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Abstract. OWL 2 RL was standardized as a less expressivedalable subset
of OWL 2 that allows a forward-chaining implemeraat However, building
an enterprise-scale forward-chaining based inferemgine that can 1) take ad-
vantage of modern multi-core computer architectuaes 2) efficiently update
inference for additions remains a challenge. |a ffaper, we present an OWL 2
RL inference engine implemented inside the Oradtalthse system, using
novel techniques for parallel processing that eaulity scale on multi-core ma-
chines and clusters. Additionally, we have addgxpstt for efficient incremen-
tal maintenance of the inferred graph after trggditions. Finally, to handle the
increasing number of owl:sameAs relationships preseSemantic Web data-
sets, we have provided a hybrid in-memory/disk Baggproach to efficiently
compute compact equivalence closures. We have ekteasive testing to eva-
luate these new techniques; the test results denatmghat our inference en-
gine is capable of performing efficient inferena@oontologies with billions of
triples using a modest hardware configuration.

1 Introduction

As part of the OWL 2 [9] standardization effortreh new, less expressive OWL sub-
sets were proposed that have polynomial (or lemsiptexity and are suitable for effi-
cient and scalable reasoning over large datasg}s [These profiles are OWL 2 EL,
based on the EL++ description logic [7], OWL 2 Qasbd on DL-Lite [5] and OWL
2 RL, which was designed with rule-based implenténa in mind.

Since it is described as a collection of positivetdlog rules, OWL 2 RL can be
theoretically implemented on top of semantic stdteg already provide rule-based
reasoning. One of these semantic inference enggn€sacle’s Semantic Technolo-
gies offering [10], which has supported inferengercscalable rule-based subsets of
OWL since Oracle Database 11g Release 1. Oracl&seince engine pre-computes
and materializes all inferences using forward cinginand later uses the materialized
graph for query answerifg

There are several challenges in handling entersdake OWL 2 RL reasoning:

OWL 2 RL supports equivalence relations such as:sawieAs or
owl:equivalentClass. With the emergence of intarrmrted Linked Data
and its heavy use of owl:sameAs, it becomes ingrgbsdifficult to fully

materialize owl:sameAs closures. A naive represientaf the closure could

1 Note that our focus is not on query time inferertberefore we have not incorporated tech-
nigues such as magic sets rewriting.



be O(N) in the size of the original triple set; we havbserved these
owl:sameAs blowups using UniProt[2] and OpenCw] #ata.

- New RDF data is being published at an increasitgy efficiently reasoning
through such updates becomes a bottleneck if fieeeince closure needs to
be maintained. There exists previous work on ogiimgi Datalog reasoning
through updates using semi-naive evaluation (SEef¢2 a survey); howev-
er it has neither been applied nor evaluated IO setting using large-
scale datasets and complex rule sets.

— Since OWL 2 RL has more than 70 rules, performinhgiference on bil-
lion-triple sized datasets could take hours tcsfiniwith the proliferation of
multi-core and multi-CPU machines, an approacheisded that could effi-
ciently parallelize OWL 2 RL inference so that dutd readily scale by add-
ing more processors to the inference engine.

In this paper, we present a rfeversion of the inference engine built inside Ogacl
Database that supports OWL 2 RL and addressedbtwe a&hallenges. The main con-
tributions are the following:

Compact Materialization of Equivalence Closures We address the challenge of
efficiently computing owl:sameAs equivalence cl@suon massive scales by provid-
ing a hybrid (memory and disk-based) algorithmdenerating compressed closures
and integrating it with the general forward chagninference engine.

Incremental Maintenance of Inferred Closure— We have developed a technique
to efficiently update the inferred graph after leiadditions to the underlying data
model. Our technique is based on semi-naive evatyawith additional optimiza-
tions such as lazy duplicate elimination and dyrageimi-naive evaluation.

Parallel Inference -We have parallelized the rules engine by levera@nacle’s
support for parallel SQL execution [17], which ssalell with modern multi-core
and multi-CPU architectures. To this end, we degyetbnovel rule optimization tech-
niques specifically aiming at parallel execution cpieries. We also developed a
source table design to align the structure of #idetthat stores semantic models with
the table that stores intermediate temporary datemted during inference. Finally,
we developed optimizations to reduce the data géofeotprint of inference to reduce
memory and I/O consumption.

Note that no knowledge of Oracle internals is neeeapply the techniques pre-
sented in this paper. Thus, they should be appécbany RDBMS-based OWL 2
RL implementation (except for parallel inferencenieh assumes that the underlying
database has support for parallel query evaluation)

We evaluated the new features using datasets llidnb of triples, including ver-
sions of the LUBM ontology benchmark, UniProt ooty and various other real
world datasets. With the optimized handling of e@giénce closures, inference over
owl:sameAs-heavy datasets that was extremely timdespace consuming in previous
versions of Oracle can now be done in minutes. al8e show that our incremental
OWL 2 RL inference over graphs of 1 billion triplekes less than 30 seconds to up-

2 The algorithms described in this paper along viiih support for the OWL 2 RL/RDF en-
tailment and validation rules are available in amdle Database 11g Release 2 patch and
will be part of the next release.



date the inferred graph. Finally, in the empirieghluation section, we demonstrate
the advantages of using parallel inference; tHmnal us to perform inference faster
on less powerful hardware than well-known triplerstvendors [3].

2 Preliminaries
2.1. OWL 2 RL

OWL 2 RL is a profile of OWL 2 aiming at applicati® that require scalable reason-
ing, efficient query answering, and more expressgs than RDF(S), without need-
ing the full expressive power of OWL 2. The spewifion [12] provides a partial axi-
omatization of the OWL 2 RDF-Based Semantics in them of first order
implications, called the OWL 2 RL/RDF rules.

The OWL 2 RL/RDF rule set is a superset of the tiiwial RDF(S) rules [22]; to-
tal number of rules in the partial axiomatizatidrOWL 2 RL is 78, compared to the
14 rules defined for RDF(S). In addition to sugjmgr all of the RDF(S) constructs
(except for axiomatic triples which are omitted parformance reasons), OWL 2 RL
also supports inverse and functional propertieys kexistential and value restric-
tions, and owl:intersectionOf, owl:unionOf to sometent. For a lack of space, we
will not enumerate all of the OWL 2 RL rules; wderthe reader to the standard spe-
cification [12] for more information. Inference amgdery answering has polynomial
data complexity for OWL 2 RL.

2.2. Oracle Semantic Technologies

Oracle Semantic Technologies [23] provides a seimdata management framework
in Oracle Database that supports storing, quergnd,inferencing of RDF/OWL data
via either SQL or Java APIs. It allows users tateeone or more semantic models to
store an RDF dataset or OWL ontology. The builhative inference engine allows
inference on semantic models using OWL, SKOS, RDF8d user-defined rules.
The semantic model (and/emntailed semantic model, that is, model data plus inferred
data) is materialized and can be queried usingeB®ARQL query patterns embed-
ded in SQL or standard SPARQL query interface waJ®racle also supports ontol-
ogy-assisted querying over enterprise relationgd dad semantic indexing of docu-
ments.

Inference Engine: The semantic inference engine [10] in Oracle 1hgabase is
based on forward chaining. It compiles entailmarés directly to SQL and uses
Oracle’s native cost-based SQL optimizer to chaaseefficient execution plan for
each rule. Various optimizations were added to owpmperformance and scalability:

- Dependency Graph — We developed a dependency gregbhthat we only ap-
ply a rule in round if in roundn-1 there have been new inferences for at least
one of the predicates contained in the rule’s body.

- Using a Partitioned, Un-indexed Table — A tempottabye is used to material-
ize all inferences while applying the inferenceersul This table is partitioned
by predicate to allow efficient queries, but i malexed, since inserting in-
ferred triples in an indexed table significantlgwst down total inference time.



— Optimized Transitive Closure Evaluation — this optation is critical for predi-
cates such as rdfs:subClassOf. Instead of usirrgrbtd@cal queries natively pro-
vided by Oracle Database, we discovered that imgigimg semi-naive evalua-
tion [21] to compute transitive closure resultbétter performance.

The following notation is used throughout this pajgerefer to various data struc-
tures maintained in the semantic stdverefers to a single semantic model, i.e., an
RDF graph containing asserted instance and schephest I(M), or | for short, re-
fers to the entailed OWL 2 RL graph for M which tains only the materialized in-
ferred triples.PTT is the partitioned, un-indexed temporary table gtares inferred
triples during inferenceD andDI are related to incremental inference: D stores the
triples added to M since the last inference caltl BI contains the triples inferred in
the current inference round.

3 Optimized Equivalence Reasoning

For equivalence relations such as owl:sameAs, owivalentProperty or
owl:equivalentClass, fully materializing the equerce closures can be problematic
for large datasets. In general, given a connectef Braph with N resources using
only owl:sameAs relationship, there will be G{Nhferred owl:sameAs triples. Note
that the alternative of searching the RDF grapuary time to determine if two URIs
are equivalent is not feasible because of the aotems among owl:sameAs infe-
rences with other rules in OWL 2 RL. This will reguia query rewriting approach,
which given the large number of rules in OWL 2 Rill slow down queries.

Each group of owl:sameAs-connected resources repe®clique; when doing
full materialization the cliques’ sizes (numberavfl:sameAs triples) can grow quite
large. For instance, the Oracle 11g inference en(difi] exhausts disk space (500GB)
before completing the owl:sameAs closure for thechenark ontology UniProt 80M
[2]. Note that this version of UniProt80 containsligiue of size 22,000+ individuals
so that a full materialization generates more @8 million triples.

Our approach to handling equivalence closures sedb@n partial materialization.
Instead of materializing the cliques, we choose @s®urce (individual) from each
clique as a representative and all of the infererficethat clique are consolidated us-
ing that representative. The idea behind this alantiaterialization has been explored
in previous work [3, 6, 8]; our novel contributiein developing a hybrid (memory
and disk-based), scalable approach for buildingothlesameAs cliques.

Following, we discuss how we solve the technicallleimge of large scale clique
building, that is: given an arbitrarily large inpat owl:sameAs pairs, efficiently
build a mapgo : ID — ID which will take an IB of a subject, a property or an ob-
ject as input and return the corresponding cligm@esentative ID. Note while build-

ing 0 , we maintain an invariant tha¢ = o(X) .

3 For brevity, we will only be discussing owl:sameélesures in the rest of this paper, but our
approach is applicable to other equivalence reiatguch as (owl:equivalentClass).

4 Note that in our internal storage structures, Udld literals are mapped to number-based IDs
for performance reasons.



3.1. Large Scale Clique Building

The main challenges in building owl:sameAs cligaesthat 1) a pure memory based
approach does not scale due to memory size limitstiand 2) a pure SQL based ap-
proach is not efficient because of the performang®@ications of many joins on input
required to buildo .

Our proposed solution uses a hybrid approach —oad batches of owl:sameAs
assertions (where the batch size is a tunable pdesjrfrom the input table, merge
each batch in memory and then append the genestigeds to0Q , which is stored as
a table. After all batches are processed, therebmaywl:sameAs relationships across
different cliques. To capture these cases, we agaploy batch processing on ti2
table itself, merging where needed, until we reach adirp

The flow of the algorithm is as follows:

function build_cliques ( 1)
| input table containing ow : saneAs pairs
p: empty map (resource_id -> clique_id)

1. Readbatch Bfrom |
a. pO,=Merge( B);b. Append pP.to PO
2. Repeat 1 until no batches left in I
3. Loop
a. Select batch of merge candidates Bfrom 0O
b. 0,=Merge( B)
c. Update p with O,
4. Repeat 3 until no more merges possible in Yo,

5 retun O

Merge is done in memory using the Union-Find algoriti8n 27]. Given an input of
equivalence relations (i.e., owl:sameAs assertjdvisyge builds a map of resources
to cligue representatives such that given a resouetrieving its representative is
done using only one lookup. The algorithm has toomplexity of O(N log N) and
polynomial space complexity, however using path jpassion [8] we achieved al-
most linear performance in our testing.

After steps 1 and 20 is not fully merged since there may be inter-aliquerges
remaining. For instance, if one clique containswi:sameAs B and another contains
A owl:sameAs C, then B and C should belong to #raesclique and they will be se-
lected as merge candidates. Additionally, if origud contains A owl:sameAs B and
another contains B owl:sameAs C, then A and C shbel in the same clique and
they will also be selected as merge candidatestdp 3c, 0 is updated with the

merged in-memory mago .. This is done using an OUTER JOIN where, for each
key xin p,, O (x) is replaced by (x).

After 0 has been built, we update the asserted and infgmagph with the new
information, replacing resources x with their ckgepresentative® (x).

Performance On a UniProt 80 million triple sample, the optimdzowl:sameAs
approach took 26 minutes to finish inference, poitly 61 million consolidated



triples. More than 100,000 cliques were generatiéd an average membership size
of 5.6; the largest owl:sameAs cliqgue had 22,08éueces. The storage savings com-
pared to a full materialization of the owl:sameAssare are more than 95%. More
evaluation results are shown in Section 6.

4 Parallel OWL Inference

An extensive performance evaluation of the previeession of Oracle’s inference
engine (11g Release 1) on a server class machtheswiid-state disk based storage
revealed that the inference process is CPU-bourglah a setup. Thus, the native
OWL inference engine needs to be parallelized lig faverage hardware configura-
tions that have multiple CPUs (cores) and highthi@ughput.

We explored several schemes to parallelize thevend@WL inference process.
Simply applying Oracle SQL engine’s parallel exémutcapability to each inference
rule (which is translated to a SQL query) withony anodification to the inference
algorithm did not produce any performance beneliitshe following subsections, we
propose several new inference optimization techesqthat successfully leverage
Oracle’s parallel execution engine. We believe taey general enough to be applied
to any database supporting parallel query execsition

4.1. Query Simplification for Efficient Parallel Inference

After comparing the performance difference of bk tules running in serial and
parallel mode, we observed that rules with smailember of patterns in the body
tend to have bigger performance gains when ruraralfel. This observation leads to
a new optimization taimplify complex, multi-pattern rules. Next, we provide an ex-
ample of how this rule simplification by break wgrhnique is used to optimize the
parallel execution of the OWL 2 RL rule CLS-SVFiktgd below):

T(?x,owl:someValuesFrom,?y)
T(?x,owl:onProperty,?p)

T(?u,?p,?v)

T(?v, rdf:itype, ?y) =2  T(?u, rdfitype, ?x).

The first two patternsT(?x, owl:someValuesFrom, ?y) and T(?x,
owl:onProperty, ?p) are much more selective compared to the restitikeu

ly, execution of this rule can be divided into tparts, where one part focuses on the
selective patterns, and the other part focuseb®mnest. After the selective sub-query
is executed, the variable bindings are then usefdirtber constraint the rest of the
patterns. Putting this idea into context, a queny lbe executed to find all bindings for
?Xx, ?y, and ?p that satisfy the first two pattér(®x, owl:someValuesFrom,

?y) and T(?x, owl:onProperty, ?p) . For each binding tuple (x, y, p)
coming from the query result set, we execute tHewiéng rule in parallel:
T(?u, p, ?v). T(?v, rdfitype,y) = T(?u, rdfitype, x)

Executing CLS_SVF1 in parallel mode using the fid/approach described above
is five times faster than running this rule asrgld SQL statement.



This idea of breaking up a rule in two parts casilg be generalized to complex
rules containing selective and unselective patteriise rule body The pseudo code
of the algorithm is as follows:

function find_sel _patterns (|, R)returnsC

I : Input RDF graph containing asserted data

R : Set of triple patterns belonging to an OWL 2
RL rule body

C : Candidate selective subset that is returned,

initially empty

1. Estimate average out- and in- degree for subjects

and property nodes respectively for each property

inl
2. Estimate selectivity for each property in | by sam-
pling
3. For each subsetS of R
I f est(S, I) < threshold 6 then
| f cardinality(S) > cardinality(C) thenC:=S
El se i f cardinality(S) == cardinality(C) and
est(S, 1) <est(C, 1) thenC:=S
4. ReturnC

Note that all of the rules in OWL 2 RL have lesartti0 triple patterns in the body,
so the search space for selective subsets is &rll.

In the pseudo-code abovest(S, 1) estimates the selectivity (size of return
set) of a set of triple patterns S against a trijgltaset I. We use a simple, conserva-
tive estimation technique where we start with thepprty count estimates and then
we iteratively multiply by the average in- or odegrees (depending on the position
of the join variables). These property count andrage in/out degree estimates are
done once, when the first tinfimd_sel_patterns is executed. Note that more
sophisticated SPARQL selectivity estimation methidds[26] could be used here.

The idea of query simplification also applies todé rules, including CLS-INT1
[12], with recursive/hierarchical structures thaeudf:list. Using CLS-INT1 as an
example, instead of using a single complex SQLind &ll ?y that satisfyl(?y,

rdf:type, ?C1) ... T(?y, rdfitype, ?Cn) , a series of simpler SQLs are
used to first find all matches for tHg?y, rdf:type, ?C1) and then join this
result set with the next pattefli§?y, rdf:type, ?C2). This kind of operation
is repeated until the last pattefit?y, rdfitype, ?Cn) is processed. Apart

from the query simplification, another benefithst for ontologies containing tens of
thousands or more owl:intersectionOf axioms, ifie@sible to process all the axioms
together in an iterative fashion. Details are omithere due to space limitations.

5 Note that we are not simply reordering the patteimstead we find a selective subset of rule
body patterns to be used as the driving query.

6 Currently, we set the threshold for the selectiie pattern estimate to 1000. We do not use
a larger number because we need to re-evaluatsettend part of the rule for each binding
produced by the selective part.



4.2. Compact Data Structures

An examination of the underlying table design shaveiscrepancy between the table
that holds the original semantic model(s) and taditpned temporary table (PTT)
that holds the intermediate inference results. NgniT T is partitioned using predi-
cates while the semantic models are not.

To allow efficient parallel execution, we desigreedinglesource table with the
same structure as PTT; this source table contains atié df the original semantic
model(s). Then, queries executed during inferemty wse this source table and PTT.
This design change produced critical performancpravements for parallel infe-
rence. For example, rules that tend to generateymaw inferred triples including
RDFS2, RDFS3, RDFS9, RDFS11, RDFS7, PRP-INV1 [PHP-INV2 are running
30% ~ 60% faster when Oracle SQL engine’s paragjledry execution is turned on
and the degree of parallelism@P?) is set to &

As an additional storage optimization, we use dyt®-binary RAW type as a col-
umn type for the PTT and source table insteadg#reric numeric type (NUMBER).
RAW is an Oracle-specific native datatype whicheitirned as a hexadecimal string.
This column type change saves more than 12% diskge size using typical bench-
mark ontologies and this space saving directlydliatas into better inference perfor-
mance.

As a final optimization, we also ugerfect reverse hashing, based on the fact that
the set of all generated resource IDs for evemgelacale ontology tends to be sparse
(imagine 1 billion = 1®unique IDs scattered across a space consisti@®f fhich is
roughly 1.8*18° different values). Perfect reverse hashing previtiditional storage
savings by mapping the sparse ID values into aesd@@l set of values starting with
1. For example, assume the original data modelttagollowing set of unique ID
values: {10, 1009123, 834132227519661324, 7617982327, 621011710366788},
where some of them require multiple bytes for gerdf we map them to this se-
guence {1, 2, 3, 4, 5}, then one byte for eachdBufficient. In our algorithm, we get
the set of unique integer IDs out from the semamiiciels, map them into a set of se-
guential integer values, which are then storedvaréable length data type. Then, the
RDBMS determines the number of bytes needed faiage Note that the more
compact table structures provided by perfect revleshing will improve serial infe-
rence as well.

5 Incremental Inference

Incremental inference tackles the following probleggiven a model M with a mate-
rialized inference graph I, how can we efficientlydate | after a new set of triples D
is added to M?

Our algorithm for incremental inference is basedsemi-naive evaluation [21].
The goal is to avoid re-deriving existing factdl iafter an update. The following ex-
ample illustrates the basic idea using the rule:

7 Degree of parallelism (DOP) is an Oracle settihgt tspecifies the number of parallel
processes that should be used to execute a S@m&tat.
8 On a PC with dual-core CPU, three 1TB disks anB &M running 64-bit Linux.



Xrdf:type C1. C1 rdfs:subClassOf C2 => Xrdf:type C2
R P h

In “naive” inference, the patterns pl and p2 aréh lselected from M UNION I.
For shorthand, we usé“} to indicate that pattern p selects from relatiotNION
B. After adding D to M, we know that the join"g x p,*"' was already evaluated.
Joining p"'"° x p,""'"® means mostly re-derivingpe same inferences.
To avoid redundant derivation, at least one predishould select from the new set
of triples D. The semi-naive rule evaluation isi@ln two steps:
1) h€p®x pM'?
2) hep™® xp®

Given the assumption that D is small relative taMl |, this divide and conquer
approach has the potential for significant perfanoga improvements. We imple-
mented two custom optimizations on top of this vkelbwn evaluation algorithm in
order to further improve performance.

5.1. Lazy Duplicate Elimination

During inference, inferred triples are checkedee # they already exist in M, | or
PTT before the triples are inserted in PTT. Thisakhusually involves a hash join
which essentially scans through the M, I, and Pallies. Given a small size of D, we
assume that the number of triples inferred wilk&latively small compared to M and
I, so we allow duplicates to accumulate by not reimgp them after firing each rule.
Instead, we perform the join to remove duplicately once, at the end of each infe-
rence round.

Lazy duplicate elimination will introduce duplicatén DI during an inference round.
However, our results (see Table 1) indicate thatdhplicate overhead is acceptable
since we do not have to perform duplicate elimpragafter each rule.

Model name Yago WordNet LUBM8000
(#triples) (29.9 million) (2.9 million) (1.06 billion)

#D”p"fr?;:fun'q”e 83583/17,180 123.123/23,410 20,944/ 2,453

Table 1 Duplicate Triples in Incremental Inference.The number of newly as-
serted triples (i.e., delta size) is 10,000.

5.2. Dynamic Semi-Naive Evaluation

The semi-naive evaluation technique describedighgiction can also be used when
performing inference from scratch, by treating thierred triples in each round as
delta D.

However, we observed that using semi-naive evalndtr each inference round
(we refer to it astatic semi-naive evaluation) is not always the optintedice. This
is because in the initial inference rounds the nemds inferred triples |DI| could be
quite large compared to the size of the assertedel{g) |M|; in such cases, when
splitting and evaluating each rule the same execuyilan (usually consisting of hash
joins) might be used and it might be slower thaal@ating the rule in one step. On



the other hand, if |Dl| is small enough, the SQtinogzer will select a different plan
where a nested loop join with index is used instfauhsh join, which could dramati-
cally improve performance when the driving tablg Bx |M|.

Thus, weselectively use semi-naive evaluation depending on the nuofieiples
inferred in an inference round. At the end of esmimdr, we use the following heu-
ristic formula to determine whether to use semiraa@valuation in roundt 1:

| DI |

< (@)
[PTTHYIM, |

where the thresholdis set to 0.1 by default. In other words, if thember of triples
inferred is less than 10% of the overall triple b(including cumulative inferences
and asserted models), then we use semi-naive dealimthe following round.
Below, we demonstrate the benefits of dynamic seaite evaluation compared to
naive evaluation and to “static” semi-naive evaarafrunning times in seconds).

Dataset Model Size | #Inf. Dynamic Semi-| Naive | Static
Rounds Naive Semi-Naive
LUBM1000 133M 3 3,628| 4,497 4,996
Yago 19.9M 2 981 | 1,230 2,049
Wordnet 1.9M 6 335 427 605

Table 2 Evaluation results for dynamic semi-naivewaluation.
6 Evaluation

This section presents the results of a performahagy of the techniques presented
in this paper using various real-world and syntheéimantic datasets.

6.1. Experimental Setup
We used 2 commodity PCs for our experiment; werrefeghem as S1 and S2. Each

runs Redhat Enterprise Linux v5 64 Bit (2.6.18-128ch PC has Oracle Database
11.2 installed and three disks attached. We usetbnfatic Storage Management

(ASM) to spread the 1/O load across multiple disks.
CPL Memory Disk
S1 | Intel Core 2 Duo 2.13 Gt | 6GB 750GE
Sz | Intel Core 2 Quad 2.4 Gt | 8GB 3TB

The databases were setup with a block size of 8sb$1 had 2400M memory al-
located to system global area (SGA), and 3200Mytpegated program global area
(PGA) whereas S2 had allocated 3400M and 4400M3A 8nd PGA.

In addition to the two commodity PC setups, we als® two server-class ma-
chines. S3 is a Sun 4150 server with dual quad €CBfds and Sun Storage 5100



Flash Array. S4 is a Sun Oracle Database Machideeaadata Storage Server (Full
Rack® with 8 nodes).

CPU Memory Disk
Sz Intel Xeon CPU E5440 2.83Gl 32GR 1TB
sS4 Intel Xeon CPU E5540 2.53G} 72GB each noc 100 TB+

We used various real-world and synthetic datage¢valuate our inference engine.
Lehigh University Benchmark [4] is used frequenrttyevaluate performance of se-
mantic stores; we evaluated against LUBM1000, LUBBB LUBM25K and
LUBM50K where each has 133M, 1.1B, 3.3B and 6.6@ds respectively. We used
Yago (20M), OpenCyc [24] (1.5M), Wordnet (1.9M)dabniProt [2] (two versions,
one of 80M, another of 740Misreal-world datasets.

6.2. Parallel Inference Evaluation

We evaluated parallel inference on UniProt 740M aadous sizes of LUBM. On
server class machine S3, we measure the perforniamprevement as DOP changes
from 1 to 8. Figure 1 shows that performance impsodrastically as we move from a
serial execution to parallel execution with DOPtse.

The evaluation results achieved using machine S3tseare shown in Figure 2. In
the case of LUBMB8000, inference time drops fromhé2rs to 11 hrs when using pa-
rallel inference. We observe similar improvemenithvi UBM25000. In all cases,
the parallel inference is run with DOP=4.

Using the parallel inference optimizations, we alpée to achieve comparable per-
formance to other triple stores while using muctakez hardware: e.g., BigOWLIM
uses a server machine while reporting similar griee performance numbers to ours
for LUBM25000 and LUBM8000 [15].
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9 http://iwww.oracle.com/technology/products/bi/dbigata/pdf/exadata-technical-whitepaper.pdf
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Figure 2 Parallel Inference Performance when DOP=4
We also evaluated parallel inference performanceeswer-class machine S4. Due

to time limitations, we only collected a few datzgirgs. The results nonetheless prove

the effectiveness of the parallel inference engisale Oracle database and the scala-

bility of the particular server-class machine tdste

Benchmark Parallel Inference Timwith S4
LUBM 8000, DOP = 6 46 minutes and 23 secol
LUBM 25000, DOP =3 247 minutes and 9 secol

6.3. Incremental Inference Evaluation

This section contains the incremental inferencéoperance results. The evaluation
was done on server S1. For each dataset, we renaomachber of triples, performed

inference on the remaining dataset and then adaekithe removed triples in batches
of various sizes while measuring the time neededpttate the inference graph. We
performed this three times and measured the avenagemental inference time for

each batch. Results are presented in Figure 3.

—e—Yago —=—Wordnet ——LUBM1000
—=—UniProt5M ——LUBMS8000
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Time (sec.)
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Delta Size
Figure 3 Incremental Inference Evaluation.As a reference, we also show total
(non-incremental) inference time when building ithference graph from scratch.



Our evaluation shows that updating the inferenelyiis orders of magnitude faster
using the incremental inference techniques. Fdait®, even in the case of a 1 bil-
lion triple dataset like LUBM8000, we are able fadate the inference graph in less
than 20 seconds if the delta is less than 100.n Exeen adding 10,000 triples the in-
ference update time takes only a few minutes (coetpto 11 hours needed to build
LUBMB8000 inference graph from scratch).

6.4. Optimized owl:sameAs Handling Evaluation

To evaluate our optimized owl:sameAs handling tégpies, we used the following
datasets: UniProt 80 million, UniProt 740M and OPgo. All three of these datasets
have more than 100,000 asserted owl:sameAs triplegormance results are shown
in Table 3. Without the optimized owl:sameAs hangliUniProt 80M and OpenCyc
did not finish inference: they exhausted disk sg@®GB) after running for 40+ hrs,
and UniProt 740M took 24 hours to finish inference.

(gtitalsei) UniProt UniProt OpenCyc

P (80 Million) (740 Million) (2.5 Million)
owl:sameAs Closure # of Triples 2,129,166,152 42 397 295,540,812
owl:sameAs Compressed Closure 766,905 12,282,537 395,527
# of Triples

Inferred Triple Size 63,161,568 740,269,215 91,104,
Cliques Building Time 29 sec 6 min 39 sec
Total Inference Time 25min 48sec 4hr 14min 13 mi7

Table 3. Performance Results for Optimized owl:sanmfs Handling.
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Figure 4. Distributions of Clique Sizes.
Figure 4 shows the distribution of number of cligi@ross bins of various clique
sizes. As expected, most of the cliques in alldhdatasets have less than 10 mem-
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bers. Interestingly, UniProt80m and OpenCyc hawaumorising number of cliques
larger than 1000. In the case of UniProt80m, tingelst clique is of size 22,065 and
can blow up to 486 million triples when fully matdized. In the more recent, up-
dated version of UniProt (with 740million tripleshe modeling issues leading to
these large cliques seems to have been fixed; &lafiosliques have less than 1000
resources.

The latest version of OpenCyc [24], on the othendhaseems to contain some
modeling issues. Apart from the largest cliqgue abnihg 17,030 resources, many of
the resources in that clique are plain literaldwdistinct values.

7 Related Work

Due to a lack of space, in this section we onlyjate a survey of the semantic stores
and inference engines most closely related to arkw

Jena [11,14] is a Java framework for Semantic Wepligations. In addition to
providing an API for RDF, RDFS, OWL and SPARQLjntludes a rule-based infe-
rence engine; the inference engine can use bottafdrand backward chaining, and
it supports the most common OWL constructs. Addity it allows users to define
their own custom rules, however it does not nayivalpport any constructs intro-
duced in OWL 2. Like our inference engine Jena sugpincremental maintenance
(when the forward-chaining RETE-based engine isl)ysenlike our engine Jena does
not optimize owl:sameAs handling.

Sesame [13] is a semantic data repository for RBd RDFS. Inference wise, it
does not support OWL and OWL 2 constructs as wdtdwovides an inference en-
gine for RDFS that uses forward chaining and malieetion of the data. In [13], an
algorithm is proposed for truth maintenance of ROf$a, which could be used to
optimize reasoning after updates.

BigOWLIM [3] is a semantic repository that is fulgompatible with the Sesame
RDF framework. It supports RDFS, some OWL consguahd extensions with user-
defined rules. BigOWLIM’s inference engine materes$ inferred triples using for-
ward chaining.

BigOWLIM has reported results for the LUBM benchik§t5]. For example, Bi-
gOWLIM 3.1 can load, infer, and store the LUBM 80@&taset in 14.4 hours on a
desktop machine. However, their approach seemsdoire a much larger memory
footprint when operating against large ontologiEs] compared to ours.

AllegroGraph [1] is a persistent triple store thah handle large RDF knowledge
bases. It has inferencing capabilities that extbagond RDFS, including custom
rules and some OWL constructs, but does not ngtisepport any constructs intro-
duced in OWL 2. Virtuoso Open Link Server [18] isparsistent triple store that
scales well on multiple machines but it also pregidimited inference support
(rdfs:subClassOf, owl:sameAs and rdfs:subPropert@dftructs).

The Web-Scale Parallel Inference Engine (WebPI&)hough not a true RDF re-
pository because it lacks query capabilities - shtive power of massive parallelism
for OWL reasoning. WebPIE [25] is able to infer Z8llion triples from a 10 billion-
triple LUBM data set in 4.06 hours, using a 64-natiester. As a comparison, in an
inference run using the server-class machine Sdcl&s parallel inference engine is



able to infer, in one inference round, 5.5 billiviples from a 13 billion-triple LUBM
data set in 1.97 hours, using DOP=32. The sameetsily ontology and the same
OWL Horst semantics were chosen to make the cosgameaningful. We plan to
do more testing using high performance platfories $4.

While our inference engine is to able to cover wi®le OWL 2 RL profile, for
applications that need additional expressivenem®thas been recent work in coupl-
ing OWL 2 DL reasoner Pellet [19] with the OWLPririmderence engine in Oracle
Database 11g. The scalable-yet-expressive engilfetP® [20] uses Pellet to com-
pute the class hierarchy and Oracle for Abox reiagpand instance query answering.

Recently a system has been proposed for parafkeince in shared-nothing clus-
ters using existing systems for local computatioreach node [16]. The parallelism
within our system could work with this to take adisge of multi-core machines
within a shared-nothing cluster.

8 Conclusions and Future Work

This paper described the next generation OWL 2 iiRerence engine, implemented
in the Oracle Database, capable of handling ontesogith billions of triples. We
described a number of techniques that we develtpaedake this engine enterprise-
scale, incremental and parallelized. Additionaltyaccommodate the high degree of
owl:sameAs interlinking between semantic dataseesjmplemented a novel scala-
ble, hybrid in-memory/disk-based approach that campute compact equivalence
closures. Using this owl:sameAs approach we wekle @bdiscover some modeling
issues in real world datasets (e.g., OpenCyc).fidat contribution consists of a tho-
rough evaluation of all our techniques on largdesoaal world and synthetic
RDF/OWL datasets.

As part of future work, we plan to develop an effit technique to update infe-
rence graphs in presence of deletions. Additionally plan to investigate how we
can generalize our approach and extend our inferengine to cover the remaining
OWL 2 profiles (EL and QL). Finally, the optimizati techniques described in this
paper are only applied to the axiomatic rules of IO®RL, OWLPrime and RDF(S).
We plan to generalize the approach to cover userifspd rules and evaluate it using
the OpenRuleBench suite [28].
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