t;.inst(v,b) denotes the
instantiation of the variable v of the triple pattern t; with the binding b.

The SHJ operators maintain hash tables on both of their inputs, storing data
by the join attribute. The data of a source indexed in a hash table is used to
instantiate the triple patterns of the join to obtain more specific triple patterns.
Then, the cardinality of these more specific patterns is looked up using the
index and aggregated to obtain an estimate for the size of the join. In order
to reduce the cost of this process, we perform sampling to estimate the join
cardinality by instantiating the triple pattern with only a random subset of the
triples. Sampling has been used in database research to perform estimation of
join cardinalities, see Section 5 for related work on this topic.

4.4 Source Ranking at Run-time

In our implementation we prioritized early result reporting, i.e., producing re-
sults as early as possible is the optimization goal. First, for every indexed source,
we calculate the TF-ISF measure for all query triple patterns. In order to pro-
duce early results the join cardinality is important. We employ both methods
for join cardinality estimation: using join pattern indexes and sampling from
join states obtained during query processing. Less information is available for
sources that are not indexed and were only discovered during query processing.
No join cardinality estimation is performed for these sources. For all sources,
however, the count and type of incoming links are available. In particular, we
follow owl:sameAs and rdfs:seeAlso links as well as links that have a predicate
that occurs in a query triple pattern. Links with query predicates receive a higher
weight than others as these are more likely to deliver results. Finally, all scores
are normalized separately and then combined using a monotonic aggregation
function, in this case a weighted summation.

Ranking of sources is not a one-off process but needs to be done continuously
during query processing as new sources and more information about already



known sources are discovered. However, ranking also represents an overhead,
and therefore should be executed only when “necessary”. We define several pa-
rameters that are used to influence the behavior and cost of the ranking process:
(1) Invalid Score Threshold: the score of a source is invalid if it has not been
calculated before, or if new information about the source is available. A ranking
is performed when the number of invalid scores passes a threshold. (2) Sample
Size: using larger samples for join size estimation will give better estimates, but
are also more costly to use. (3) Resampling Threshold: results of previous join
size estimates are cached for each indexed source. Only when the corresponding
hash table maintained by the join operator grows over a given threshold, join
size re-estimation is performed using a new sample.

5 Related Work

Seminal work on Linked Data query processing [6,5] and some concrete tech-
niques related to our work have been discussed throughout the paper. Here,
we summarize the relation between the proposed corrective ranking and steam-
based processing techniques to database work on query optimization and pro-
cessing in an distributed environment.

Query Optimization One main problem of query optimization is finding
the optimal join order optimization. To do that, it is necessary to estimate their
selectivity. Histograms [15] and more complex probabilistic data structures have
been suggested to store and estimate selectivity information of RDF triples. In
[13], aggregation indexes are used to improve the accuracy of selectivity esti-
mation for joins between triple patterns. As discussed in Section 4.2, we extend
these indexes to estimate the cardinality of joins for individual sources (instead
of the entire source collection).

Compared to these approaches, [9] does not perform compile-time join order-
ing, but optimizes the query at run-time by using chain sampling to estimate the
selectivity of joins that were not yet performed. In our work, we use sampling
combined with triple pattern cardinality indexes to estimate the cardinality of
joins given data in a particular source.

Sideways information passing has been employed to complement compile-
time optimization with a run-time decision-making technique for reusing inter-
mediate states from one query part to prune and reduce computation of other
parts [13,8]. The feedback process between query execution and source ranking
employed in our approach for metric refinement can be seen as a case of sideways
information passing.

Query Processing in Distributed Environments In distributed envi-
ronments data is often stored in remote locations, causing delays in data access.
Much research has been focused on compensating for these delays. Widely used
for this are pipelineable query operators that operate on streams. As discussed
in Section 3.2, the symmetric hash join is one such operator. Another aspect of
stream-based query processing is adaptivity. Query processing techniques have
been proposed to adapt the query plan at run-time to deal with changing char-
acteristics of the data. One technique is to switch among query plans at run-



time [7]. Other techniques use special operators, such as Eddies [1] and STAIRs
[3] that adaptively route incoming tuples through a series of query operators.

Comparison Our work is the first to provide a systematic overview of Linked
Data query processing. The specific techniques proposed extend related work in
database research to deal with the specific aspects of Linked Data. In particular,
whereas selectivity information has been used for query optimization [13,15, 5],
it is incorporated in this work into a framework for source ranking, a task that
is novel and specific to Linked Data query processing. Likewise, the ideas be-
hind stream-based and adaptive processing [7] and sideways information passing
techniques [8] are adopted to address the specific challenges of Linked Data, to
enable corrective source ranking on Linked Data streams.

6 Evaluation

In the experiments, we systematically compare the three strategies and examine
the impact of various parameters on corrective source ranking. A more extensive
description of the evaluation, including the queries, can be found in [11].

Queries and Data We create a set of eight queries that can all be exe-
cuted using a discovery-only approach (i.e. results can be discovered by exploring
from sources mentioned in the query). These queries use popular datasets from
the Linked Open Data Project, such as DBPedia, Geonames, DBLP, Semantic
Web Dog Food, data.gov, Freebase and others. Overall, during answering these
queries, 6200 sources were retrieved containing 500k triples in total.

Systems We compare the approaches proposed in [6] for bottom-up evalu-
ation (BU), [5] for top-down (TD), and our implementation of the mixed (MI)
strategies. All approaches were implemented on top of the same stream-based
query engine. We randomly chose 25% of the sources from the complete index of
TD to construct a partial index for MI. Note that these indexes are used for ob-
taining source descriptions, but the actual data used for query processing comes
from a local proxy server. Because local access has lower latency than remote,
we applied a configurable delay to the proxy server. For this evaluation this was
set to 2s, wherease under real conditions this can be much higher.

Comparison of Strategies The strategies under investigation vary w.r.t com-
pleteness of results. The bottom-up strategy finds only sources and results that
can be discovered by following links, the mixed strategy usually finds some more,
and the top-down strategy finds all of them. To make the approaches compara-
ble, we restrict the sources to those that can be considered by all strategies, i.e.,
those discovered by the BU strategy.

Table 1 shows the results for six queries, capturing the times needed to ob-
tain (some percentage of the) results, and the specific times needed for source
selection and ranking. The results show that for all queries, the MI and TD
approaches report results earlier than BU. The benefit lies in the use of prior
knowledge about sources, which helps to retrieve more relevant sources first. Less
expected, MI outperformed TD in some cases (Q1,Q3,Q5,Q6,Q7,Q8) in terms
of early reporting. The cause lies in the higher source selection times resulting



BU | MI | TD | BU | MI | TD || BU | MI | TD

Q1 Q2 Q3
25% res. |24810.5[10300.0[11038.0[[10464.5[10162.0] 8096.5|| 9207.0] 7900.0[11166.0
50% res. |43464.5/40782.0|15787.0||13080.5|17974.5| 8327.0(/10568.0| 8048.5/11391.5
Total ~ |84066.5(86895.5/44323.521623.5(23273.0|21428.0|22711.0|21944.0(21733.5
Sre. sel. 0.0/ 853.0| 14445 0.0| 805.0| 1280.0 0.0 1211.0 1717.0
Ranking |  25.5| 2404.0/ 411.0| 32.5| 3580 196.5| 32.0| 575.5| 523.0
#Sources| 622.0] 612.0] 154.0 120.0] 120.0] 67.0] 134.0 134.0[ 67.0

Q4 Q5 Q6
25% res. [56800.5[26025.5[10969.5((16837.5] 6580.5] 4177.0| 8222.5] 4743.5] 5545.0
50% res. |56804.5/26047.0{13605.0||21578.511855.5 9186.0||10961.5| 7650.5| 5634.0
Total ~ [98129.0/98931.0/91352.0||29562.0|30603.520074.0||24086.0(20711.0(16469.0
Src. sel. 0.0[ 270.0[ 351.0 0.0[ 203.0] 292.0 0.0 1331.0| 1863.5
Ranking |  31.0| 3173.5| 1358.5| 25.5| 283.5| 414.5] 23.5| 292.5| 335.0
#Sources| 392.0/ 390.0| 342.0| 119.0] 117.0] 70.0| 236.0 92.0[ 49.0

Table 1. Execution times for six of the evaluation queries. Times in ms.

from the use of a larger index. On average the time to retrieve 25% and 50% of
the results was 8.7s and 12.8s for MI and 15.1s and 22.0s for BU, respectively.
This is an improvement of about 42% in both cases, which may increase with
higher, more realistic latencies where the impact of ranking will be higher.

In terms of total execution time, MI and BU are comparable, while TD
is significantly faster in most cases. While TD incurs more overhead for the
initial source selection because of the larger index, it enables the exclusion of
sources. Due to the high network cost, not retrieving irrelevant sources results
in a significant performance gain. Using only a partial index, MI is not able to
restrict the number of sources that have to be retrieved. This means that in
the end MI processes almost the same sources, same data and thus does the
same work as BU. The additional overhead incurred by source selection, ranking
and sampling lead to execution times worse than BU in some cases (Q1,Q2,Q6).
However, MI was able to process more useful sources and results earlier.
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Fig. 2. a: Result arrival times for query Q4; b-d: Effects of invalid score threshold,
sample size and resampling threshold.

To better illustrate the behavior of the different approaches, Fig. 2 shows the
arrival of results over time for query Q4. The first result for TD was produced
after less than 10s and all results were reported after 33s. The difference to overall
execution time of about 90s given in Table 1 is due to the fact that even after the
final result was reported other relevant sources had to be processed, but did not
contribute to the final result. This indicates that early result reporting resulting



in better responsiveness is very important in some cases, where processing all
sources might be very costly and not needed. Clearly, TD produced results earlier
than MI, which was better than BU.

Corrective Source Ranking In this part we examine the influence of various
parameter configurations on sampling and ranking. To separate the effect of each
parameter, we vary one while setting the other parameters to default values 40%
for invalid score threshold, 3 for resampling and 50 for sample size.

Invalid Score Threshold Fig. 2b shows average query times for computing
5% and 25% of the results and for sampling at different invalid score thresholds
from 10%-80%. With increasing threshold, ranking is performed less often, and
correspondingly, times for ranking decreased. The effect of performing ranking
less often was positive for computing 5% results, but no clear trend could be
observed for 256% results, where the best time was observered for a threshold
of 40%. Ranking is beneficial as query execution is more guided and sources
that directly contribute to join results are preferred, especially by using join
cardinality estimation with sampling.

Resampling Threshold Fig 2c¢ shows that times for sampling decrease
with higher resampling thresholds, as sampling is performed less often. Times
for 5% and 25% results are best for a threshold of 1.5 and 3, respectively. Clearly,
sampling is better than no sampling, because the time to reach 25% of results is
the highest when sampling is off.

Sample Size Fig 2d shows that times for sampling increased as the sam-
ple grows larger. While sampling creates an overhead, it also provides benefits.
Larger sample sizes can lead to more accurate cardinality estimates. Thus, total
effect on result computation times varies. While the time for 25% results stayed
largely the same, time for 5% results was clearly best for a sample size of 100.

7 Conclusion

We provided a systematic analysis of the challenges and tasks, and discussed
concrete strategies for linked data query processing. We proposed an implemen-
tation of the mixed strategy that mimics a realistic linked data scenario where
some partial knowledge of linked data sources are available. The implementation
exploits different types of knowledge available beforehand, and also, incorporates
information gained during query processing to perform corrective source ranking.
The proposed ranking scheme specifies various types of metrics, which can be
combined to reach different optimization goals. A stream-based processing tech-
nique is adopted to deal with the unpredictable nature of linked data access.
Experiments showed that the proposed implementation leads to early reporting
of results and thus, more responsive query processing. On average early results
were reported 42% faster than for the bottom-up strategy. In the Linked Data
scenario where response times are very high due to the large number of sources
and network latency, the capability to produce early results is essential.

As future work, we aim to use information discovered at run-time not only
for source ranking but for optimizing the entire evaluation process. In particular,



we will target the problem of run-time corrective query optimization to refine
the query determined at compile-time.
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