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Abstract. In our research to use information extraction to help populate the 
semantic web, we have encountered significant obstacles to interoperability 
between the technologies.  We believe these obstacles to be endemic to the 
basic paradigms, and not quirks of the specific implementations we have 
worked with.  In particular, we identify five dimensions of interoperability that 
must be addressed to successfully populate semantic web knowledge bases 
from information extraction systems that are suitable for reasoning. We call the 
task of transforming IE data into knowledge-bases knowledge integration, and 
briefly present a framework called KITE in which we are exploring these 
dimensions.  Finally, we report on the initial results of an experiment in which 
the knowledge integration process uses the deeper semantics of OWL 
ontologies to improve the precision of relation extraction from text. 

Keywords: Information Extraction, Applications of OWL DL Reasoning 

1   Introduction 

Ontologies describe the kinds of phenomena (e.g., people, places, events, 
relationships, etc.) that can exist.  Reasoning systems typically rely on ontologies to 
provide extensive formal semantics that enable the systems to draw complex 
conclusions or identify unintended models.  In contrast, systems that extract 
information from text (as well as other unstructured sources such as audio, images, 
and video) typically use much lighter-weight ontologies to encode their results, 
because those systems are generally not designed to enable complex reasoning. 

We are working on a project that is exploring the use of large-scale information 
extraction from text to address the “knowledge acquisition bottleneck” in populating 
large knowledge-bases.  This is by no means a new idea, however our focus is less on 
theoretical properties of NLP or KR systems in general, and more on the realities of 
these technologies today, and how they can be used together.  In particular, we have 
focused on state-of-the art text extraction components, many of which consistently 
rank in the top three at competitions such as ACE (Luo, et al, 2004) and TREC (Chu-
Carroll, et al, 2005), that have been embedded in the open-source Unstructured 



Information Management Architecture (UIMA) (Ferrucci & Lally, 2004), and used to 
populate semantic-web knowledge-bases. 

This, too, is not a particularly new idea; recent systems based on GATE (e.g. 
(Popov, et al 2004)) have been exploring the production of large RDF repositories 
from text.  In our project, however, we are specifically focused on the nature of the 
data produced by information extraction techniques, and its suitability for reasoning.  
Most systems that we have come across (see the related work section) do not perform 
reasoning (or perform at best the most simplistic reasoning) over the extracted 
knowledge stored in RDF, as the data is either too large or too imprecise.  This has led 
many potential adopters of semantic web technology, as well as many people in the 
information extraction community, to question the value of the semantic web (at least 
for this purpose).   We believe this community can be important in helping drive 
adoption of the semantic web. 

In this paper we will discuss our general approach to generating OWL knowledge-
bases from text, present some of the major obstacles to using these knowledge-bases 
with OWL- and RDF-based reasoners, and describe some solutions we have used.  
Our research is not in information extraction, ontologies, nor reasoning, but in their 
combination.  Our primary goal is to raise awareness of the real problems presented 
by trying to use these technologies together, and while we present some solutions, the 
problems are far from solved and require a lot more attention by the community. 

2 Related Work 

Research on extraction of formal knowledge from text (e.g., Dill, et al. 2003) 
typically assumes that text analytics are written for the ontology that the knowledge 
should be encoded in.  Building extraction directly on formal ontologies is 
particularly valuable when the extraction is intended to construct or modify the 
original ontology (Maynard, Yankova, et al. 2005; Cimiano & Völker, 2005).  
However, there is a substantial cost to requiring text analytics to be consistent with 
formal ontology languages. There are many existing systems that extract entities and 
relations from text using informal ontologies that make minimal semantic 
commitments (e.g., Marsh, 1998; Byrd & Ravin, 1999; Liddy, 2000; Miller, et al., 
2001; Doddington, et al., 2004).  These systems use these informal ontologies because 
those ontologies are relatively consistent with the ambiguous ways concepts are 
expressed in human language and are well-suited for their intended applications (e.g., 
document search, content browsing). However, those ontologies are not well-suited to 
applications that require complex inference.   

Work on so-called ontology-based information extraction, such as compete in the 
ACE program, (e.g. (Cunningham, 2005), (Bontcheva, 2004)) and other semantic-web 
approaches like (Maynard, 2005), (Maynard, et al, 2005), and (Popov, et al, 2004), 
focus on directly populating small ontologies that have a rich and well-thought out 
semantics, but very little if any formally specified semantics (e.g. using axioms).  The 
ontologies are extensively described in English, and the results are apparently used 
mainly for evaluation and search, not to enable reasoning. Our work differs in that we 



provide an explicit knowledge integration step that allows us to populate fully 
axiomatized ontologies from information extraction. 

Our emphasis actually makes our work similar to work in semantic integration or 
schema matching (e.g., Milo & Zohar, 1998; Noy & Musen, 2001), which typically 
focuses on finding very simple (e.g., one-to-one) mappings among terms in 
ontologies.  Schema matching is useful when the ontologies are large and complex, so 
that these mappings, while individually simple, are numerous and challenging to find.  
Our work however focuses on the opposite circumstance: We assume that the 
ontologies are small and manageable enough that one can find the correspondences 
manually and that the mappings may be more complex (conditional, many-to-many, 
etc.) than an automated matching system can handle. 

Schema-matching technologies have typically been used when the applications that 
the source and target ontologies were designed for are identical or at least quite 
similar; e.g., matching one e-commerce database schema to another.  In those cases, 
the assumption that individual mappings will tend to be very simple can be valid; 
since the designers of the ontologies had the same basic purpose in mind.  Mapping 
extracted information into formal reasoning ontologies does not have this 
characteristic; these applications are radically different and tend to lead to radically 
different conceptualizations of basic content.  For these sorts of differences, it is not 
feasible to restrict the mappings between terms to be sufficiently simple and obvious 
enough that they can be discovered by state-of-the-art fully-automated matching 
techniques. 

We use in our work components implemented within the Unstructured Information 
Mangagement Architecture (UIMA). UIMA is an open-source middleware platform 
for integrating components that analyze unstructured sources such as text documents.  
UIMA-based systems define “type systems” (i.e., ontologies with extremely limited 
semantic commitments) to specify the kinds of information that they manipulate 
(Götz & Suhre, 2004).  UIMA type systems include no more than a single-inheritance 
type/subtype hierarchy, thus to do substantive reasoning over the results of UIMA-
based extraction, one needs to convert results into a more expressive representation. 

3 Generating RDF from Text 

The context of our application deserves some attention, as our results are somewhat 
dependent on the assumptions that arise from it.  First of all, we are taking the 
approach that analytics are more expensive to produce than ontologies.  This 
presumes, of course, that we are talking about smaller, lightweight ontologies of no 
more than 100 classes and 100 object properties, which makes sense if they are to be 
populated from text analysis, as typical information extraction ontologies are 
extremely small.  Analytics are available in reusable components that can be 
embedded in frameworks like UIMA, in which they are composed into larger 
aggregate analysis engines.  The individual components overlap to varying degrees in 
the types of entities and relations they discover, and in the cases of overlap, need to 
have their results combined.  While this has in general been shown to improve overall 
precision and recall, it does create interesting anomalies in the non-overlapping types 



of data (which we will discuss below).  The individual analytic components we treat 
as black boxes, their operation is for the most part functional (producing the same 
output for the same input).  Ontologies therefore are custom built to suit particular 
application needs, whereas analytics are reused and composed off the shelf.  Our 
experiences are that this characterizes hundreds, if not thousands, of users today 
looking to populate their part of the semantic web from textual sources.  These users 
are in the medical domain, national and business intelligence, compliance, etc., and 
many have resources to fund research in the area.  The work described here was 
funded jointly by IBM and the U.S. Government. 

3.1 Text to Knowledge Pipeline 

In our evaluation prototype, we produce knowledge-bases from text in a pipeline that 
proceeds through several stages: 
Keyword Indexing. The simplest and most scalable processing is the generation of an inverted 
index to support keyword search. Although techniques such as link analysis, query expansion, 
etc., can offer minor improvements, this approach is generally very low in precision.  In 
addition to its current established usage, we consider the function of keyword search to be 
domain corpus production.  We employ recall-improving techniques such as query expansion 
to reduce the size of the target corpus to the scale required by the next stage of processing 
(information extraction) – this is typically 1-2 orders of magnitude. 

Information Extraction. Information extraction (IE) in general can be viewed as the analysis of 
unstructured information to assign labels (or annotations) that carry some semantics to regions 
of the data.  The canonical example would be to label the text “George Bush” with  Person.  
The field has advanced considerably since these beginnings, and are well represented by the 
ACE program (Doddington, et al, 2004), participants in which produce annotations for entities 
(Person, Organization, etc.), relations (partOf, citizenOf, etc.), and coreference analysis. While 
almost any kind of information processing can be folded into an information extraction view, in 
our system, IE components play the role of providing relatively shallow processing in order to 
be scalable.  In particular, this stage limits itself to processing data in documents, and performs 
the same analysis on each document independently.  As a result, IE processing scales linearly 
with the size of the domain corpus. 

Coreference Across Documents. The annotations produced in the IE stage are used as input to 
corpus-level processing, the most important to our purposes of which is coreference analysis – 
the identification of individual entities that are mentioned (and annotated) in multiple places.  
Many of our IE components produce coreference analysis within documents, but connecting 
these results across the entire corpus clearly requires processing that can collect information 
across the documents, and thus will typically scale at a polynomial rate.  In our experience, the 
most critical properties of co-reference are recognition of aliases and nicknames, common 
spelling variations of names (especially in other languages), common diminutives, 
abbreviations, etc.  This is a wide-open research area that requires significant attention. 



Knowledge Integration. Although it is not required, the data produced in the first three stages of 
our system are all based on the same underlying format (discussed in Ferrucci&Lally, 2004), 
which is a simple extension of an OO programming model with a tight programmatic API and a 
loose semantics (that is, the semantics of a data model can be interpreted by software as the 
programmers choose).  The process of mapping the information from the previous stages into 
OWL is analogous to the general problem of semantic integration (schema matching, ontology 
alignment, etc.) with some additional challenges, which we discuss below. We call this stage 
knowledge integration.  The result of knowledge integration, an OWL knowledge-base that can 
be viewed as a graph, provides the ability to use OWL-based reasoning to perform more 
sophisticated deductive search.  For example, we can express axioms of spatial or temporal 
containment in OWL, and conclude obvious (but nevertheless implicit) results, such as a person 
in Paris is also in France. 

3.2 Knowledge Integration Challenges 

Knowledge Integration is analogous to semantic integration. The basic problem is to 
align the type system of the analytic components with the ontology of the reasoning 
components (see the beginning of this section for a discussion of why they are not the 
same), such that the data produced by the analytic components can “instantiate” the 
ontology.  Knowledge integration is difficult however, and to our knowledge is not 
often attempted, due to the vastly different requirements, and different communities, 
on each side.  As a result, what seems on the surface to be a natural connection – 
producing structured representations from unstructured information and then 
reasoning over those structures – turns out to be a difficult challenge.  Below we list 
the five dimensions of interoperability we have identified and brief notes on how we 
are addressing them: 

 
Precision.  Formal reasoning systems are notoriously intolerant of errors, and IE systems are 
notoriously prone to producing them.  This is probably the most fundamental problem in 
putting them together. In particular, logical reasoning becomes meaningless in the face of 
contradiction, most inference engines will prove any statement to be true if the knowledge-base 
is inconsistent to begin with.  Although improving precision is an obvious approach to this 
problem, we take it as a given that IE processes will never be perfect, and furthermore even in 
the presence of perfect IE, data sources can contradict each other intentionally (e.g. reports 
from CNN and the pre-war Iraqi News Agency), and instead we focus on making the reasoning 
systems more tolerant of errorful data.  Our simplest technique is to perform limited reasoning 
such as semantic constraints that can be checked rapidly, and that in our evaluations we find to 
be indicative of IE errors and not intended contradictions.  We discuss this further below. 

Recall. Imperfect recall is another significant obstacle to interoperability.  The amount of 
knowledge we typically get from documents is quite small compared to what a human might 
produce from the same document.  The reasoning system is, therefore, crippled by major gaps 
in the input.  Using inference can actually help improve recall, however it is a different sense 
than is typically used in IE measurements.  Recall measurements are based on comparison to a 



“ground truth” (i.e. a human annotated corpus), in which implicit information does not appear.  
For example, in the sentence “Joe arrived in Paris”, we would not expect a test corpus to 
include the relationship that Joe arrived in France, yet this inferred information clearly 
increases the recall. 

Relationships. Simple IE systems that produce type annotations (such as Person, Organization, 
etc.) are not of much use as input to a reasoning system.  These end up in a knowledge base as 
assertions that something is an instance of something else.  There is very little reasoning that 
can be done with only that information.  In order for reasoning to produce useful results, we 
need relationships to be extracted as well.  For example, there is not much to conclude from the 
sentence, “Joe was in Paris,” if all that was produced was that “Joe” is a person and “Paris” is a 
place.  In this case, a located-in relation would be useful as well, as simple spatial containment 
axioms plus basic world knowledge (e.g. that Paris is in France) would allow a reasoner to 
conclude that Joe was in France.  We use a number of IE components that produce relations 
over text, however the state-of-the-art in relation extraction is very poor on precision and recall. 

Annotations vs. Entities.  In our experience, relation annotation by itself creates another 
problem.  Every relation annotation creates a tuple whose elements are the spans of text that 
participate in the relation, and thus do not appear in other relations.  This severely limits the 
usefulness of reasoning, since the elements of the relation tuples are the mentions not the 
entities.  For example, from the sentences, “Joe was in Paris.  Fred was in Paris, too,” relation 
annotation would produce two tuples, however the elements of the tuples are not the strings, 
“Joe”, “Fred”, and “Paris”, but the regions containing those strings in the original text, and as a 
result we have four elements identified by their position in text, not by their contents.  Thus the 
first and second occurrences of “Paris” are different elements, and we could not conclude in a 
reasoner that, e.g. Joe and Fred are in the same place.  In fact, without connecting these two 
mentions of Paris (both within and across documents), we end up with a large list of 
unconnected relation tuples.  We address this problem with coreference analysis, and although 
we do not discuss it in this paper, coreference analysis is an essential task in populating 
knowledge-bases from text.  In particular, consider that the output of knowledge integration is a 
graph – the graph without coreference analysis would be a disconnected set of connected pairs.  

Scalability. IE techniques scale far better than KR techniques, and as a result we also need to 
limit the amount of data that any reasoning component has to deal with.  In our experience, 
documents provide an excellent and reliable heuristic for KB size, as well as for consistency.  
We have found that, excluding IE errors, in excess of 90% of the documents we process are 
internally consistent, and thus far all documents (we focus mainly on news articles, intelligence 
reports and abstracts) have been the basis of small enough KBs for any of our advanced 
reasoning systems.  Still, document-based partitioning is inadequate for a lot of information 
gathering tasks that we have focused on, so a variety of incremental capabilities are required, as 
are efforts at more scalable reasoning. 

We attempt to address these dimensions in a component-based framework for 
supporting knowledge integration, discussed in the next section.  Due to space 
considerations we cannot discuss all five dimensions, and will focus mainly on 



experiments we have performed to use deeper semantics expressed in OWL-DL to 
improve precision. 

4 Knowledge Integration and Transformation Engine (KITE) 

KITE (Murdock & Welty, 2006) is a middleware platform for use by developers of 
knowledge integration applications.  KITE consists of two major components: 

• KITE Core Framework: Java interfaces, data structures, and a central 
control mechanism for mapping entities and relationships from one ontology 
to another. 

• KITE Commons: A set of broadly applicable plugins that comply with the 
interfaces specified in the core framework. 

A KITE-based integrator takes as input a Source Repository (e.g., a database, an 
RDF/XML file).  Information in that repository is encoded in the Source Ontology 
(which is accessed via an Ontology Language Plugin). The Source Plugin reads from 
the source repository and outputs Source Data encoded in KITE data structures for 
instances and tuples.  Mapper Plugins may be primitive or aggregate. Aggregate 
mapper plugins are composed of other (primitive or aggregate) mapper plugins.  
Primitive mapper plugins are Java objects that take Source Data as input and output 
Target Data (which consist of the same data structures, but are encoded in the Target 
Ontology).  The Target Plugin writes that data to a Target Repository and the 
Provenance Plugin writes the mappings from source to target data into a Provenance 
Repository.   

Figure 1 shows an example of a KITE-based knowledge integrator.  Source data 
for this application is encoded in HUTT (Hierarchical Unified Type Taxonomy), a 
UIMA type system based on a variety of established information extraction 

Figure 1: Example KITE-based application 
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taxonomies (e.g., Doddington, et al., 2004; Sauri, Litman, et al., 2004).  The output 
ontology for this application is the OWL ontology used in the KANI project (Fikes, 
Ferrucci, & Thurman, 2005). 

The input data for the example application is stored in a database designed to 
contain UIMA extracted information.  The KITE Commons includes a plugin (UIMA 
Extraction Database Source Plugin) that accesses this database and outputs KITE 
instances and tuples (Source Data).  This source data is provided to an aggregate 
mapper composed of an assortment of both generic mappers from the KITE 
Commons and specialized mappers that were written for the HUTT to KANI 
integrator.  These mappers output target data.  That data is consumed by two plugins 
from the KITE Commons: the RDF Store Target Plugin writes the target data alone 
into a relational database for RDF triples, and the Extraction → RDF Provenance 
Plugin records (potentially complex) mappings from source data in the extraction 
database to target data in the RDF database; these mappings are stored in the 
UIMA/RDF Provenance Database. 

Systems that access instances and triples from the RDF store can request traces of 
the information extraction and knowledge integration processes that created those 
instances and triples.  The provenance database is able to return that information 
either as database entries or in the OWL-based Proof Markup Language, PML 
(Pinheiro da Silva, McGuinness & Fikes, 2006).  Systems that perform additional 
reasoning over the extracted knowledge can provide integrated end-to-end PML 
traces that explain their conclusions as a combination of logical inferences from the 
RDF knowledge and extraction inferences used to obtain that knowledge from text 
(Murdock, et al., 2006). 

The most complex mappers that were written for this application involve the 
handling of temporal information.  The representation of time in HUTT is based on 
TimeML (Sauri & Littman, 2004), a language for marking up expressions of time in 
natural-language text.  The representation of time in the KANI ontology is OWL-
Time (Hobbs, 2004), a semantic web ontology.  OWL-Time makes relatively subtle 
distinctions that are usually implicit in text (e.g., distinguishing between time 
intervals and time interval descriptions).  Furthermore, OWL-Time has distinct 
properties to encode different aspects of a description of a time (year, month, day, 
hour, etc.).  In contrast, TimeML does not encode a time and its expression separately, 
and uses a relatively compact normalized form to encode a full time description in a 
single string.  These differences are motivated by the different applications that these 
ontologies were designed for; OWL-Time directly enables a wide variety of logical 
inferences about times, while TimeML provides a convenient and compact formalism 
for identifying, normalizing, and linking expressions of time in text.  A generic 
mapping component that was expressive enough to handle the mapping between these 
two portions of the HUTT and KANI ontologies would be extremely complicated to 
develop and to use.  However, many of the other terms in HUTT and KANI are 
handled easily by simple, generic mappers from the KITE Commons. 



5 Improving Annotator Precision & Recall Using OWL 

One particularly promising result of our knowledge integration efforts supported by 
the KITE framework has been using the kind of deep, axiomatic, semantics that OWL 
enables, to help improve precision and recall in the results.  We present here our 
technique and a preliminary evaluation of its effectiveness with a large UIMA-based 
application that includes dozens of “off the shelf” analytic components run on a 
corpus of news articles. 

5.1 Technique and Evaluation for Improving Precision 

The most problematic kind of extraction produced by analytic components we have 
experienced is relation extraction.  A common type of error we see in extracted 
relations is the violation of simple domain and range constraints.  For example, in the 
following sentence: 

 
In February 1993, US officials said that US President Bush's decision in September 
1991 to withdraw tactical nuclear bombs, missiles and torpedoes from US Navy ships 
has caused the impetus for naval arms control to whither. 

 
our analytics extract an ownership relation in the underlined text between “nuclear” 
(annotated as a weapon), and “bombs” (also a weapon), which maps to a ownerOf 
relation in the ontology.  The ownerOf relation has a restriction limiting the domain to 
Person or Organization or GPE and a disjointness constraint between each of these 
and Weapon.   

Our approach is a simple one.  During knowledge integration, we construct an 
intermediate knowledge base (in fact, a Jena model) consisting of only the mapped 
entities and their type information.  Then, during the mapping process producing 
relations, we add resulting triples to this KB one at a time.  With each addition, we 
run the KB through a consistency check using Pellet.  If the KB is not consistent, we 
“drop” the triple, if it is consistent, we add the triple to the output of the 
transformation.  Obviously this technique does not scale particularly well and is 
entirely dependent on the degree to which the ontology is axiomatized. In preliminary 
experiments, however, the technique appears promising and does quite well – offering 
a clear improvement in precision by dropping incorrect triples.  We are still exploring 
how these results generalize, but we present here some concrete examples, analysis, 
and discussion:   
Ontology.  The ontology we tested consists of 56 classes and 62 object properties in the domain 
of nuclear arms proliferation. Other than a few specific classes for weapons, the classes and 
properties are fairly generic (people, places, facilities, etc.).  All properties have global domain 
and range constraints, however some are not that restrictive.  Five classes have local range 
constraints.  Cardinality constraints are not of use in our domain.  The most effort was spent 
assigning appropriate disjointness constraints, as these are key to the technique.   

Analytics. Our analytics are 42 off-the-shelf components that were developed for other projects 
such as TREC and ACE, and that we aggregated using the composition capabilities of UIMA.  



The merged type system contains 205 entity and 79 relation types; most of our analytic 
components overlap on common types such as PERSON and ORGANIZATION, etc., but each 
adds some unique functionality to the overall aggregate.  We have special purpose components 
for arbitrating between conflicting annotation assignments and for computing co-reference 
across documents.  

Corpus. The corpus contains over 30K documents that average about a page in length.  Most 
are news articles or summaries of news articles in the domain of interest.  Due to the extensive 
cost of evaluation (which must be done by hand), the experiments were performed on 10, 41, 
and 378 documents. We report here the results of the 378 document test.  On average our 
analytics produce 322 entity annotations and 21 relation annotations per document, and 
coreference merges an average of 15 annotations per entity and 1.8 annotations per relation.  
The KITE-based knowledge integrator maps those entities and relations into instances and 
tuples in the KB.  For the 378 document corpus, the end result is a KB of 6281 individuals and 
834 object property triples.  These numbers clearly demonstrate the significance of recall in this 
process, only a fraction of the generated knowledge base is of any real use to the semantic web, 
more than 70% of the entities simply have a label and a type. 

Results. Our technique dropped 67 (object property) triples of the 834 produced by the mapping 
process.  Of the 67 dropped, 2 were actually correct and should not have been dropped (see the 
analysis below).  This is a relative improvement in precision of 8.7%., which is considerably 
more than the difference between the first and fifth place competitors in the ACE competition 
relation extraction task (for which this scale is also appropriate).  The cost of this improvement 
is high; the system without this check takes about 5 minutes to generate a KB from 378 
documents, and with the reasoning check takes over an hour.  There is a lot that can be done to 
improve this, however, and our precision improvement results are encouraging enough that we 
are exploring  alternatives, such as a much more rapid heuristic consistency checker (Fokue, et 
al, 2006), partitioning the KB by document instead of checking global consistency, and others.  

5.2 Analysis of Evaluation 

Of the 67 triples we reported dropped, 2 should not have been dropped.  A further 11 
triples fell into a special category in which the triples themselves were correct, but the 
coreference resolution or type assignments for relation arguments were wrong, so a 
more robust solution would have been to amend the coreference or typing. 

Many (but not all) of the correct filtering of incorrect relations is a result of the 
combination of multiple independent annotators to determine the type of an entity.  
An example of this occurred in the following phrase: 

 
With the use of these pits, landmines, and guerrilla attacks, Khmer Rouge 
forces allegedly drove off the personnel sent to repair the road. 

 
One of our entity and relation annotators incorrectly determines that “Khmer Rouge” 
is a person who is the leader of the “forces.”  However, the combination of annotators 



concludes that “Khmer Rouge” is actually an organization.  Since the OWL ontology 
indicates that an organization can’t be the leader of another organization, this triple is 
correctly dropped. 

The two erroneously dropped triples were due to a combination of weak typing of 
entities and errors in another relation that did not manifest as inconsistencies until the 
triple in question was added to the KB.  For example, consider the phrase: 

 
… of countries like Pakistan, India, Iran, and North Korea, who are building … 

 
A comma between two geopolitical entities often indicates a subPlace relation (e.g., 
“Delhi, India”), and one of our annotators incorrectly extracts a subPlace relation 
between India and Iran. The cross-document coreference process is unable to 
authoritatively assign the “Country” label to the entity corresponding to “India”, so it 
ends up as a GPE (geopolitical entity), a superclass of Country.  The entity 
corresponding to “Iran”, however, is correctly typed as a Country.  In the ontology, 
there is a local range restriction on the Country class that prevents it from being a 
subPlace of another country.  So, if the entity corresponding to “India” had been 
correctly labeled as a country, our technique would have dropped the “India subPlace 
Iran” relation when it was mapped, however since some countries are subplaces of 
GPEs (e.g. France subPlace EU), the weaker GPE assignment for India allows the 
erroneous triple through.  By happenstance, a subsequent triple in the mapping 
process results from this passage, 

 
… were seized by Indian authorities after a raid on a suspected weapons lab … 

 
where our analytics correctly extract a citizenOf relation in the underlined text 
between “authorities” and “Indian”, correctly coreference “Indian” with the entity for 
“India” in the previous passage, and correctly assign the type Person to the entity 
corresponding to “authorities”.  The ontology contains a global range restriction for 
the citizenOf relation to instances of Country.  Since the erroneous subPlace triple 
added previously prevents India from being a country (since a country cannot be a 
subPlace of a country), adding this correct triple causes an inconsistent KB.  This 
shows the technique has some order dependences, had these triples been added in a 
different order the correct one would have been dropped.  Fortunately our initial 
results indicate these circumstances to be rare (2 erroneous drops out of 834 triples). 

There were eleven examples of dropped triples where problems were actually in 
the assignment of types to the entities or in coreference, so that a better approach 
would have been to fix the type assignments or undo a coreference merge.  For 
example: 

 
 … and the increase in organized criminal groups in the FSU and Eastern Europe. 

 
In this case, the analytics produce a basedIn relation between “groups” and “FSU” in 
the underlined text, but multiple annotators disagree on the type of “FSU” (some 
correctly say GPE, some incorrectly say Organization), and the incorrect label 
(Organization) ends up winning.  Overall our technique for combining annotations 
does improve precision, but like all IE techniques it isn’t perfect, as in this case.  



Therefore we end up with an organization being basedIn an organization, and the 
ontology requires organizations to be basedIn GPEs, and specifies that GPEs and 
Organizations are disjoint. 

It is somewhat debatable whether dropping this triple is a mistake – clearly it 
would be better to fix the type, but the entity corresponding to “FSU”, as presented to 
the KB, is an organization and cannot be the object of a basedIn relation.  Thus the 
KB does end up cleaner without it. 

5.3 Techniques for Improving Recall 

Our initial motivation for combining IE with semantic technology in general was the 
possibility of improving information access beyond keyword-based approaches 
through inference. For example, in the passage “Joe arrived in Paris”, no keyword 
search, nor search enhanced by semantic markup, would retrieve this passage in 
response to the query, “Who is in France?” Clearly with some world knowledge (that 
Paris is in France) and the ability to accurately recognize the relation in the passage 
(& query), we could employ reasoning to catch it. 

OWL-DL is not particularly strong in its ability to perform the kinds of “A-box” 
reasoning that would be needed to make a significant improvement in this kind of 
recall.  Other choices are RDF rules and translating the KBs into more expressive 
languages (like KIF).  A semantic web rules language would obviously help here as 
well.  

An interesting challenge is in measuring the impact of this kind of reasoning.  It 
makes sense to call this an improvement in recall; in the simple example above 
clearly the passage in question contains an answer to the query, and clearly keyword 
search would not find it.  However, it is a different sense of recall than is typically 
used in IE measurements.  Recall measurements are based on comparison to a 
“ground truth” (i.e. a human annotated corpus), in which implicit information does 
not appear.  In textual entailment (Dagan et al, 2005) the measurement problem is 
similar, however they address this in evaluations by always making the determination 
based on pairs of text passages.  So we can show improvement in recall by selecting 
meaningful queries and determining if and how reasoning improves the recall for each 
query, but measuring recall improvements in the KB itself is more difficult. 

6 Conclusions 

In our research to use information extraction to help populate the semantic web, we 
have encountered significant obstacles to interoperability between the technologies.  
We believe these obstacles to be endemic to the basic paradigms, and not quirks of 
the specific implementations we have worked with.  In particular, we identified five 
dimensions of interoperability that must be addressed to successfully populate 
semantic web knowledge bases from information extraction systems that are suitable 
for reasoning. We called the task of transforming IE data into knowledge-bases 
knowledge integration, and briefly presented a framework called KITE in which we 
are exploring these dimensions.  Finally, we reported on the initial results of an 



experiment in which the knowledge integration process used the deeper semantics of 
OWL ontologies to improve the precision of relation extraction from text. By adding 
a simplistic consistency-checking step, we showed an 8.7% relative improvement in 
precision over a very robust IE application without that checking.  

This work is still in the beginning stages, but we do have results and conclusions, 
the most important of which is to address a long-standing problem that presents an 
obstacle to interoperability: being realistic. IE and NLP systems do not produce 
perfect output of the sort that KR systems deal with, and KR systems are not capable 
of handling the scale, precision, and recall that NLP and IE systems produce.  These 
are not criticisms but realities.  We cannot just sit back and wait for the two 
technologies to eventually meet, rather we must begin exploring how to realistically 
integrate them. 

We should also point out that none of the implemented systems we used were 
baseline “strawman” systems, but reportedly state-of-the-art systems in each area.  It 
is not our intention to advance research in information extraction nor in knowledge 
representation and reasoning, but rather in the combination of the two.  We believe 
that the combination will be better than either individually, and have demonstrated 
one example of how this is so, using deeper semantics and reasoning to improve 
precision of relation extraction. 
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