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Abstract. On the Semantic Web, decision makers (humans or software agents
alike) are faced with the challenge of examining large volumes of information
originating from heterogeneous sources with the goal of ascertaining trust in var-
ious pieces of information. While previous work has focused on simple models
for review and rating systems, we introduce a new trust model for rich, complex
and uncertain information.We present the challenges raised by the new model,
and the results of an evaluation of the first prototype implementation under a
variety of scenarios.

1 Introduction

Decision makers (humans or software agents alike) relying on information available
on the web are increasingly faced with the challenge of examining large volumes of
information originating from heterogeneous sources with the goal of ascertaining trust
in various pieces of information. Several authors have explored various trust compu-
tation models (e.g., eBay recommendation system [14], NetFlix movie ratings [13],
EigenTrust [10], PeerTrust [15], etc.) to assess trust in various entities. A common data
model subsumed by several trust computation models (as succinctly captured in Kuter
and Golbeck [11]) is the ability of an entity to assign a numeric trust score to another
entity (e.g., eBay recommendation, Netflix movie ratings, etc.). Such pair-wise numeric
ratings contribute to a (dis)similarity score (e.g., based on L1 norm, L2 norm, cosine
distance, etc.) which is used to compute personalized trust scores (as in PeerTrust) or
recursively propagated throughout the network to compute global trust scores (as in
EigenTrust).

A pair-wise numeric score based data model may impose severe limitations in several
real-world applications. For example, let us suppose that information sources {S1, S2,
S3} assert axioms φ1 = all men are mortal, φ2 = Socrates is a man and φ3 = Socrates is
not mortal respectively. While there is an obvious conflict when all the three axioms are
put together, we note that: (i) there is no pair-wise conflict, and (ii) there is no obvious
numeric measure that captures (dis)similarity between two information sources.

This problem becomes even more challenging because of uncertainty associated with
real-world data and applications. Uncertainty manifests itself in several diverse forms:
from measurement errors (e.g., sensor readings) and stochasticity in physical processes
(e.g., weather conditions) to reliability/trustworthiness of data sources; regardless of
its nature, it is common to adopt a probabilistic measure for uncertainty. Reusing the
Socrates example above, each information source Si may assert the axiom φi with a



certain probability pi = 0.6. Further, probabilities associated with various axioms need
not be (statistically) independent. In such situations, the key challenge is develop trust
computation models for rich (beyond pair-wise numeric ratings) and uncertain (proba-
bilistic) information.

The contributions of this paper are three fold. First, our approach offers a rich data
model for trust. We allow information items to be encoded in inconsistency-tolerant
extension of Bayesian Description Logics [3] (BDL)3 with axioms of the form φ : X 4

where φ is a classical axiom (in Description Logics (DL [1])) that is annotated with a
boolean random variable from a Bayesian network [7]. Intuitively, φ : X can be read as
follows: the axiom φ holds when the Boolean random variable X is true. Dependencies
between axioms (e.g., φ1 : X1 and φ2 : X2) are captured using the Bayesian network
that represents a set of random variables (corresponding to the annotations; e.g., X1,
X2) and their conditional probability distribution functions (e.g., Pr(X2|X1)).

Second, our approach offers a trust computation model over uncertain information
(encoded as BDL axioms). Intuitively, our approach allows us to compute a degree of
inconsistency over a probabilistic knowledge base. We note that inconsistencies corre-
spond to conflicts in information items reported by one or more information sources.
Our approach assigns numeric weights to the degree of inconsistency using the possi-
ble world semantics (the formal semantics is given in section 3). Revisiting the Socrates
example, three probabilistic axioms φi : pi5 correspond to eight possible worlds (the
power set of the set of axioms without annotations) corresponding to {{φ1, φ2, φ3},
{φ1, φ2}, · · · , ∅}. Each possible world has probability measure that can be derived from
pi. For instance, the probability of a possible world {φ1, φ2} is given by p1∗p2∗(1−p3).
The degree of inconsistency of a knowledge base is then computed as the sum of the
probabilities associated with possible worlds that are inconsistent.

In the presence of inconsistencies, our approach extracts justifications − minimal
sets of axioms that together imply an inconsistency [9]. Our trust computation model
essentially propagates the degree of inconsistency as blames (or penalties) to the axioms
contributing to the inconsistency via justifications. This approach essentially allows us
to compute trust in information at the granularity of an axiom. Indeed one may ag-
gregate trust scores at different levels of granularity; e.g., axioms about a specific topic
(e.g., birds), one information source (e.g., John), groups of information sources (e.g., all
members affiliated with ACM), etc. Intuitively, our trust computation model works as
follows. First, we compute a probability measure for each justification as the sum of the
probabilities associated with possible worlds in which the justification holds (namely,
all the axioms in the justification are present). Second, we partition the degree of incon-
sistency across all justifications; for instance, if a justification J1 holds in 80% of the
possible worlds then it is assigned four times the blame as a justification J2 that holds
in 20% of the possible worlds. Third, we partition the penalty associated with a justifi-
cation across all axioms in the justification using a biased (on prior trust assessments)

3 BDL is a simple probabilistic extension of Description Logics, the foundation of OWL DL.
4 This is a very simplified version of the BDL formulation given here for ease of the presentation.

The complete and formal definition of BDL is presented in section 2
5 φi : pi is a shorthand notation for φi : Xi and Pr(Xi = true) = pi for some independent

random variable Xi



or an unbiased partitioning scheme. We note that there may be alternate approaches to
derive trust scores from inconsistency measures and justifications; indeed, our approach
is flexible and extensible to such trust computation models.

A naive implementation of our trust computation model requires all justifications.
While computing a justification is an easy problem, exhaustively enumerating all pos-
sible justifications is known to be hard problem [9]. We formulate exhaustive enumer-
ation of justifications as a tree traversal problem and develop an importance sampling
approach to uniformly and randomly sample justifications without completely enumer-
ating them. Unbiased sampling of justifications ensures that the malicious entities can-
not game the trust computation model; say, selectively hide justifications that include
axioms from malicious entities (and thus evade penalties) from the sampling process.
For scalability reasons, our trust computation model operates on a random sample of
justifications. A malicious entity may escape penalties due to incompleteness of justi-
fications; however, across multiple inconsistency checks a malicious entity is likely to
incur higher penalties (and thus lower trust score) than the honest entities.

Third, we have developed a prototype of our trust assessment system by implement-
ing a probabilistic extension, PSHER, to our publicly available highly scalable DL rea-
soner SHER [6]. To avoid the exponential blow up due to the fact that the number of
possible worlds in the worst case is exponential in the number of axioms, we use an
error-bounded approximation algorithm to compute the degree of inconsistency of a
probabilistic knowledge base and the weight of its justifications. Finally, we empiri-
cally evaluate the efficacy of our scheme (on a publicly available UOBM dataset) when
malicious sources use an oscillating behavior to milk the trust computation model and
when honest sources are faced with measurement errors (high uncertainty) or commit
honest mistakes.

The remainder of the paper is organized as follows. After a brief introduction of
Bayesian Description Logics (BDL) in Section 2, Section 3 describes an inconsistency-
tolerant extension of BDL and presents solutions to effectively compute justifications (a
proxy for (dis)similarity scores in our trust computation model). Section 4 describes our
trust computation model. Section 5 presents an experimental evaluation of our system.
We finally conclude in Section 6.

2 Background

In this section, we briefly describe our data model for uncertain information.

2.1 Bayesian Network Notation

We briefly recall notations for a Bayesian Network, used in the remainder of the paper.
V : set of all random variables in a Bayesian network (e.g., V = {V1, V2}). D(Vi) (for
some variable Vi ∈ V ): finite set of values that Vi can take (e.g., D(V1) = {0, 1} and
D(V2) = {0, 1}). v: assignment of all random variables to a possible value (e.g., v =
{V1 = 0, V2 = 1}). v|X (for someX ⊆ V ): projection of v that only includes the random
variables in X (e.g., v|{V2} = {V2 = 1}). D(X) (for some X ⊆ V ): Cartesian product
of the domains D(Xi) for all Xi ∈ X .



2.2 Bayesian Description Logics

Bayesian Description Logics [3] is a class of probabilistic description logic wherein
each logical axiom is annotated with an event which is associated with a probability
value via a Bayesian Network. In this section, we describe Bayesian DL at a syntactic
level followed by a detailed example. A probabilistic axiom over a Bayesian Network
BN over a set of variables V is of the form φ : e, where φ is a classical DL axiom, and
the probabilistic annotation e is an expression of one of the following forms: X = x
or X 6= x where X ⊆ V and x ∈ D(X). Intuitively, every probabilistic annotation
represents a scenario (or an event) which is associated with the set of all value assign-
ments V = v with v ∈ D(V ) that are compatible with X = x (that is, v|X = x) and
their probability value PrBN (V = v) in the Bayesian network BN over V . Simply
put, the semantics of a probabilistic axiom φ : X = x is as follows: when event X = x
occurs then φ holds. φ : p, where p ∈ [0, 1], is often used to directly assign a probability
value to an classical axiom φ. This is an abbreviation for φ : X0 = true, where X0 is
a boolean random variable which is independent from all other variables and such that
PrBN (X0 = true) = p. We abbreviate the probabilistic axiom of the form> : e (resp.
φ : >) as e (resp. φ).

A probabilistic knowledge base (KB) K = (A, T , BN) consists of: 1) a Bayesian
NetworkBN over a set of random variables V , 2) a set of probabilistic Abox axiomsA
of the form φ : e, where φ is a classical Abox axiom, and 3) a set of probabilistic Tbox
axioms T of the form φ : e, where φ is a classical Tbox axiom. The following example
illustrates how this formalism can be used to describe road conditions influenced by
probabilistic events such as weather conditions:

T = {SlipperyRoad uOpenedRoad v HazardousCondition,

Road v SlipperyRoad : Rain = true}

A = {Road(route9A), OpenedRoad(route9A) : TrustSource = true}

In this example, the Bayesian network BN consists of three variables: Rain, a boolean
variable which is true when it rains; TrustSource, a boolean variable which is true
when the source of the axiom OpenedRoad(route9A) can be trusted; and Source,
a variable which indicates the provenance of the axiom OpenedRoad(route9A). The
probabilities specified by BN are as follows:

PrBN (TrustSource = true|Source = ‘Mary′) = 0.8, PrBN (Rain = true) = 0.7

PrBN (TrustSource = true|Source = ‘John′) = 0.5, PrBN (Source = ‘John′) = 1

The first Tbox axiom asserts that a opened road that is slippery is a hazardous condi-
tion. The second Tbox axiom indicates that when it rains, roads are slippery. The Abox
axioms assert that route9A is a road and, assuming that the source of the statement
OpenedRoad(route9A) is trusted, route9A is opened.

Informally, probability values computed through the Bayesian network ‘propagate’
to the ‘DL side’ as follows. Each assignment v of all random variables in BN (e.g.,v
= {Rain = true, TrustSource = false, Source= ‘John’}) corresponds to a primitive
event ev (or a scenario). A primitive event ev is associated, throughBN , to a probability



value pev and a classical DL KB Kev
6 which consists of all classical axioms annotated

with a compatible probabilistic annotation (e.g., SlipperyRoad uOpenedRoad v
HazardousCondition,Road v SlipperyRoad,Road(route9A) ). The probability
value associated with the statement φ (e.g., φ = HazardousCondition(route9A)) is
obtained by summing pev for all ev such that the classical KB Kev entails φ
(e.g., Pr(HazardousCondition(route9A)) = 0.35).

3 Inconsistency and Justification

The ability to detect contradicting statements and measure the relative importance of
the resulting conflict is a key prerequisite to estimate the (dis)similarity between infor-
mation sources providing rich, complex and probabilistic assertions expressed as BDL
axioms. Unfortunately, in the traditional BDL semantics [3], consistency is still cate-
gorically defined, i.e., a probabilistic KB is either completely satisfied or completely
unsatisfied. In this section, we address this significant shortcoming by using a refined
semantics which introduces the notion of degree of inconsistency. We start by present-
ing the traditional BDL semantics, which does not tolerate inconsistency.

For v ∈ V , we say that v is compatible with the probabilistic annotation X = x
(resp. X 6= x), denoted v |= X = x (resp. v |= X 6= x), iff v|X = x (resp. v|X 6= x).

Recall that BDL axioms (φ : e) are extensions of classical axioms (φ) with a proba-
bilistic annotation (e). BDL semantics defines an annotated interpretation as an exten-
sion of a first-order interpretation by assigning a value v ∈ D(V ) to V . An annotated
interpretation I = (∆I , .I) is defined in a similar way as a first-order interpretation ex-
cept that the interpretation function .I also maps the set of variables V in the Bayesian
Network to a value v ∈ D(V ). An annotated interpretation I satisfies a probabilistic
axiom φ : e, denoted I |= φ : e, iff V I |= e ⇒ I |= φ 7. Now, a probabilistic
interpretation is defined as a probabilistic distribution over annotated interpretations.

Definition 1 (From [3]) A probabilistic interpretation Pr is a probability function over
the set of all annotated interpretations that associates only a finite number of annotated
interpretations with a positive probability. The probability of a probabilistic axiom φ :
e in Pr, denoted Pr(φ : e), is the sum of all Pr(I) such that I is an annotated
interpretation that satisfies φ : e. A probabilistic interpretation Pr satisfies (or is a
model of) a probabilistic axiom φ : e iff Pr(φ : e) = 1. We say Pr satisfies (or is a
model of) a set of probabilistic axioms F iff Pr satisfies all f ∈ F .

Finally, we define the notion of consistency of a probabilistic knowledge base.

Definition 2 (From [3]) The probabilistic interpretation Pr satisfies (or is a model of)
a probabilistic knowledge base K = (T ,A, BN) iff (i) Pr is a model of T ∪ A and
(ii) PrBN (V = v) =

∑
I s.t. V I=v Pr(I) for all v ∈ D(V ). We say KB is consistent iff

it has a model Pr.
6 Kev was informally referred to as a ‘possible world’ in the introduction
7 This more expressive implication semantics differs from the equivalence semantics of [3]



We note that condition (ii) in the previous definition ensures that the sum of probabil-
ity values for annotated interpretations mapping V to v ∈ D(V ) is the same probability
value assigned to V = v by the Bayesian Network.

3.1 Degree of Inconsistency

In the previously presented traditional BDL semantics, consistency is still categorically
defined. We now address this significant shortcoming for our trust application using a
refined semantics which introduces the notion of degree of inconsistency.

First, we illustrate using a simple example the intuition behind the notion of de-
gree of inconsistency for a KB. Let K be the probabilistic KB defined as follows:
K = (T ,A ∪ {> v ⊥ : X = true}, BN) where T is a classical Tbox and A
is a classical Abox such that the classical KB cK = (T ,A) is consistent; BN is
a Bayesian Network over a single boolean random variable X , and the probability
PrBN (X = true) = 10−6 that X is true is extremely low. Under past probabilis-
tic extensions to DL, the K is completely inconsistent, and nothing meaningful can be
inferred from it. This stems from the fact that whenX is true, the set of classical axioms
that must hold (i.e., T ∪A∪{> v ⊥}) is inconsistent. However, the eventX = true is
extremely unlikely, and, therefore, it is unreasonable to consider the whole probabilistic
KB inconsistent. Intuitively, the likelihood of events, whose set of associated classical
axioms is inconsistent, represents the degree of inconsistency of a probabilistic KB.

We now formally define a degree of inconsistency and present an inconsistency-
tolerant refinement of the semantics of a Bayesian DL.

Definition 3 An annotated interpretation I is an annotated model of a probabilistic
KB K = (T ,A, BN) where BN is a Bayesian Network over a set of variables V iff
for each probabilistic axiom φ : e, I satisfies φ : e.

In order, to measure the degree of inconsistency, we first need to find all primitive
events v (i.e., elements of the domain D(V ) of the set of variables V ) for which there
are no annotated models I such that V I = v.

Definition 4 For a probabilistic KB K = (T ,A, BN) where BN is a Bayesian Net-
work over a set of variables V , the set of inconsistent primitive events, denoted U(K),
is the subset of D(V ), the domain of V , such that v ∈ U(K) iff there is no annotated
model I of K such that V I = v

Finally, the degree of inconsistency of a probabilistic knowledge base is defined as
the probability of occurrence of an inconsistent primitive event.

Definition 5 Let K = (T ,A, BN) be a probabilistic KB such that BN is a Bayesian
Network over a set of variables V . The degree of inconsistency of K, denoted DU(K),
is a real number between 0 and 1 defined as follows:

DU(K) =
∑

v∈U(K)

PrBN (V = v)

A probabilistic interpretation Pr (as per Definition 1) satisfies (or is a model of) a
probabilistic KB K = (T ,A, BN) to a degree d, 0 < d ≤ 1 iff.:



– (i) Pr is a model as T ∪ A (same as in Definition 2)
– (ii) for v ∈ V , ∑

I s.t. V I=v

Pr(I) =

{
0 if v ∈ U(K)
PrBN (V =v)

d
if v /∈ U(K)

– (iii) d = 1−DU(K)

A probabilistic knowledge base K = (T ,A, BN) is consistent to the degree d, with
0 < d ≤ 1, iff there is a probabilistic interpretation that satisfies K to the degree d. It
is completely inconsistent (or satisfiable to the degree 0), iff DU(K) = 1.

Informally, by assigning a zero probability value to all annotated interpretations cor-
responding to inconsistent primitive events, (ii) in Definition 5 removes them from con-
sideration, and it requires that the sum of the probability value assigned to interpreta-
tions mapping V to v for v /∈ U(K) is the same as the joint probability distribution
PrBN defined by BN with a normalization factor d.

In practice, computing the degree of inconsistency of a Bayesian DL KB can be
reduced to classical description logics consistency check as illustrated by Theorem 1.
First we introduce an important notation used in the remainder of the paper:

Notation 1 Let K = (T ,A, BN) be a probabilistic KB. For every v ∈ D(V ), let Tv
(resp., Av) be the set of all axioms φ for which there exists a probabilistic axiom φ : e
in T (resp., A), such that v |= e. Kv denotes the classical KB (Tv,Av). Informally,
Kv represents the classical KB that must hold when the primitive event v occurs. K>
denotes the classical KB obtained from K after removing all probabilistic annotations:
K> = (∪v∈D(V )Tv. ∪v∈D(V ) Av).

Theorem 1 A probabilistic KB K = (T ,A, BN) is consistent to the degree d iff.

d = 1−
∑

v s.t. Kv inconsistent

PrBN (V = v)

The proof of Theorem 1 is a consequence of Lemma 1.

Lemma 1 Let K be a probabilistic KB. v ∈ U(K) iff Kv is inconsistent.

3.2 Inconsistency Justification

A conflict or contradiction is formally captured by the notion of an inconsistency justi-
fication − minimal inconsistency preserving subset of the KB.

Definition 6 Let K = (T ,A, BN) be a probabilistic KB consistent to the degree d
such that BN is a Bayesian Network over a set of variables V . J is an inconsistency
justification iff. 1) J ⊆ (T ,A), 2) (J , BN) is probabilistic KB consistent to the degree
d′ such that d′ < 1, and 3) for all J ′ ⊂ J , (J ′, BN) is probabilistic KB consistent to
the degree 1 (i.e. (J ′, BN) is completely consistent). The degree DU(J ) of an incon-
sistency justification J is defined as the degree of inconsistency of the probabilistic KB
made of its axioms: DU(J ) = DU((J , BN))



Justification computation in a probabilistic KB reduces to justification computation
in classical KBs as shown by the following theorem, which is a direct consequence of
Theorem 1 and Definition 6:

Theorem 2 Let K = (T ,A, BN) be a probabilistic KB, where BN is a Bayesian
network over a set V of random variables. J is an inconsistency justification of K iff.
there exists v ∈ D(V ) such that PrBN (V = v) > 0 and J>, the classical KB obtained
from J by removing all probabilistic annotations, is an inconsistency justification of
Kv . Furthermore, the degree,DU(J ), of an inconsistency justification J is as follows:

DU(J ) =
∑

v s.t.J>⊆Kv

PrBN (V = v)

Thus, once we have found a classical justification in a classical KB Kv for v ∈
D(V ) using, for example, the scalable approach described in our previous work [4], the
degree of the corresponding probabilistic justification can be obtained through simple
set inclusion tests.

Theorems 1 and 2 provide a concrete mechanism to compute degree of inconsistency
of a probabilistic KB, and a degree of inconsistency of a justification. However, they are
highly intractable since they require an exponential number, in the number of variables
in BN, of corresponding classical tasks. We will address this issue in the next section.

3.3 Error-Bounded Approximate Reasoning

A Bayesian network based approach lends itself to fast Monte Carlo sampling algo-
rithms for scalable partial consistency checks and query answering over a large prob-
abilistic KB. In particular, we use a forward sampling approach described in [2] to
estimate pr =

∑
v∈Π PrBN (V = v) (recall theorem 1 and 2). The forward sampling

approach generates a set of samples v1, · · · , vn from BN (each sample is generated in
time that is linear in the size ofBN ) such that the probability pr can be estimated as p̂rn
= 1
n*

∑n
i=1I(vi ∈ Π), where I(z) = 1 if z is true; 0 otherwise. One can show that p̂rn

is an unbiased estimator of pr such that limn→∞
√
n ∗ (p̂rn − pr)→N (0, σ2

z), where
N (µ, σ2) denotes a normal distribution with mean µ and variance σ2 and σ2

z denotes
the variance of I(z) for a boolean variable z. Hence, the sample size n which guaran-
tees an absolute error of ε or less with a confidence level η is given by the following

formula: n =
2∗(erf−1(η))2∗σ2

zmax

ε2 , where erf−1 denotes the inverse Gauss error func-
tion (σ2

zmax
= 0.25 for a boolean random variable). For example, to compute the degree

of consistency of a probabilistic KB within ±5% error margin with a 95% confidence,
the sample size n = 396 is necessary.

3.4 Sampling Justifications in a Classical KB

Ideally, it is desirable to find all classical justifications. Computing a single justifica-
tion can be done fairly efficiently by 1) using tracing technique to obtain a significantly
small set S of axioms that is responsible for an inconsistency discovered by a single



consistency test, and 2) performing additional |S| consistency check on KBs of size
at most |S| − 1 to remove extraneous elements from S. In our previous work [4], we
presented a scalable approach to efficiently compute a large number of − but not all −
justifications in large and expressive KBs through the technique of summarization and
refinement [5]. The idea consists in looking for patterns of justifications in a dramati-
cally reduced summary of the KB, and retrieve concrete instances of these patterns in
the real KB.

Fig. 1: Computing all justifications using Reiter’s Hitting Set Tree Algorithm from [9]

Unfortunately, computing all justifications is well known to be intractable even for
small and medium size expressive KBs [9]. [9] establishes a connection between the
problem of finding all justifications and the hitting set problem (i.e., given n sets Si,
find sets that intersect each Si). The intuition behind this result is the fact that in order
to make an inconsistent KB consistent at least one axiom from each justification must
be removed. Therefore, starting from a single justification a Reiter’s Hitting Tree can be
constructed in order to get all justifications as illustrated in Figure 1 from [9]: Starting
from the first justification J = {2, 3, 4} computed in the KB K (J is set to be the root
v0 of the tree), the algorithm arbitrary selects an axiom in J , say 2, and creates a new
node w with an empty label in the tree and a new edge < v0, w > with axiom 2 in its
label. The algorithm then tests the consistency of the K−{2}. If it is inconsistent, as in
this case, a justification J ′ is obtained for K − {2}, say {1, 5}, and it is inserted in the
label of the new node w. This process is repeated until the consistency test is positive in
which case the new node is marked with a check mark. As an important optimization,
we stop exploring super set of path discovered earlier and marked the node with ’X’.

In order to avoid the high cost associated with exploring the whole Hitting Set Tree
to find all conflicts. One can find the first K conflicts by exploring the Reiter’s Hitting
Set Tree (HST) until K distinct justifications are found. The problem with this approach
is that nodes in the HST are not equally likely to be selected with such a scheme: the
probability π(vd) of a node vd in a path < v0v1...vd > to be selected is π(vd) =∏

0≤i<d(1/|vi|), where |vi| denotes the number of axioms in the justification vi. As a
result, a malicious source can use the bias in the sampling to ‘hide’ its conflicts.



However, since the bias can be precisely quantified, one can obtain an unbiased sam-
ple as follows. We select K nodes in the HST by exploring the HST in the normal way,
but each time a node vi is encountered, it is selected iff. a random number r generated
uniformly from [0,1] is such that r ≤ min(β/π(vi), 1), where β is a strictly positive
real number. The following Proposition shows that, in this approach, for a sample of K
HST nodes, if β is properly chosen, then the expected number of time a node is selected
is identical for all nodes.

Proposition 1 Let Nv denotes the random variable representing the number of time
the node v appears in a HST sample of size K. The expected value E(Nv) of Nv is:

E(Nv) =

{
K ∗ π(v) if β ≥ π(v)
K ∗ β if 0 < β < π(v)

Thus, if β is chosen such that 0 < β < minv∈HST (π(v)), then we obtain an unbiased
sample from the HST. Unfortunately, the minimum value of π(v) depends on the tree
structure (branching factor and maximum depth), and cannot be computed precisely
without exploring the whole HST. In practice, we use the following sampling approach
to select K nodes (the trade-off between computation cost and bias in the sample is
controlled by a parameter of the algorithm, α):

1. Let visited denote the set of visited nodes. Set visited to ∅,
2. Traverse the HST in any order, and add the first max(K − |visited|, 1) nodes visited to
visited

3. Let πmin be the minimum value of π(v) for v ∈ visited.
4. Set β = πmin/α, where α > 1 is a parameter of the sampling algorithm which controls the

trade-off between computation cost and biased in the sampling. Higher values of α, while
reducing the bias in our sampling, increase the computation cost by reducing the probability
of a node selection − hence, increasing the length of tree traversal.

5. For each v ∈ visited, add it to the result set RS with a probability of β/π(v)
6. If |RS| < K and the HST has not been completely explored, then set RS = ∅ and continue

the exploration from step 2; otherwise return RS

4 Trust Computation Model

We now briefly formalize the problem of assessing trust in a set IS consisting of n in-
formation sources. The trust value assumed or known prior to any statement made by an
information source i is specified by a probability distribution PrTV (i) over the domain
[0, 1]. For example, a uniform distribution is often assumed for new information source
for which we have no prior knowledge. Statements made by each source i is specified
in the form of a probabilistic KB Ki = (T i,Ai, BN i). The knowledge function C
maps an information source i to the probabilistic KB Ki capturing all its statements.
The trust update problem is a triple (IS, PrTV,C) whose solution yields a posterior
trust value function PoTV . PoTV maps an information source i to a probability dis-
tribution over the domain [0, 1], which represents our new belief in the trustworthiness
of i after processing statements in

⋃
j∈IS C(j).

In this paper, we only focus on trust computation based on direct observations, that
is, on statements directly conveyed to us by the information sources. Inferring trust



from indirect observations (e.g., statements conveyed to us from IS1 via IS2) is an
orthogonal problem; one could leverage solutions proposed in [10], [15], [11] to infer
trust from indirect observations.

4.1 Trust Computation

We model prior and posterior trust of a source i (PrTV (i) and PoTV (i)) using a beta
distribution B(α, β) as proposed in several other trust computation models including
[8]. Intuitively, the reward parameter α and the penalty parameter β correspond to good
(non-conflicting) and bad (conflicting) axioms contributed to an information source re-
spectively. The trust assessment problem now reduces to that of (periodically) updating
the parameters α and β based on the axioms contributed by the information sources.
One may bootstrap the model by setting PrTV (i) to B(1, 1) − a uniform and random
distribution over [0, 1], when we have no prior knowledge. In the rest of this section we
focus on computing the reward (α) and penalty (β) parameters.

We use a simple reward structure wherein an information source receives unit reward
for every axiom it contributes if the axiom is not in a justification for inconsistency 8. We
use a scaling parameter 4 to control the relative contribution of reward and penalty to
the overall trust assessment; we typically set 4 > 1, that is, penalty has higher impact
on trust assessment than the reward. The rest of this section focuses on computing
penalties from justifications for inconsistency.

Section 3.4 describes solutions to construct (a random sample of) justifications that
explain inconsistencies in the KB; further, a justification J is associated with a weight
DU(J) that corresponds to the possible worlds in which the justification J holds (see
section 3.2 for formal definition of DU(J) and an algorithm to compute it). For each
justification Ji we associate a penalty 4(Ji) = 4 ∗ DU(Ji). The trust computation
model traces a justification Ji, to conflicting information sources S = {Si1 , · · · , Sin}
(for some n≥ 2) that contributed to the axioms in Ji. In this paper we examine three so-
lutions to partition4(Ji) units of penalty amongst the contributing information sources
as shown below. We use tij to denote the expectation of PrTV (ij) for an information
source ij , that is, tij =

αij

αij
+βij

.

4(Sij ) =


4(Ji)

n
unbiased

4(Ji)
n−1

∗ (1−
tij∑n

k=1 tik
) biased by trust in other sources

4(Ji) ∗
1

tij∑n
k=1

1
tik

biased by inverse self trust

The unbiased version distributes penalty for a justification equally across all conflict-
ing information sources; the biased versions tend to penalize less trustworthy sources
more. One possible approach is to weigh the penalty for a source Sij by the sum
of the expected prior trust values for all the other conflicting sources, namely, S −
{Sij}. For instance, if we have three information sources Si1 , Si2 and Si3 with ex-
pected prior trust ti1 = 0.1 and ti2 = ti3 = 0.9 then the penalty for source i1 must be
weighted by 1

2* 0.9+0.9
0.1+0.9+0.9 = 0.47, while that of sources i2 and i3 must be weighted by

8 A preprocessing step weeds out trivial axioms (e.g., sun rises in the east)



0.265. Clearly, this approach penalizes the less trustworthy source more than the trusted
sources; however, we note that even when the prior trust in i1 is arbitrarily close to zero,
the penalty for the honest source i2 and i2 is weighted by 0.25. A close observation re-
veals that a malicious source (with very low prior trust) may penalize honest nodes
(with high prior trust) by simply injecting conflicts that involve the honest nodes; for
instance, if sources i2 and i3 assert axioms φ2 and φ3 respectively, then the malicious
source i1 can assert an axiom φ1 = ¬φ2∨¬φ3 and introduce an inconsistency whose
justification spans all the three sources. To overcome this problem, this paper uses a
third scheme that weights penalties for justifications by the inverse value of prior trust
in the information source.

5 Experimental Evaluation

Fig. 2: Trust under single PuMS attack (No
duplication)

Fig. 3: Trust under 50% PuMS attack (No
duplication)

Fig. 4: Trust under 90% PuMS attack (No
duplication)

Fig. 5: Trust under single PuMS attack (25%
duplication)

To evaluate our approach, we have developed a prototype implementation, PSHER,
that extends SHER reasoner [6] to support Bayesian SHIN (the core of OWL 1.0 DL)
reasoning. SHER was chosen for its unique ability to scale reasoning to very large and
expressive KBs [5], and to efficiently detect large number of inconsistency justifica-
tions in a scalable way [4]. PSHER uses the results of sections 3.1, 3.2 and 3.3 to
reduce the problem of computing justifications on a probabilistic KB to detecting those
justifications on classical KBs using SHER.

Axioms asserted by various information sources in our experiments were taken from
the UOBM benchmark [12] which was modified to SHIN expressivity, and its Abox



was modified by randomly annotating half of the axioms with probability values. Fur-
thermore, we inserted additional Abox assertions in order to create inconsistencies in-
volving axioms in the original UOBM KB. Note that not all axioms in the original
UOBM KB end up being part of an inconsistency, which introduces an asymmetry in
information source’s knowledge (e.g., a malicious source is not assumed to have com-
plete knowledge of all axioms asserted by other sources).

Due to space limitations, we only present an evaluation of our trust model un-
der different scenarios. Scalability was already demonstrated in our previous work on
SHER [4], where we presented a scalable approach to efficiently compute a large num-
ber of − but not all − justifications in large and expressive KBs through the technique
of summarization and refinement [5]. Scalability of PSHER is achieved through par-
allelism since each probabilistic reasoning task performed by PSHER is reduced to n
corresponding classical tasks evaluated using SHER, where n depends on the desired
precision as explained in Section 3.3. In the rest of this section, we report experiments
conducted on UOBM1 (one department∼ 74,000 axioms, including added inconsistent
axioms and excluding duplication across sources).

Fig. 6: Trust under single PuMS attack (50%
duplication)

Fig. 7: Trust under single PuMS attack (100%
duplication)

Fig. 8: Trust under 50% PuMS attack (25%
duplication)

Fig. 9: Trust under 50% PuMS attack (50%
duplication)

In our experiments, we considered 4 types of information sources:

– Perfect honest sources (PHS) whose axioms are taken from the UOBM KB before
the introduction of inconsistencies.



– Purely malicious sources (PuMS) whose axioms are selected from the ones added
to UOBM KB in order to create inconsistencies.

– Imperfect honest sources (IHS) have the majority of their axioms (more than 90%)
from the UOBM KB before the introduction of inconsistencies. They allow us to
simulate the behavior of our approach when honest sources are faced with mea-
surement errors or commit honest mistakes.

– Partially malicious sources (PaMS) are such that between 10% to 90% of their
axioms are selected from the axioms added to UOBM KB to create inconsistency.
They are primarily used to simulate the behavior of our approach when malicious
sources use an oscillating behavior to milk our trust computation scheme.

Axioms were randomly assigned to various sources without violating the proportion of
conflicting vs. non-conflicting axioms for each type of source.

Our first experiment (Figure 2) measures the impact of a single purely malicious
source (PuMS) on the trust values of 9 perfect honest sources. The PuMS asserts more
and more incorrect axioms contradicting PHS’s axioms (at each steps, each source as-
serts about 100 additional statements until all their axioms have been asserted) while the
PHSs continue to assert more of what we consider as correct axioms. Axioms asserted
by the PuMS do not necessarily yield an inconsistency in the same step in which they
are asserted, but, by the end of the simulation, they are guaranteed to generate an incon-
sistency. For this experiment, there is no duplication of axioms across sources, and we
do not assume any prior knowledge about the trustworthiness of the sources. Since each
justification creates by the malicious source also involves at least one PuMS, initially,
it manages to drop significantly the absolute trust value of some PHSs (up to 50% for
PHS-3). However, a PuMS hurts its trust value significantly more than he hurts those
of other sources. As a result of the fact that our scheme is such that less trustworthy
sources get assigned a large portion of the penalty for a justification, the single PuMS
eventually ends up receiving almost all the penalty for its inconsistencies, which allows
the trust values of honest sources to recover. Due to information asymmetry (malicious
sources do no have complete knowledge of informations in other sources and thus can-
not contradict all the statements of an PHS), our scheme remains robust, in the sense
that honest sources would recover, even when the proportion of PuMS increases (see
Fig. 3 where 50% of the sources are PuMS and Fig. 4 where 90% of sources are PuMS).

In the previous experiments, although honest sources manage to recover from the
attack, they can still be severely hurt before the credibility of the malicious sources de-
creased enough to enable a recovery for honest sources. This problem can be addressed
in two ways: 1) by increasing the degree of redundancy between sources as illustrated
in Figures 5, 6, 7, 8 and 9; and 2) by taking into account a priori knowledge of each
source as illustrated in Figure 10.

In case of moderate to high redundancy between sources (Figures 5, 6, 7, 8 and
9), a justification generated by a malicious source to compromise a honest source is
likely to hurt the malicious much more than the honest source because the axioms in the
justification coming from the honest source are likely to be confirmed by (i.e. duplicated
in) other honest sources. Therefore, the malicious source will be involved in as many
justifications as there are corroborating honest sources, while each corroborating source
will be involved in a single justification.



In Figure 10, we assume that we have a high a priori confidence in the trustworthiness
of the honest sources: the prior distribution of the trust value of PHS in that experiment
is a beta distribution with parameter α = 2000 and β = 1. As expected, in Figure 10, the
damage inflicted by the malicious source is significantly reduced compared to Figure 2
where no prior knowledge about the source trustworthiness was taken into account.

The next experiment evaluates the behavior of our scheme when partially malicious
sources use an oscillating behavior. They alternate periods where they assert incorrect
axioms, contradicting axioms asserted in the same period by other sources, with periods
in which they assert only correct axioms. As opposed to previous experiments where
malicious axioms asserted in a step were not guaranteed to yield an inconsistency in the
same step, in the oscillation experiments, the inconsistency is observed at the same step.
As shown in Figure 11 and 12, in absence of prior knowledge, the trust values of par-
tially malicious sources (PaMS) and honest sources drop significantly at the first period
in which incorrect axioms are stated. However, malicious sources, which due to infor-
mation asymmetry, can only contradict limited set of statements from honest sources,
never recover significantly, while honest sources quickly improve their trust values by
asserting more axioms not involved in conflicts. As in the previous non-oscillating ex-
periments, the negative impact on honest sources can be reduced considerably through
axiom duplication and prior strong confidence in their trustworthiness.

Fig. 10: Trust under single PuMS attack: No
duplication - Prior = B(2000,1)

Fig. 11: Oscillating experiment - 90% PHS &
10% PaMS (No duplication)

The last experiment simulates an oscillating scenario where all four types of sources
are present: 30% PHS, 20% PuMS, 30% IHS and 20%PaMS. Figure 13 shows how our
scheme correctly separates the 4 types of sources as expected.

6 Conclusion

In this paper, we have introduced a new trust framework for rich, complex and uncer-
tain information by leveraging the expressiveness of Bayesian Description Logics. We
have demonstrated the robustness of the proposed framework under a variety of scenar-
ios, and shown how duplication of assertions across different sources as well as prior
knowledge of the trustworthiness of sources can further enhance it.
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Fig. 12: Oscillating experiment - 50% PHS &
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