Summary Models for Routing Keywords to
Linked Data Sources

Thanh Tran, Lei Zhang, Rudi Studer

Institute AIFB, Karlsruhe Institute of Technology, Germany
{dtr,1zh,studer}@kit.edu

Abstract. The proliferation of linked data on the Web paves the way
to a new generation of applications that exploit heterogeneous data from
different sources. However, because this Web of data is large and contin-
uously evolving, it is non-trivial to identify the relevant link data sources
and to express some given information needs as structured queries against
these sources. In this work, we allow users to express needs in terms of
simple keywords. Given the keywords, we define the problem of finding the
relevant sources as the one of keyword query routing. As a solution, we
present a family of summary models, which compactly represents the Web
of linked data and allows to quickly find relevant sources. The proposed
models capture information at different levels, representing summaries of
varying granularity. They represent different trade-offs between effective-
ness and efficiency. We provide a theoretical analysis of these trade-offs
and also, verify them in experiments carried out in a real-world setting
using more than 150 publicly available datasets.

1 Introduction

The Web is no longer only a collection of textual documents but also a Web of
linked data. One prominent project which largely contributes to this development
is the Linking Open Data project. Collectively, linked data comprises hundreds
of sources containing over 13.1 billions RDF triples, which are connected by 142
millions links (November 2009, http://linkeddata.org/).

This development offers new opportunities for addressing complex information
needs. Instead of documents, complex results ranging over different sources of
linked data can be returned to Web users. To exploit this, users can specify
complex queries using structured query languages such as SPARQL'. While such
a query language is powerful, it requires users to know not only the query syntax
and semantics but also the schema as well as the underlying data.

Problem So far, these requirements have proven to be a large burden. Given
the amount of linked data is large and continuously evolving, it is inherently diffi-
cult to know what is in there (i.e., the data and the schema) and to formulate the
corresponding structured queries for addressing some given information needs.
Hence, it is desirable to have a mechanism, which allows users to express infor-
mation needs in their own words. Another aspect of dealing with the large Web
of linked data is scalability. Processing the needs against the entire Web might

! http://www.w3.org/TR/rdf-sparql-query/

be too time consuming and not needed, especially when users are interested in
and want to choose some particular sources of information. Processing against a
relevant subset of linked data identified by the user is more scalable and possibly
the only practical solution for the large Web of linked data. Concerning these
problems, the question we deal with is given the needs expressed by users as sets
of keywords, are there corresponding answers in linked data and what combination
of data sources shall be used to produce them?.

Existing Work In the Semantic Web community, there exists a large body
of work on processing queries against RDF and linked data. Given structured
queries, RDF stores such as RDF-3X [5] and YAR2 [3] can compute structured
results and in the context of linked data query processing [2], can also identify rel-
evant sources. They however do not apply when the information need is provided
as keywords. While keyword search is supported by some Semantic Web search
engines such as SWSE [1] and Sig.ma [9], they are limited to processing simple list
of keywords that refer to entities. This work deals with complex information needs,
which may involve complex results providing information about sets of entities
and relations between them, i.e., result tuples that may form graphs. Further, the
aim is not to directly compute results but to quickly identify and let users and
system focus on the combination of sources that produce non-empty results.

To this end, work in information retrieval (IR) and database research dealing
with keyword search constitutes the starting point. Keyword search has become
the most widely used IR paradigm on the Web, enabling lay users without knowl-
edge of the schema and data to search for a priori unknown documents. This kind
of schema-agnostic search is not limited to textual data but can also be used for
querying structured data. In database research, solutions have been proposed that
allow for the retrieval of the most relevant, possibly graph-structured results [4,
6, 7]. Unlike IR approaches, which consider only keywords for finding matching
documents (we called keyword coverage), database approaches also use structure
information. Possible join sequences in the data are explored to ensure that match-
ing result tuples not only “contain” the keywords but also, represent meaningful
connections between these keywords (called structure coverage). Given the data
graph in Fig. 1a and the query “Stanford, John, Award” for instance, an IR-style
approach might return none (AND-semantics) or all the entities unil, per2, ... in
the graph because they all partially match the keyword query (OR-semantics)
whereas the DB approach would return the subgraph that connects unil with
per2, perl,perd and prizel. However, computing complex results in this way is
expensive, especially in a multi-source setting like the linked data Web. Authors
of state-of-the-art work explicitly considered only the setting where “number of
databases that can be dealt with is up to the tens” [6].

Thus, database researchers started to look at a problem we consider most
related, namely the of finding the single most relevant databases [11,10]. They
recognized the fact that the computational complexity resulting from a large-scale
setting can be partially addressed when allowing users to choose and retrieve an-
swers from only some particular databases. Given a set of keywords, the goal is to
find and rank the single most relevant databases that contain the answers. Follow-
ing this line, we propose specific solutions for the linked data context. The differ-

ences to this work called database selection will be discussed in detail throughout
the paper.

Contributions While existing approaches select single databases, we deal
with the Web of linked data where results are not bounded by a single source but
may encompass several linked data sources. Instead of computing the most rele-
vant single sources, we extend the work in [11,10] to compute the most relevant
combinations of sources. The goal is to produce keyword routing plans which cap-
ture combinations of sources that contain non-empty results. This novel keyword
query routing problem raises additional challenges. Most notably, query keywords
may be covered by several linked sources, resulting in a large search space. The
size of this search space grow exponentially with the number of sources and their
associated links. Targeting this problem of scale, we report the following contri-
butions in this paper:

— We propose solutions for keyword query routing which enable the exploita-
tion of linked data. Without putting any burden on the users, this kind of
approaches help to find relevant sources containing complex answers to ad-hoc
information needs in the large and evolving Web of linked data.

— We propose a multi-level relationship graph to capture the search space of
the keyword query routing problem. Based on this, we elaborate on a fam-
ily of summary models, which compactly represent the Web of linked data.
These models capture information at different levels, representing summaries
of different granularities. In a theoretical analysis, we prove that finer grained
models can improve the result quality. This however, comes at the expense
of higher complexity. Thus, the models represent different trade-offs between
effectiveness and efficiency.

— In the experiments, we investigate these trade-offs by analyzing the precision
and the processing time needed using different models. The experiments were
carried out in a real-world setting using more than 150 publicly available
datasets, and an open-source implementation we made available at http://
code.google.com/p/rdfstores/. Results of using summaries are promising.
While the “best” one shall be determined w.r.t a concrete application, there is
one model that seems to represent the most practical trade-off: the D-KERG
model, which summarizes elements according to sources, produces results in
less than 10ms, out of which every second is a valid one.

Outline Section 2 introduces the readers to the concepts of linked data and
keyword query routing. The search space and its summary models are presented
in Section 3. Strategies for computing routing plans using these models and rami-
fications for result quality and performance are discussed in Section 4. Evaluation
results are provided in Section 5 before we conclude in Section 6.

2 Preliminary

In this section, we discuss the underlying data and problem.

2.1 Web of Linked Data

Linked data can be conceived as a set of data graphs, each represents a partic-
ular source. As a working definition, we present a simple graph-based model of
linked data called the Web graph. In that model, we distinguish between the Web
data graph representing relationships between individual data elements, the Web
schema graph, which captures information about group of elements, and the Web
source graph that contains information at the level of data sources.

Definition 1 (Web Graph). The Web of linked data is modeled as a Web
Graph W*(G*, M* N*,E*) where G* denotes the set of data graphs, M* is
the set of edges also called mappings or links, which establish connections be-
tween elements of two different graphs, N* is the set of all nodes and £* is
the set of all edges, i.e., G* = {g1(N*1,E*1), ga(N*2,E%2),. .., gn(N* 1, E*0) Y,
N* = UZL:lN*w M* = {m(ni,nj)\ni € J\/*i,nj S N*j,N*i,N*j - N*,i 75 j}
and £ = U, £ UM*. We use W(G, M, N ,E) to distinguish the Web data
graph from the Web schema graph W/(G', M', N, £’) and the Web source graph
W' (N E"). We have n € N representing a data element, n' € N’ stands for
a group of elements, and n”' € N denotes a data source. For simplicity, we use
n € n' to denote that an element n belongs to the group n' and n,n’ € n” to
assert the element n and the group n’ belongs to the source n”. Elements in N
and N are labeled, i.e., there is a function label : N UN' — 2V that associates
an element with a set of labels drawn from V, the vocabulary of words. We have
m(nj,n}) € M’ iff there is m(n;,n;) € M where n; € n} and n; € n’;. Analo-
gously, e(nj,n}) € " iff there is m(n;,n;}) € M’ where n; € nj' and n/; € nf.
We use the Web graph W*(G*, M* N* E*) to refer to the union set of elements
of the Web data graph, the Web schema graph and the Web source graph.

This is a simple model of linked data that omits details not necessary for
this work. In particular, data elements may correspond to RDF resources, blank
nodes or literals. Schema elements might stand for classes or data types. For
keyword query routing, these distinctions are not relevant but the fact that the
elements can be recognized via their labels. While different kinds of links can be
established, the ones frequently found are sameAs links, which denote that two
RDF resources or two classes are the same. There is also no need to distinguish
the types of links. Only the fact that sources can be reached via some kinds of
link m € M* matters. An example of this model is illustrated in Figs. 1.

2.2 Keyword Query Routing

Given the need expressed as keywords, we aim to identify sources containing
results. A DB-style result to a keyword query is typically a Steiner graph, which
in the linked data scenario, may combine data from several sources:

Definition 2 (Keyword Query Result). A Web data graph W(G, M, N, E)
contains a result for a query KK = {k1,ko,... kx| } if there is subgraph also called
Steiner graph Wi (G, Mic, Nic, Ex), where for all k; € K, there is an npt €
./\//CM C N C N with a label that matches k; (./\//CVI is called the set of keyword
elements), and there is path n; «~ n; for all n;,n; € N/C\’t In a d-max Steiner
graph, the length of the paths n; «~ n; is d-max or less.

Freebase DBLP DBPe:

Pedia
John Music
John. Smith Award Freebase DBLP DBPedia

title name label

@ autho prizes

prizes
name label

Fig.1: (a) A Web data graph (left) and (b) its Web schema graph (right).

Typical for keyword search is the pragmatic assumption that users are only
interested in compact results such that a threshold d,,. can be used to constrain
the connections to be considered. Thus, instead of general Steiner graphs, keyword
search solutions proposed so far and the work presented here consider d-max
Steiner graphs as results. For our example query “Stanford, John, Award”, we
have N,é/‘ = {unil,per2,perl, per3, prizel}; the subgraph that connects these
keyword elements is a 1-Steiner graph because the maximum distance between
keyword elements is 1; and since there are no other elements between keyword
elements, NM = Ni.

Definition 3 (Keyword Routing Plan). Given the Web data graph W =
(G, M, N,E) and a set of keyword queries SKC, the mapping p : SK +— 29 that
associates a query with a set of data graphs is called a keyword routing plan RP.
A plan RP = {g1,...,9k|} for a query K € SK is considered valid when there is
a combination of data graphs g; € R'P that produces non-empty results for .

A valid plan in our example is RP = {Freebase, DBLP, DBPedia}. Note
that validity does not imply relevance. That is, a valid plan ensures that results
can be produced, but for the users, these results may differ in relevance. A proper
account of relevance and the ranking of routing plans based on the relevance of
their results go beyond the scope of this paper, which is focused on efficiency
aspects of computing valid plans. We assume a fixed ranking function, which
equally applies to all summaries discussed in this paper. We refer the interested
readers to our report [8], which discusses relevance and the ranking function.

3 Summary Models for Keyword Query Routing

We now discuss the most related work in detail and introduce the models we use
for keyword query routing.

3.1 Keyword Query Routing Search Space

For database selection, the search space is composed of a set of databases. The
idea behind previous work [11,10] is to model every database using a keyword
relationship model. A keyword relationship (k;, k;) is a pair of keywords, which

can be connected via a sequence of join operations, i.e., there exists two data
elements n; « n; that contain k; and k;. For instance, (Stanford, Award) is a
keyword relationship because there is a path between F B:unil and DBP:prizel
in Fig. 1a. The state-of-the-art [10] employs a keyword relationship graph (KRG),
with keywords being nodes and keyword relationships being edges. A database is
relevant when all pairs of query keywords match some edges of the KRG.

In our example, we have the keyword pairs (Stanford, John),
(Stanford, Award) and (John, Award). Tt is clear that when using key-
word relationships in every source to form separate KRGs, none of them matches
all the 3 keyword pairs. To match the pair (Stanford, Award), relationships
across sources from Freebase to DBPedia have to be incorporated into in the
model. In keyword query routing, the search space does not comprise single
databases but constitutes one integrated Web data graph. Instead of computing
a set of summary models, this problem requires the construction of one integrated
summary model. It shall allow for answers capturing relationships across sources.
Thus, not only single sources but also combinations of sources might be relevant.
Another aspect not addressed by current work is efficiency. Instead of capturing
all possible relationships, we aim to use a more compact representations of the
search space.

We conceive the search space as a multi-level inter-relationship graph (MIRG),
as illustrated in Fig. 2. For clarity, this figure does not show the labels and also,
omits some data and schema elements of our running example. At the lowest
level, it models relationships between keywords. In the upper-levels, there is the
Web data graph W followed by W' and W”. Elements and relationships at the
upper level represent sets of elements and sets of relationships at the lower level:
a node at the source level represents a set of schema elements; every schema node
represents a set of data elements; and every data element n is composed of a set
of keywords K. We say k € K is mentioned in n, denoted mentionedIn(k,n).

3.2 Summary Models

Thus, MIRG provides different perspectives on the search space and different
views on the data. The lower levels capture more fine-grained views of the data.
In order to extend the KRG [10] to deal with keyword query routing, the key-
word level and keyword relationships at this level that also capture links between
sources have to be taken into account. We will now discuss such an extension of
the KRG, and introduce further summary models that capture relationships at
different levels of granularity. Examples of the models are shown in Fig. 3.

Definition 4 (Keyword Sets). The keyword sets (KS) of a Web graph
WH(G*, M* N* E%) is WES = NES | where NES stands for all the keywords
that are mentioned in elements of the graphs G*. Every nkKS € J\/,é{s is in fact a
tuple (k,Gy) that represents a keyword k and the graphs G, C G* mentioning k.

This is a simple model that contains only keywords but no relationships be-
tween them. It captures all nodes at the keyword level of MIRG.

SOURCE

containedin containedin
SCHEMA <:>
type type type type - type
ELEMENT,
mentionedin - mentionedin mentionedin mentionedIn mentionedin
KEYWORD

John g —{Mccarthy

University [¢— 3| Turing

w |

Stanford

Fig. 2: Multi-level inter-relationship graph

Definition 5 (Element-level KERG). An element-level keyword-element re-
lationship graph (E-KERG) of a Web graph W*(G*, M* N* E*) is a tu-
ple W = (N, Ek). Every keyword-element nx € Ni is a tuple (n,g,K)
where n € N s the corresponding element node it represents, g € G C G*
is the data graph containing n, and K is the set of all keywords that are
mentioned in n, i.e., K = {k|lmentionedIn(k,n)}. There is a relationship
ex = ((ki,nic, (i, 96, K4)), (kjonic; (ng, g5, K5))) € Ex, iff mentionedIn(k;,n;),
mentionedIn(k;,n;), and n; e~ n;.

This can be seen as an extension of the KRG because it captures all keywords
and relationships. As shown in Fig. 3a, it also represents the data elements in
which the keywords are mentioned. Hence, we use “keyword-element” to make
clear that a node captures both the data element and its keywords. This model
captures elements at the keyword and element level of the MIRG.

Definition 6 (Schema-level KERG). A schema-level keyword-element rela-
tionship graph (S-KERG) is a tuple Wi = (N',Ek). It captures elements
at the keyword and schema level of the MIRG. For a keyword-element node
nje(n', 9,K) € N, we haven' € N being a schema-level node, g € G' C G* is the
schema graph containing n', and KC comprises keywords that are mentioned in the
elements n € n/, i.e., KK = {kln € n/, mentionedIn(k,n)}. There is a relationship
e = ((ki,nie, (g, 9i, K3)), (kjy i, (0, 95, K5))) € E', iff mentionedIn(ki,n;),
mentionedIn(kj,n;), ni € nj, nj € nj, and n; e~ n;.

As opposed to E-KERG, this one is indeed a summary model because it
clusters two element-level relationships ((k;, ni, (ni, gi, K3)), (kj, nic; (15, g5, K5)))
and ((ky, nic, (N, gu, Ku)),y (kw, nic, (N, G, Kw))) to one schema-level relation-
ship when they capture the same keyword relationships (ie., k; = k,

and k; = ky) between the same classes (ie, n; = n; and n} =

K2 v

Freebase

it \ / per2 \ Freebase DBLP DBPedia
i Music
), (o) | e

|

Award
e i) (o)
/ N
{Universi(y} {McCarthy} { John } McCarthy

Freebase DBLP DBPedia

Freebase DBLP DBPedia
Article Person
| (o |
University\ / Person \ / Person
] [() |)
P\
{Universily}/ \\ [McCanhy}/ \{ John }

Smith Music

{University} [McCarthy} { John }

=
)
o
&
2
e
<

2|z
S8
3]l a

—

Fig.3: (a)The 1-E-KERG (top left), (b) the 1-S-KERG (bottom left), (c) the
1-D-KERG (top right) and the (d) KS for our running example.

n.,). For instance, ({(John, (Person,DBPedia,{Smith,John, McCarthy})),
(Award, (Prize, DBPedia, {Music, Award,Turing}))) in Fig. 3b is an
aggregation of the relationships ({John, (perd,DBPedia,{Smith,John})),
(Award, (prize2,DBPedia,{Music, Award}))) and ({John,(per3,DBPedia,
{McCarthy, John})),(Award,(prizel,D B Pedia,{Turing, Award}))) in Fig. 3a.
These E-KERG relationships are aggregated because they represent the same
relationships (John, Award) between the classes (Person, Prize).

Definition 7 (Source-level KERG). A source-level keyword-element relation-
ship graph (D-KERG) is a tuple W = (N, E" k). For a keyword-element node
ni(n”,K) € N, we have n'" € N being a source-level node, i.e., a graph,
and K is the set of all keywords that are mentioned in elements of the graph n'.
There is a relationship ex. = ({ki, ni¢, (nf, K;)), kj, nic, (], K;))) € "k, iff kq is
mentioned in some elements n; of the graph ny, k; mentioned in some elements

n; of the graph n’/, and n; «~ n;.

Thus, this model is conceptually similar to S-KERG but aggregate elements at
the level of sources. It combines schema-level relationships when they capture the
same keyword relationships between the same sources. As shown in Fig. 3b, there
are only distinct keyword relationships in S-KERG. Thus, no further aggregation
is needed in this case.

As keyword search results, we consider d-max Steiner graphs where paths
between keyword elements are of length d,,.. or less. Accordingly, we actually
employ a d,..-KFERG versions where the maximum distance to be considered
between n; and n; is dmas (14 ansdmaz n;). Note that the summaries illustrated
in Figs. 3 resemble the structure of the underlying data and schema graphs because
relationships in the summaries in fact correspond to graph edges, i.e., only paths
with length 1 are considered such that dp,.. = 1 (I-KERG models). Clearly, a
higher value for d,,,, would result in a blowup of paths. In particular, the E-
KERG model would contain much more relationships than there are edges in the

data graph. Hence, summarizing relationships is essential for efficient keyword
query routing.

3.3 Computing Summary Models

The computation of d,q.-KERG models is performed in three steps. Firstly,
the relationships between entities are computed for various distances within a
threshold d,, .. Then, connected term pairs are extracted based on the computed
relationships. They are used for computing E-KERG. For computing S-KERG and
D-KERG, term pairs are further grouped according to schema and source-level
elements, respectively.

All information are finally stored in an specialized index that enables the
lookup of keyword-element relationships, given a pair of keywords. In par-
ticular, for (k;,k;), we have (1) Ig_ggrc returning the relationships ex =
((ki,nic,)s (kjonicy)s (2) Is—kEre returning e = ((ki, nic,), (kj, nic,)) and (3)
Ip-kpre returning el = ((ki, ni,), (kj, nic,)). Also, we construct a KS model
based on keywords extracted from the data graphs and build the index (4) Iks,
which returns the elements nf S given the keyword k.

4 Computing Keyword Routing Plans

For computing valid query routing plans, the idea behind existing work on key-
word search [4,6,7] and database selection [11,10] applies: we search for Steiner
graphs to discover sources that produce answers. Recall that a Steiner graph is
basically a graph that connects keyword elements. The existence of such a graph
indicates that there are answers to the keyword query. In our approach, the search
is not performed directly on the Web data graph but on the summary models.
Specifically, we search for Steiner graphs in either (1) WES, (2) Wi, (3) Wy or (4)
Wy Since KS (1) do not capture relationships, the results that can be derived
from it do not completely adhere to the notion of Steiner graph. Also for the
KERG models (2-4), Steiner graphs that can be computed are different in gran-
ularities. We will now elaborate on strategies for searching Steiner graphs using
different summaries.

4.1 Routing Plan Computation Using KS
Using the KS model and its index, routing plans can be computed as follows:

— Given the keyword query K = {ki,ko,...,k;}, retrieve the elements
n,ﬁfs(ki, Gk,) for every k; € K using the Ik g index.

For every nf® retrieved before, put the sources Gy, that is associated with
nf ¥ into the set of relevant sources Gy.

Compute all |K|-combinations for the set Gi.

Output these combinations as the set of routing plans SRP.

Intuitively speaking, this procedure simply retrieves sources that cover the
keywords and in order to cover all |K| query keywords, it uses |K|-combinations
of these sources as routing plans.

10

4.2 Routing Plan Computation Using KERGs

Since KERG models capture relationships, we retrieve data for pair of keywords
(ki, k;), instead of single keywords. Retrieved data are joined to compute Steiner
graphs. It is necessary to ensure that all keyword elements in a Steiner graph
are pairwise connected through a path of length d,,q, or less. Thus, it is nec-
essary to join all possible keyword pairs. Given a query with three keywords
ki1, ko, k3 for instance, we need to retrieve keyword elements and perform the
joins (1, k2) M, (ka2,ks) My, iy (K1, k3) to verify that (1) the elements ny match-
ing ko are connected with both n; that match k; and ns that match k3 over a
distance of dyqq or less (by means of the first join ((k1, k2) Xy, (ko, k) on ka),
(2) the elements n3 just found to be connected with ng, are also connected with
ny (by means of the second join on k3), and (3) the ny found to be connected with
ng, is also connected with ns (by means of the third join on k7). The complete
procedure can be summarized as follows:

— Given the keyword query K = {kq, ko, ..., k;}, compute all 2-combinations of
K to get all possible keyword pairs, resulting in a total of N = |K|(|K|—1)/2
different pairs. Subsequently, retrieve relationships for these pairs and perform
joins according to a random? or alternatively, optimized order.

— In particular, inputs for every keyword pair are obtained using the underlying
index. Given (k1,k2) and Ig_ggrre for instance, relationships of the form
ex = ((k1,ni, (n1, 91, K1)), (k2, nic, (N2, g2, K2))) are retrieved. Joining this
with the next inputs retrieved for (kg,ks) for instance, ensures that ng is
connected with both n; and ns.

— Processing the entire join sequence of keyword pairs yields a set of graphs.
Depending on the underlying summary model, these graphs capture Steiner
graphs at the source, schema or element level.

— Some resulting graphs might be indistinguishable in terms of the sources and
connections between sources they represent. Keep only one of those because
the other does not contain additional information.

— Extract sources associated with elements of the graphs to obtain combination
of sources, i.e., the routing plans RP.

This procedure is the same for all KERGs. Given that the underlying data
contain results, we provide proofs in the report [8] to show that applying this
procedure on the S-KERG summary will yield routing plans, i.e., when Steiner
graphs can be found for K in the data, then there will be corresponding graphs
that can be found in the summary. Thus, given I, the procedure will output a
non-empty set of RP if W contains a result for K. In the same manner, it is
straightforward to show that E-KERG and D-KERG can provide this guarantee.
However, we show formally in [8] that the other way around is not true, i.e., the
graphs derived from the summary are not necessarily valid such that there might
be no corresponding Steiner graph in the data. Thus, the fact that a routing
plan can be derived from the summaries does not guarantee there exists a result
for K. This formal result is interesting because it makes clear that while the

2 For this work, we omit the aspect of join order optimization and simply generate a
random order for joining keyword pairs.

11

use of summaries might be required to obtain the desired performance, it has
consequences on the result validity. In particular, it implies that the more compact
the summary, the more likely that plans computed from it are not valid. We will
now discuss the intuition behind this formal result.

4.3 Result Validity

A graph derived from a summary does not always have a corresponding Steiner
graph in the data, unless we use E-KERG. This model makes a difference because
it in fact captures all nodes and paths in the Web data graph. In particular, when
a d5'm_E-KERG is used, d42_Steiner graphs are keyword query answers, and

dsvm = gdata then E-KERG captures all the paths in the data that are rele-
vant for Steiner graph computation, i.e., all paths up to length d>'. For every
path n; «~sdmaz n; in the data, there is a one-to-one corresponding relationship
ex = ((ki,nic, (ni, 9i, K3)), (kj,nic; (ng, g5, K;))) in E-EKERG. This one-to-one cor-
respondence of paths constitutes the base argument, which can be extended in-
ductively to show that there is also a one-to-one correspondence of graphs such
that a graph derived from E-KERG always has a corresponding Steiner graph in
the data, and vice versa.

A S-KERG however, combines two edges e(n;,n;,) and e(n,;,,n,,
(paths) in the data graph to one single relationship ej =
(ki nic, (ng, 93, K3)), (kg i, (95, K5))) ifE niyni, € ngy mjyumg, € mj,
74, ,Ni, mention k;, and nj ,n;, mention k;. Thus, for an element in the data,
there is always a counterpart in S-KERG, which is however a grouping of
elements, constituting a one-to-many correspondence. Through this grouping,
we loose detailed information about elements in the group. That is, for the pair
of keyword (k;,k;), S-KERG captures the corresponding connection from the
element group n} to ng but can no longer tell for instance, whether this represents
a connection between n;, to n;, or n;, to n;,. In other words, it can be inferred
from S-KERG that n;, is connected with n;, even though such a connection
does not exist in the data. With respect to our example, a graph can be derived
from S-KERG that covers the keywords Stanford, John and Music. It is clear
from Fig. 3a that there is no Steiner graph corresponding to this. The problem
here is that S-KERG does not distinguish the John McCarthy connected with
“Stanford” from the John Smith connected with “Music”. Thus, it incorrectly
infers the connection “Stanford” and “Music”.

The same arguments can be applied to D-KERG. The difference is that
the grouping in D-KERG is even more coarse-grained. Two edges e(n;,,n;,)
e(n;,,n;,) are aggregated to one single relationship in D-KERG, when n;, and
n;, mention the same keyword k;, nj, and n;, mention k;, and they belong to the
same data source, i.e., n;,,n;, € 0y and nj,,n;, € nff. Note that with S-KERG,
the incorrect inference mentioned before would not occur when John Smith is in
a different class than John McCarthy. They would not have been aggregated to
one single node in S-KERG. This however happens with D-KERG. No matter
the classes they belong to, these elements would be aggregated to one single node
when they are in the same data source. With respect to our example, D-KERG
makes one additional false inference: it does not distinguish the person “John”

12

connected with “Stanford” from yet another “John” connected with “Music”,
which is an article (see that John as an article and John as a person in Fig. 3b is
aggregated to one element in Fig. 3c).

Compared to the KERG models, KS does not capture relationships between
keywords at all. Given two keywords k;, kj, the sources which cover these key-
words can be derived from KS, e.g. the graphs n},n/. However, this does not
imply there exist two elements n; € nj and n; € n/, and n; « n;. More gener-
ally, a combination of sources derived from KS covers all keywords but does not
ensure that elements matching these keywords are connected, and thus, does not
necessarily correspond to a Steiner graph.

In summary, the percentage of valid plans for D-KERG is less or equal that
for S-KERG, which in turn is less or equal that for E-KERG. When dJ“" value
of E-KERG is sufficiently large to cover all paths relevant for Steiner graph com-
putation, i.e., d5¥m = d%e this percentage is 100 for E-KERG. By chance, the
percentage of valid plans for KS might be higher than that for the summary mod-
els but in general, is expected to be less (because relationships between elements

are not considered).

4.4 Complexity

Using KS, complexity is O(inputl,f;l; 1), where input,,., denotes the largest num-
ber of elements that can be obtained for a keyword k;. This is because for com-
puting the combination of sources for a 2-keyword query K = {k;, k;}, we have to
union every element retrieved for k; with every other retrieved for k; (Cartesian
product), thus requiring |input;| x |input;| time and space. For queries with |K]|
keywords, we have to combine elements retrieved for one keyword k; with elements
retrieved for every other keyword k; € K, k; # k;. Thus, |K| — 1 combinations of
input sets of maximum size input,,., have to be performed.

With KERG models, retrieved elements have to be joined. While in practice,
this operation can be performed more efficiently using special indexes and join
implementation, this operation in worst case, also requires |input;| % |input;]|
time and space. Inputs are retrieved not for every k; but for all possible pair
of keywords. This results in complexity O(inputﬁg(x:’z)_l), where input,,., here
refers to the largest number of relationships that can be obtained for a keyword
pair, and C(K,2) is the number of 2-combinations of the set K, denoting the
number of joins that have to be processed.

While the number of operations are same for all KERG models, the size of
input,,q, varies. Clearly, the more coarse-grained the grouping, i.e., the higher the
number of elements aggregated to one group at the summary level, the smaller
will be inputyqee. In particular, we have input,,q.(D-KFERG) < input,qeq(S-
KERQG) < inputpe.(E-KERG). How much smaller a KERG summary is com-
pared to one other depends on the data. In the extreme case where every data
element mentions only distinct terms, i.e., does not share terms with one other,
all KERG models are actually equal in size.

While KERG models require joins on input sets to be performed C(K,2) — 1
times, KS only needs |K| — 1 combinations of input sets. However, the advantage
of using KERG is that the size of the input sets that have to be processed is

13

expected to be smaller. This is not only due to the effect of summarization. For
all KERG models, inputs are retrieved for keyword pair while for KS, inputs
are retrieved using single keywords. Two keywords are more selective than one
keyword, thus more likely result in smaller input.

5 Evaluation

We implemented our approach for keyword query routing in Java using JDK 1.6
on top of MySQL 5.1. The experiments were conducted on a commodity PC with
2.5GHz Intel Core, 4GB of RAM and 500GB HDD SATA II 7200rpm, running on
Windows 7. As discussed, while KRG [10] is limited to the problem of database
selection, E-KERG can be seen as an extension that captures the ideas behind
KRG. KS represents a naive baseline. The goal was to assess the performance of
routing plan computation and the validity of results that can be achieved with
S-KERG and D-KERG, compared to the baselines E-KERG and KS.

5.1 Data Preprocessing

We employed a chunk of RDF data part of the Billion Triple Challenge dataset?.
It contains about 10M RDF triples that are from 154 different data sources, linked
via 500K mappings.

In total, the number of distinct terms extracted from all sources was 121,434.
We measured the number of elements in KS and the number of KERG relation-
ships. This was done for different settings of d,,q, to investigate the changes
in the number of relationships as longer distances are considered. KS contains
804,528 elements. For d,,q.. = 0,1,2,3,4, E-KERG contains 2.4M, 7.7M, 364M,
616M and 889M relationships, S-KERG contains 1.8M, 5.1M, 144M, 215M and
312M relationships and D-KERG contains 1.7M, 4.7M, 141M, 203M and 279M
relationships. Clearly, there were more relationships in KERG models than ele-
ments in KS. The number of relationships increases with d,,... The increase was
particularly sharp (one order of magnitude) when changing d,,q. from 1 to 2.

Similar results were obtained for index size. The E-KERG index was the
largest. As an average over different settings for d;,.., S-KERG was about 36%,
D-KERG was about 32% and KS was less than 1% the size of E-KERG. For
dmaz = 2 for instance, the sizes for E-KERG, S-KERG, D-KERG and KS were
8694MB, 3438MB, 3279MB and 22 MB, respectively.

Larger indexes required more building times. The times for building the S-
KERG indexes for d,,q. = 4, 3,2, 1 for instance, were 846 Min, 583 Min, 339 Min
and 27 Min, respectively.

Our report [8] provides a breakdown of the results into 6 categories of datasets
that vary in size. According to these results, both index size and building time
increased with the size of the dataset. However, there is no strict correlation
because there are cases where relatively small datasets resulted in large indexes.
Rather, structural density was the dominant factor. Large index and high building
costs were obtained for datasets which exhibit large number of links to other
datasets, and contain nodes with large in- and outdegree.

3 http://vmlion25.deri.ie/index.html

14

5.2 Query processing

For the experiment, we used a set of 30 keyword queries. All queries are valid,
i.e., they produce non-empty keyword answers (4-Steiner graphs to be precise).
For each query, at least two data sources contribute to the answers. One example
submitted by participants is “Rudi AIFB ISWC2008”. The sources containing
partial answers to this are uni-karlsruhe.de and semanticweb.org. Other exam-
ples are “Town River America”, “Markus Denny Semantic Wikis” and “Beijing
Conference Database 2007”. All queries can be found in our report [8].

Validity of Routing Plans To investigate the validity, we use precision at
k (PQk) to measure the percentage of plans that are valid out of the top-k plans
returned by the system. For instance, P@10 is 1 when every plan in the top-10
list returned by the system, produces at least one keyword query result.

10 ¢ A —+—EKERG ——D-KERG 5 X X
0g L TAEKERG /A—" 09 09 —#—E-KERG —=D-KERG
0:5 | —e—D-KERG 08 . S-KERG KS 08 S-KERG Ks
07 £ ;KERG% oo 07 07
06 ==k —— n 06 0,6
8 os / ©os a0s \\.—._*_*_v_'_'
& 3 / o4 04

00 + . . . 1 0,0 + . 00 F— =

] 1 2 3 4 2 3 4 5 1 2 3 a 5 6 7 8 9 10
Amax IKI k

(a) P@k at various dmaa (b) P@k at various | K| (c) P at various k

Fig. 4: Validity of the plans measured using PQk.

Fig. 4a shows P@5 for the settings dp,q: = 0,1, 2,3,4. These values represent
the average computed for all 30 queries. Using E-KERG, precision was up to
100 percent, i.e., for d5¥m = d92te — 4. With PQ@5 being always above 0.6 when
dmaz > 1, SSKERG and D-KERG also achieved relatively good results. P@5
for KS was only 6%. Clearly, d,q. had a positive effect. More valid plans were
computed when a higher value was used for d,q.. However, using dpq: = 4
instead of 3 did not yield clear improvement.

Fig. 4b shows the effect of query length |K|. Quite clear, queries with larger
number of keywords resulted in lower precision. It dropped as low as 0.23 when
using D-KERG for queries with 5 keywords.

Fig. 4c shows that as more results from the system were taken into account
(larger k), precision decreased. The decrease is small for k values larger than 3.

Experimental results thus correspond to the analysis we presented before: KS
is the model that produces only very few valid plans. This result was improved by
one order of magnitude when relationships between keywords were used. The more
fine-grained a model captures the relationships, the larger was the percentage of
valid plans. Even a summary at the level of sources produced reasonably high
quality results, i.e., every second plan was a valid one.

Performance Performance is measured as the average response time for com-
puting routing plans. Fig. 5a shows the performance for queries at various settings
using different values for d,,4,. This parameter had no effect on the KS’s results
but clearly influenced the performance achieved with KERG summaries. Times

15

increased with higher values for d,,4,. While this increase was sharp for E-KERG
and S-KERG, time performance of D-KERG was relatively stable. In particular,
time required by D-KERG was no more than 10ms on average.

Expectedly, more time was needed when the number of query keywords in-
creases, as illustrated in Fig. 5b. It seems that all the other models had poor
performance w.r.t complex queries but D-KERG. In particular, E-KERG is no
longer affordable for queries with more than 2 keywords because it needed more
than 100s to produce results. While the times shown are the actual times obtained
for the other models, only the lower bound was shown for E-KERG. This is be-
cause we applied a timeout of 6min. Fig. 5¢ shows the exact times obtained for
E-KERG and the queries that had to be aborted due to timeout. For d,,,, = 4
for instance, 1 out of every three queries was aborted.

Less expected, Fig. ba+ 5b show that KS did not achieve good performance.
It needed more than 30s on average, up to 100s for queries with 5 keywords.

This can be explained using the theoretical result achieved in the previous
section. Namely, the poor performance of KS indicates that the number of ele-
ments (see input,q. in Section 4.4) retrieved for single keywords must have been
much larger than for two keywords. In other words, keyword pairs proved to be
the much more selective queries. Considering relationships between keywords thus
did not only improve result validity but also performance.

1000000 F———— 1000000 1000000
100000

=>=E-KERG
100000

D-KERG

10000 10000

——EKERG / e //‘
1000 | —+=SKERG 1000
D-KERG
100 A=KS 100 100
o 0] o o i | ,
-

| A2 T AR RERRTFTEREEFITT

0 1 2 3 4 2 3 4 Ql 03 Q5 Q7 Q9 Qi1 QI3 Qi5 Q17 Q19 Q21 Q23 Q25 Q27 Q29
[Queries

100000

= dmax=0
10000

dmax=1

Z 1000 = dmax=2

mdmax=3

Query Processing Time E-kERG

Query Processing Time (ms)
Query Processing Time (ms)

(a) Times at var. dmaz (b) Times at var. |K| (c) Times for E-KERG at var. dmaas

Fig. 5: Processing times.

6 Conclusion

We presented a solution to the novel problem of keyword query routing. It helps
users without knowledge of the evolving linked data and schema to find combina-
tion of sources that contain answers corresponding to their needs. This solution
also partially addresses the aspect of efficiency as queries can be then evaluated
against the relevant sources identified by the user, instead of using the entire Web
of linked data.

We have proposed a family of summary models. Through theoretical and ex-
perimental analysis, we showed that it is important to capture keyword relation-
ships. Compared to the KS model representing the naive baseline that stores only
single keywords, the KERG models relying on relationships could produce a much

16

larger number of valid results, i.e., improved precision by more than one order
of magnitude when compared to the naive baseline represented by KS. Further,
finding out which relationships are covered as opposed to single keywords resulted
in less intermediate results to be processed. Thus, using relationships also has a
positive effect on performance.

We could also show that summarizing relationships is essential for dealing with
the large-scale linked data Web. Using a fine-grained E-KERG model representing
an extension of work in database selection that captures all relationships in the
data, precision was up to 100%, but response time was too high. While specific
requirements shall determine what is the “best” model, it seems that D-KERG
which summarizes at the level of sources represents the most practical trade-off.
It produced results in less than 10ms out of which every second one was valid.

As future work, we will combine the proposed work on query routing with
query processing to obtain a scalable procedure for computing relevant sources as
well as retrieving the final answers from them.

Acknowledgements Research reported in this paper was supported by the
German Federal Ministry of Education and Research (BMBF) under the iGreen
(grant 01A08005) and CollabCloud project (grant 01IS0937A-E).

References

1. A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, and S. Decker. Swse:
Answers before links! In Semantic Web Challenge, 2007.

2. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In WW W, pages 411-420, 2010.

3. A. Harth, J. Umbrich, A. Hogan, and S. Decker. Yars2: A federated repository for
querying graph structured data from the web. In ISWC/ASWC, pages 211-224,
2007.

4. F.Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational
databases. In SIGMOD Conference, pages 563-574, 2006.

5. T. Neumann and G. Weikum. The rdf-3x engine for scalable management of rdf
data. VLDB J., 19(1):91-113, 2010.

6. M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient keyword search across
heterogeneous relational databases. In ICDFE, pages 346-355, 2007.

7. T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In ICDE, pages
405-416, 2009.

8. T. Tran and L. Zhang. Keyword query routing. Technical report, Karlsruhe Insti-
tute of Technology, 2010. http://www.aifb.uni-karlsruhe.de/WBS/dtr/papers/
kqueryrouting.pdf.

9. G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker.
Sig.ma: live views on the web of data. In WWW, pages 1301-1304, 2010.

10. Q. H. Vu, B. C. Ooi, D. Papadias, and A. K. H. Tung. A graph method for keyword-
based selection of the top-k databases. In SIGMOD Conference, pages 915-926,
2008.

11. B. Yu, G. Li, K. R. Sollins, and A. K. H. Tung. Effective keyword-based selection
of relational databases. In SIGMOD Conference, pages 139-150, 2007.

