
Optimizing Enterprise-scale OWL 2 RL Reasoning in a
Relational Database System

Vladimir Kolovski1, Zhe Wu2, George Eadon1
 Oracle

1 1 Oracle Drive, Nashua, NH 03062 USA
2 400 Oracle Parkway, Redwood City, CA 94065 USA

{vladimir.kolovski, alan.wu, george.eadon}@oracle.com

Abstract. OWL 2 RL was standardized as a less expressive but scalable subset
of OWL 2 that allows a forward-chaining implementation. However, building
an enterprise-scale forward-chaining based inference engine that can 1) take ad-
vantage of modern multi-core computer architectures, and 2) efficiently update
inference for additions remains a challenge. In this paper, we present an OWL 2
RL inference engine implemented inside the Oracle database system, using
novel techniques for parallel processing that can readily scale on multi-core ma-
chines and clusters. Additionally, we have added support for efficient incremen-
tal maintenance of the inferred graph after triple additions. Finally, to handle the
increasing number of owl:sameAs relationships present in Semantic Web data-
sets, we have provided a hybrid in-memory/disk based approach to efficiently
compute compact equivalence closures. We have done extensive testing to eva-
luate these new techniques; the test results demonstrate that our inference en-
gine is capable of performing efficient inference over ontologies with billions of
triples using a modest hardware configuration.

1 Introduction

As part of the OWL 2 [9] standardization effort, three new, less expressive OWL sub-
sets were proposed that have polynomial (or less) complexity and are suitable for effi-
cient and scalable reasoning over large datasets [12]. These profiles are OWL 2 EL,
based on the EL++ description logic [7], OWL 2 QL based on DL-Lite [5] and OWL
2 RL, which was designed with rule-based implementations in mind.

Since it is described as a collection of positive Datalog rules, OWL 2 RL can be
theoretically implemented on top of semantic stores that already provide rule-based
reasoning. One of these semantic inference engines is Oracle’s Semantic Technolo-
gies offering [10], which has supported inference over scalable rule-based subsets of
OWL since Oracle Database 11g Release 1. Oracle’s inference engine pre-computes
and materializes all inferences using forward chaining, and later uses the materialized
graph for query answering1.

There are several challenges in handling enterprise-scale OWL 2 RL reasoning:
− OWL 2 RL supports equivalence relations such as owl:sameAs or

owl:equivalentClass. With the emergence of inter-connected Linked Data
and its heavy use of owl:sameAs, it becomes increasingly difficult to fully
materialize owl:sameAs closures. A naïve representation of the closure could

1 Note that our focus is not on query time inference; therefore we have not incorporated tech-

niques such as magic sets rewriting.

be O(N2) in the size of the original triple set; we have observed these
owl:sameAs blowups using UniProt[2] and OpenCyc [24] data.

− New RDF data is being published at an increasing rate; efficiently reasoning
through such updates becomes a bottleneck if the inference closure needs to
be maintained. There exists previous work on optimizing Datalog reasoning
through updates using semi-naïve evaluation (see [21] for a survey); howev-
er it has neither been applied nor evaluated in an OWL setting using large-
scale datasets and complex rule sets.

− Since OWL 2 RL has more than 70 rules, performing RL inference on bil-
lion-triple sized datasets could take hours to finish. With the proliferation of
multi-core and multi-CPU machines, an approach is needed that could effi-
ciently parallelize OWL 2 RL inference so that it could readily scale by add-
ing more processors to the inference engine.

In this paper, we present a new2 version of the inference engine built inside Oracle
Database that supports OWL 2 RL and addresses the above challenges. The main con-
tributions are the following:

Compact Materialization of Equivalence Closures - We address the challenge of
efficiently computing owl:sameAs equivalence closures on massive scales by provid-
ing a hybrid (memory and disk-based) algorithm for generating compressed closures
and integrating it with the general forward chaining inference engine.

Incremental Maintenance of Inferred Closure – We have developed a technique
to efficiently update the inferred graph after triple additions to the underlying data
model. Our technique is based on semi-naïve evaluation, with additional optimiza-
tions such as lazy duplicate elimination and dynamic semi-naïve evaluation.

Parallel Inference - We have parallelized the rules engine by leveraging Oracle’s
support for parallel SQL execution [17], which scales well with modern multi-core
and multi-CPU architectures. To this end, we developed novel rule optimization tech-
niques specifically aiming at parallel execution of queries. We also developed a
source table design to align the structure of the table that stores semantic models with
the table that stores intermediate temporary data generated during inference. Finally,
we developed optimizations to reduce the data storage footprint of inference to reduce
memory and I/O consumption.

Note that no knowledge of Oracle internals is needed to apply the techniques pre-
sented in this paper. Thus, they should be applicable to any RDBMS-based OWL 2
RL implementation (except for parallel inference, which assumes that the underlying
database has support for parallel query evaluation).

We evaluated the new features using datasets with billions of triples, including ver-
sions of the LUBM ontology benchmark, UniProt ontology and various other real
world datasets. With the optimized handling of equivalence closures, inference over
owl:sameAs-heavy datasets that was extremely time and space consuming in previous
versions of Oracle can now be done in minutes. We also show that our incremental
OWL 2 RL inference over graphs of 1 billion triples takes less than 30 seconds to up-

2 The algorithms described in this paper along with full support for the OWL 2 RL/RDF en-

tailment and validation rules are available in an Oracle Database 11g Release 2 patch and
will be part of the next release.

date the inferred graph. Finally, in the empirical evaluation section, we demonstrate
the advantages of using parallel inference; this allows us to perform inference faster
on less powerful hardware than well-known triple store vendors [3].

2 Preliminaries

2.1. OWL 2 RL

OWL 2 RL is a profile of OWL 2 aiming at applications that require scalable reason-
ing, efficient query answering, and more expressiveness than RDF(S), without need-
ing the full expressive power of OWL 2. The specification [12] provides a partial axi-
omatization of the OWL 2 RDF-Based Semantics in the form of first order
implications, called the OWL 2 RL/RDF rules.

The OWL 2 RL/RDF rule set is a superset of the non-trivial RDF(S) rules [22]; to-
tal number of rules in the partial axiomatization of OWL 2 RL is 78, compared to the
14 rules defined for RDF(S). In addition to supporting all of the RDF(S) constructs
(except for axiomatic triples which are omitted for performance reasons), OWL 2 RL
also supports inverse and functional properties, keys, existential and value restric-
tions, and owl:intersectionOf, owl:unionOf to some extent. For a lack of space, we
will not enumerate all of the OWL 2 RL rules; we refer the reader to the standard spe-
cification [12] for more information. Inference and query answering has polynomial
data complexity for OWL 2 RL.

2.2. Oracle Semantic Technologies

Oracle Semantic Technologies [23] provides a semantic data management framework
in Oracle Database that supports storing, querying, and inferencing of RDF/OWL data
via either SQL or Java APIs. It allows users to create one or more semantic models to
store an RDF dataset or OWL ontology. The built-in native inference engine allows
inference on semantic models using OWL, SKOS, RDF(S), and user-defined rules.
The semantic model (and/or entailed semantic model, that is, model data plus inferred
data) is materialized and can be queried using either SPARQL query patterns embed-
ded in SQL or standard SPARQL query interface in Java. Oracle also supports ontol-
ogy-assisted querying over enterprise relational data and semantic indexing of docu-
ments.

Inference Engine: The semantic inference engine [10] in Oracle 11g Database is
based on forward chaining. It compiles entailment rules directly to SQL and uses
Oracle’s native cost-based SQL optimizer to choose an efficient execution plan for
each rule. Various optimizations were added to improve performance and scalability:

− Dependency Graph – We developed a dependency graph such that we only ap-
ply a rule in round n if in round n-1 there have been new inferences for at least
one of the predicates contained in the rule’s body.

− Using a Partitioned, Un-indexed Table – A temporary table is used to material-
ize all inferences while applying the inference rules. This table is partitioned
by predicate to allow efficient queries, but is not indexed, since inserting in-
ferred triples in an indexed table significantly slows down total inference time.

− Optimized Transitive Closure Evaluation – this optimization is critical for predi-
cates such as rdfs:subClassOf. Instead of using hierarchical queries natively pro-
vided by Oracle Database, we discovered that implementing semi-naïve evalua-
tion [21] to compute transitive closure results in better performance.

The following notation is used throughout this paper to refer to various data struc-
tures maintained in the semantic store: M refers to a single semantic model, i.e., an
RDF graph containing asserted instance and schema triples. I(M), or I for short, re-
fers to the entailed OWL 2 RL graph for M which contains only the materialized in-
ferred triples. PTT is the partitioned, un-indexed temporary table that stores inferred
triples during inference. D and DI are related to incremental inference: D stores the
triples added to M since the last inference call, and DI contains the triples inferred in
the current inference round.

3 Optimized Equivalence Reasoning

For equivalence relations such as owl:sameAs, owl:equivalentProperty or
owl:equivalentClass, fully materializing the equivalence closures can be problematic
for large datasets. In general, given a connected RDF graph with N resources using
only owl:sameAs relationship, there will be O(N2) inferred owl:sameAs triples. Note
that the alternative of searching the RDF graph at query time to determine if two URIs
are equivalent is not feasible because of the interactions among owl:sameAs infe-
rences with other rules in OWL 2 RL. This will require a query rewriting approach,
which given the large number of rules in OWL 2 RL will slow down queries.

Each group of owl:sameAs-connected resources represents a clique; when doing
full materialization the cliques’ sizes (number of owl:sameAs triples) can grow quite
large. For instance, the Oracle 11g inference engine [10] exhausts disk space (500GB)
before completing the owl:sameAs closure for the benchmark ontology UniProt 80M
[2]. Note that this version of UniProt80 contains a clique of size 22,000+ individuals
so that a full materialization generates more than 480 million triples.

Our approach to handling equivalence closures is based on partial materialization.
Instead of materializing the cliques, we choose one resource (individual) from each
clique as a representative and all of the inferences for that clique are consolidated us-
ing that representative. The idea behind this partial materialization has been explored
in previous work [3, 6, 8]; our novel contribution is in developing a hybrid (memory
and disk-based), scalable approach for building the owl:sameAs3 cliques.

Following, we discuss how we solve the technical challenge of large scale clique
building, that is: given an arbitrarily large input of owl:sameAs pairs, efficiently
build a map IDID →:ρ which will take an ID4 of a subject, a property or an ob-

ject as input and return the corresponding clique representative ID. Note while build-
ing ρ , we maintain an invariant that)(xx ρ≥ .

3 For brevity, we will only be discussing owl:sameAs closures in the rest of this paper, but our

approach is applicable to other equivalence relations such as (owl:equivalentClass).
4 Note that in our internal storage structures, URIs and literals are mapped to number-based IDs

for performance reasons.

3.1. Large Scale Clique Building

The main challenges in building owl:sameAs cliques are that 1) a pure memory based
approach does not scale due to memory size limitations, and 2) a pure SQL based ap-
proach is not efficient because of the performance implications of many joins on input
required to build ρ .

Our proposed solution uses a hybrid approach – we load batches of owl:sameAs
assertions (where the batch size is a tunable parameter) from the input table, merge
each batch in memory and then append the generated cliques toρ , which is stored as

a table. After all batches are processed, there may be owl:sameAs relationships across
different cliques. To capture these cases, we again employ batch processing on the ρ
table itself, merging where needed, until we reach a fixpoint.

The flow of the algorithm is as follows:
 function build_cliques (I)
 I : input table containing owl:sameAs pairs

ρ : empty map (resource_id -> clique_id)

1. Read batch B from I

a. ρ
B = Merge(B); b. Append ρ

B to ρ
2. Repeat 1 until no batches left in I
3. Loop

a. Select batch of merge candidates B from ρ

b. ρ B = Merge(B)

c. Update ρ with ρ
B

4. Repeat 3 until no more merges possible in ρ

5. return ρ

Merge is done in memory using the Union-Find algorithm [8, 27]. Given an input of
equivalence relations (i.e., owl:sameAs assertions), Merge builds a map of resources
to clique representatives such that given a resource, retrieving its representative is
done using only one lookup. The algorithm has time complexity of O(N log N) and
polynomial space complexity, however using path compression [8] we achieved al-
most linear performance in our testing.

After steps 1 and 2, ρ is not fully merged since there may be inter-clique merges

remaining. For instance, if one clique contains A owl:sameAs B and another contains
A owl:sameAs C, then B and C should belong to the same clique and they will be se-
lected as merge candidates. Additionally, if one clique contains A owl:sameAs B and
another contains B owl:sameAs C, then A and C should be in the same clique and
they will also be selected as merge candidates. In step 3c, ρ is updated with the

merged in-memory map ρ B. This is done using an OUTER JOIN where, for each

key x in ρ B, ρ (x) is replaced by ρ B(x).

 After ρ has been built, we update the asserted and inferred graph with the new

information, replacing resources x with their clique representatives ρ (x).

Performance On a UniProt 80 million triple sample, the optimized owl:sameAs
approach took 26 minutes to finish inference, producing 61 million consolidated

triples. More than 100,000 cliques were generated with an average membership size
of 5.6; the largest owl:sameAs clique had 22,064 resources. The storage savings com-
pared to a full materialization of the owl:sameAs closure are more than 95%. More
evaluation results are shown in Section 6.

4 Parallel OWL Inference

An extensive performance evaluation of the previous version of Oracle’s inference
engine (11g Release 1) on a server class machine with solid-state disk based storage
revealed that the inference process is CPU-bound in such a setup. Thus, the native
OWL inference engine needs to be parallelized to fully leverage hardware configura-
tions that have multiple CPUs (cores) and high I/O throughput.

We explored several schemes to parallelize the native OWL inference process.
Simply applying Oracle SQL engine’s parallel execution capability to each inference
rule (which is translated to a SQL query) without any modification to the inference
algorithm did not produce any performance benefits. In the following subsections, we
propose several new inference optimization techniques that successfully leverage
Oracle’s parallel execution engine. We believe they are general enough to be applied
to any database supporting parallel query executions.

4.1. Query Simplification for Efficient Parallel Inference

After comparing the performance difference of all the rules running in serial and
parallel mode, we observed that rules with smaller number of patterns in the body
tend to have bigger performance gains when run in parallel. This observation leads to
a new optimization to simplify complex, multi-pattern rules. Next, we provide an ex-
ample of how this rule simplification by break up technique is used to optimize the
parallel execution of the OWL 2 RL rule CLS-SVF1 (listed below):

T(?x,owl:someValuesFrom,?y)
T(?x,owl:onProperty,?p)
T(?u,?p,?v)
T(?v, rdf:type, ?y) � T(?u, rdf:type, ?x).

The first two patterns T(?x, owl:someValuesFrom, ?y) and T(?x,

owl:onProperty, ?p) are much more selective compared to the rest. Intuitive-
ly, execution of this rule can be divided into two parts, where one part focuses on the
selective patterns, and the other part focuses on the rest. After the selective sub-query
is executed, the variable bindings are then used to further constraint the rest of the
patterns. Putting this idea into context, a query can be executed to find all bindings for
?x, ?y, and ?p that satisfy the first two patterns T(?x, owl:someValuesFrom,
?y) and T(?x, owl:onProperty, ?p) . For each binding tuple (x, y, p)
coming from the query result set, we execute the following rule in parallel:
 T(?u, p, ?v). T(?v, rdf:type, y) � T(?u, rdf:type, x)

 Executing CLS_SVF1 in parallel mode using the hybrid approach described above
is five times faster than running this rule as a single SQL statement.

 This idea of breaking up a rule in two parts can easily be generalized to complex
rules containing selective and unselective patterns in the rule body5. The pseudo code
of the algorithm is as follows:

 function find_sel_patterns (I, R) returns C
 I : Input RDF graph containing asserted data
 R : Set of triple patterns belonging to an OWL 2
 RL rule body

C : Candidate selective subset that is returned,
 initially empty

1. Estimate average out- and in- degree for subjects
and property nodes respectively for each property
in I

2. Estimate selectivity for each property in I by sam-
pling

3. For each subset S of R
 If est(S, I) < threshold 6 then

 If cardinality(S) > cardinality(C) then C := S
 Else if cardinality(S) == cardinality(C) and
 est(S, I) < est(C, I) then C := S

4. Return C
Note that all of the rules in OWL 2 RL have less than 10 triple patterns in the body,

so the search space for selective subsets is fairly small.
 In the pseudo-code above, est(S, I) estimates the selectivity (size of return

set) of a set of triple patterns S against a triple dataset I. We use a simple, conserva-
tive estimation technique where we start with the property count estimates and then
we iteratively multiply by the average in- or out- degrees (depending on the position
of the join variables). These property count and average in/out degree estimates are
done once, when the first time find_sel_patterns is executed. Note that more
sophisticated SPARQL selectivity estimation methods like [26] could be used here.

The idea of query simplification also applies to those rules, including CLS-INT1
[12], with recursive/hierarchical structures that use rdf:list. Using CLS-INT1 as an
example, instead of using a single complex SQL to find all ?y that satisfy T(?y,
rdf:type, ?C1) … T(?y, rdf:type, ?Cn) , a series of simpler SQLs are
used to first find all matches for the T(?y, rdf:type, ?C1) and then join this
result set with the next pattern T(?y, rdf:type, ?C2). This kind of operation
is repeated until the last pattern T(?y, rdf:type, ?Cn) is processed. Apart
from the query simplification, another benefit is that for ontologies containing tens of
thousands or more owl:intersectionOf axioms, it is feasible to process all the axioms
together in an iterative fashion. Details are omitted here due to space limitations.

5 Note that we are not simply reordering the patterns; instead we find a selective subset of rule

body patterns to be used as the driving query.
6 Currently, we set the threshold for the selective triple pattern estimate to 1000. We do not use

a larger number because we need to re-evaluate the second part of the rule for each binding
produced by the selective part.

4.2. Compact Data Structures

An examination of the underlying table design shows a discrepancy between the table
that holds the original semantic model(s) and the partitioned temporary table (PTT)
that holds the intermediate inference results. Namely, PTT is partitioned using predi-
cates while the semantic models are not.

To allow efficient parallel execution, we designed a single source table with the
same structure as PTT; this source table contains all data of the original semantic
model(s). Then, queries executed during inference only use this source table and PTT.
This design change produced critical performance improvements for parallel infe-
rence. For example, rules that tend to generate many new inferred triples including
RDFS2, RDFS3, RDFS9, RDFS11, RDFS7, PRP-INV1 [12], PRP-INV2 are running
30% ~ 60% faster when Oracle SQL engine’s parallel query execution is turned on
and the degree of parallelism (DOP7) is set to 48.

As an additional storage optimization, we use an 8-byte binary RAW type as a col-
umn type for the PTT and source table instead of a generic numeric type (NUMBER).
RAW is an Oracle-specific native datatype which is returned as a hexadecimal string.
This column type change saves more than 12% disk storage size using typical bench-
mark ontologies and this space saving directly translates into better inference perfor-
mance.

As a final optimization, we also use perfect reverse hashing, based on the fact that
the set of all generated resource IDs for even a large-scale ontology tends to be sparse
(imagine 1 billion = 109 unique IDs scattered across a space consisting of 264 which is
roughly 1.8*1019 different values). Perfect reverse hashing provides additional storage
savings by mapping the sparse ID values into a sequential set of values starting with
1. For example, assume the original data model has the following set of unique ID
values: {10, 1009123, 834132227519661324, 76179824290317, 621011710366788},
where some of them require multiple bytes for storage. If we map them to this se-
quence {1, 2, 3, 4, 5}, then one byte for each ID is sufficient. In our algorithm, we get
the set of unique integer IDs out from the semantic models, map them into a set of se-
quential integer values, which are then stored in a variable length data type. Then, the
RDBMS determines the number of bytes needed for storage. Note that the more
compact table structures provided by perfect reverse hashing will improve serial infe-
rence as well.

5 Incremental Inference

Incremental inference tackles the following problem: Given a model M with a mate-
rialized inference graph I, how can we efficiently update I after a new set of triples D
is added to M?

Our algorithm for incremental inference is based on semi-naïve evaluation [21].
The goal is to avoid re-deriving existing facts in I after an update. The following ex-
ample illustrates the basic idea using the rule:

7 Degree of parallelism (DOP) is an Oracle setting that specifies the number of parallel

processes that should be used to execute a SQL statement.
8 On a PC with dual-core CPU, three 1TB disks and 8GB RAM running 64-bit Linux.

 X rdf:type C1. C1 rdfs:subClassOf C2 => X rdf:type C2
 p1 p2 h

In “naïve” inference, the patterns p1 and p2 are both selected from M UNION I.
For shorthand, we use pA,B to indicate that pattern p selects from relation A UNION
B. After adding D to M, we know that the join p1

M,I × p2
M,I

 was already evaluated.
Joining p1

M,I,D × p2
M,I,D

 means mostly re-deriving the same inferences.
To avoid redundant derivation, at least one predicate should select from the new set

of triples D. The semi-naïve rule evaluation is done in two steps:
1) h � p1

D
 × p2

M,I,D

2) h � p1
M,I,D

 × p2
D

Given the assumption that D is small relative to M and I, this divide and conquer
approach has the potential for significant performance improvements. We imple-
mented two custom optimizations on top of this well-known evaluation algorithm in
order to further improve performance.

5.1. Lazy Duplicate Elimination

During inference, inferred triples are checked to see if they already exist in M, I or
PTT before the triples are inserted in PTT. This check usually involves a hash join
which essentially scans through the M, I, and PTT tables. Given a small size of D, we
assume that the number of triples inferred will be relatively small compared to M and
I, so we allow duplicates to accumulate by not removing them after firing each rule.
Instead, we perform the join to remove duplicates only once, at the end of each infe-
rence round.
Lazy duplicate elimination will introduce duplicates in DI during an inference round.
However, our results (see Table 1) indicate that the duplicate overhead is acceptable
since we do not have to perform duplicate elimination after each rule.

Model name
(#triples)

Yago
(19.9 million)

WordNet
 (1.9 million)

LUBM8000
(1.06 billion)

#Duplicate/#Unique
triples

83,583 / 17,180 123,123 / 23,410 20,944 / 2,453

Table 1 Duplicate Triples in Incremental Inference. The number of newly as-
serted triples (i.e., delta size) is 10,000.

5.2. Dynamic Semi-Naïve Evaluation

The semi-naïve evaluation technique described in this section can also be used when
performing inference from scratch, by treating the inferred triples in each round as
delta D.

However, we observed that using semi-naïve evaluation for each inference round
(we refer to it as static semi-naïve evaluation) is not always the optimal choice. This
is because in the initial inference rounds the number of inferred triples |DI| could be
quite large compared to the size of the asserted model(s) |M|; in such cases, when
splitting and evaluating each rule the same execution plan (usually consisting of hash
joins) might be used and it might be slower than evaluating the rule in one step. On

the other hand, if |DI| is small enough, the SQL optimizer will select a different plan
where a nested loop join with index is used instead of hash join, which could dramati-
cally improve performance when the driving table |DI| << |M|.

Thus, we selectively use semi-naïve evaluation depending on the number of triples
inferred in an inference round. At the end of each round r, we use the following heu-
ristic formula to determine whether to use semi-naïve evaluation in round r+1:

t
MPTT

DI

i
i

<
+∑ ||||

||

(1)

where the threshold t is set to 0.1 by default. In other words, if the number of triples
inferred is less than 10% of the overall triple count (including cumulative inferences
and asserted models), then we use semi-naïve evaluation in the following round.
Below, we demonstrate the benefits of dynamic semi-naïve evaluation compared to
naive evaluation and to “static” semi-naïve evaluation (running times in seconds).

Dataset Model Size #Inf.
Rounds

Dynamic Semi-
Naive

Naïve

Static
Semi-Naive

LUBM1000 133M 3 3,628 4,497 4,996
Yago 19.9M 2 981 1,230 2,049
Wordnet 1.9M 6 335 427 605

Table 2 Evaluation results for dynamic semi-naïve evaluation.

6 Evaluation

This section presents the results of a performance study of the techniques presented
in this paper using various real-world and synthetic semantic datasets.

6.1. Experimental Setup

We used 2 commodity PCs for our experiment; we refer to them as S1 and S2. Each
runs Redhat Enterprise Linux v5 64 Bit (2.6.18-128). Each PC has Oracle Database
11.2 installed and three disks attached. We used Automatic Storage Management
(ASM) to spread the I/O load across multiple disks.

 CPU Memory Disk
S1 Intel Core 2 Duo 2.13 GHz 6GB 750GB
S2 Intel Core 2 Quad 2.4 GHz 8GB 3TB

The databases were setup with a block size of 8k bytes. S1 had 2400M memory al-
located to system global area (SGA), and 3200M to aggregated program global area
(PGA) whereas S2 had allocated 3400M and 4400M to SGA and PGA.

In addition to the two commodity PC setups, we also use two server-class ma-
chines. S3 is a Sun 4150 server with dual quad core CPUs and Sun Storage 5100

Flash Array. S4 is a Sun Oracle Database Machine and Exadata Storage Server (Full
Rack 9 with 8 nodes).

 CPU Memory Disk
S3 Intel Xeon CPU E5440 2.83GHz 32GB 1TB
S44 Intel Xeon CPU E5540 2.53GHz 72GB each node 100 TB+

We used various real-world and synthetic datasets to evaluate our inference engine.
Lehigh University Benchmark [4] is used frequently to evaluate performance of se-
mantic stores; we evaluated against LUBM1000, LUBM8000, LUBM25K and
LUBM50K where each has 133M, 1.1B, 3.3B and 6.6B triples respectively. We used
Yago (20M), OpenCyc [24] (1.5M), Wordnet (1.9M) and UniProt [2] (two versions,
one of 80M, another of 740M) as real-world datasets.

6.2. Parallel Inference Evaluation

We evaluated parallel inference on UniProt 740M and various sizes of LUBM. On
server class machine S3, we measure the performance improvement as DOP changes
from 1 to 8. Figure 1 shows that performance improves drastically as we move from a
serial execution to parallel execution with DOP set to 8.

The evaluation results achieved using machine S2 results are shown in Figure 2. In
the case of LUBM8000, inference time drops from 42 hours to 11 hrs when using pa-
rallel inference. We observe similar improvements with LUBM25000. In all cases,
the parallel inference is run with DOP=4.

Using the parallel inference optimizations, we are able to achieve comparable per-
formance to other triple stores while using much weaker hardware: e.g., BigOWLIM
uses a server machine while reporting similar inference performance numbers to ours
for LUBM25000 and LUBM8000 [15].

9 http://www.oracle.com/technology/products/bi/db/exadata/pdf/exadata-technical-whitepaper.pdf

Figure 1 Inference Performance on server S3

Figure 2 Parallel Inference Performance when DOP=4

We also evaluated parallel inference performance on server-class machine S4. Due
to time limitations, we only collected a few data points. The results nonetheless prove
the effectiveness of the parallel inference engine inside Oracle database and the scala-
bility of the particular server-class machine tested.

Benchmark Parallel Inference Time with S4
LUBM 8000, DOP = 64 46 minutes and 23 seconds
LUBM 25000, DOP = 32 247 minutes and 9 seconds

6.3. Incremental Inference Evaluation
This section contains the incremental inference performance results. The evaluation
was done on server S1. For each dataset, we removed a number of triples, performed
inference on the remaining dataset and then added back the removed triples in batches
of various sizes while measuring the time needed to update the inference graph. We
performed this three times and measured the average incremental inference time for
each batch. Results are presented in Figure 3.

Figure 3 Incremental Inference Evaluation. As a reference, we also show total

(non-incremental) inference time when building the inference graph from scratch.

Our evaluation shows that updating the inference graph is orders of magnitude faster
using the incremental inference techniques. For instance, even in the case of a 1 bil-
lion triple dataset like LUBM8000, we are able to update the inference graph in less
than 20 seconds if the delta is less than 100. Even when adding 10,000 triples the in-
ference update time takes only a few minutes (compared to 11 hours needed to build
LUBM8000 inference graph from scratch).

6.4. Optimized owl:sameAs Handling Evaluation

To evaluate our optimized owl:sameAs handling techniques, we used the following
datasets: UniProt 80 million, UniProt 740M and OpenCyc. All three of these datasets
have more than 100,000 asserted owl:sameAs triples. Performance results are shown
in Table 3. Without the optimized owl:sameAs handling, UniProt 80M and OpenCyc
did not finish inference: they exhausted disk space (500GB) after running for 40+ hrs,
and UniProt 740M took 24 hours to finish inference.

Dataset
(#triples)

UniProt
(80 Million)

UniProt
(740 Million)

OpenCyc
(1.5 Million)

owl:sameAs Closure # of Triples 2,129,166,152 42,159,397 295,540,812
owl:sameAs Compressed Closure
of Triples

766,905 12,282,537 395,527

Inferred Triple Size 63,161,568 740,269,215 91,192,106

Cliques Building Time 29 sec 6 min 39 sec

Total Inference Time 25min 48sec 4hr 14min 13 hr 47min

Table 3. Performance Results for Optimized owl:sameAs Handling.

Figure 4. Distributions of Clique Sizes.

Figure 4 shows the distribution of number of cliques across bins of various clique
sizes. As expected, most of the cliques in all three datasets have less than 10 mem-

bers. Interestingly, UniProt80m and OpenCyc have a surprising number of cliques
larger than 1000. In the case of UniProt80m, the largest clique is of size 22,065 and
can blow up to 486 million triples when fully materialized. In the more recent, up-
dated version of UniProt (with 740million triples), the modeling issues leading to
these large cliques seems to have been fixed; almost all cliques have less than 1000
resources.

The latest version of OpenCyc [24], on the other hand, seems to contain some
modeling issues. Apart from the largest clique containing 17,030 resources, many of
the resources in that clique are plain literals with distinct values.

7 Related Work

Due to a lack of space, in this section we only provide a survey of the semantic stores
and inference engines most closely related to our work.

Jena [11,14] is a Java framework for Semantic Web Applications. In addition to
providing an API for RDF, RDFS, OWL and SPARQL, it includes a rule-based infe-
rence engine; the inference engine can use both forward and backward chaining, and
it supports the most common OWL constructs. Additionally it allows users to define
their own custom rules, however it does not natively support any constructs intro-
duced in OWL 2. Like our inference engine Jena supports incremental maintenance
(when the forward-chaining RETE-based engine is used); unlike our engine Jena does
not optimize owl:sameAs handling.

Sesame [13] is a semantic data repository for RDF and RDFS. Inference wise, it
does not support OWL and OWL 2 constructs as we do. It provides an inference en-
gine for RDFS that uses forward chaining and materialization of the data. In [13], an
algorithm is proposed for truth maintenance of RDFS data, which could be used to
optimize reasoning after updates.

BigOWLIM [3] is a semantic repository that is fully compatible with the Sesame
RDF framework. It supports RDFS, some OWL constructs, and extensions with user-
defined rules. BigOWLIM’s inference engine materializes inferred triples using for-
ward chaining.

BigOWLIM has reported results for the LUBM benchmark [15]. For example, Bi-
gOWLIM 3.1 can load, infer, and store the LUBM 8000 dataset in 14.4 hours on a
desktop machine. However, their approach seems to require a much larger memory
footprint when operating against large ontologies [15] compared to ours.

AllegroGraph [1] is a persistent triple store that can handle large RDF knowledge
bases. It has inferencing capabilities that extend beyond RDFS, including custom
rules and some OWL constructs, but does not natively support any constructs intro-
duced in OWL 2. Virtuoso Open Link Server [18] is a persistent triple store that
scales well on multiple machines but it also provides limited inference support
(rdfs:subClassOf, owl:sameAs and rdfs:subPropertyOf constructs).

The Web-Scale Parallel Inference Engine (WebPIE) - although not a true RDF re-
pository because it lacks query capabilities - shows the power of massive parallelism
for OWL reasoning. WebPIE [25] is able to infer 4.97 billion triples from a 10 billion-
triple LUBM data set in 4.06 hours, using a 64-node cluster. As a comparison, in an
inference run using the server-class machine S4, Oracle’s parallel inference engine is

able to infer, in one inference round, 5.5 billion triples from a 13 billion-triple LUBM
data set in 1.97 hours, using DOP=32. The same university ontology and the same
OWL Horst semantics were chosen to make the comparison meaningful. We plan to
do more testing using high performance platforms like S4.

While our inference engine is to able to cover the whole OWL 2 RL profile, for
applications that need additional expressiveness there has been recent work in coupl-
ing OWL 2 DL reasoner Pellet [19] with the OWLPrime inference engine in Oracle
Database 11g. The scalable-yet-expressive engine PelletDB [20] uses Pellet to com-
pute the class hierarchy and Oracle for Abox reasoning and instance query answering.

Recently a system has been proposed for parallel inference in shared-nothing clus-
ters using existing systems for local computation on each node [16]. The parallelism
within our system could work with this to take advantage of multi-core machines
within a shared-nothing cluster.

8 Conclusions and Future Work

This paper described the next generation OWL 2 RL inference engine, implemented
in the Oracle Database, capable of handling ontologies with billions of triples. We
described a number of techniques that we developed to make this engine enterprise-
scale, incremental and parallelized. Additionally, to accommodate the high degree of
owl:sameAs interlinking between semantic datasets, we implemented a novel scala-
ble, hybrid in-memory/disk-based approach that can compute compact equivalence
closures. Using this owl:sameAs approach we were able to discover some modeling
issues in real world datasets (e.g., OpenCyc). Our final contribution consists of a tho-
rough evaluation of all our techniques on large-scale real world and synthetic
RDF/OWL datasets.

As part of future work, we plan to develop an efficient technique to update infe-
rence graphs in presence of deletions. Additionally, we plan to investigate how we
can generalize our approach and extend our inference engine to cover the remaining
OWL 2 profiles (EL and QL). Finally, the optimization techniques described in this
paper are only applied to the axiomatic rules of OWL 2 RL, OWLPrime and RDF(S).
We plan to generalize the approach to cover user-specified rules and evaluate it using
the OpenRuleBench suite [28].

Acknowledgement: We thank Jay Banerjee for his continuous support and sugges-
tions. We thank Tim Cline for his help in providing server-class machines S3 and S4.

9 References

[1] AllegroGraph. [Online]. Available at: http://www.franz.com/products/allegrograph/
[2] The UniProt Consortium. The Universal Protein Resource (UniProt). In Nucleic Acids

Res. 36:D190-D195(2008). Available at: http://www.UniProt.org/
[3] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM – a Pragmatic Semantic Repository

for OWL”, in Proc. International Workshop on Scalable Semantic Web Knowledge Sys-
tems (SSWS 2005), New York City, USA.

[4] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge
 Base Systems. Journal of Web Semantics 3(2), 2005, pp. 158-182.

[5] Diego Calvanese, Giuseppe de Giacomo, Domenico Lembo, Maurizio Lenzerini, Riccardo
Rosati . Tractable Reasoning and Efficient Query Answering in Description Logics: The
DL-Lite Family. J. of Automated Reasoning 39(3):385–429, 2007

[6] M. Stocker, M. Smith, Owlgres: A Scalable OWL Reasoner. In Proc. Of OWL Expe-
riences and Directions EU (OWLED-EU), 2008.

[7] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope. In Proc. of
the 19th Joint Int. Conf. on Artificial Intelligence (IJCAI 2005), 2005

[8] R. Tarjan. A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint
Sets. Journal of Computer and System Sciences, 18(2):110-127,1979.

[9] Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. Latest version available at
http://www.w3.org/TR/owl2-syntax/.

[10] Zhe Wu, George Eadon, Souripriya Das, Eugene Inseok Chong, Vladimir Kolovski, Mel-
liyal Annamalai, Jagannathan Srinivasan, Implementing an Inference Engine for
RDFS/OWL Constructs and User-Defined Rules in Oracle, ICDE, pp.1239-1248, 2008
IEEE 24th International Conference on Data Engineering, 2008

[11] Jena Framework. [Online]. Available: http://jena.sourceforge.net/
[12] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten

Lutz, eds .OWL 2 Web Ontology Language: Profiles.. Latest version available at
http://www.w3.org/TR/owl2-profiles/.

[13] J. Broekstra, F. van Harmelen, and A. Kampman, “Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema”, in Proc. First ISWC, 2002.

[14] K. Wilkinson, C. Sayers, H. Kuno, H., and D. Reynolds, “Efficient RDF storage and re-
trieval in Jena”, in Proc. VLDB Workshop on Semantic Web and Databases, 2003.

[15] OWLIM: LUBM Tests. Available at: http://ontotext.com/owlim/benchmarking/lubm.html
[16] S. Narayanan, U. Catalyurek, T. Kurc, J. Saltz, "Parallel materialization of large ABoxes,"

in Proc. of the 2009 ACM symposium on Applied Computing, Honolulu, Hawaii, pages
1257-1261.

[17] Oracle SQL Parallel Execution.
http://www.oracle.com/technology/products/bi/db/11g/pdf/twp_bidw_parallel_execution_11gr1.pdf

[18] Virtuoso Universal Server Platform. Available at: http://virtuoso.openlinksw.com/
[19] Pellet – Open Source OWL DL Reasoner. Available at: http://clarkparsia.com/pellet/
[20] PelletDB. More information at http://clarkparsia.com/pelletdb
[21] S Ceri, G Gottlob, L Tanca, What you always wanted to know about Datalog (and never

dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 1989.
[22] Patrick Hayes, Editor RDF Semantics, W3C Recommendation. Latest version available

at http://www.w3.org/TR/rdf-mt/ .
[23] Oracle Semantic Technologies:

http://www.oracle.com/technology/tech/semantic_technologies/index.html
[24] OpenCyc. Available at: http://www.opencyc.org/downloads
[25] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, H. Bal, “OWL reasoning with Web-

PIE: calculating the closure of 100 billion triples” in Proceedings of the ESWC '10
[26] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, D. Reynolds. SPARQL Basice Graph

Pattern Optimization Using Selectivity Estimation. In Proc. of the World Wide Web Con-
ference (WWW2008), April 21-15, 2008, Beijing, China.

[27] Christophe Fiorio and Jens Gustedt. Memory Management for
Union-Find Algorithms. In Proceedings of the 14th Annual Symposium on
theoretical Aspects of Computer Science. LNCS 1200 (1997). 67-79.

[28] Senlin Liang, Paul Fodor, Hui Wan, Michael Kifer. OpenRuleBench:
An Analysis of the Performance of Rule Engines. In WWW'09. ACM Press
(2009) 601-610.

