
WS-GEN: A Tool for the Automated Composition
of Semantic Web Services?

M. Pistore, P. Bertoli, E. Cusenza, A. Marconi, and P. Traverso

University of Trento – ITC-IRST
[pistore,cusenza]@dit.unitn.it – [bertoli,marconi,traverso]@itc.it

Abstract. This demo illustrates WS-GEN, a tool supporting the automated composition
of web services. WS-GEN takes as input the description of a set of available servicesand
a “business requirement” describing the goal of the composed service, and automatically
generates the executable code implementing the new composed service.

1 Introduction

One of the big challenges for the taking up of web services, and one of the main goals in the
Semantic Web Services roadmap, is the provision of automated support to the composition of
web services. By web service composition we mean “the automatic selection, composition, and
interoperation of Web services to perform some task, given ahigh-level description of an objec-
tive” [3].

Currently, the problem of the composition of web services isaddressed by two orthogo-
nal efforts. From the one side, most of the major industry players propose low level process
modeling and execution languages, like BPEL4WS [1]. These languages allow programmers
to implement complex web services as distributed processesand to compose them in a general
way. However, the definition of new processes that interact with existing ones must be done
manually, and this is a hard, time consuming, and error pronetask. From the other side, research
within the Semantic Web community proposes a top-down unambiguous description of web ser-
vices capabilities, e.g., in standard languages like OWL-S[3], thus enabling the possibility to
reason about web services, and to automate web services tasks, like discovery and composition.
However, the real taking up of Semantic Web Services for practical applications needs the abil-
ity of generating automatically composed services that canbe directly executed, in the style of
BPEL4WS programs.

In this demo we describe a tool, WS-GEN, which allows for the automated composition of
web services. More precisely, the tool takes as input the description of a set of available services
and a “business requirement” that defines goal of the composed web service, and automatically
generates the executable process of the new service. WS-GEN currently supports two different
languages for the description of the available services. They can be defined as OWL-S Process
Models which provide declarative descriptions of the web service processes, or as “abstract”
BPEL4WS processes which define the protocols that have to be respected in order to interact
with these web services. In the first case, the “business requirement” that describes goal of the
composed web service is defined in term of the semantic annotations that are part of the OWL-
S model. In the second case, these semantic information, which are missing in the BPEL4WS
specification, need to be defined explicitly in order to allowfor the definition of the goal. In both
cases, the generated web service is emitted as BPEL4WS code that can be executed on existing
engines.

? The work is partially funded by the FIRB-MIUR project RBNE0195K5, “Knowledge Level Automated
Software Engineering”.

OWL−S
Process
Model

Executable
BPEL4WSAbstract

BPEL4WS

W1

Wn

W1

Wn

Σ1

Σ
COMPOSE MBPΣ Σπ

G

W

WS−GEN

Composition Goal

BPEL STS2

STS BPEL

OWL STS2

2

n

Fig. 1. Architecture of WS-GEN.

For the automated generation of the composed web service, WS-GEN exploits the AI plan-
ning approach described in [5, 6]. This approach is based on the “Planning as Model Checking”
framework [4], and on theMBP tool that implements it [2]. The usage of the “Planning as Model
Checking” framework is particularly relevant here, since it provides some advanced features
(the possibility of managing nondeterministic domains, partial observability, and complex goal
descriptions) which are necessary in web service composition. Indeed, web services exhibit non-
deterministic behaviors, since the outputs of an external web service cannot be predicted prior
to execution (e.g., a flight reservation service cannot knowin advance whether a reservation will
be confirmed or canceled). Moreover the internal status of a service (e.g., whether there are still
seats available in a flight) is not available to external services, and the planner can only observe
services invocations and responses. Finally, compositiongoals need to express complex require-
ments including temporal conditions (e.g., do not reserve the hotel until you have reserved the
flight), and preferences among different goals (try to reserve both the flight and the hotel, but if
not possible, make sure you do not reserve any of the two). Allthese features, which are not sup-
ported by so called “classical” planning approaches, can becaptured in the “Planning as Model
Checking” framework.

This demo will provide practical examples of the application of WS-GEN to the auto-
mated composition of web services. More precisely, it will show how to specify a web service
composition problem starting from a set of available web services (described in OWL-S or in
BPEL4WS), and it will demonstrate how the generated code forthe composed web service can
be executed on standard BPEL4WS engines.

2 The WS-GEN tool

WS-GEN is a tool for the automated composition of web services developed by ITC-IRST and
by the University of Trento (Italy) within the ASTRO project. The tool is distributed under
an OpenSource license (seehttp://www.opensource.org/), and is available from the
project web sitehttp://sra.itc.it/project/astro/.

WS-GEN consists of five software modules (see Figure 1). The first twomodules (OWL2STS

andBPEL2STS) are responsible of reading the description of an existing web serviceWi (given
in terms of an OWL-S Process Model or in terms of an abstract BPEL4WS specification, respec-
tively) and of encoding it in a state transition systemΣi. State transition systems provide a sort
of operational semantics to web services. Each of them describes the corresponding web service
as a state-based dynamic system, that can evolve, i.e., change state, and that can be partially
controlled and observed by external agents. This way, it describes a protocol that defines how
external agents can interact with the service.

Shipper

Producer

not_avail

offer(Cost,Delay)

offer(Cost,Delay)

not_avail

ack/nack

ack/nack

request(Article)

request(Size,Loc)

info(Size)
requet(Article,Loc)

not_avail

offer(Cost,Delay)

ack/nack

User P&S

Fig. 2. A Simple Example.

From the point of view of the new composed service that has to be generated, the state tran-
sition systems corresponding to the available services constitute the environment in which the
new composed service has to operate, by receiving and sending service requests. They constitute
what, in planning literature, is called a planning domain, i.e., the domain where the planner has
to plan for a goal. In our case, the planning domain is a state transition systemΣ that combines
Σ1, . . . , Σn. Σ represents all the possible behaviors of the available servicesW1, . . . , Wn with-
out any control performed by the service that will be generated. ModuleCOMPOSEis responsible
of composingΣ1, . . . , Σn into Σ.

The fourth module is theMBP planner [2]. Given a domainΣ and a composition goalG,
that imposes some requirements on the desired behavior of the planning domain, the planner
generates a planπ that controls the planning domain, i.e., interacts with theexternal services
W1, . . . , Wn in a specific way such that the evolutions satisfy the goalG. The planπ is a
state transition system that encodes the new serviceW that has to be generated. It dynami-
cally receives and sends invocations from/to the external servicesW1, . . . , Wn, observes their
behaviors, and behaves depending on responses received from the external services. If the avail-
able web servicesW1, . . . , Wn are defined in abstract BPEL4WS, then the composition goal
is accompanied by a set of “semantic” annotations, which arenecessary to link the business
requirement captured by the goal to the BPEL4WS code of the existing services. As a seman-
tic language, OWL-S provides instead the advantageous possibility of already including these
semantic annotations within the web service specifications.

The last module,STS2BPEL, is responsible of translating the state transition systemπ into an
executable process described in BPEL4WS. This module is also responsible to provide all those
information that are necessary for the deployment and execution of the generated processes.

3 A web service composition demo

The goal of the demo is to allow observing the behavior of WS-GEN during the web service
composition task, as well as to test the execution of the generated web service. We will compare
the two formalisms supported by WS-GEN for describing the existing services, namely OWL-S
Process Models and abstract BPEL4WS, showing that the first one is more compact and better
suited to the task of automated composition. In both cases, we will show how to define “business
requirements” for web service composition; we will show thebehavior of the different modules
of WS-GEN; and we will show how the generated executable BPEL4WS code can be deployed
and executed using standard execution engines like ActiveBpel.

The demo will be based on a simple example, taken from [5, 6]. It consists in providing a fur-
niture purchase & delivery service, say theP&S service, which satisfies some user request. We

do so by combining two separate, independent, and existing services: a furniture producerPro-
ducer, and a delivery serviceShipper. The idea is that of combining these two services so that
the user may directly ask the composed serviceP&S to purchase and deliver a given article at a
given place.Producer accepts requests for providing information on a given product and, if the
product is available, it provides information about its size. TheProducer also accepts requests
for buying a given product, in which case it returns an offer with a cost and production time.
This offer can be accepted or refused by the external servicethat has invoked theProducer. The
Shipper service receives requests for transporting a product of a given size to a given location.
If delivery is possible,Shipper provides a shipping offer with a cost and delivery time, which
can be accepted or refused by the external service that has invoked theShipper.

The expected protocol that the user of theP&S service will execute goes as follows. The user
sends a request to get a given item at a given location, and expects either a negative answer if
this is not possible, or an offer indicating the price and cost of the service. In the second case, the
user may either accept or refuse the offer. Of course severalinteraction sequences are possible
with these services; e.g., in anominal scenario, none of the services answers negatively to a
request; in non-nominal scenarios, unavailability of the item, user refusals or shipping service
unavailability may make it impossible to reach an agreementfor the purchase and delivery.
Taking this into account, the business requirement for the composed service is composed of two
subgoals. The “nominal” subgoal consists in reaching the agreement to purchase and delivery the
item. This includes enforcing that the data communicated tothe various processes is consistent
with their mutual availabilities; e.g., the total service time communicated to the user cannot be
less than the sum of production and delivery times. The “recovery” subgoal consists in insuring
that every partner has rolled back from previous pending requests, and is only pursued when the
nominal subgoal cannot be pursued anymore.

Figure 2 describes the expected data flow amongst our integrated web service, the two ser-
vices composing it, and the user.

More complex examples of web service composition problems will also be used during
the demo to show the practical applicability of the approach. These examples are based on
realistic case studies that we are developing in projects for private companies and for the public
administration.

References

1. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F.Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weeravarana. Business Process Execution Language for Web Services,
2003.

2. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based Planner. InProc.
of ICAI-2001 Workshop on Planning under Uncertainty and Incomplete Information, Seattle, USA,
August 2001.

3. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. InTechnical White paper
(OWL-S version 1.1), 2004.

4. F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc. 5th European Conference on
Planning (ECP’99), 1999.

5. M. Pistore, P. Bertoli, F. Barbon, D. Shaparau, and P. Traverso. Planning and Monitoring Web Ser-
vice Composition. InProc. 11th Int. Conf, on Art. Intelligence: Methodology, Systems, Applications
(AIMSA’04), 2004.

6. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Executable Pro-
cesses. InProc. 4th Int. Semantic Web Conference (ISWC’04), 2004.

