
HotBlu - A system for large scale service discovery and
composition

Ion Constantinescu, Boi Faltings, and Walter Binder

Artificial Intelligence Laboratory
Swiss Federal Institute of Technology Lausanne

{ion.constantinescu,boi.faltings,walter.binder}@epfl.ch
http://liawww.epfl.ch

Abstract. It has been widely recognised that matchmaking is an important com-
ponent for environments populated with heterogeneous services. Several researchers
have developed powerful techniques for the matchmaking problem in general.
There are also specific representation of service capabilities such as OWL-S
which provides a more specific framework for matchmaking.
Most approaches to matchmaking have assumed a sequential search for a service
with matching capabilities. This may become intractable when the number of
available services gets large.
Our contribution consist in an integrated directory and planning system specially
adapted to large scale service discovery and composition.1

Keywords: Service description, service discovery, matchmaking, directories, in-
dexing.

1 Overview and demo scenario

Our approach to automated service composition is based on matching input and output
parameters of services using type information in order to constrain the ways how ser-
vices may be composed [4]. Our composition algorithm allows for partially matching
types and handles them by computing and introducing switches in the integration plan.
Experimental results show that using partial matches significantly decreases the failure
rate [4, 5] compared with an integration algorithm that supports only complete matches
(e.g., like for example [8]).

We have developed a directory service with specific features to ease service com-
position. Queries may not only search for complete matches, but may also retrieve par-
tially matching directory entries [7, 6, 3]. As the number of (partially) matching entries
may be large, the directory supports incremental retrieval of the results of a query. This
is achieved through sessions, during which a client issues queries and retrieves the re-
sults in chunks of limited size [2, 1].

For demo purposes we consider a scenario where an personal agent (PA) has to or-
ganise an evening out for it’s owner. The PAs task will be to find a cinema running a

1 The work presented in this paper was partly carried out in the framework of the EPFL Center for Global Computing and
supported by the Swiss National Science Foundation as part of the project MAGIC (FNRS-68155), as well as by the Swiss
National Funding Agency OFES as part of the European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).

2 Ion Constantinescu, Boi Faltings, and Walter Binder

Movie
Recomendation site

Personal Agent

good comedy
good french restaurant

1

2

Resturants yellow
pages

3

Local
Cinemas directory

Restaurants
Recomendation site

good-comedy ?
movie M

french-restaurant ?
restaurant R

runs-movie M ?
cinema Crestaurant-rank R ?

rank R is good

4 cinema C
restaurant R

(a)

Directory
Service

Discovery
Mediator

Composer

Planner

current
problem

new
query

query

result
(possibly cached)

problem

integration
plan

query

new
result

Integration Engine

(b)

Fig. 1. (a) Planning an evening out. (b) The architecture of our service integration engine.

”good” comedy and a good french restaurant. For that the PA uses a cinema recommen-
dations service for determining what are the good comedy movies today and yellow
page directory for finding out what french restaurants are available. Then the PA tries
to find a cinema which runs the selected comedy and uses a recommendation service to
determine the ranking of the selected restaurant. Finally it returns a restaurant/cinema
combination to the user.

The HotBlu engine is a research prototype and is not currently publically available
but we aim to release it in the next months as open source.

2 Discovery and Composition

In this section we will present algorithms for computing type-compatible service com-
positions. Their design is motivated by two aspects specific to large scale service direc-
tories operating in open environments:

– large result sets - for each query the directory could return a large number of
service descriptions.

– costly directory accesses - being a shared resource accessing the directory (possi-
bly remotely) will be expensive.

We address these issues by interleaving discovery and composition and by comput-
ing the “right” query at each step. For that, the integration engine (see Fig. 1 (b)) uses
three separate components:

– planner - a component that computes what can be currently achieved from the
current query using the current set of discovered services. From that the problem
that remains to be solved is derived and a new query is returned.

– composer - a component that implements the interleaving between planning and
discovery. It decides what kind of queries (partial/complete) should be sent to
the directory and it deals with branching points and recoursive solving of sub-
problems.

HotBlu - A system for large scale service discovery and composition 3

– discovery mediator - a component that mediates composer accesses to the direc-
tory by caching existing results and matching new queries to already discovered
services.

2.1 Composition with complete type matches

Composing complete matching services using forward chaining is straightforward: once
the condition for complete type matches is fullfilled (all inputs required by the service
S are present in the query Q and the types in the query are more specific than the
types accepted by the service) a new query Q′ can be computed by adding to the set of
available inputs of the current query Q all the outputs provided by the service S.

2.2 Composition with forward partial type matches

Conceptually the algorithm that we use for composing services with forward partial
type matches has three steps:

– Discovery of complete matching services (see above Section 2.1).
– Discovery of services for full coverage of available inputs.
– Discovery of services for correct switch handling.

Discover
complete
matches

is
solution

Failure

Discover
full

coverage

more
results

is
coverage

Discover
correct
switch

N

Y

Y

N

Y
more
results

Y

N

Success

N

Failureall
branches
are solution Y

Y

NN

more
results

Success

Recoursive
Invocation

Xsw1

sw2

Q: uncovered combinations

Q

Q

Fig. 2. Flow of algorithm for composition with partial type matches.

Discovering full input coverage The second step of the algorithm assumes that a so-
lution using only complete matches was not found and that services with partial type
matches have to be assambled in order to solve the problem. By definition any of the
partially matching services is able to handle only a limited sub-space of the values avail-
able as inputs. In order to ensure that any combination of input values can be handled,
the space of available inputs is first discretized in parameter value cells. One cell is a
rectangular hyperspace containing all dimensions of the space of available inputs but

4 Ion Constantinescu, Boi Faltings, and Walter Binder

only a single interval for each dimension. A cell corresponds to the guard condition
of the switch. Cells are built in such a way that any of the required inputs for the re-
trieved partially matching services could be expressed as a collection of cells. Each of
the retrieved partially matching services is assigned to the cells that it can accept as
input. The coverage is considered complete when all cells have assigned one or more
services. When all cells are covered the algorithm proceeds at the next step. If no more
partially matching services can be found and a complete coverage was not achieved the
algorithm returns failure.

Discovering solution switch The last step of the algorithm assumes that a coverage
was found and a first switch can be created. The goal of this step is to ensure that
the switch will function correctly for each of its branches. For each cell and its set of
assigned services the algorithm will compute the set of output parameters that those ser-
vices will provide. Then a new query is computed, having as available inputs the output
parameters of the cell and as required outputs the set of required outputs of the com-
plete matching phase. The whole composition procedure is then invoked recursively. In
the case that all cells return a successful result the switch is considered to be correct
and the algorithm returns success. Otherwise a new service is retrieved and the process
continues. When no more services can be retrieved the algorithm returns failure.

References

1. Ion Constantinescu, Walter Binder, and Boi Faltings. An Extensible Directory Enabling Ef-
ficient Semantic Web Service Integration. In 3rd International Semantic Web Conference
(ISWC04), Hiroshima, November 2004.

2. Ion Constantinescu, Walter Binder, and Boi Faltings. Directory services for incremental
service integration. In First European Semantic Web Symposium (ESWS-2004), Heraklion,
Greece, May 2004.

3. Ion Constantinescu and Boi Faltings. Efficient matchmaking and directory services. In The
2003 IEEE/WIC International Conference on Web Intelligence (WI’03), Halifax, Canada, Oc-
tober 2003.

4. Ion Constantinescu, Boi Faltings, and Walter Binder. Large scale, type-compatible service
composition. In IEEE International Conference on Web Services (ICWS-2004), San Diego,
CA, USA, July 2004.

5. Ion Constantinescu, Boi Faltings, and Walter Binder. Type-based composition of information
services in large scale environments. In The 2004 IEEE/WIC/ACM International Conference
on Web Intelligence (WI’04), Beijing, China, September 2004.

6. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide Web,
2003.

7. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Semantic match-
ing of web services capabilities. In Proceedings of the 1st International Semantic Web Con-
ference (ISWC), 2002.

8. Wu, Dan and Parsia, Bijan and Sirin, Evren and Hendler, James and Nau, Dana. Automating
DAML-S Web Services Composition Using SHOP2. In Proceedings of 2nd International
Semantic Web Conference (ISWC2003), 2003.

