
On the Foundations of Computing Deltas
between RDF models

Dimitris Zeginis, Yannis Tzitzikas and Vassilis Christophides

Computer Science Department, University of Crete, GREECE, and
Institute of Computer Science, FORTH-ICS, GREECE

email: (zeginis|tzitzik|christop)@ics.forth.gr

Abstract. The ability to compute the differences that exist between two RDF
models is an important step to cope with the evolving nature of the Semantic
Web (SW). In particular, RDF Deltas can be employed to reduce the amount of
data that need to be exchanged and managed over the network and hence build
advanced SW synchronization and versioning services. By considering Deltas as
sets of change operations, in this paper we study various RDF comparison func-
tions in conjunction with the semantics of the underlying change operations and
formally analyze their possible combinations in terms of correctness, minimality,
semantic identity and redundancy properties.

1 Introduction

In order to cope with the evolving nature of the Semantic Web (SW) we need effec-
tive and efficient support for building advanced SW synchronization and versioning
services. RDF Deltas, reporting the differences that exist between two RDF models
have been proven to be crucial in order to reduce the amount of data that need to be
exchanged and managed over the network in this respect [17, 18, 3, 8].

Although RDF models can be serialized in various text formats (e.g., XML1, N-
Triples2, Trix3), a straightforward application of existing version control systems for
software code, such as RCS [29] and CVS [4], is not a viable solution for computing
RDF Deltas. This is mainly due to the fact that RDF models, essentially represent graphs
which (a) may feature several possible serializations (since there is no notion of edge
ordering in [4]) and (b) are enriched with the semantics of RDFS specification (also
including inferred edges according to [5]). For these reasons, several non text-based
tools have been recently developed for comparing RDF graphs produced autonomously
on the SW, as for example, SemVersion [31], PromptDiff [23], Ontoview [18], [10] and
[3]. In most cases, the output of these tools is exploited by humans, and thus an intuitive
presentation of the comparison results (and other related issues) has received consider-
able attention. SemVersion [31] proposes two Diff algorithms: (a) one structure-based
which returns a set-based difference of the triples explicitly forming the two graphs,
and (b) one semantic-aware which also takes into account the triples inferred by the

1 http://www.w3.org/TR/rdf-syntax-grammar/
2 http://www.w3.org/2001/sw/RDFCore/ntriples/
3 http://www.w3.org/2004/03/trix/

associated RDFS schemas. PromptDiff [23, 24, 22] is an ontology-versioning environ-
ment, that includes a version-comparison algorithm (based on heuristic matchers [23,
24]), while the visualization of the computed difference between two ontologies is dis-
cussed in [22]. Ontoview [18] is an ontology management system, able to compare two
ontology versions and highlight their differences. Notably, it allows users to specify the
conceptual relations (i.e. equivalence, subsumption) between the different versions of
an ontology concept. Moreover, [10, 13] introduce the notion of RDF molecules as the
finest components to be used when comparing RDF graphs (in the absence of blank
nodes each triple constitutes a molecule). Finally, tracking the evolution of ontologies
when changes are preformed in more controlled environments (e.g. collaborative au-
thoring tools) has been addressed in [19, 25, 32].

However, existing RDF comparison tools have not yet focused on the size of the pro-
duced Deltas, a very important aspect for building versioning services over SW repos-
itories [28]. In this paper we are interested in computing RDF Deltas as sets of change
operations (i.e. SW update programs) that enable us to transform one RDF model into
the other. Consider, for example, the two RDF models K and K ′ of Figure 1 and their
standard representation as sets of explicitly defined triples [5]: what set of change oper-
ations could transform K to K ′ (∆(K → K ′)) or vice versa (∆(K ′ → K))?

To answer this question we need to consider the semantics of the update primitives
such as Add(t) and Del(t) where t is triple involving any RDF predicate. By assuming
a side-effect free semantics for these primitives, i.e. Add(t) (resp. Del(t)) is a straight-
forward addition (resp. deletion) of t from the set Triples(K), K ′ can be obtained by
executing the following set ∆e (e stands for explicit) of change operations:

∆e = {Del(TA subClassOf Person), Del(Address domain Student),

Del(Jim type Student), Add(TA subClassOf Student),

Add(Address domain Person), Add(Jim type Person)}
∆e is actually composed of update operations over the explicit triples of K and

K ′, and it is provided by the majority of existing RDF comparison tools [3, 31, 10].
However, by assuming side-effects (on the inferred triples not represented in Figure 1)
during the execution of the above update primitives, we can reach K ′ by applying on
K the following set ∆d (d stands for dense) of change operations:

∆d = {Del(Jim type Student), Add(TA subClassOf Student),

Add(Address domain Person)}

As we can easily observe, ∆d has only three change operations in contrast to ∆e

that has six, given that inferred triples are also taken into account for the Delta com-
putation. For example, Del(TA subClassOf Person) is not included in ∆d because it
can be inferred from K ′. As we can see in Figure 1, this comparison function yields
even smaller in size operation sets than the ∆c (c stands for closure) semantics-aware
Delta of [31]. However, ∆d cannot always successfully transform one RDF model to
another. Returning to our example of Figure 1, ∆d cannot be used to migrate backwards
from K ′ to K since Del(Address domain TA) is an operation not included in ∆d

. For this reason, we need to consider additional RDF comparison functions involving
inferred triples such as ∆dc (dc stands for dense & closure) illustrated in Figure 1. Still
the resulting sets of operations have at most the same size as those returned by ∆c.

Person Person

Student

Jim

K K’

{ (Person type Class),
(Student type Class),
(TA type Class),
(Student subClassOf Person),
(TA subClassOf Person),
(Address type Property)
(Address domain Student),
(Address range Literal),
(Jim type Student) }

What set of change
operations could
transform K to K’?

?

∆(Κ→Κ’) =

{ Del(TA subClassOf Person), Del(Address domain Student), Del(Jim type Student),
Add(TA subClassOf Student), Add(Address domain Person), Add(Jim type Person) }

{Del(Jim type Student), Add(TA subClassOf Student), Add(Address domain Person) }

?

Triples (K): Triples (K’):

TA

Literal
Address

Literal
Address

{ (Person type Class),
(Student type Class),
(TA type Class),
(Student subClassOf Person),
(TA subClassOf Student),
(Address type Property),
(Address domain Person),
(Address range Literal),
(Jim type Person) }

: type

Jim

StudentTA

: subClassOf : property domain/range

∆(Κ’→Κ)=

{Del(TA subClassOf Student), Del(Address domain Person), Del(Jim type Person),
Add(TA subClassOf Person), Add(Address domain Student), Add(Jim type Student)}

{ Del(TA subClassOf Student), Del(Address domain Person), Add(Jim type Student) }?

{ Del(TA subClassOf Student), Del(Address domain Person), Del(Address domain TA),
Add(Jim type Student) }

∆e

∆d, ∆dc

∆e

∆d

∆c,∆dc

{Del(Jim type Student), Add(TA subClassOf Student), Add(Address domain Person),
Add(Address domain TA)}

∆c

Fig. 1. Transforming K to K′ and vice versa

RDF comparison functions that yield as less as possible change operations are quite
beneficial for building SW versioning services. In particular, by advocating a change-
based versioning framework [9] we can store in a SW repository only the update pro-
grams required to migrate (forward or backward) from one version to another rather
than the entire set of triples for each version. In a nutshell, storing (or exchanging)
as less as possible change operations is more space (or time) efficient. In this context,
the main questions addressed by our work are: (a) what semantics of update primitives
would make the above scenario possible (i.e. with what side-effects), and (b) how could
we compute the corresponding set of change operations (i.e. with what comparison
functions)? In response to these questions, the main contributions of this paper are:

(a) We introduce two change operations semantics: one plain set-theoretic (considers
only updates of the explicit triples) denoted by Up, and the other involves inference
and redundancy elimination of updated Knowledge Bases, denoted by Uir.

(b) We analyze four different comparison functions returning sets of changes opera-
tions, namely, explicit (∆e), closure (∆c), dense (∆d), and dense & closure (∆dc).

(c) We study which combinations of change operation semantics and comparison func-
tions are correct and satisfy properties such as semantic identity and non redun-
dancy. It should be stressed that the combination (∆dc,Uir) is quite promising: (i)
it returns an empty result if K and K ′ are semantically equivalent (ii) the knowl-
edge base obtained when applying ∆dc(K → K ′) on K is redundancy free, and
(iii) if K ′ is an extension of K then it is guaranteed that the Delta that we get is
smaller than all comparison functions already proposed in the literature [3, 31, 10].

The rest of this paper is organized as follows. Section 2 provides background infor-
mation regarding RDF Knowledge Bases (KB). Section 3 introduces four RDF com-
parison functions, Section 4 elaborates on the change operations and their semantics,

while Section 5 shows the interplay between the two. Finally, Section 6 concludes the
paper and identifies issues for further research.

2 Background: RDF KBs

In general, an RDF Knowledge Base (KB) is defined by a set of triples of the form
(subject, predicate, object). Let T be the set of all possible triples that can be constructed
from an infite set of URIs (for resources, classes and properties) as well as literals [15].
Then a KB can be seen as a finite subset K of T , i.e. K ⊆ T . Apart from the explicitly
specified triples of a K, other triples can be inferred based on the semantics of RDF/S
[16]. For this reason, we introduce the notion of closure and reduction of RDF KBs.

The closure of a K, denoted by C(K), contains all the triples that either are ex-
plicitly specified or can be inferred from K by taking in account the semantics of the
associated RDFS schemas. As we can view an RDF model as a graph, we could con-
sider that C(K) is defined (and computed) by taking the reflexive and transitive clo-
sures of binary relations (subsumption, type)4. If it holds C(K) = K, then we will call
K completed. The elements of K will be called explicit triples, while the elements of
C(K)−K will be called inferred. We can now define an equivalence relation between
two knowledge bases.

Def. 1 Two knowledge bases K and K ′ are equivalent, denoted by K ∼ K ′, iff
C(K) = C(K ′).

The reduction of a K, denoted by R(K), is the smallest in size set of triples such that
C(R(K)) = C(K). In general, the reduction of a K is not necessarily unique (when
cycles occur in the subsumption relations). Let Ψ denote the set of all knowledge bases
that have a unique reduction. Independently of whether the reduction of a K is unique
or not, we can characterize a K as (semantically) redundancy free, and we can write
RF (K) = True (or just RF (K)), if it does not contain explicit triples which can be
inferred from K. Formally, K is redundancy free if there is not any proper subset K ′ of
K (i.e. K ′ ⊂ K) such that K ∼ K ′.

3 RDF KBs Deltas

In this section we formally define the four comparison functions of RDF KBs intro-
duced in Figure 1, namely, ∆e, ∆c, ∆d and ∆dc.

∆e(K → K′) = {Add(t) | t ∈ K′ −K} ∪ {Del(t) | t ∈ K −K′}
∆c(K → K′) = {Add(t) | t ∈ C(K′)− C(K)} ∪ {Del(t) | t ∈ C(K)− C(K′)}
∆d(K → K′) = {Add(t) | t ∈ K′ − C(K)} ∪ {Del(t) | t ∈ K − C(K′)}

∆dc(K → K′) = {Add(t) | t ∈ K′ − C(K)} ∪ {Del(t) | t ∈ C(K)− C(K′)}

4 The consequence operator of logic theories (e.g. see [11]) is out of the scope of this paper.

∆e (where e stands for explicit) actually returns the triple-set difference over the
explicitly specified triples, while ∆c (where c stands for closure) returns the triple-set
difference by also taking into account the inferred triples. As we mentioned in Section 1,
existing approaches (e.g. [31]) are based on ∆e and ∆c. However, as we are especially
interested in comparison functions that yield smaller in size Deltas, we introduce two
novel comparison functions namely ∆d (where d comes from dense) and ∆dc (dc comes
from dense & closure). It is not hard to see that ∆d yields smaller in size outputs (in
comparison with the previous two). Unfortunately, and as we will see at Section 5, ∆d

cannot be used in general since only for specific cases returns correct results. For this
reason we additionally consider ∆dc which yields smaller in size outputs than ∆c. This
function resembles ∆d regarding additions and ∆c regarding deletions.

Prop. 1 Let |∆(K → K ′)| to denote the number of change operations in ∆(K →
K ′). Then for any pair of valid knowledge bases K and K ′ it holds:

|∆d(K → K′)| ≤ |∆e(K → K′)|
|∆d(K → K′)| ≤ |∆dc(K → K′)| ≤ |∆c(K → K′)|

We have K ⊆ C(K) ⇔ K ′ − C(K) ⊆ K ′ − K (1) and K ′ ⊆ C(K ′) ⇔
K − C(K ′) ⊆ K − K ′ (2). From (1) and (2) it follows that |∆d| ≤ |∆e|. The for-
mula for additions is the same for both ∆d and ∆dc. If we consider deletions we have
K ⊆ C(K) ⇔ K−C(K ′) ⊆ C(K)−C(K ′) ⇔ |∆d| ≤ |∆dc|. Furthermore, we have
K ′ ⊆ C(K ′) ⇔ K ′−C(K) ⊆ C(K ′)−C(K) (3) and K ⊆ C(K) ⇔ K−C(K ′) ⊆
C(K) − C(K ′) (4). From (3) and (4) it follows that |∆d| ≤ |∆c|. Finally, the for-
mula for deletions is the same for both ∆c and ∆dc. If we consider additions we have
K ′ ⊆ C(K ′) ⇔ K ′ − C(K) ⊆ C(K ′)− C(K) ⇔ |∆dc| ≤ |∆c|

In a nutshell ∆d gives always smaller in size Deltas while ∆dc is incomparable to
∆e (Figure 2 shows the Hasse diagram of the ordering relation).

∆c

∆dc

∆e

∆d

≤

≤
≤

Fig. 2. Ordering of Comparison Functions with respect to the size of their output

In the next section we will investigate what happens if we ”execute” the Deltas
produced by the above comparison functions under different semantics of the change
update primitives Add(t) and Del(t).

4 RDF KB Change Operations Semantics

A change operation semantics defines precisely the pre and post-conditions of the op-
erations Add(t), Del(t) where t is a triple involving any RDF predicate. In Table 1

we define two alternative semantics, namely, Up (p comes from plain), and Uir (ir
comes from inference & reduction). Under Up-semantics, the execution of the opera-
tions consists of plain set theoretic additions and deletions of triples. This implies that
only the explicit triples are taken into account while inferred ones are ignored. Un-
der Uir-semantics the execution of update primitives incurs also interesting side-effects
such as redundancy elimination and knowledge preservation. This implies that the up-
dated KB will not contain any explicit triple which can be inferred, while preserves as
much of the knowledge expressed in K as possible (reminiscent to the postulates of the
AGM theory [2] regarding contraction, and compliant with the semantics of the RUL
update language [21]).

We first explain Uir using the example of Figure 1. If we apply on K the set ∆d

under Uir-semantics, then we will indeed get K ′. The insertion of (TA subClassOf
Student) makes the triple (TA subClassOf Person) redundant, so the execution of
Add(TA subClassOf Student) will remove (TA subClassOf Person) from the KB.
Analogously, the insertion of (Address domain Person) makes the triple (Address
domain Student) redundant, while the deletion of the triple (Jim type Student) will
add the triple (Jim type Person).

Returning to Table 1, for every operation u (of the form Add(t) or Del(t)) three
different, and mutually exclusive, pre-conditions are examined, namely t ∈ K, t ∈
C(K) − K and t 6∈ C(K). The post-conditions of each case are specified. K (K ′)
denotes the knowledge base before (after) the execution of an operation u. Notice that
post-conditions define exactly what K ′ will be5, unless the reduction is not unique.

Table 1. Two change operation semantics Up and Uir

Change Operation Semantics Up

Operation Pre-condition Post-condition Comment‘
Add(t) 1 t ∈ K K′ = K void

2 t ∈ C(K)−K K′ = K ∪ {t} addition (although already inferred)
3 t 6∈ C(K) K′ = K ∪ {t} addition

Del(t) 4 t ∈ K K′ = K − {t} deletion
5 t ∈ C(K)−K K′ = K an inferred triple cannot be deleted
6 t 6∈ C(K) K′ = K void

Change Operation Semantics Uir

Add(t) 7 t ∈ K K′ = K void
8 t ∈ C(K)−K K′ = K it is already inferred so it is ignored
9 t 6∈ C(K) K′ = R(K ∪ {t}) addition and then reduction

Del(t) 10 t ∈ K K′ = R(C(K)− {t}) deletion from closure and then reduction
11 t ∈ C(K)−K K′ = K an inferred triple cannot be deleted
12 t 6∈ C(K) K′ = K void

In particular, let t be the triple whose addition is requested. If t ∈ K, then under
both Up and Uir semantics no change will be made i.e. K ′ = K (recall that K is a set
of triples). If t ∈ C(K) − K, then under Up-semantics, K ′ will indeed contain that
triple however, under Uir-semantics we will have K ′ = K because every triple that
exists at C(K) − K can be inferred (and Uir aims at redundancy-free KBs). Finally,

5 One could consider the rows of Table 1 as ECA rules where the Events correspond to column
”Operation”, the Conditions correspond to column ”Pre-Condition” and the Actions corre-
spond to column ”Post-condition”.

when requesting the addition of a triple t 6∈ C(K) under Up, K ′ will contain that triple.
Under Uir, K ′ will contain the triples that remain after adding t to K and eliminating
the redundant triples (i.e. those that can be inferred).

Let us now consider that the deletion of a triple t is requested. If t belongs to K,
then K ′ will not contain t under Up-semantics. Under Uir, K ′ will contain the triples
that remain after deleting t from C(K) and eliminating the redundant triples (note that
C(K) is used in order to preserve as much knowledge as possible). Now if t ∈ C(K)−
K, then this request is ignored under both semantics. This means that in both semantics,
only explicit triples can be deleted. This relieves us from having to decide which of the
(possibly several) policies to adopt for reaching a K ′ whose closure does not contain t.
Finally, if t 6∈ C(K), then nothing happens as t is already out of K.

Let S be the set of all possible operations of the form Add(t), Del(t) where t ∈ T .
Let S be a finite subset of S (i.e. S ⊂ S). If U is a symbol that denotes the semantics of
a particular change operation (i.e. Up,Uir), then we will use SU (K) to denote the result
of applying S to K under U semantics. Notice that the result of applying an operation
is unique under Up-semantics. This is true also for Uir if we are in Ψ (KBs with unique
reduction).

Now we introduce some notions regarding sets of change operations (based on [30]).
Two sets of change operations S and S′ are universally equivalent under U , denoted by
S ≡U S′, iff SU (K) ∼ S′U (K) for every possible knowledge base K.

For computing change-based Deltas we need a less strong notion of equivalence
(analogously to transaction equivalence [1]).

Def. 2 S and S′ are equivalent over a given K under U , denoted by S ≡UK S′, iff
SU (K) ∼ S′U (K).

In order to elaborate on cases where the order of execution of the update operations
affects the final result, we introduce the following notion of satisfaction.

Def. 3 We will say that K satisfies: (a) an operation Add(t), iff t ∈ C(K), (b) an
operation Del(t), iff t 6∈ C(K) and (c) a set of change operations S (where S ⊆ S) if
K satisfies every element of S.

If the resulting KB does not satisfy S, then we will write S(K) = E where E is
a special symbol indicating that an error occurred. In the sequel, and for reasons of
brevity, whenever we write S(K) we will also mean that S(K) 6= E .

5 Comparison Functions and Change Operation Semantics

In this section we investigate which of the four comparison functions (introduced in
Section 3) and under what semantics of update primitives (presented in Section 4) could
be used for building a change-based versioning system. To this end, we have to define
formally the notions of correctness, semantic identity and redundancy, and then elabo-
rate on the execution of the update programms. Finally, we will identify these pairs that
are correct and the properties that they satisfy.

5.1 Correctness, Semantic Identify and Non Redundancy of RDF Deltas

Let ∆x be a comparison function, and Uy be a change operation semantics.

Def. 4 A pair (∆x,Uy) is correct if for any pair of knowledge bases K and K ′, it holds
∆x(K → K ′)Uy (K) ∼ K ′.

Obviously, a pair (∆x,Uy) can be used for versioning services only if it is correct.
Apart from correctness, a pair (∆x,Uy) may also satisfy the following properties.
(P1) If K ∼ K ′ then ∆x(K → K ′) = ∅ (semantic identity)

It is desirable to have a comparison function that reports an empty result if its
operands are equivalent.

(P2) RF (∆x(K → K ′)Uy (K)) (non redundancy)
The resulting KB is always redundancy free (i.e. for any K and K ′).

(P2.1) If RF (K ′) then RF (∆x(K → K ′)Uy (K))
If K ′ is RF then the resulting KB is also RF. Note that (P2.1) is weaker than
(P2): if (P2) holds then (P2.1) holds too.

5.2 Executing (or Satisfying) RDF Deltas

Def. 4 presupposes that we have at our disposal an appropriate ”execution mode” such
that when we apply ∆x(K → K ′) in K, and according to the selected semantics,
the resulting KB will satisfy every element of ∆x(K → K ′). Of course, the above
premise requires that the set S does not contain contradictions i.e. it does not con-
tain both Add(t) and Del(t) for a given t. This is true for the comparison functions
∆e, ∆c, ∆d, ∆dc. However, this is not the only technical problem we have to address.

The order of execution of the change operations may affect the resulting KB, in
particular the resulting KB may not satisfy all change operations returned by a compar-
ison function (see Def. 3). For instance, for the KBs of Table 2 (d) we get ∆dc(K ′ →
K) = {Del(A subClassOf D), Del(B subClassOf D), Del(C subClassOf D)}. If
the operations are executed in the order 〈Del(A subClassOf D), Del(B subClassOf
D), Del(C subClassOf D)〉 under Uir semantics, then all of them will be satisfied
and the result will be equivalent to K. Now consider the following execution order
〈Del(B subClassOf D), Del(C subClassOf D), Del(A subClassOf D)〉. In this case
the operation Del(B subClassOf D) does not change the K as it requests the dele-
tion of an inferred triple and according to Uir semantics an inferred triple can’t be
deleted. The same will happen with the operation Del(C subClassOf D). Finally, the
operation Del(A subClassOf D) will be executed and will cause the addition of the
triple (B subClassOf D). It is obvious that the operation Del(B subClassOf D) is
not satisfied by the resulting KB because it contains the triple (B subClassOf D)
i.e. ∆dc(K → K ′)Uir = E . We have just seen an example where the order of ex-
ecution matters. The same problem occurs when K ′ contains a redundant triple e.g.
(B subClassOf D). A similar situation is encountered with ∆c and with ∆d when K
and K ′ are not redundancy free.

To avoid nondeterminism and to ensure correctness, we need an execution seman-
tics of change operations (comprised in Deltas) that guarantees their satisfaction (if this

is possible). This can be achieved by: (a) defining comparison functions that return se-
quences (not sets) of change operations which guarantee satisfaction of their elements,
or by (b) using a multi-pass execution mode that guarantees that all change operations
will eventually be satisfied. Below we elaborate on the (b) approach. We could use a
loop-based algorithm which terminates when every operation returned by a comparison
function is satisfied.

Alg 1. Execute(K, M , sem) where M ⊆ S , sem ∈ {Up,Uir}
(1) repeat
(2) get an element u ∈ M that is not satisfied by K
(3) Kt = usem(K) // i.e. apply on K the appropriate post-conditions of u wrt sem
(4) K = Kt

(5) until {u ∈ M |u not satisfied by K} = ∅

In this context, we have to prove that the execution algorithm always terminates (if
M has been derived from one of ∆e, ∆c, ∆d, ∆dc). It is clear that the loop always ter-
minates for the case of (∆e,Up) because it yields operations that are always satisfiable.
So we only have to study ∆d, ∆c and ∆dc underg Uir-semantics.

Let Y be the satisfiable deletions and Z the unsatisfiable deletions at any point
during the execution of the algorithm. If we prove that whenever |Y | = 0 we also have
|Z| = 0 then we prove that our algorithm always terminates since all elements of M
are satisfied.

Both ∆c and ∆dc produce the following set of delete statements: X = {Del(t′) | t′ ∈
C(K) − C(K ′) }. An element Del(t) will be satisfied if t ∈ R(K). So the set Y ,
i.e. the satisfiable deletions of X , is defined as Y = R(K) ∩ (C(K) − C(K ′)) =
R(K)− C(K ′). Let’s now define Z. Recall that a Del(t′), may not be satisfied (when
applied to K) only if t′ ∈ C(K)−R(K). So the set Z, i.e. the unsatisfiable deletions of
X , is defined as Z = (C(K)−R(K))∩(C(K)−C(K ′)) = C(K)−(R(K)∪C(K ′)).

Let’s now investigate whether |Y | = 0 ⇒ |Z| = 0 holds. At first, notice that
Y = ∅ ⇔ R(K)−C(K ′) = ∅ ⇔ R(K) ⊆ C(K ′). Also note that R(K) ⊆ C(K ′) ⇒
C(K) ⊆ C(K ′). This is based on the properties of the closure operator: if we have two
sets A and B such that A ⊆ B and B is closed with respect to the closure operator C
(i.e. C(B) = B), then C(A) ⊆ B.

Returning to our problem, if Y = ∅ (that is if R(K) ⊆ C(K ′)), then the formula
Z = C(K) − (R(K) ∪ C(K ′)) is equivalent to Z = C(K) − C(K ′). But above we
have seen that Y = ∅ ⇒ C(K) ⊆ C(K ′) too. It follows that Z = ∅. So the algorithm
always terminates.

The above is actually the proof of the proposition: If |R(K) − C(K ′)| = 0 then
|C(K)− (R(K) ∪ C(K ′))| = 0.

The proof for ∆d is similar.

5.3 Identifying the Correct (∆x, Uy)-pairs

For identifying the pairs that are correct, Table 2 depicts 6 examples. For each example,
it shows the result of applying ∆d, ∆c, ∆e and ∆dc for both K → K ′ and K ′ → K,
and contains the following columns:

Table 2. Examples

C

B

AA

B C

K’K

B

A

C

D

B

A

C

D

K K’

A

B C

D A

B C

DK K’

A

D

B

C

K

A

D

B

C

K’ A

B

C
P1

A

B

C
P1

K

K’

A

B C

K

D

E
P1

A

B C

K’

D

EP1

(a) Tree and Chain
(b) Chain and
Rooted DAG (c) Tree and DAG

(d) Forest and Chain (e) Chain and Property
Domain

(f) Tree and
Property
Domain

(a) Tree and Chain
Delta K → K′ Up Up Uir K′ → K Up Up Uir

Co RF Co Co RF Co
∆e {Add(C subClassOf B),

Del(C subClassOf A)}
Y Y Y {Add(C subClassOf A),

Del(C subClassOf B)}
Y Y Y

∆c {Add(C subClassOf B)} Y N Y {Del(C subClassOf B)} N Y Y
∆d {Add(C subClassOf B)} Y N Y {Del(C subClassOf B)} N Y Y
∆dc {Add(C subClassOf B)} Y N Y {Del(C subClassOf B)} N Y Y
(b) Chain and Rooted DAG
∆e {Add(C subClassOf A),

Add(D subClassOf B),
Del(C subClassOf B)}

Y Y Y {Add(C subClassOf B),
Del(C subClassOf A),
Del(D subClassOf B)}

Y Y Y

∆c {Del(C subClassOf B)} N Y Y {Add(C subClassOf B)} Y N Y
∆d {Del(C subClassOf B)} N Y Y {Add(C subClassOf B)} Y N Y
∆dc {Del(C subClassOf B)} N Y Y {Add(C subClassOf B)} Y N Y
(c) Tree and DAG
∆e {Add(C subClassOf D),

Del(A subClassOf D)}
Y Y N {Add(A subClassOf D),

Del(C subClassOf D)}
Y Y Y

∆c {Del(A subClassOf D),
Del(B subClassOf D)}

N Y Y {Add(A subClassOf D),
Add(B subClassOf D)}

Y N Y

∆d {Del(A subClassOf D)} N Y N {Add(A subClassOf D)} Y N Y
∆dc {Del(A subClassOf D),

Del(B subClassOf D)}
N Y Y {Add(A subClassOf D)} Y N Y

(d) Forest and Chain
∆e {Add(A subClassOf D)} Y Y Y {Del(A subClassOf D)} Y Y N
∆c {Add(A subClassOf D),

Add(B subClassOf D),
Add(C subClassOf D)}

Y N Y {Del(A subClassOf D),
Del(B subClassOf D),
Del(C subClassOf D)}

Y Y Y

∆d {Add(A subClassOf D)} Y Y Y {Del(A subClassOf D)} Y Y N
∆dc {Add(A subClassOf D)} Y Y Y {Del(A subClassOf D),

Del(B subClassOf D),
Del(C subClassOf D)}

Y Y Y

(e) Chain and Property Domain
∆e {Add(B, P1, C),

Del(A, P1, C)}
Y Y Y {Add(A, P1, C),

Del(B, P1, C)}
Y Y Y

∆c {Del(A, P1, C)} N Y Y {Add(A, P1, C)} Y N Y
∆d {Del(A, P1, C)} N Y Y {Add(A, P1, C)} Y N Y
∆dc {Del(A, P1, C)} N Y Y {Add(A, P1, C)} Y N Y
(f) Tree and Property Domain
∆e {Add(C, P1, E),

Del(A, P1, E)}
Y Y N {Add(A, P1, E),

Del(C, P1, E)}
Y Y Y

∆c {Del(A, P1, E),
Del(B, P1, E)}

N Y Y {Add(A, P1, E),
Add(B, P1, E)}

Y N Y

∆d {Del(A, P1, E)} N Y N {Add(A, P1, E)} Y N Y
∆dc {Del(A, P1, E),

Del(B, P1, E)}
N Y Y {Add(A, P1, E)} Y N Y

– Up Co: If Y then this means that ∆x(K → K ′)Up(K) ∼ K ′, i.e. the approach is
correct. Otherwise the cell is marked with N.

– Up RF: If Y then this means that the application of these changes results in a re-
dundancy free K. Formally Y iff RF (∆x(K → K ′)Up(K))). Otherwise the cell
is marked with N.

– Uir Co: If Y then this means that ∆x(K → K ′)Uir (K) ∼ K ′ i.e the approach is
correct. Otherwise the cell is marked with N.

In all cases we assume that the KBs are redundancy free. We do not have a column
”Uir RF” because by definition the execution of a Uir-operation leaves the knowledge
base in a redundancy free state. Those pairs that have a N in the cells that concern
correctness, constitute a proof (by counterexample) that they are not correct. For the
rest pairs (those with a Y) we have to prove that they are always correct.

Theorem 1. For any pair of valid knowledge bases {K,K ′} ⊆ Ψ it holds:

∆c(K → K ′)Uir (K) ∼ ∆e(K → K ′)Up(K) ∼ ∆dc(K → K ′)Uir (K) ∼ K ′

Theorem 2. ∆d(K → K ′)Uir (K) ∼ K ′ iff {K, K ′} ⊆ Ψ and either: (a) K is com-
plete, or (b) C(K)−K ⊆ C(K ′).

Due to space limitations the proof of the above theorems is omitted. An interesting
remark regarding Th. 2 is that if C(K ′) ⊇ C(K), then condition (b) holds. This means
that we could use the pair (∆d,Uir) in cases we know that C(K ′) ⊇ C(K). For exam-
ple if K is an ontology O and K ′ is an additional ontology O′ that specializes O, then
we are sure that C(K ′) ⊇ C(K). In such cases we can use ∆d (or alternatively ∆dc)
which give the smallest in size Deltas (∆dc returns the same Deltas).

5.4 Semantic Identify and Non Redundancy Properties of (∆x, Uy)-pairs

Prop. 2 If K ∼ K ′ then ∆d(K → K ′) = ∆c(K → K ′) = ∆dc(K → K ′) = ∅.

This is property (P1) and its proof is trivial. Note that ∆e is not included in Prop. 2
because even if K ∼ K ′, it may be K = K ′, K ⊂ K ′, K ′ ⊂ K, or K 6⊆ K ′ and K ′ 6⊆
K. In the example of Figure 3 (a) we get ∆e(K → K ′) = {Add(C subClassOf A)}
although K ∼ K ′. It should be stressed that most of the existing comparison functions
[3, 31, 10] actually employ ∆e, so they do not satisfy (P1).

(a)

K’A

B

C

A

B

C
B C

A

B C

A

B C

A
K K2K1

(b)

K

Fig. 3. K, K′

However, one can easily prove that: If K and K ′ are both redundancy free, and
the knowledge bases considered have always a unique reduction, then K ∼ K ′ ⇒

∆e(K → K ′) = ∅. In general, if the transitive closure of a binary relation R is an-
tisymmetric and finite, then the transitive reduction of R is unique. In the problem at
hand, if an RDF knowledge base allows forming cycles with subsumption relation-
ships, then the transitive reduction is not unique. For example, in Figure 3 (b) we have
K ∼ K1 ∼ K2, moreover RF (K1), RF (K2), but K1 6= K2.

Prop. 3 If K ∼ K ′, {K,K ′} ⊆ Ψ and RF (K), RF (K ′) then ∆e(K → K ′) = ∅

5.5 Summarizing the Results

The pairs that are always correct are: (∆c,Uir), (∆e,Up) and (∆dc,Uir). The pair
(∆c,Up) is correct if K is complete. The pair (∆d,Uir) is correct in the cases specified
in Theorem 2. The set of change operations derived from either ∆c or ∆dc need the
multi-pass execution mode while ∆e requires a single pass execution mode. Concern-
ing the size criterion, ∆d produces the smallest in size result. ∆dc produces smaller
results than ∆c. Concluding, we can say that the pairs (∆dc,Uir) and (∆e,Up) are the
most appropriate for implementing change-based versioning services: they are always
correct and the size of ∆dc is less than ∆c. We cannot however compare the size of
∆e with that of ∆dc (in some cases the first is smaller, in others the second). Table 3
synopsizes the results. Concerning the column labeled ”Execution Mode”, S is used to
denote single pass, and M to denote multi pass.

It is worth mentioning that (∆e,Up) is correct even if we are not in Ψ . Moreover,
Theorem 1 holds even if we are not in Ψ but we adopt a ”batch” execution mode for Uir,
where each change operation is not executed independently but all change operations of
the produced Delta are executed as one ”transaction”, i.e. we compute the closure and
the reduction only once.

Table 3. Synopsis
Comp. Sem. Always Correct Exec Mode (P1) (P2) (P2.1)
∆e Up Y S see (Prop. 3) N Y
∆c Up Y if K complete S Y N
∆d Up N Y N
∆dc Up N Y N
∆e Uir N see (Prop. 3) Y Y
∆c Uir Y in Ψ M Y Y Y
∆d Uir (see Theorem 2) M Y Y Y
∆dc Uir Y in Ψ M Y Y Y

6 Concluding Remarks

One approach for computing the difference between two RDF models is to take the
difference between the sets of triples forming the two models (along with some refine-
ments such as taking into account blank nodes). Another approach (useful for version-
ing) is to identify a set of change operations that will transform one model into the other.
In this paper we investigated the second approach and studied different semantics for
this computation as well as properties like minimality and correctness of the produced
Deltas. Most of the existing RDF comparison tools [3, 31, 10] rely on the (∆e,Up) pair.

Semversion [31] offers also (∆c,Up) for the case where the K is complete (we have
proved that in such cases this approach yields correct results). None of the works (the-
oretical or practical) has used ∆d or ∆dc. Recall that we have shown that (∆dc,Uir) is
better than (∆c,Up) not only because (∆dc,Uir) does not require the KBs to be com-
plete, but also because it returns smaller in size Deltas. We have identified the cases
where (∆d,Uir) is beneficial (recall that ∆d gives the minimum in size Deltas). An
issue for further research is to identify the conditions under which ∆e yields smaller
Deltas than ∆dc and vice versa.

In comparison with belief contraction-revision (e.g. [14, 20, 11]), these theories con-
sider KBs as logic theories and focus on what the result of applying a contraction/ revi-
sion operation on a KB should be. In our setting, the destination KB is known, i.e. it is
K ′, so the focus is given on the transition from K to K ′6.

We plan to exploit the properties of the various Delta functions presented in this
paper for building versioning services on top of SW repositories [28]. For reasons of
space, technical details, as well as issues regarding the peculiarities of RDF including
blank nodes identification, and containers (Bag, Sequence, Alternative) are omitted7.
An important implementation issue that is worth mentioning is that the algorithm imple-
menting the Delta functions never computes the closure of a KB. Instead, it constructs
the explicit graph of each KB, and then it checks whether t ∈ C(K) which can be
decided efficiently (in O(1)), thanks to a labeling scheme [7] for subsumption relation-
ships that is supported by RDFSuite [12]. Concerning the execution of Uir operations,
related algorithms include [26], while a similar in spirit approach for RDF has already
been implemented for the RUL language [21].

Acknowledgements This work was partially supported by the EU projects CASPAR
(FP6-2005-IST-033572) and KP-Lab (FP6-2004-IST-4).

References

1. S. Abiteboul and V. Vianu. “Equivalence and optimization of relational transactions”. Jour-
nal of the ACM (JACM), 35(1):70–120, 1988.

2. C. E. Alchourrón, P. Gärdenfors, and D. Makinson. “On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions”. J. Symb. Log., 50(2):510–530, 1985.

3. T. Beners-Lee and D. Connoly. ”Delta: An Ontology for the Distribution of Differences
Between RDF Graphs”, 2004. http://www.w3.org/DesignIssues/Diff (version: 2006-05-12).

4. B. Berliner. “CVS II: Parallelizing Software Development”. In Procs of the USENIX Winter
1990 Technical Conference, pages 341–352, Berkeley, CA, 1990.

5. D. Brickley and R. V. Guha. “RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation”, February 2004. http://www.w3.org/TR/rdf-schema/.

6. J. J. Carroll. “Matching RDF graphs”. In Procs of the ISWC’02, pages 5–15, Italy, Oct. 2002.
7. V. Christophides, D. Plexousakis, M. Scholl, and S. Tourtounis. “On Labeling Schemes for

the Semantic Web”. In Procs. of WWW’03, pages 544–555, Budapest, Hungary, May 2003.
8. R. Cloran and B. Irwin. ”Transmitting RDF graph deltas for a Cheaper Semantic Web”. In

Procs. of SATNAC’2005, South Africa, September 2005.

6 Note that Up,Uir are not proposed as general purpose change operations, but only for execut-
ing the results of the comparison functions we have defined in this paper.

7 One approach to tackle the blank node identification problem is to consider that a KB is not a
set of RDF triples but a set of RDF molecules [10, 13, 27]. Alternative techniques include [6].

9. R. Conradi and B. Westfechtel. “Version models for software configuration management”.
ACM Comput. Surv., 30(2):232–282, 1998.

10. L. Ding, T. Finin, A. Joshi, Y. Peng, P. da Silva, and D. McGuinness. “Tracking RDF Graph
Provenance using RDF Molecules”. In Procs of ISWC’05, Galway,Ireland, November 2005.

11. G. Flouris. “On Belief Change and Ontology Evolution”. PhD thesis, Computer Science
Department, University of Crete, Greece, 2006.

12. FORTH-ICS. “The ICS-FORTH RDFSuite: High-level Scalable Tools for the Semantic
Web”, 2005. http://139.91.183.30:9090/RDF/.

13. J. Petersson F. Piazza P. Puliti G. Tummarello, C. Morbidoni. ”RDFGrowth, a P2P annotation
exchange algorithm for scalable Semantic Web applications”. In 1st Annual International
Conference on Mobile and Ubiquitous Systems MobiQuitous, Boston, MA, August 2004.

14. P. Gärdenfors. “Belief Revision: An Introduction”. In Belief Revision, pages 1–20. Cam-
bridge University Press, 1992.

15. C. Gutierrez, C. Hurtado, and A. Mendelzon. “Foundations of Semantic Web Databases”. In
In 23 ACM Symposium on Principles of Database Systems (PODS), 2004.

16. P. Hayes. “RDF Semantics, W3C Recommendation”, February 2004.
http://www.w3.org/TR/rdf-mt/.

17. J. Heflin, J. Hendler, and S. Luke. “Coping with Changing Ontologies in a Distributed
Environment”. In Procs of AAAI-99 Workshop on Ontology Management, Florida, July 1999.

18. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. “Ontology versioning and change
detection on the web”. In Procs of EKAW’02, pages 197–212, Siguenza, Spain, Oct 2002.

19. M. Klein and N. Noy. “A component-based framework for ontology evolution”. In InWork-
shop on Ontologies and Distributed Systems at IJCAI-03, Acapulco, Mexico, 2003.

20. S. Konieczny and R. P. Perez. “Propositional Belief Base Merging or How to Merge Be-
liefs/Goals Coming from Several Sources and Some Links With Social Choice Theory”.
European Journal of Operational Research, 160(3):785–802, 2005.

21. M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. “RUL:A Declarative
Update Language for RDF”. In Procs of ISWC’05, pages 506–521, Galway, Ireland, Nov 05.

22. M. Klein N. F. Noy, S. Kunnatur and M. A. Musen. “Tracking Changes During Ontology
Evolution”. In Procs of ISWC’04, pages 259–273, Hisroshima, Japan, November 2004.

23. N. F. Noy and M. A. Musen. ”PromptDiff: A Fixed-point Algorithm for Comparing Ontology
Versions”. In Procs of AAAI-02, pages 744–750, Edmonton, Alberta, July 2002.

24. N. F. Noy and M. A. Musen. “Ontology versioning in an ontology management framework”.
IEEE Intelligent Systems, 19(4):6–13, 2004.

25. P. Plessers and O. De Troyer. “Ontology Change Detection Using a Version Log”. In Procs
of ISWC’05, pages 578–592, Galway,Ireland, November 2005.

26. J. A. La Poutre’ and J. van Leeuwen. “Maintenance of Transitive Closures and Transitive
Reductions of Graphs”. In Procs of the Intern. Workshop on Graph-Theoretic Concepts in
Computer Science, pages 106–120, July 1987.

27. P. Stickler. “CBD - Concise Bounded Description”. W3C Member Submission, June 2005.
http://www.w3.org/Submission/CBD/.

28. Y. Theoharis, V. Christophides, and G.Karvounarakis. “Benchmarking Database Represen-
tations of RDF/S Stores”. In Procs of ISWC’05, pages 685–701, Galway, Ireland, Nov 05.

29. W. F. Tichy. “RCS-a system for version control”. Software Practice & Experience,
15(7):637–654, July 1985.

30. Y. Tzitzikas and D. Kotzinos. “(Semantic Web) Evolution through Change Logs: Problems
and Solutions”. In Procs of AIA’07, Innsbruck, Austria, February 2007.

31. M. Volkel, W. Winkler, Y. Sure, S. Ryszard Kruk, and M. Synak. ”SemVersion: A Versioning
System for RDF and Ontologies”. In Procs of ESWC’05., Heraklion, Crete, May 2005.

32. Z. Zhang, L. Zhang, C. Lin, Y. Zhao, and Y. Yu. “Data Migration for Ontology Evolution”.
In Poster Proceedings ISWC’03, Sanibel Island, Florida, USA, October 2003.

