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Abstract. This paper presents a tableau approach for deciding descrip-
tion logics outside the scope of OWL DL/1.1 and current state-of-the-art
tableau-based description logic systems. In particular, we de�ne a sound
and complete tableau calculus for the description logic ALBO and show
that it provides a basis for decision procedures for this logic and numer-
ous other description logics with full role negation. ALBO is the exten-
sion of ALC with the Boolean role operators, inverse of roles, domain and
range restriction operators and it includes full support for nominals (in-
dividuals). ALBO is a very expressive description logic which subsumes
Boolean modal logic and the two-variable fragment of �rst-order logic
and reasoning in it is NExpTime-complete. An important novelty is the
use of a generic, unrestricted blocking rule as a replacement for standard
loop checking mechanisms implemented in description logic systems. An
implementation of our approach exists in the MetTeL system.

1 Introduction

Mainstream description logics systems and ontology web languages provide a rich
supply of concept operators, but there is currently little support for complex role
operators. This places signi�cant restrictions on the expressiveness of ontology
languages and the utility of systems. For example, in the description logic ALC
(and other popular extensions of ALC) [1] it is possible to de�ne a `spam �lter' as
a mechanism for �ltering out spam emails (i.e. x ∈ spam-�lter i� x ∈ mechanism∧
∃y . (x, y) ∈ �lter-out∧y ∈ spam-email), and a `sound spam �lter' as a spam �lter
which �lters out only spam emails (i.e. x ∈ -sound-spam-�lter i� x ∈ spam-�lter∧
∀y . (x, y) ∈ �lter-out→ y ∈ spam-email), by specifying

spam-�lter
def= mechanism u ∃�lter-out.spam-email

sound-spam-�lter
def= spam-�lter u ¬∃�lter-out.¬spam-email.(†)

But it is not possible to de�ne a `complete spam �lter' as a spam �lter which
�lters out every spam email, i.e. x ∈ complete-spam-�lter i� x ∈ spam-�lter ∧
∀y . y ∈ spam-email→ (x, y) ∈ �lter-out. This can be expressed by the following.

complete-spam-�lter
def= spam-�lter u ¬∃¬�lter-out.spam-email(‡)

This uses the role negation operator which is not available in ALC or description
logics that form the basis of OWL DL/1.1. Both (†) and (‡) involve universal



quanti�cation but of a di�erent kind. In (†) it is the image elements of a role
that are universally quanti�ed, while in (‡) it is the elements in a concept that
are universally quanti�ed. From an applications perspective there is little justi-
�cation to give preference to one form of universal quanti�cation over the other,
since clearly both are useful. (†) expresses the necessity of a property and (‡) ex-
presses the su�ciency of a property. Natural examples of both kinds of universal
quanti�cation can be found in many domains and every-day language.

In this paper we are interested in description logics that allow role negation
(and can therefore accommodate examples such as the above), but also provide
a range of other role operators not usually supported. In particular, we focus
on a description logic, called ALBO, which is an extension of the description
logic ALB [6] with singleton concepts, called nominals in modal logic. ALB is
the extension of ALC, in which concepts and roles form a Boolean algebra, and
additional operators include inverse of roles and a domain restriction operator.
ALBO therefore extendsALC by union of roles, negation of roles, inverse of roles,
and domain as well as range restriction. In addition, it provides full support for
ABox individuals and singleton concepts.

None of the current state-of-the-art tableau-based description logic systems
are able to handle ALBO (or ALB). Because ALBO allows full negation of roles,
it is out of the scope of OWL DL, OWL 1.1 and most description logic systems
including Fact++, KAON2, Pellet, and RacerPro. A tableau decision pro-
cedure for the description logic ALCQIb which allows for Boolean combinations
of `safe' occurrences of negated roles is discussed in [14]. Safeness essentially
implies a `guardedness' property which is violated by unsafe occurrences of role
negation. Description logics with full, i.e. safe and unsafe, role negation can be
decided however by translation to �rst-order logic and �rst-order resolution the-
orem provers such as MSpass, Spass, E and Vampire. The paper [6] shows
that the logic ALB can be decided by translation to �rst-order logic and or-
dered resolution. This result is extended in [4] to ALB with positive occurrences
of composition of roles. ALBO can be embedded into the two-variable fragment
of �rst-order logic with equality which can be decided with �rst-order resolu-
tion methods [3]. This means that ALBO is decidable and can be decided using
�rst-order resolution methods.

ALBO is a very expressive description logic. It subsumes the Boolean modal
logic and tense, hybrid versions of Boolean modal logic with the @ operator and
nominals. It can also be shown that ALBO subsumes the two-variable fragment
of �rst-order logic (without equality) [7]. The following constructs and state-
ments can be handled in ALBO.
� Role negation, the universal role, the su�ciency or window operator, the

image operator, cross product, and (left and right) cylindri�cation.
� Role inclusion axioms and role equivalence axioms in the language of ALBO.
� Role assertions in the language of ALBO.
� Boolean combinations of both concept and role inclusion and equivalence

axioms.
� Boolean combinations of concept and role assertions, including negated role

assertions.



� Disjoint roles, symmetric roles and serial roles. (It is not di�cult to extend
our method and results to include full equality handling including re�exive
roles, identity and diversity roles, and the test operator.)

ALBO is in fact very close to the brink of undecidability, because we know
that adding (negative occurrences of) role composition to ALB takes us into
undecidable territory [12].

Since ALBO subsumes Boolean modal logic it follows from [9] that the satis-
�ability problem in ALBO is NExpTime-hard. In [5] it is shown that satis�ability
in the two-variable �rst-order fragment with equality is NExpTime-complete. It
follows therefore that the computational complexity of ALBO-satis�ability is
NExpTime-complete.

Few tableau calculi or tableau procedures have been described for description
logics with complex role operators, or equivalent dynamic modal logic versions.
Ground semantic tableau calculi and tableau decision procedures are presented
in [4] for the modal versions of ALC(t,u,−1), i.e. ALC with role union, role
intersection and role inverse. These are extended with the domain restriction
operator, to ALC(t,u,−1, �), in [11]. A semantic tableau decision procedure for
ALC with role intersection, role inverse, role identity and role composition is
described in [10]. None of these tableaux make provision for the role negation
operator however. In [13] a sound and complete ground semantic tableau calculus
is presented for Peirce logic, which is equivalent to the extension ofALB with role
composition and role identity. However the tableau is not terminating because
reasoning in Peirce logic is not decidable.

In this paper we develop a tableau approach which can decide description
logics with the role negation operator. We present a ground semantic tableau ap-
proach which decides the description logic ALBO. The style of tableau is similar
to that of [4, 11, 13] but a notable di�erence is that our tableau calculi operate
only on ground labelled concept expressions. This makes it easier in principle to
implement the calculi as extensions of existing tableau-based description logic
systems which can handle singleton concepts.

In order to limit the number of individuals in the tableau we need a mecha-
nism for detecting periodicity in the underlying interpretations (models). Stan-
dard loop checking mechanisms are based on comparing sets of (labelled or unla-
belled) concept expressions such as subset blocking or equality blocking. Instead
of using the standard loop checking mechanisms, our approach uses a new infer-
ence rule, the unrestricted blocking rule, and equality reasoning. Our approach
has the following advantages over standard loop checking.

� It is conceptually simple and easy to implement.

� It is universal and does not depend on the notion of a type.

� It is versatile and enables more controlled model construction in a tableau
procedure. For instance, it can be used to construct small models for a satis-
�able concept, including domain minimal models. Our tableau approach has
the further advantage that it constructs real models, whereas the tableau
procedures for many OWL DL/1.1 description logics construct only pseudo-



models (which are not always real models but can be completed to real
models).

� Our blocking mechanism generalises to other logics, including full �rst-order
logic.

� It can be simulated in �rst-order logic provers.

The unrestricted blocking rule corresponds to an unrestricted version of the
�rst-order blocking rule invented by [2], simply called the blocking rule. The
blocking rule is constrained to individuals ` and `′ such that the individual `
is an ancestor of the individual `′. I.e. in the common branch of ` and `′, the
individual `′ is obtained from ` as a result of a sequence of applications of the
existential restriction rule. In this form, the rule can be used to simulate standard
loop checking mechanisms such as subset blocking and equality blocking.

The structure of the paper is as follows. The syntax and semantics of ALBO
is de�ned in Section 2. In Section 3 we de�ne a tableau calculus for ALBO
and prove that it is sound and complete without the unrestricted blocking rule.
Section 4 introduces our blocking mechanism and proves soundness, complete-
ness and termination of the extended tableau calculus. This allows us to de�ne
general criteria for decision procedures for ALBO and its sublogics which are
discussed in Section 5. We conclude in Section 6.

2 Syntax and semantics of ALBO

The syntax of ALBO is de�ned over the signature σ = (O,C,R) of three dis-
joint alphabets: O = {`0, `1, . . .} the alphabet of individuals (object names),
C = {p0, p1, . . .} the alphabet of concept symbols, and R = {r0, r1, . . .} the alpha-
bet of role symbols. The logical connectives are: ¬ (negation), t (union), ∃ (ex-
istential concept restriction), −1 (role inverse), � (domain restriction), � (range
restriction). Concept expressions (or concepts) and role expressions (or roles)
are de�ned as follows:

C
def= p | {`} | ¬C | C tD | ∃R.C,

R
def= r | R−1 | ¬R | R t S | R�C | R�C.

p ranges over the set C, ` ranges over O, and r ranges over R. The intersection
operator u on concepts and roles is de�ned as usual in terms of ¬ and t, and the

top and bottom concepts are de�ned by > def= pt¬p and ⊥ def= pu¬p, respectively,
for some concept name p. The universal restriction operator ∀ is a dual to the

existential restriction operator ∃, speci�ed by ∀R.C
def= ¬∃R.¬C.

Next, we de�ne the semantics of ALBO. A model (or an interpretation) I
of ALBO is a tuple I = (∆I , pI0 , . . . , `I0 , . . . , rI0 , . . .), where ∆I is a non-empty
set, pIi is a subset of ∆I , `Ii ∈ ∆I , and rI0 is a binary relation over ∆I . The



semantics of concepts and roles in the model I, i.e. CI and RI , is speci�ed by:

{`}I def= {`I}, (R−1)I def= (RI)−1 = {(x, y) | (y, x) ∈ RI},
(¬C)I def= ∆I \ CI , (¬R)I def= (∆I ×∆I) \RI ,

(C tD)I def= CI ∪DI , (R t S)I def= RI ∪ SI ,

(R�C)I def= {(x, y) | x ∈ CI and (x, y) ∈ RI},
(R�C)I def= {(x, y) | y ∈ CI and (x, y) ∈ RI},

(∃R.C)I def= {x | ∃y ∈ CI (x, y) ∈ RI}.

A TBox (respectively RBox ), is a (�nite) set of inclusion statements C v D (re-
spectively R v S) which are interpreted in any model I as subset relationships,
namely CI ⊆ DI (respectively RI ⊆ SI). An ABox is a (�nite) set of state-
ments of the form ` : C or (`, `′) : R, called concept assertions or role assertions.
A knowledge base is a tuple (T,R, A) of a TBox T , an RBox R, and an ABox A.

In ALBO various additional operators can be de�ned, including:

O
def= r t ¬r (for some role symbol r)Top role:

M
def= ¬OBottom role:

�C
def= ∀O.CUniversal modality:

∃−1R.C
def= ∃R−1.CImage operator:

∀R.C
def= ¬∃¬R.CSu�ciency, or window, operator:

Cc def= O�CLeft cylindri�cation:
cC

def= O�CRight cylindri�cation:

C ×D
def= Cc u cDCross product:

Concept assertions can be expressed as concept expressions as follows: ` : C
def=

∃O.({`} u C). (It is clear that (` : C)I 6= ∅ i� `I ∈ CI in every model I.)
A role assertion (`, `′) : R can be expressed as a concept assertion, namely

(`, `′) : R
def= ` : ∃R.{`′}, or by the above as a concept expression. We refer to

` : ∃R.{`′}, or a role assertion, as a link (between the individuals ` and `′). In
addition, concept and role inclusion axioms are de�nable as concept expressions.

C v D
def= ∀O.(¬C tD)

R v S
def= ∀O.∀¬(¬R t S).⊥

Thus, Boolean combinations of inclusion and assertion statements of concepts
and roles are also expressible in ALBO as the corresponding Boolean combi-
nations of the concepts which represent these statements. As usual, concept
satis�ability in ALBO with respect to any knowledge base can be reduced to
concept satis�ability with respect to a knowledge base where all TBox, RBox,
and ABox are empty. Without loss of generality we therefore focus on the prob-
lem of concept satis�ability in ALBO.



Often description logics are required to satisfy the unique name assumption.
We do not assume it forALBO. This is inconsequential, because the unique name
assumption can be enforced by disjointness statements of the form {`}u{`′} v ⊥
for every distinct pair of nominals that occur in the given knowledge base.

Above we de�ned the cylindri�cation operators and cross product in terms
of the domain and range restriction operators. In fact, each of the operators
in {�, �, ·c, c·,×} are interde�nable. Thus, we could have de�ned ALBO as an
extension of ALCO(¬,t,−1) with one of these operators. It can be shown that
regardless as to which of these is used to de�ne ALBO, problems in ALBO are
linearly reducible to problems in ALCO(¬,t,−1). For instance, suppose ALBO
is de�ned as the extension of ALCO(¬,t,−1) with left cylindri�cation. The sat-
is�ability of a concept C, say, in ALBO can then be encoded in ALCO(¬,t,−1)
by replacing all occurrences of Dc in C by a new role symbol qDc uniquely as-
sociated with Dc and adding the de�nitions ¬D v ∀qDc .⊥ and D v ¬∃¬qDc .>
to the knowledge base. In a similar way, problems involving the other opera-
tors from {�, �, ·c, c·,×} can be linearly encoded in ALCO(¬,t,−1). We leave it
to the reader to make sharper observations concerning the de�nability of these
operators in description logics.

Let us give our �rst technical result. The following theorem can be proved
using a �ltration argument.

Theorem 1 (Finite Model Property). ALBO has the �nite model property,
i.e., if a concept C is satis�able, then it has a �nite model.

3 Tableau calculus

Let T denote a tableau calculus and C a concept. We denote by T (C) a �nished
tableau built using the rules of the calculus T starting with the concept C as
input. I.e. we assume that all branches in the tableau are expanded and all
applicable rules of T have been applied in T (C). As usual we assume that all the
rules of the calculus are applied non-deterministically, to a tableau. A branch of
a tableau is closed if a contradiction has been derived in this branch, otherwise
the branch is called open. The tableau T (C) is closed if all its branches are closed
and T (C) is open otherwise. We say that T is terminating (for satis�ability) i�
for every concept C either T (C) is �nite whenever T (C) is closed or T (C) has
a �nite open branch if T (C) is open. T is sound i� C is unsatis�able whenever
T (C) is closed for all concepts C. T is complete i� for any concept C, C is
satis�able (has a model) whenever T (C) is open.

Let TALBO be the tableau calculus consisting of the rules listed in Figure 1.
Inference steps are performed in the usual way. A rule is applied to a set of
expressions (often just one expression) in a branch of a tableau, if the expressions
are instances of the premises of the rule. Then, in the case of a non-branching
rule, the corresponding instances of the conclusions of the rule are added to the
branch. A branching rule splits the branch into several branches (here two) and
adds the corresponding instances of the conclusions to each branch.



Rules for ALCO:

(⊥):
` : C, ` : ¬C

⊥ (¬¬):
` : ¬¬C

` : C

(¬t):
` : ¬(C tD)

` : ¬C, ` : ¬D
(t):

` : (C tD)

` : C | ` : D

(sym):
` : {`′}
`′ : {`} (¬sym):

` : ¬{`′}
`′ : ¬{`} (mon):

` : {`′}, `′ : C

` : C
(re�):

` : C

` : {`}

(∃):
` : ∃R.C

` : ∃R.{`′}, `′ : C
(`′ is new) (¬∃):

` : ¬∃R.C, ` : ∃R.{`′}
`′ : ¬C

(bridge):
` : ∃R.{`′}, `′ : {`′′}

` : ∃R.{`′′}

Rules for complex roles:

(∃t):
` : ∃(R t S).{`′}

` : ∃R.{`′} | ` : ∃S.{`′} (¬∃t):
` : ¬∃(R t S).C

` : ¬∃R.C, ` : ¬∃S.C

(∃−1):
` : ∃R−1.{`′}
`′ : ∃R.{`} (¬∃−1):

` : ¬∃R−1.C, `′ : ∃R.{`}
`′ : ¬C

(∃�):
` : ∃(R�C).{`′}

` : C, ` : ∃R.{`′} (¬∃�):
` : ¬∃(R�C).D

` : ¬C | ` : ¬∃R.D

(∃�):
` : ∃(R�C).{`′}

`′ : C, ` : ∃R.{`′} (¬∃�):
` : ¬∃(R�C).D

` : ¬∃R.¬(¬C t ¬D)

(∃¬):
` : ∃¬R.{`′}
` : ¬∃R.{`′} (¬∃¬):

` : ¬∃¬R.C, `′ : {`′}
` : ∃R.{`′} | `′ : ¬C

Fig. 1. Tableau calculus TALBO for ALBO.

The �rst group of rules are standard for ALC and reasoning with individuals.
The (⊥) rule is the closure rule. The (¬¬) rule removes occurrences of double
concept negation. (The rule is super�uous if double negations are eliminated
using on-the-�y rewrite rules.) The (t) and (¬t) rules are standard rules for
handling concept disjunctions. The (sym), (mon), (re�), and (bridge) rules are
the equality rules for individuals, which are familiar from hybrid logic tableau
systems, and can be viewed as versions of standard rules for �rst-order equal-
ity. The (re�) rule is formulated perhaps a bit unusually, but the purpose of
the premise is to ensure that the rule is realised only for individuals actually
occurring in the branch. The (¬sym) rule is needed to ensure that any negated
singleton concept will eventually appear as a label in a concept assertion. As
usual, and in accordance with the semantics of the existential restriction opera-
tor, for every existentially restricted concept the (∃) rule creates a new individual
with this concept and adds a link to the new individual. It is the only rule which
generates new individuals in the calculus. The (¬∃) rule is equivalent to the
standard propagation rule for universally restricted concept expressions.



The rules in the second group are rules for decomposing complex role ex-
pressions. They can be divided into two subgroups: rules for positive existential
role occurrences and rules for negated existential role occurrences (in the left
and right columns, respectively). Due to the presence of the (∃) rule, the rules
for positive existential roles can be restricted to role assertions. (On the side we
note that the rule (∃¬) can be replaced by this closure rule: ` : ∃¬R.{`′}, ` :
∃R.{`′}/⊥.) Among the rules for negated existential roles, the (¬∃−1) rule and
and the (¬∃¬) rule are special. The (¬∃−1) rule allows the backward propaga-
tion of concept expressions along inverted links (ancestor links). The (¬∃¬) rule
is the rule for the su�ciency operator. It expands a universally restricted con-
cept in which the role is negated according to the semantics: x ∈ (¬∃¬R.C)I i�
∀y((x, y) ∈ RI ∨ y ∈ (¬C)I). That is, `′ is implicitly quanti�ed by a universal
quanti�er. The e�ect of the second premise, `′ : {`′}, is to instantiate `′ with
individuals that occur in the branch. The remaining rules in this subgroup are
based on obvious logical equivalences in ALBO.

Tableau rules which do not produce new individuals are called type-completing
rules. In the case of TALBO, with the exception of the (∃) rule, all rules are type-
completing.

Now, given an input concept C, a tableau derivation is constructed as follows.
First, preprocessing is performed which pushes the role inverse operators toward
atomic concepts by exhaustively applying the following role equivalences from
left to right.

(¬R)−1 = ¬(R−1), (R t S)−1 = R−1 t S−1,

(R�C)−1 = R−1�C, (R�C)−1 = R−1�C, (R−1)−1 = R.

Next, the preprocessed input concept C is tagged with a fresh individual name `
that does not occur in C. Then we build a complete tableau TALBO(C) by
applying the rules of TALBO to the concept assertion ` : C as described above.
It is however important to note that ` : C and all labelled expressions and
assertions really denote concept expressions.

We turn to proving soundness and completeness of the calculus. Because
every rule preserves the satis�ability of concept assertions, it is easy to see that
the calculus TALBO is sound for ALBO.

For proving completeness, suppose that a tableau TALBO(C) for the given
concept C is open, i.e. it contains an open branch B. We construct a model I
for the satis�ability of C as follows. By de�nition, let ` ∼ `′

def⇐⇒ ` : {`′} ∈ B. It
is clear that the rules (sym), (mon), and (re�) ensure that ∼ is an equivalence
relation on individuals. The equivalence class ‖`‖ of a representative ` is de�ned

by: ‖`‖ def= {`′ | ` ∼ `′}. We set

∆I def= {‖`‖ | ` : {`} ∈ B}, rI
def= {(‖`‖, ‖`′‖) | ` : ∃r.{`′} ∈ B},

pI
def= {‖`‖ | ` : p ∈ B}, `I

def=

{
‖`‖, if ` : {`} ∈ B,

‖`′‖ for some ‖`′‖ ∈ ∆I , otherwise.



1. TBox = {∃r.p} . . . . . . . . . . . . . . . .given
2. `0 : ∃r.p. . . . . . . . . . . . . . . . . . . . .TBox,1
3. `1 : p . . . . . . . . . . . . . . . . . . . . . . . . . . (∃),2
4. `0 : ∃r.{`1} . . . . . . . . . . . . . . . . . . . . (∃),2
5. `1 : ∃r.p. . . . . . . . . . . . . . . . . . . . .TBox,1

6. `0 6∼ `1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . .Loop checking: p is a di�erence

7. `2 : p . . . . . . . . . . . . . . . . . . . . . . . . . . (∃),5
8. `1 : ∃r.{`2} . . . . . . . . . . . . . . . . . . . . (∃),5
9. `2 : ∃r.p. . . . . . . . . . . . . . . . . . . . .TBox,1
10. `1 ∼ `2 . . . . . . . . . . . . . . .Loop checking

Fig. 2. Standard loop checking mechanism in ALCO.

The rules (sym), (mon), (re�), and (bridge) ensure that the de�nition of I does
not depend on representatives of the equivalence classes.

The following lemma is proved by induction over the structure C.

Lemma 1. (1) If ` : D ∈ B then ‖`‖ ∈ DI for any concept D.
(2) For every role R and every concept D

(2a) ` : ∃R.{`′} ∈ B implies (‖`‖, ‖`′‖) ∈ RI ,
(2b) if (‖`‖, ‖`′‖) ∈ RI and ` : ¬∃R.D ∈ B then `′ : ¬D ∈ B.

A consequence of this lemma is completeness of the tableau calculus.

Theorem 2. TALBO is a sound and complete tableau calculus for satis�ability
in ALBO.

4 Blocking

There are satis�able concepts which result in an in�nite TALBO-tableau, where
all open branches are in�nite. The concept ¬∃(st¬s).¬∃r.p is such an example.
Indeed, since the pre�x ¬∃(s t ¬s).¬ is equivalent to the universal modality,
the concept ` : ∃r.p is propagated to every individual ` in every branch of the
tableau. The concept ` : ∃r.p itself, each time triggers the creation of a new
individual with the (∃) rule. Thus, any branch of the tableau contains in�nitely
many individuals. The branches have however a regular structure that can be
detected with loop detection or blocking mechanisms.

Observe that satis�ability of the concept ¬∃(st¬s).¬∃r.p corresponds to sat-
is�ability of the TBox {∃r.p} in the description logic ALCO. Figure 2 demon-
strates how standard loop checking (subset blocking) for the description logic
ALCO with general TBoxes detects a loop in this example. (In the �gure each
line in the derivation is numbered on the left. The rule applied and the number
of the premise(s) to which it was applied to produce the labelled concept expres-
sion (assertion) in each line is speci�ed on the right.) Loop checking tests are
performed after all the type-completing rules have been applied to all concept
expressions labelled with a speci�c individual relative to an ancestor individ-
ual. In the tableau in Figure 2, two loop checking tests are performed, namely
in step 6 and step 10. Take step 10. All the type-completing rules have been
applied to all concept expressions of the form `2 : C and `1 : C. This means
the ∃r.p-types of the individuals `1 and `2, of the partial model constructed so



1. `0 : ∃r.p . . . . . . . . . . . . . . . . . . . . . . .given
2. `0 : ∃s.p . . . . . . . . . . . . . . . . . . . . . . .given
3. `0 : ∃t.¬∃t.∃s−1.(p t ¬p) . . . . . . given
4. `0 : ¬∃t.∃¬t.¬∃s−1.(p t ¬p) . . . given
5. `1 : p . . . . . . . . . . . . . . . . . . . . . . . . . . (∃),1
6. `0 : ∃r.{`1} . . . . . . . . . . . . . . . . . . . . (∃),1
7. `1 : {`1} . . . . . . . . . . . . . . . . . . . . . (re�),5
8. `2 : p . . . . . . . . . . . . . . . . . . . . . . . . . . (∃),2
9. `0 : ∃s.{`2} . . . . . . . . . . . . . . . . . . . . (∃),2
10. `2 : {`2} . . . . . . . . . . . . . . . . . . . . . (re�),8
11. `3 : ¬∃t.∃s−1.(p t ¬p) . . . . . . . . . (∃),3
12. `0 : ∃t.{`3} . . . . . . . . . . . . . . . . . . . . (∃),3

13. `3 : ¬∃¬t.¬∃s−1.(p t ¬p) . . (¬∃),4,12
14. I`3 : ∃t.{`2} . . . . . . . . . . . (¬∃¬),13,10
15. `2 : ¬∃s−1.(p t ¬p) . . . . . (¬∃),11,14
16. `0 : ¬(p t ¬p) . . . . . . . . . (¬∃−1),15,9
17. Unsatis�able . . . . . after a few steps
18. I`2 : ¬¬∃s−1.(p t ¬p) . . (¬∃¬),13,10
19. `2 : ∃s−1.(p t ¬p) . . . . . . . . . (¬¬),18
20. I`3 : ∃t.{`1} . . . . . . . . . . .(¬∃¬),13,7
21. `1 : ¬∃s−1.(p t ¬p) . . . (¬∃),11,20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22. I`1 : ¬¬∃s−1.(p t ¬p) . (¬∃¬),13,7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 3. Global e�ect of the introduction of a new individual

far, are complete. Comparison of the types shows that they coincide and, conse-
quently, the individuals `1 and `2 can be identi�ed. At step 6 the ∃r.p-types of
`0 and `1 are di�erent because `0 : p is not present in the branch. The derivation
therefore cannot yet stop, but does in step 10.

This example illustrates the simplest form of standard loop checking used
in description and modal logic tableau procedures. This form of loop checking
is too simple to handle role negation though. The problem is that the intro-
duction of a new individual in a tableau has, in general, a global e�ect in the
provisional model constructed so far. This global e�ect is illustrated by the ex-
ample in Figure 3. (The black triangles in the �gure denote branching points
in the derivation. A branch expansion after a branching point is indicated by
appropriate indentation.) At step 10 none of the type-completing rules need to
be applied to concepts labelled with `1 and `2. Although at this point `1 and `2
are labels of the same subconcepts of the given concepts, we cannot make them
equal. The reason is that at step 11 a new individual is introduced which causes
a few applications of the (¬∃) rule, and as a result, at step 21, the types of `1
and `2 are now distinguished by the concept ∃s−1.(p t ¬p).

The examples illustrate that the reason for non-termination of TALBO is the
possible in�nite generation of labels. The following lemma holds, where #∃(B)
denotes the number of applications of the (∃) rule in a branch B.

Lemma 2. If #∃(B) is �nite then B is �nite.

In order to turn the calculus TALBO into a terminating calculus for ALBO,
we introduce a new, di�erent approach to blocking.

Let < be an ordering on individuals in the branch which is a linear extension
of the order of introduction of the individuals during the derivation. I.e. let
` < `′, whenever the �rst appearance of individual `′ in the branch is strictly
later than the �rst appearance of individual `. We add the following rule, called
the unrestricted blocking rule, to the calculus.

(ub):
` : {`}, `′ : {`′}

` : {`′} | ` : ¬{`′}



Moreover, we require that the following conditions hold.

(c1) Any rule is applied at most once to the same set of premises.

(c2) The (∃) rule is applied only to expressions of the form ` : ∃R.C, when C
is not a singleton, i.e. C 6= {`′′} for some individual `′′.

(c3) If ` : {`′} appears in a branch and ` < `′ then all further applications of
the (∃) rule to expressions of the form `′ : ∃R.C are not performed within
the branch.

(c4) In every open branch there is some node from which point onwards before
any application of the (∃) rule all possible applications of the (ub) rule
have been performed.

We use the notation TALBO(ub) for the extension of TALBO with this rule
and this blocking mechanism.

The blocking requirements (c1)�(c4) are sound in the sense that they cannot
cause an open branch to become closed. The (ub) rule is sound in the usual
sense. Thus, the following theorem holds.

Theorem 3. TALBO(ub) is a sound and complete tableau calculus for ALBO.

Let B be the leftmost open branch with respect to the rule (ub) in the
TALBO(ub) tableau for a given concept C. Assume that I is a model constructed
from B as in Section 3.

It can be shown that the tableau procedure mimics the construction of a
�nite model used in the proof of Theorem 1. Thus the following lemma holds.

Lemma 3. ∆I is �nite.

For every ‖`‖ ∈ ∆I , let #∃(‖`‖) denote the number of applications of the
(∃) rule to concepts of the form `′ : ∃R.D with `′ ∈ ‖`‖.

Lemma 4. (1) #∃(‖`‖) is �nite for every ‖`‖ ∈ ∆I .

(2) #∃(B) is �nite.

Corollary 1. If the leftmost branch with respect to the rule (ub) in a TALBO(ub)
tableau is open then the branch is �nite.

The termination theorem is an immediate consequence.

Theorem 4 (Termination). TALBO(ub) is a terminating tableau calculus for
satis�ability in ALBO.

Notice that condition (c4) is essential for ensuring termination of a TALBO(ub)
derivation. Indeed, it easy to see that without (c4) the TALBO(ub) tableau for
the concept ¬(∃(st¬s).¬∃r.pt∃(st¬s).¬∃r.¬p) would not terminate because
new individuals are generated more often than their equality check is performed
via the rule (ub).



1. `0 : C . . . . . . . . . . . . . . . . . . . . . . . . . given
2. `0 : {`0} . . . . . . . . . . . . . . . . . . . . . (re�),1
3. `0 : ¬∃(s t ¬s).¬∃r.p . . . . . . . . (¬t),1
4. `0 : ¬¬∃t.¬∃r.p . . . . . . . . . . . . . . (¬t),1
5. `0 : ∃t.¬∃r.p . . . . . . . . . . . . . . . . . (¬¬),4
6. `0 : ¬∃s.¬∃r.p . . . . . . . . . . . . . . (¬∃t),3
7. `0 : ¬∃¬s.¬∃r.p . . . . . . . . . . . . (¬∃t),3
8. I`0 : ∃s.{`0} . . . . . . . . . . . . . (¬∃¬),7,2
9. `0 : ¬¬∃r.p . . . . . . . . . . . . . . . (¬∃),8,6
10. `0 : ∃r.p . . . . . . . . . . . . . . . . . . . (¬¬),9
11. `1 : p . . . . . . . . . . . . . . . . . . . . . . . (∃),10
12. `0 : ∃r.{`1} . . . . . . . . . . . . . . . . . (∃),10
13. `1 : {`1} . . . . . . . . . . . . . . . . . . (re�),11
14. I`0 : ∃s.{`1} . . . . . . . . . . (¬∃¬),7,13
15. `1 : ¬¬∃r.p . . . . . . . . . . . . (¬∃),14,6
16. `1 : ∃r.p . . . . . . . . . . . . . . . . .(¬¬),15
17. I`0 : {`1} . . . . . . . . . . . . . . . . . . (ub)
18. `2 : ¬∃r.p . . . . . . . . . . . . . . . . (∃),5
19. `0 : ∃t.{`2} . . . . . . . . . . . . . . . (∃),5
20. `2 : {`2} . . . . . . . . . . . . . . (re�),18

21. I`0 : ∃s.{`2} . . . . . . . (¬∃¬),7,20
22. `2 : ¬¬∃r.p . . . . . . . . (¬∃),6,21
23. Unsatis�able. . . . . . .(⊥),18,22
24. I`2 : ¬¬∃r.p . . . . . . . (¬∃¬),7,20
25. Unsatis�able. . . . . . .(⊥),18,24
26. I`0 : ¬{`1} . . . . . . . . . . . . . . . . (ub)
27. `2 : p . . . . . . . . . . . . . . . . . . . (∃),16
28. `1 : ∃r.{`2} . . . . . . . . . . . . . (∃),16
29. `2 : {`2} . . . . . . . . . . . . . . (re�),27
30. I`0 : ∃s.{`2} . . . . . . . (¬∃¬),7,29
31. `2 : ¬¬∃r.p . . . . . . . . (¬∃),30,6
32. `2 : ∃r.p . . . . . . . . . . . . . (¬¬),31
33. Non-terminating . . . . . . . . .

. . . . . . . . . Repetition of 16�32
34. I`2 : ¬¬∃r.p . . . . . . . (¬∃¬),7,29
35. . . . . . . . . . . Similarly to 30�33
36. I`1 : ¬¬∃r.p. . . . . . . . . . .(¬∃¬),7,13
37. . . . . . . . . . . . . . . Similarly to 14�35
38. I`0 : ¬¬∃r.p . . . . . . . . . . . . . (¬∃¬),7,2
39. . . . . . . . . . . . . . . . . . Similarly to 8�37

Fig. 4. An in�nite derivation, due to unfair selection of concepts

5 Decision procedures

When turning the presented calculus TALBO(ub) into a deterministic decision
procedure it is crucial that this is done in a fair way. A procedure is fair if, when
an inference is possible forever, then it is performed eventually. This means a
deterministic tableau procedure based on TALBO(ub) may not defer the use of
an applicable rule inde�nitely. Note that we understand fairness in a `global'
sense. That is, a tableau procedure has to be fair not only to expressions in a
particular branch but to expressions in all branches of a tableau. In other words,
a procedure is fair if it is makes both the branch selection, and the selection of
expressions to which to apply a rule to, in a fair way.

Theorem 5. Any fair tableau procedure based on TALBO(ub) is a decision pro-
cedure for ALBO and all its sublogics.

Note that we do not assume that the branches are expanded in a depth-�rst
left-to-right order. Nevertheless, it also follows from our results that:

Theorem 6. Any fair tableau procedure based on TALBO(ub) which uses a depth-
�rst and left-to-right strategy, with respect to branch selection of the (ub) rule,
is a decision procedure for ALBO and all its sublogics.

To illustrate the importance of fairness we give two examples. The concept

C
def= ¬ (∃(s t ¬s).¬∃r.p t ¬∃t.¬∃r.p)



1. `0 : ¬∃(s t ¬s).¬∃r.p . . . . . . . . . . given
2. `0 : {`0} . . . . . . . . . . . . . . . . . . . . . (re�),1
3. `0 : ¬∃s.¬∃r.p . . . . . . . . . . . . . . (¬∃t),1
4. `0 : ¬∃¬s.¬∃r.p . . . . . . . . . . . . (¬∃t),1
5. I`0 : ¬¬∃r.p . . . . . . . . . . . . . (¬∃¬),4,2
6. `0 : ∃r.p . . . . . . . . . . . . . . . . . . . (¬¬),5
7. `1 : p . . . . . . . . . . . . . . . . . . . . . . . . (∃),6
8. `0 : ∃r.{`1} . . . . . . . . . . . . . . . . . . (∃),6
9. `1 : {`1} . . . . . . . . . . . . . . . . . . . (re�),7
10. I`1 : ¬¬∃r.p . . . . . . . . . . . . (¬∃¬),4,9
11. `1 : ∃r.p . . . . . . . . . . . . . . . . . . (¬¬),5

12. I`0 : ¬{`1} . . . . . . . . . . . . . (ub),2,9
13. `2 : p . . . . . . . . . . . . . . . . . . . (∃),11
14. `1 : ∃r.{`2} . . . . . . . . . . . . . (∃),11
15. Non-terminating . . . . . . . . . . .

. . . . . . . . . . . . Repetition of 7�14
16. I`0 : {`1} . . . . . . . . . . . . . . (ub),2,9
17. . . . . . . . . . . . . . . Never expanded
18. I`0 : ∃s.{`1} . . . . . . . . . . . (¬∃¬),4,9
19. . . . . . . . . . . . . . . . . Never expanded
20. I`0 : ∃s.{`0} . . . . . . . . . . . . . (¬∃¬),4,2
21. . . . . . . . . . . . . . . . . . . Never expanded

Fig. 5. An in�nite derivation, due to unfair selection of branches

is not satis�able. Figure 4 gives a depth-�rst left-to-right derivation which is
unfair and does not terminate. It can be seen that the derivation is in�nite
because the application of the (∃) rule to `0 : ∃t.¬∃r.p is deferred forever and,
consequently, a contradiction is not found. This illustrates the importance of
fairness for (refutational) completeness.

The next example illustrates the importance of fairness for decidability. The
concept ¬∃(st¬s).¬∃r.p is satis�able. The derivation in Figure 5 is obtained with
a depth-�rst right-to-left strategy. However, the repeated selection of the right
branch at (ub) choice points causes all the individuals in the branch to be pair-
wise non-equal. The concept ` : ∃r.p re-appears repeatedly, for every individual
` in the branch. This triggers the repeated generation of a new individual by the
(∃) rule, resulting in an in�nite derivation. This strategy is unfair because all
branches except for the rightmost branch get ignored.

In an implemented prover, optimisations, good heuristics and clever back-
tracking techniques are important. The standard optimisations such as simpli-
�cation, backjumping, dynamic backtracking, di�erent heuristics for branch se-
lection and rule selection, lemma generation, et cetera, are all compatible with
the presented calculi and procedures. An obvious simpli�cation, for example, is
the on-the-�y removal of double negations from concepts, and especially from
roles, as this reduces a number of applications of the (¬∃¬) rule.

Since the presented tableaux operate only on ground labelled concept expres-
sions, they can in principle be implemented as extensions of existing tableau-
based description logic systems which can handle singleton concepts. We have
implemented the unrestricted blocking rule as a plug-in to theMetTeL tableau
prover [8], and tests with various description logics are encouraging.

6 Conclusion

We have presented a new, general tableau approach for deciding expressive de-
scription logics with complex role operators, including `non-safe' occurrences of
role negation. The tableau decision procedures found in the description logic



literature, and implemented in existing tableau-based description logic systems,
can handle a large class of description logics, but cannot currently handle de-
scription logics with full role negation such as ALB or ALBO. The present paper
closes this gap. An important novelty of our approach is the use of a blocking
mechanism based on small inference steps rather than `big' tests performed on
sets of expressions or assertions which are often tailored toward speci�c logics.
Our techniques are versatile and are not limited to ALBO or its sublogics, but
carry over to all description logics and also other logics including �rst-order logic.
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