W S-GEN: A Tool for the Automated Composition
of Semantic Web Services*

M. Pistore, P. Bertoli, E. Cusenza, A. Marconi, and P. Trawer

University of Trento — ITC-IRST
[pistore,cusenza]@dit.unitn.it — [bertoli,marconiveaso] @itc.it

Abstract. This demo illustrates WS-8\, a tool supporting the automated composition
of web services. WS-6n takes as input the description of a set of available sendoels

a “business requirement” describing the goal of the compasevice, and automatically
generates the executable code implementing the new conhpeseéce.

1 Introduction

One of the big challenges for the taking up of web serviced,@re of the main goals in the
Semantic Web Services roadmap, is the provision of autaimaipport to the composition of
web services. By web service composition we mean “the auforsalection, composition, and
interoperation of Web services to perform some task, giveigh-level description of an objec-
tive” [3].

Currently, the problem of the composition of web serviceadsiressed by two orthogo-
nal efforts. From the one side, most of the major industry@ia propose low level process
modeling and execution languages, like BPEL4AWS [1]. Thasguages allow programmers
to implement complex web services as distributed procemsgéto compose them in a general
way. However, the definition of new processes that interatt existing ones must be done
manually, and this is a hard, time consuming, and error ptasie From the other side, research
within the Semantic Web community proposes a top-down urigmalois description of web ser-
vices capabilities, e.g., in standard languages like OWB}Sthus enabling the possibility to
reason about web services, and to automate web services ligskdiscovery and composition.
However, the real taking up of Semantic Web Services fortralcapplications needs the abil-
ity of generating automatically composed services thatbeadirectly executed, in the style of
BPEL4WS programs.

In this demo we describe a tool, WSE®, which allows for the automated composition of
web services. More precisely, the tool takes as input thergig®n of a set of available services
and a “business requirement” that defines goal of the contpesé service, and automatically
generates the executable process of the new service. \&Bk6e@rently supports two different
languages for the description of the available servicesyTan be defined as OWL-S Process
Models which provide declarative descriptions of the wetvise processes, or as “abstract”
BPEL4WS processes which define the protocols that have tedpected in order to interact
with these web services. In the first case, the “businesdnegant” that describes goal of the
composed web service is defined in term of the semantic atimogethat are part of the OWL-
S model. In the second case, these semantic informatioichvelie missing in the BPEL4AWS
specification, need to be defined explicitly in order to alfowthe definition of the goal. In both
cases, the generated web service is emitted as BPELAWSItatdsan be executed on existing
engines.

* The work is partially funded by the FIRB-MIUR project RBNEIBKS, “Knowledge Level Automated
Software Engineering”.



Composition Goal

owt-s Wi~ WS-GEN |

71 |
- |
leowo x| e | a{ mal
Zn

Model J
¢ Wn/
. Executable

Wi
Abstract | T | BPEL4WS

BPELAWS |
P

Wn

Fig. 1. Architecture of WS-GN.

For the automated generation of the composed web serviceGatsexploits the Al plan-
ning approach described in [5, 6]. This approach is baseti@fRlanning as Model Checking”
framework [4], and on the1BP tool that implements it [2]. The usage of the “Planning as klod
Checking” framework is particularly relevant here, sintgiovides some advanced features
(the possibility of managing nondeterministic domainstiphobservability, and complex goal
descriptions) which are necessary in web service compositdeed, web services exhibit non-
deterministic behaviors, since the outputs of an exterredd 8ervice cannot be predicted prior
to execution (e.g., a flight reservation service cannot kimaglvance whether a reservation will
be confirmed or canceled). Moreover the internal status efdce (e.g., whether there are still
seats available in a flight) is not available to externalisesy; and the planner can only observe
services invocations and responses. Finally, compogiiiats need to express complex require-
ments including temporal conditions (e.g., do not reselneehotel until you have reserved the
flight), and preferences among different goals (try to reséoth the flight and the hotel, but if
not possible, make sure you do not reserve any of the twojha#e features, which are not sup-
ported by so called “classical” planning approaches, caralptured in the “Planning as Model
Checking” framework.

This demo will provide practical examples of the applicatiof WS-CGeN to the auto-
mated composition of web services. More precisely, it wilba how to specify a web service
composition problem starting from a set of available welvises (described in OWL-S or in
BPEL4WS), and it will demonstrate how the generated codé&i@composed web service can
be executed on standard BPEL4WS engines.

2 TheWS-GEN tool

WS-GEN is a tool for the automated composition of web services apeal by ITC-IRST and
by the University of Trento (Italy) within the ASTRO projecthe tool is distributed under
an OpenSource license (sbet p: // v opensour ce. or ¢/ ), and is available from the
project web sitdt tp: //sra.itc.it/project/astrof .

WS-GEN consists of five software modules (see Figure 1). The firsthwodules OwL2STS
andBPEL2STS) are responsible of reading the description of an existief servicdV; (given
in terms of an OWL-S Process Model or in terms of an abstra&lBRVS specification, respec-
tively) and of encoding it in a state transition systéin State transition systems provide a sort
of operational semantics to web services. Each of them itbesahe corresponding web service
as a state-based dynamic system, that can evolve, i.e.gelsate, and that can be partially
controlled and observed by external agents. This way, itriless a protocol that defines how
external agents can interact with the service.



)\ request(Article) _
not_avail
. info(Size) Producer
requet(Article,Loc) offer(Cost,Delay)
not_avail ack/nack
— P&S
User offer(Cost,Delay) N
ack/nack request(Size,Loc)
not_avail
offer(Cost,Delay) Shipper
ack/nack
|

Fig. 2. A Simple Example.

From the point of view of the new composed service that hag tpdmerated, the state tran-
sition systems corresponding to the available servicestitate the environment in which the
new composed service has to operate, by receiving and geselivice requests. They constitute
what, in planning literature, is called a planning domaie.,ithe domain where the planner has
to plan for a goal. In our case, the planning domain is a statesition systent’ that combines
X, ..., 2. X represents all the possible behaviors of the availabléesesid , . .., W, with-
out any control performed by the service that will be geretaModulecompPOSEis responsible
of composing¥y, ..., X, into X.

The fourth module is th&sp planner [2]. Given a domai®y’ and a composition godF,
that imposes some requirements on the desired behavioegflémning domain, the planner
generates a plan that controls the planning domain, i.e., interacts with éiéernal services
Wi, ..., W, in a specific way such that the evolutions satisfy the g@alThe planz is a
state transition system that encodes the new seicthat has to be generated. It dynami-
cally receives and sends invocations from/to the extermalices\V, ..., W, observes their
behaviors, and behaves depending on responses receinethigexternal services. If the avail-
able web service$l’, ..., W,, are defined in abstract BPELAWS, then the composition goal
is accompanied by a set of “semantic” annotations, whichnaessary to link the business
requirement captured by the goal to the BPEL4AWS code of tigtieg services. As a seman-
tic language, OWL-S provides instead the advantageoushilitgsof already including these
semantic annotations within the web service specifications

The last modulesTS2BPEL, is responsible of translating the state transition systeénto an
executable process described in BPEL4AWS. This moduleagratponsible to provide all those
information that are necessary for the deployment and di@caf the generated processes.

3 A web service composition demo

The goal of the demo is to allow observing the behavior of W&Y@Euring the web service
composition task, as well as to test the execution of therg¢e@ web service. We will compare
the two formalisms supported by WSEG for describing the existing services, namely OWL-S
Process Models and abstract BPEL4WS, showing that the fiestsomore compact and better
suited to the task of automated compaosition. In both casesyilkshow how to define “business
requirements” for web service composition; we will show behavior of the different modules
of WS-CGEN; and we will show how the generated executable BPEL4AWS cadée deployed
and executed using standard execution engines like AqbgeB

The demo will be based on a simple example, taken from [5t 6prisists in providing a fur-
niture purchase & delivery service, say tR&S service, which satisfies some user request. We



do so by combining two separate, independent, and existindces: a furniture producéro-
ducer, and a delivery servic8hipper. The idea is that of combining these two services so that
the user may directly ask the composed serti&sS to purchase and deliver a given article at a
given placeProducer accepts requests for providing information on a given pobdnd, if the
product is available, it provides information about itsesiZheProducer also accepts requests
for buying a given product, in which case it returns an offéthva cost and production time.
This offer can be accepted or refused by the external setivatdnas invoked thBroducer. The
Shipper service receives requests for transporting a product of@ngsize to a given location.

If delivery is possibleShipper provides a shipping offer with a cost and delivery time, vihic
can be accepted or refused by the external service that Walesid theShipper.

The expected protocol that the user of B&S service will execute goes as follows. The user
sends a request to get a given item at a given location, anecexpither a negative answer if
this is not possible, or an offer indicating the price and cb¢he service. In the second case, the
user may either accept or refuse the offer. Of course seirgemhction sequences are possible
with these services; e.g., inrminal scenario, none of the services answers negatively to a
request; in non-nominal scenarios, unavailability of tteen, user refusals or shipping service
unavailability may make it impossible to reach an agreenfienthe purchase and delivery.
Taking this into account, the business requirement for teosed service is composed of two
subgoals. The “nominal” subgoal consists in reaching theegent to purchase and delivery the
item. This includes enforcing that the data communicatdtieosarious processes is consistent
with their mutual availabilities; e.g., the total serviemé communicated to the user cannot be
less than the sum of production and delivery times. The ‘rengd subgoal consists in insuring
that every partner has rolled back from previous pendingests, and is only pursued when the
nominal subgoal cannot be pursued anymore.

Figure 2 describes the expected data flow amongst our inesveeb service, the two ser-
vices composing it, and the user.

More complex examples of web service composition problerfisalso be used during
the demo to show the practical applicability of the approdidiese examples are based on
realistic case studies that we are developing in projectgrigate companies and for the public
administration.

References

1. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. KleinL&mann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weeravarana. Business BeoEgecution Language for Web Services,
2003.

2. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Trese. MBP: a Model Based Planner. Pnoc.
of 1CAI-2001 Workshop on Planning under Uncertainty and Incomplete Information, Seattle, USA,
August 2001.

3. The OWL Services Coalition. OWL-S: Semantic Markup forb/&ervices. Infechnical White paper
(OWL-Sversion 1.1), 2004.

4. F. Giunchiglia and P. Traverso. Planning as Model Chegkim Proc. 5th European Conference on
Planning (ECP’ 99), 1999.

5. M. Pistore, P. Bertoli, F. Barbon, D. Shaparau, and P.ésax Planning and Monitoring Web Ser-
vice Composition. IrProc. 11th Int. Conf, on Art. Intelligence: Methodology, Systems, Applications
(AIMSA'04), 2004.

6. P. Traverso and M. Pistore. Automated Composition of $#in&Veb Services into Executable Pro-
cesses. IProc. 4th Int. Semantic Web Conference (ISVC' 04), 2004.



