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Abstract. A key problem in ontology alignment is that different ontological fea-
tures (e.g., lexical, structural or semantic) vary widely in their importance for
different ontology comparisons. In this paper, we present a set of principled tech-
niques that exploit user feedback to customize the alignment process for a given
pair of ontologies. Specifically, we propose an iterative supervised-learning ap-
proach to (i) determine the weights assigned to each alignment strategy and use
these weights to combine them for matching ontology entities; and (ii) determine
the degree to which the information from such matches should be propagated to
their neighbors along different relationships for collective matching. We demon-
strate the utility of these techniques with standard benchmark datasets and large,
real-world ontologies, showing improvements in F-scores of up to 70% from the
weighting mechanism and up to 40% from collective matching, compared to an
unweighted linear combination of matching strategies without information prop-
agation.

1 Introduction

Ontology alignment and the related problem of schema matching is a richly studied area
[9,10,14], with significant advances of alignment techniques in recent years. There are
a number of systems that perform pretty well on the ontology alignment evaluation
initiative (OAEI) benchmarks (for most recent examples, see Lily [17], ASMOV [8],
Anchor-Flood [11], and RiMOM [12]).

A common aspect of most alignment systems is that they combine semantic and
lexical features of ontology entities with structural propagation (e.g., as in similarity
flooding [13] or in iterative structural propagation of QOM [6]). When such structural
propagation is applied, two key assumptions dominate the literature: (i) Structural prop-
agation is beneficial to ontology alignment; and (ii) The alignment results at the last
iteration are the best to be produced as the final results. Due to the lack of a principled
way to determine the optimal number of iterations, most systems perform structural
propagation either to a fixed number of iterations, or until further propagation does not
produce additional matchings [6, 7].

Our key observation, based on work with real-world ontologies, is that the impor-
tance of any of these features (lexical, semantic or structural) varies widely across dif-
ferent ontology alignments. Furthermore, the degree of structural propagation required
for optimal performance also varies widely. More structural propagation does not neces-
sarily lead to better alignment results; in some cases, any structural propagation actually
impairs alignment quality.



More recently, collective matching approaches (e.g., [1]) have been proposed to
take structural information into account, in a principled manner, for matching ontology
entities. These approaches typically use sophisticated statistical models such as Markov
Networks [15] to explicitly represent interdependencies between various matching choices.
In a sense, they do not optimize the quality of individual matching decisions (i.e.,
matching between individual pairs of ontology entities); instead, they optimize the qual-
ity of the whole collection of matching decisions. However, a serious drawback with
these approaches to ontology alignment using complex models is their high computa-
tional cost; thus making such systems hard to use with large, real-world ontologies.

In this paper, we propose a principled and scalable technique to incorporate lexical,
semantic and structural features, using iterative supervised structural propagation. Our
approach relies on customizing two key components of ontology alignment. First, at
a lexical level, alignment depends on a number of different alignment strategies (e.g.,
alignment based on the names of ontology entities as encoded in a URI, or the associated
documentation in terms of rdfs:label, rdfs:comment). For a given pair of ontologies,
empirical evaluation may find out that an alignment strategy based on name may be
more appropriate than that based on documentation. Our approach uses user feedback to
learn the relative importance of these different alignment strategies for a given ontology
pair, which is similar to the approach taken by APFEL [7]. Specifically, we use logistic
regression [2] to determine the weights assigned to different strategies based on user
feedback.

Second, we address the issue of how to systematically propagate lexical-level and
user-specified matches along structural relations in the ontology. Here, we diverge from
previous iterative structural propagation approaches such as [13] and [6] in that we
adopt iterative supervised learning to estimate the optimal number of iterations needed
for a given ontology pair. Specifically, we use the training phase to observe exactly
which iteration yields maximal benefits in alignment, and use this information to de-
termine the stopping condition for structural propagation at test. Our experimental
evaluation shows clear advantages of our approach over previous approaches (e.g.,
APFEL [7]) that do not take user feedback as guidance across iterations during the
structural propagation phase.

Our contributions in this paper are as follows:

– We use supervised learning to customize the weights for different alignment strate-
gies for a given ontology pair, and to customize the degree to which those matches
at an entity level get propagated to its neighbors for collective matching.

– We demonstrate the effectiveness of this approach on two benchmark datasets, and
6 other large, real-world ontology alignments. The experimental results show good
scalability of our approach, and confirm the hypotheses about great variability in
features across ontology alignments. Our results also show dramatic improvements
in alignment from the weighting (up to 70% increase in F-scores), and collective
matching (up to 40% increase in F-scores).

– We demonstrate that incorporating supervision into the process of structural prop-
agation is key to the selection of the relevant features. Weighting features using
supervision after the process of unsupervised structural propagation yields poor
results in some cases.



The rest of the paper is organized as follows. Section 2 gives an overview of the
framework for ontology alignment. Section 3 describes the ontological features and
similarity metrics. Section 4 presents a supervised-learning technique for similarity ag-
gregation and interpretation. Section 5 presents the technique of iterative supervised
structural propagation. Section 6 presents experimental results. Section 7 discusses re-
lated work, and Section 8 concludes.

2 Overview of Ontology Alignment

In this section, we briefly introduce important notations, and present the overall struc-
ture of our approach to ontology alignment. We use the terms alignment/matching and
element/entity interchangeably when there is no confusion.

An ontology O is represented as a labeled graph G = (V,E, vlabel, elabel). The
set of vertices V contains ontology entities such as concepts and properties. Edges
in E (E ⊆ V × V ) represent structural relationships between entities. The edge la-
beling function elabel, which maps an edge (v, v′) ∈ E to a subset of the set SL
of structural labels, which in turn specify the nature of the structural relationships
between entities (e.g., subclassOf). Let LL denote the set of lexical labels associ-
ated with entities (e.g., name, documentation). Finally, the vertex labeling function,
vlabel : V × LL → String, maps a pair (e, l) ∈ V × LL to a string corresponding to
the value of the lexical label l (e.g., name) associated with the entity e.

Given two ontologies O and O′, the ontology alignment problem consists of find-
ing a set of matchings (e, e′), where e and e′ are entities in O and O′, respectively.
Additionally, a similarity measure, denoted simagg , which maps the pair of entities
(e, e′) ∈ O × O′ to a real number in [0, 1], provides the confidence in a matching. We
assume that for any entity in O, there is at most one matching entity in O′.

The alignment approach presented in this paper is similar in its overall structure to
the process adopted by many existing matching engines such as [6]:

1. Generation of Candidate Matchings: This step includes feature engineering (i.e.,,
the extraction of the relevant characteristics of ontology entities in both the source
and the target ontology) and the selection of candidate matchings (to avoid consid-
ering the Cartesian product of entities in the two ontologies).

2. Similarity Aggregation and Interpretation: This step computes various similar-
ity metrics on candidate matchings identified in the previous step. Each individual
similarity metric is a function of only the features extracted from the two ontology
entities being compared. The similarity scores are then aggregated into a single
similarity score for each candidate matching. Interpretation is then based on the
aggregated similarity scores, and involves a decision about which candidate match-
ings should be selected as valid matchings — typically using a threshold.

3. Structural Propagation. This step propagates matching information along ontol-
ogy structure, by repeating the previous steps, typically, either to a fixed number of
iterations or until no additional matchings are produced.

Our approach significantly differs from previous work in two ways. First, our similarity
aggregation step is not based on an unsupervised (thus ad-hoc) weighted combination



of similarity scores. We use a fully supervised-learning approach (described in more
details in Section 4) to learn, at each iteration, from user feedback an optimal combina-
tion of similarity scores. Second, our stopping condition for the structural propagation is
more principled. Note that previous work stop propagation based on an arbitrary num-
ber of iterations or the absence of additional matchings, which assumes that matching
quality monotonically improves over successive iterations (this assumption does not
hold in many cases, as shown in the experiment section). We stop iterations when there
is no significant improvement in information gain at training, and select only the match-
ings produced at the iteration where the matching result has the best consistency with
user feedback (see Section 5 for more details).

3 Generation of Candidate Matchings

In this section, we describe the features that can be extracted from ontologies, and the
lexical similarity metrics we consider in this paper (structural similarities are discussed
in Section 5).

3.1 Feature Engineering

In our approach, the feature engineering step is essentially responsible for transforming
models in various representations (e.g., XML Schemas, UML models, OWL ontologies,
etc) into an ontology O represented as the labeled graph G = (V,E, vlabel, elabel).
Structural features are represented as edge labels.

In this section, we present features extracted from models encoded as OWL ontolo-
gies or OBO ontologies.

Lexical features (i.e., elements of the set LL) extracted from ontology entities (con-
cepts or properties) are as follows:

– name, which corresponds to the last segment of the ontology entity’s URI (e.g.,
‘Person’ for ‘http://www.ibm.com/hr/Person’).

– documentation, which consists of the concatenation of the values of rdfs:label,
rdfs:comment, obo:def, obo:comment, and obo:synonym.

Structural features (i.e., elements of the set SL) are shown in the first column of Table 1.
The second column of Table 1 indicates the condition under which an edge (e0, e1)
is assigned a given label. Note that, although these structural features do not capture
all the structural and semantic constructs of OWL ontologies (e.g., union, disjointWith,
complementOf, and nested structures are not currently taken into account), they are
sufficient to produce robust structural improvements on the ontologies we tested with
(see Section 6 for more details).

3.2 Lexical Similarities and Initial Selection of Candidate Matchings

Similarity Metrics Various similarity metrics can be employed to compare entities
from different perspectives. In an abstract form, a similarity metric is a function that
maps a pair of entities to a value between 0 and 1.



Table 1. Structural Labels

Label Label ∈ elabel(e0, e1) iff.

subclassOf e0 is a direct subclass of e1.
superclassOf e0 is a direct superclass of e1.
isRangeOf The concept e0 is the range of the property e1.
isDomainOf The concept e0 is the domain of the property e1.
subPropertyOf e0 is a direct subproperty of e1
superPropertyOf e0 is a direct superproperty of e1
hasRange The range of the property e0 is the concept e1.
hasDomain The domain of the property e0 is the concept e1.
hasExistRestrictionOnProperty The property e1 is used to define the concept e0

in terms of an existential or minimal cardinality restriction
(e.g., e0 is defined as e0 ⊑ ∃e1.C)

hasForAllRestrictionOnProperty The property e1 is used to define the concept e0
in terms of a universal restriction (e.g., e0 is defined as
e0 ⊑ ∀e1.C))

hasExistRestrictionOnClass The concept e1 is used to define e0
in terms of an existential or minimal cardinality restriction
(e.g., assuming normalization to NNF, e0 is defined as
e0 ⊑ ∃R.e1).

hasForAllRestrictionOnClass The concept e1 is used to define e0
in terms of a universal restriction (e.g, assuming normal-
ization to NNF, e0 is defined as e0 ⊑ ∀R.e1).

existRestrictionUsedFor The concept e1 is defined as an existential
or minimum cardinality restriction using the property e0
(e.g., if e1 is defined as e1 ⊑ ∃e0.C)

forAllRestrictionUsedFor The concept e1 is defined as a universal
restriction using the property e0
(e.g., if e1 is defined as e1 ⊑ ∀e0.C)

sim(e, e′) → [0, 1] (1)

For a given pair of entities (e, e′), multiple similarity metrics can be applied. The
similarity metrics are denoted as simi(e, e

′) (i = 1, 2, . . .). Note that the similarity
metric can be as general as a matching technique.

For lexical similarity, standard similarity metrics exist for strings such as Leven-
shtein similarity or Jaccard similarity on n-grams. This works fine for lexical features,
such as name, whose values are expected to consist of only a few words. However,
for lexical features such as documentation, the values may consist of many paragraphs.
Therefore, as explained in [3], we cast the problem into a classical information retrieval
problem. We transform entities (e.g., concepts and properties) into virtual documents. A
virtual document consists of fields corresponding to the two lexical features described
in the previous section, namely, name and documentation. These virtual documents
are stored and indexed by a high-performance text search engine such as Lucene1. A
Vector Space Model (VSM) [16] is adopted for comparison: each field F (name or

1 http://lucene.apache.org/java/docs/index.html



documentation) of a virtual document is represented as a vector in a NF -dimensional
space, with NF denoting the number of distinct words in field F of all documents.
Traditional TF-IDF (Term Frequency-Inverse Document Frequency) values are used
as the weights of coordinates associated with terms. The lexical similarity on a field
F ∈ {name, documentation} between two entities e and e′ is referred to as simF (e, e

′),
and is computed as the cosine of the angle formed by their F vectors. We adjust for
slight syntactic variations by using a term similarity metric (such as Levenshtein or
Jaccard over n-grams) between terms as explained in [3].

Candidate Selection In the first iteration (i.e., before any structural propagation is
performed), we use the text search engine, for each entity e in the source ontology O,
to select top-k candidate matchings of e in the target ontology O′, by retrieving the
virtual documents representing entities in O′ that match well with e in terms of lexical
similarity (e.g., based on Lucene score).

4 Similarity Aggregation and Interpretation

4.1 User feedback

In this paper, we assume that for any entity in O, there is at most one matching entity
in O′. Also, we assume a simple format for user feedback (users specify which pairs
of entities should be matched) that is fed to our system through a file of gold standard
matchings. For a matching (e, e′) specified by the user, we will label the matching (e,
e′) as true. For any candidate matching (e, e′′) generated in Section 3, where e′′ is
not equal to e′, we label it as false. Thus, we generate a set of training tuples in the
following form:

⟨ sim1(e, e
′), . . . ,simn(e, e

′),true⟩ (2)
⟨ sim1(e, e

′′), . . . ,simn(e, e
′′),false⟩(∀e′′ ̸= e′)

4.2 Weighted Aggregation

To interpret the matching result, a common practice is to aggregate the similarity met-
rics with a linear combination and set a threshold to decide which matchings are esti-
mated to be true. However, it is well accepted that linearly (unweighted) combining
the similarity metrics (or matching strategies) may adversely affect the overall match-
ing quality. With user feedback, we can infer which similarity metrics are more reliable
than others, and assign higher weights to the more reliable ones. A natural extension is
to get a weighted sum (with the weight vector −→ω ) of the similarity measures and apply
a threshold ω0 to predict whether a matching is true or false. The prediction is done
with a decision boundary f (−→ω , sim) = 0, where the function f is defined as follows:

f(−→ω ,sim) = ω0 + ω1 × sim1 + . . .+ ωn × simn (3)

4.3 Probabilistic Matching

For a candidate matching, the above decision boundary produces a binary value indi-
cating the matching is true or false. However, it is more important to also produce



Algorithm 1: Learning of Weights for Ontology Matching

Input: ontologies O and O′, gold standard matchings M from user feedback, similarity
metrics simi

Output: a list of matchings, ⟨(e, e′), P ((e, e′) = true)⟩
1. for each matching m = (e, e′) in gold standard M do

(i) Label candidate matchings for e: (e, e′) as true and (e, e′′) (∀e′′ ̸= e′) as
false;
(ii) Compute the similarities of each candidate matching with given similarity metrics
simi;
(iii) Generate the training tuples in the way described in Section 4.1;

2. Learn the weights for combining the similarities and the threshold to decide whether a
matching should be produced or not;
3. Use the learned weights and the threshold to generate the matching result.

a probability (between 0 and 1) along with the binary prediction, such that the match-
ing result can be easily incorporated in other matching strategies (we will see such an
example in Section 5). In statistics, the output of the real-valued function f can be
mapped to a probability value, using the sigmoid function P (t) = 1

1+e−t . Specifically,
given a candidate matching (e, e′) with similarity measures sim, the probability of this
matching is true is:

P ((e, e′) = true) =
1

1 + e−f(−→ω ,sim)
(4)

The probability that the matching is false is P ((e, e′) = false) = 1−P ((e, e′) =
true). The key issue is how to determine the weight vector −→ω based on user feedback.
Recall that the user feedback can be represented in the form of tuples ⟨sim,true/false⟩.
The weight vector −→ω that maximizes the likelihood of observing these tuples is the one
that is most consistent with user feedback. In statistics, −→ω can be determined using the
MLE (maximum likelihood estimation) technique for logistic regression [2]. Algorithm
1 describes the key steps of the supervised-learning approach to ontology alignment.

5 Iterative Supervised Structural Propagation of User Feedback

In this section, we make the internal linkages of entities within ontologies explicit for
learning. Specifically, for a candidate matching (e, e′), we take into account the match-
ing results of e’s neighbors in the ontology O when making the matching decision for
(e, e′). The intuition is, for example, the matching of e’s subclass with e′’s subclass may
add evidence that e and e′ should be matched.

5.1 Structure-based Similarity

For a candidate matching (e, e′), we extend the list of similarity metrics introduced in
Section 3 with structure-based metrics as follows. Consider a structural label l (e.g.,
subclassOf) in the ontologies. Suppose there is a set of entities SE(e, l) that are con-
nected to e with the structural label l in O (i.e., SE(e, l) = {x|l ∈ elabel(e, x)});



correspondingly, SE(e′, l) for e′ in O′. It is important to aggregate the similarity val-
ues between the two sets, i.e., SE(e, l) and SE(e′, l), and extend the list of similarity
metrics for (e, e′) with the aggregation metrics. Below we briefly describe two types
of aggregation metrics. (We considered other types of aggregation metrics such as min
and sum, but empirically observed that max and avg are more effective.)

– max(S1, S2,sim) is the maximum similarity between any pair of entities, from
two sets of entities S1 and S2 respectively, in the Cartesian product of S1×S2. For
instance, S1 can be SE(e, l), S2 can be SE(e′, l), and sim can be a lexical similarity
metric, as described in Section 3.

max(S1, S2,sim) = max
(e1,e2)∈S1×S2

sim(e1, e2)

– avg(S1, S2,sim) is the average similarity of pairs of entities in the Cartesian prod-
uct S1 × S2:

avg(S1, S2,sim) =

∑
(e1,e2)∈S1×S2

sim(e1, e2)

(|S1|+ |S2|)/2

For a candidate matching (e, e′), we can generate various structure-based similarity
metrics based on their sets of neighbors SE(e, l) and SE(e′, l). Concretely, the structure-
based similarity metrics can be:

– max(SE(e, l),SE(e′, l),simname)
– avg(SE(e, l),SE(e′, l),simname)
– max(SE(e, l),SE(e′, l),simdoc)
– avg(SE(e, l),SE(e′, l),simdoc)
– max(SE(e, l),SE(e′, l),simagg)
– avg(SE(e, l),SE(e′, l),simagg)

In the above metrics, simname is lexical similarity on the name field of two enti-
ties, simdoc is the lexical similarity on the documentation/comment field of two enti-
ties, and simagg can be the aggregated score of similarity metrics in Algorithm 1 (i.e.,
simagg(e, e

′) = P ((e, e′) = true)).

5.2 Determining the Degree of Structural Propagation

At the bootstrapping step, we generate the aggregated similarity for a candidate match-
ing (e, e′) in the following way: If (e, e′) is part of the ground truth (i.e., provided by
user feedback), its value is 1; otherwise, its value is 0. At the following iterations, we
can utilize the matching result from the previous iteration. Note that for the pairs of en-
tities that appear as training tuples (see Formula 4.1), we replace their matching scores
with the ground truth (1 for true, and 0 for false).

The above structural similarity metrics allow the propagation of information con-
veyed by user feedback along the structure of the two ontologies. We thus extend the
initial set of similarity metrics (Section 3) with the six structure-based similarity met-
rics per relation type. As a result, the number of similarity metrics that can be used
for ontology matching is large. Since the amount of user feedback is limited, we adopt
dimensionality reduction techniques to avoid the overfitting problem in Section 5.4.



Algorithm 2: Iterative Supervised Structural Propagation for Ontology Matching

Input: ontologies O and O′

Output: a list of matchings, ⟨(e, e′), P ((e, e′) = true)⟩
1. Bootstrapping: Generate training tuples with basic similarity metrics and
structure-based similarity metrics;
2. Learn a weight vector to integrate similarity metrics that maximize the likelihood of
user feedback being correct;
3. Generate a new list of matchings by combining the similarity metrics using the newly
learned weight vector;
4. Update the training tuples with the aggregated similarities from Step 3, and add
candidate matchings whose structure-based similarity measures become nonzero;
5. If it does not meet stopping condition, go to Step 2.

At each iteration, the selection of matching candidates is extended to include pairs
of entities having at least one non-zero structural similarity measure. The impact of the
neighbor matching scores on the candidate matching in consideration is learned based
on user feedback, as described in Section 4. This process iterates until some stopping
condition is satisfied; the following describes a metric to define the stopping condition.

5.3 Determining the Right Number of Iterations

We observe that too many iterations may be detrimental to matching quality (see the
experiment section). Therefore, we propose a metric G, which is the training error, to
decide the optimal number of iterations. G is computed as the absolute difference of
the matching result (in the form of ⟨(e, e′), P ((e, e′) = true)⟩) at each iteration with
regard to the ground truth (i.e., user feedback).

G =
∑

(e,e′)∈Ground Truth

(1−P ((e, e′) = true))+
∑

(e,e′)/∈Ground Truth

P ((e, e′) = true)

The hypothesis is that the smaller the value of G, the better the matching result. This
hypothesis will be verified with experiments in the next section.

5.4 Techniques for Scalability

Dimensionality Reduction For large ontologies, possibly with many edge-labels, the
generated attribute list (of similarity metrics) can be huge. Due to the limited amount
of user feedback, it is necessary to reduce the dimensionality of the attribute space, to
avoid the well-known overfitting problem. We use a standard unsupervised dimension-
ality reduction technique, principle component analysis (PCA) [2], to extract the most
important dimensions for learning from the originally high dimensional space.

Blocking Unreliable Information Propagation In Algorithm 2, the number of can-
didate matchings will monotonically increase after each iteration, since new candidate
matchings are generated if their neighbors have confident matchings. To avoid propa-
gating noisy information from neighbors, we set a threshold on the matching scores to
keep the low-confidence matchings from propagating to neighbors. A side benefit of



such blocking is efficiency; the number of tuples in the training data generated based
on user feedback will increase slowly, thus saving the time to learn the weight vector
(in Section 4.2) for each iteration. Note that if there is no blocking of propagation, the
number of tuples in the training data may increase exponentially during iterations.

6 Experimental Evaluation

The focus of our experimental evaluation is to determine whether the great variability
in ontology alignments can be reduced by using (i) a supervised-learning technique
to customize the weights assigned to lexical features, and (ii) an iterative supervised-
learning approach to determine the appropriate degree of structural propagation for each
ontology alignment.

6.1 Experimental Setting

We focused on parts of the OAEI benchmark suite that are most suited for evaluating
the effects of structural propagation. Test 202 was selected because it modifies the orig-
inal ontology by obfuscating all names and documentations,and is a test of alignment
based on structural similarity. We also selected the anatomy segment of the benchmark
because the pair of ontologies in that benchmark encode structural information within
an extensive part-of hierarchy. We also added 6 other ontology alignments from Bio-
Portal into the evaluation to ensure that our results generalize well to different types of
ontology alignments. Table 2 shows the characteristics of these 6 additional ontology
alignments, and the number of matchings manually discovered by domain experts.

To evaluate the effects of training on similarity combination and structural propaga-
tion2, we performed random sampling to split the reference matchings in the following
way: we assigned 50% of the matchings to the ’test’ group, and from the rest we further
sampled 50% of the matchings to create the ’training’ group (i.e.,, training ratio was
25% of the total number of matchings for the ontology alignment). Note that the actual
number of matchings used for learning is small with respect to ontology size. For both
training and testing, we varied the number of iterations used for structural propagation
to a maximum of about 10 iterations for each ontology alignment.

The experiments were performed on a server with 8 way machine with 4 dual-core
Intel Xeon chips at 3.20 GHz, with 20 GB of memory. For all the experiments, we used
a maximum Java heap size of 10 GB.

6.2 Evaluation Metric

In our experimental evaluation, we had a complete gold standard for Test 202; for all
other ontology alignments, we only had partial reference alignments3. We therefore

2 The threshold we used for blocking unreliable information (Section 5.4) is 0.5.
3 The lack of complete reference alignments is a frequent problem in real world ontology align-

ments. The matchings in Bioportal, for example, are almost always partial because the ontolo-
gies are large, and cannot be perfectly aligned manually.



Table 2. BioPortal Ontology alignments

Ontology 1 #Classes Ontology 2 #Classes #matchings
Mosquito gross anatomy
(TGMA)

2,404 Drosophilia gross anatomy
(FBbt)

8,742 324

Human devt. anatomy (EHDA) 11,575 Amphibian gross anatomy
(AAO)

833 684

BRENDA tisse source (BTO) 4,950 Experimental Factor Ontology
(EFO)

2,891 366

Experimental Factor Ontology
(EFO)

2,891 Mouse Adult Gross Anatomy
(MA)

3,504 212

ABA Adult Mouse Brain
(ABA)

915 Mouse Adult Gross Anatomy
(MA)

3,504 90

BIRNLex (birnlex) 3,582 UBER anatomy ontology
(UBERON)

3,619 744

measured F-scores in the standard manner only on Test 202. For all other ontology
matching tasks, we computed an F-score only on the partial alignments available to
us, and only considered ontology entities that were in the reference alignments (all other
matchings we produced for entities in the source ontology not present in the partial
alignment were not taken into account for precision or recall estimates). We
assumed that there is at most one matching entity in the target ontology for each entity
in the source ontology.

precision =
|M ∩MGS |

|M|
,recall =

|M ∩MGS |
|MGS |

F-score =
2× precision× recall

precision+ recall

where M is the matchings discovered by our technique and the first ontology entity
of each matching appears in the reference alignment MGS .

In the following experimental results, we report F-score at the specific thresh-
olds of (0.7, 0.8, 0.9), which are used to filter out low-confidence matchings, as users
typically do not trust matchings with low matching confidence in practice.

6.3 Effect of Learning for Weighted Combination

Given the enormous variability in the importance of lexical and structural features to
different ontology alignments, our hypothesis is that there is a principled way to weight
these features appropriately using limited user feedback. We begin by examining the
effect of learning to combine lexical features. Table 3 reports the F-score from our
learning technique for weighted combination, compared with unweighted linear com-
bination of similarity metrics for matching. For some ontology alignments (e.g., BTO
- EFO), there is a significant improvement in F-score (from 5% to around 70%);
which clearly shows the effect of learning.



Table 3. Effect of learning on F-scores at different thresholds

ontology alignment Unweighted combination Weighted combination
0.7 (%) 0.8 (%) 0.9 (%) 0.7 (%) 0.8 (%) 0.9 (%)

OAEI Anatomy 93 93 94 93 94 94
TGMA - FBbt 9 7 5 26 21 15
EHDA - AAO 99 99 99 99 99 99
BTO - EFO 5 1 1 74 72 68
EFO - MA 88 90 86 91 90 88
ABA - MA 93 90 85 94 92 90
BIRNLex - UBERON 77 66 46 83 81 73

6.4 Effect of Iterative Supervised Structural Propagation

Figures 1 - 8 plot the changes in F-score as the structural propagation is iterated (in
a supervised fashion), along with the corresponding training errors at iterations. These
figures show:

– There is in fact a great deal of variability across ontologies, with lexical matches
contributing to accuracy in the range of 10% to well above 90%.

– Structural propagation shows similar variability in its importance, with it improving
accuracy by up to 40% in some cases (e.g.,, Figures 1, 3, 5, 8), but as shown in
Figure 4, propagation of any structure in some ontologies causes a precipitous drop
in accuracy by almost 25%, at high confidence thresholds (0.9).

– The number of iterations required to maximize the effects of structural propagation
varies widely as well. In some cases (e.g., Figure 1), a greater number of iterations
of structural propagation is required, with peak matching quality being reached at
about 5 iterations. In other cases (e.g.,, Figure 8), just one iteration is sufficient to
maximize the benefits of structural propagation.
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Fig. 1. OAEI 202
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Fig. 2. OAEI Anatomy

Picking the Right Number of Iterations For structural features, we hypothesized that
the training error (i.e.,, the absolute difference between the matching results and refer-
ence matchings at training) can be used to estimate (i) whether structural propagation is
useful, and (ii) to what degree structure needs to be propagated to maximize the over-
all matching quality. Because training error conceptually reflects goodness of fit [2],
F-score at test is expected to be the best when training error is minimal. The general
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Fig. 3. TGMA-FBbt
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Fig. 4. EHDA-AAO
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Fig. 5. BTO-EFO
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Fig. 6. EFO-MA

trend in Figures 1- 8 validated this hypothesis, therefore, we can pick the right number
of iterations, in a principled way, to maximize the quality of matchings for a given pair
of ontologies.

Comparison with Previous Work We compare our approach with the technique pro-
posed in [7] by simulating their process of matching in the following steps: (i) perform
iterative unsupervised structural propagation from iterations 1 to 8, and (ii) apply super-
vised learning to determine weighted combination of both lexical and structural simi-
larity measures returned from the last iteration. The result of this matching approach is
shown in Figures 9 and 10. Several points to note here include: (i) The unsupervised
structural propagation actually affects the F-score adversely, thus highlighting the
importance of supervised propagation; and (ii) At the last iteration (with supervised
learning), we get mixed results; in the case of BTO-EFO the F-score at the last it-
eration improves over the matching results based on purely lexical similarity measures
(from 2% to 71%), while in another case structural propagation hurts F-score com-
pared to lexical similarity measures (from 85% to 78%). Note that this is in contrast to
our result. For the same two cases, we observed (in Figures 5 and 6) a significant im-
provement in F-score. Specifically, with our approach, the F-score for BTO-EFO
increases from 67% to 81%; and the F-score for EFO-MA increases from 87% to
92%. In any of the two cases, our approach outperforms that of the previous work, due
to iterative supervised structural propagation. One lesson we learned here is iterative
structural propagation without the guidance of user feedback is not reliable and can be
harmful.
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Fig. 8. BIRNLex-UBERON

For OAEI 202, our best F-score (84%) across all thresholds makes our approach
competitive to the top 5 matching engines with best F-score between 80% and 90%.
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Fig. 9. BTO-EFO
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6.5 Discussion and Future Work

How much training data do we need to observe the beneficial results reported in this
paper? We ran experiments with a smaller training ratio (10%) of the reference match-
ings, and observed a big variation in F-scores for the matching of BTO-EFO. The
reason is that the absolute number of matchings (in this case, 36) used for training is too
small considering the ontology size (in this case, 4,950). Our hypothesis is that when
the sample sizes are too small (relative to the size of the ontology), careful selection
of candidate matchings for user feedback is needed to ensure that enough structure is
maintained for learning. Better sampling techniques (instead of random sampling) to
reduce user feedback is an issue we leave for future work.

Another issue we observed is that for each ontology alignment in Table 2, our ap-
proach generates thousands of extra matchings with scores above 0.9, and these are not
in the reference matchings. Based on the effectiveness of our technique on the reference
alignments, we expect these extra matchings to be valuable to domain users, if only to
recommend matchings for user validation.

One final point is about the scalability of our technique of iterative supervised struc-
tural propagation. The running time of each iteration was less than 3 minutes. Compared



to existing collective matching based on sophisticated statistical models (e.g., [1]),
which have issues of scalability, our approach has a clear advantage in performance.

7 Related Work

Our approach, which applies an iterative supervised-learning technique to combine both
lexical and structural similarities, can be contrasted with previous work that adopt either
(unsupervised) iterative structural propagation technique (e.g., similarity flooding [13]
and its variants) or collective matching approaches (e.g., [1]).

Similar to those systems (e.g., [6] [12]) that apply variants of similarity flooding
technique [13], our approach also iteratively propagates similarity metrics along on-
tology structures. However, our approach differs from them in two significant aspects.
First, at each iteration, those systems aggregate various similarity metrics in an unsu-
pervised (thus ad-hoc) fashion. In contrast, our approach applies supervised learning to
learn from user feedback an optimal combination of both lexical and structural similar-
ity metrics at each iteration; thus the information propagated across iterations is more
reliable. Second, unlike those systems that assume matching result at the last itera-
tion is the best (which is not necessarily true), we propose a novel and sound metric
to estimate the matching quality at each iteration, based on the consistency of match-
ing result with user feedback. Reference [7] views a matching engine (such as [6]) as
a black box that returns its matching results and the similarity measures; it applies a
supervised-learning technique to decide the optimal combination of the similarity mea-
sures returned by such a matching engine. Unlike our approach, the aggregation step
occurring within the black-box matching engine remains unsupervised. As a result,
the final structural similarities returned by the black-box engine may be less accurate;
their iterative structural propagation misses the guidance from user feedback. Hence,
the value of the supervised-learning approach to decide the weights of similarity mea-
sures is limited, resulting in sub-optimal matching results (we verified this point in the
experiment section).

Recently, collective matching approaches (e.g., [1]) have been proposed to take
structural information into matching decisions using sophisticated statistical models.
In a nutshell, those approaches use complex statistical models such as Markov Net-
work [15] to explicitly represent interdependencies between matchings of intercon-
nected ontology entities. Our approach is similar to this category of work in the sense
that supervised learning techniques are applied to combine lexical and structural simi-
larities in a principled way. However, due to the high computational complexity, in both
learning and inference, of the complex statistical models used for encoding structural
dependencies, those approaches based on sophisticated statistical models typically scale
poorly to large ontologies4.

Meta-learning (i.e., integration of multiple alignment strategies) has also been im-
plemented by GLUE [4] and other systems (e.g., [5]). GLUE uses a supervised learning
approach to build concept classifiers based on the associated instances (our approach

4 Simpler statistical models (e.g., Markov Chain, Linear-chain Conditional Random Field, etc.)
with scalable learning and inference algorithms are not sufficiently expressive to faithfully
capture the structural dependencies.



does not assume instance information), but the way it combines inputs from various
classifiers and performs structural propagation through relaxation labeling is unsuper-
vised. Reference [5] also applies supervised learning to optimize the combination of
multiple matching strategies, but it makes matching decisions for each entity indepen-
dently, thus lacking the favor of collective matching.

8 Conclusion

To address the great variability in the importance of various features across ontology
alignments, we have presented a principled and scalable technique to customize ontol-
ogy alignment for a given pair of ontologies based on user feedback. We have shown
how iterative supervised structural propagation, where each step is guided by user in-
put, can optimally incorporate and propagate lexical-level and user-specified matches
through the structure of the ontologies. Our experimental evaluation demonstrates the
effectiveness of the new approach on both benchmark datasets and large, real-world
bio-ontologies.

As future work, we plan to tackle the important, but orthogonal, problem of re-
ducing user feedback by picking the most informative matches through active learning
techniques.
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