
A Survey of the Web Ontology Landscape

Taowei David Wang1, Bijan Parsia2, James Hendler1

1 Department of Computer Science,
University of Maryland, College Park, MD 20742, USA,

{tw7, hendler}@cs.umd.edu
2 The University of Manchester, UK

bparsia@cs.man.ac.uk

Abstract. We survey nearly 1300 OWL ontologies and RDFS schemas. The col-
lection of statistical data allows us to perform analysis and report some trends.
Though most of the documents are syntactically OWL Full, very few stay in
OWL Full when they are syntactically patched by adding type triples. We also re-
port the frequency of occurrences of OWL language constructs and the shape of
class hierarchies in the ontologies. Finally, we note that of the largest ontologies
surveyed here, most do not exceed the description logic expressivity ofALC.

1 Introduction

The Semantic Web envisions a metadata-rich Web where presently human-readable
content will have machine-understandable semantics. The Web Ontology Language
(OWL) from W3C is an expressive formalism for modelers to define various logical
concepts and relations. OWL ontologies come in three species: Lite, DL, and Full, or-
dered in increasing expressivity. Every Lite ontology is also a DL ontology, and every
DL ontology is also a Full ontology. OWL Lite and OWL DL are the species that use
only the OWL language features in the way that complete and sound reasoning proce-
dures exist. OWL Full, on the other hand, is undecidable. While OWL recently became
a W3C recommendation in 2004, people have been working with it a few years, and
many interesting ontologies already exist on the Web. We are interested in evaluating
these ontologies and see if there are interesting trends in modeling practices, OWL con-
struct usages, and OWL species utilization.

2 Related Work

Using statistics to assess ontologies is not a new idea. Several approaches to create
benchmarking for Semantic Web applications have exploited the statistical measures to
create better benchmarks. Wang and collegues describe an algorithm to extract features
of instances in a real ontology in order to generate domain-specific data benchmark that
resembles the real ontology [16]. A method to count the types of triples of instances
is employed, and the distribution of these triples is used to create the synthetic data.
Tempich and Volz surveyed 95 DAML ontologies and collected various usage infor-
mation regarding classes, properties, individuals, and restrictions [15]. By examining

2

these numbers, they were able to cluster the ontologies into 3 categories of significant
difference.

In [11], Magkannaraki et al. looked at a collection of existing RDFS schemas and
extracted statistical data for size and morphology of the RDFS vocabularies. Here we
attempt a similar survey for both OWL and RDFS files. However, our focus is primarily
on OWL, and the data from RDFS documents serve as a good measuring stick for
comparisons.

Bechhofer and Volz studied a sample of 277 OWL ontologies and found that most of
them are, surprisingly, OWL Full files [2]. They showed that many of these OWL Full
ontologies are OWL Full because of missing type triples, and can be easily patched syn-
tactically. Here we collect a much larger size of samples, and we apply similar analysis
to attempt to patch these OWL Full files. In addition, we show how many OWL Full
files can be coerced into OWL Lite and OWL DL files. With the expressivity binning
of the surveyed ontologies, we show that the number of OWL Lite files that makes use
of OWL Lite’s full expressivity is relatively small.

3 Methodology

Here we describe the steps taken to collect the ontologies from the Web, how the data
was then gleaned, and how we analyzed the data. Our goal was to analyze the various
aspects of ontological documents, not RDF documents that make use of ontologies
or schemas. Inspite of FOAF3 (and DOAP4 and RSS) being a large percentage of
the semweb documents out there, they exhibit almost no ontological variance, being
primarily data with a thin schema, and are not in the scope of this study.

3.1 Ontology Collection

We used several Web resources to collect the ontologies and schemas. We collected just
the URIs at this stage, as our analysis tools will retrieve documents from the web given
dereferenceable URIs. First, we used the Semantic Web Search engine Swoogle [7] to
obtain a large number of semantic documents that Swoogle classify as ontologies. Us-
ing sort:ontology 5 as the search term, we were able to crawl on the list 4000+
files. They were a mixture of OWL, DAML, RDF, and RDFS documents. Since we are
interested primarily in OWL ontologies, and wanted to get a representatively large sam-
ple to perform our analysis, we also searched on Google6. Using the search termowl
ext:owl , we were able to obtain 218 hits7 at the time of data collection (February 9,
2006). We also collected OWL ontologies from well-known repositories: Protéǵe OWL

3 http://xmlns.com/foaf/0.1/index.rdf
4 http://usefulinc.com/doap
5 Swoogle 2005 http://swoogle.umbc.edu/2005/ allows this type of search. The

new Swoogle 2006, which was released after the survey was completed, does not.
6 http://www.google.com
7 As noted in [2], the number of search results returned by Google is only an estimate. Further-

more, Google has since changed how OWL files are indexed, and the numbers returned today
are orders of magnitudes larger.

3

Library 8, DAML Ontology Library, 9, Open Biological Ontologies repository10, and
SchemaWeb11.

Since we collected our URIs from several resources, some URIs appeared more
than once in our collection. We first pruned off these duplicate URIs. Next, we threw
away the unsuitable data for our analysis. We pruned off all the DAML files as they are
not the focus of this study. We threw away the various test files for OWL from W3G
and test files for Jena [4]. Though these are valid ontologies or schema files, they were
created specifically for the purpose of testing, and do not resemble realistic ontological
documents. Around 1000 WordNet RDFS files were also dropped. While WordNet as
a whole is useful, each separate WordNet RDFS file does not preserve the meaning
of that specific fragment. Finally, we discard any URIs that no longer existed. At the
end, we had 1276 files. We looked at each of the documents to see if the OWL or the
RDFS namespaces are defined to determine whether they are OWL ontologies or RDFS
schemas. Of the 1275 collected, 688 are OWL ontologies, and 587 are RDFS schemas.
Resolving these URIs, We keep local copies of these documents for future references.

Table 1.Sample Statistics Collected

Basic Statistics Dynamic Statistics
No. Defined/Imported Classes No. Subsumptions

No. Defined/Imported Properties No. Multiple Inheritance in Class Hierarchy
No. Defined/Imported Instances Graph Morphology of the Class Hierarchy

DL Expressivity Depth, Bushiness of the Class Hierarchy
No. Individual (Type/Property) AssertionsDepth, Bushiness of the Property Hierarchy

OWL Species Whether the Ontology is Consistent
No. of Symmetric Properties No. Unsatisfiable Classes

3.2 Statistics Collection

We used the OWL ontology editor SWOOP [9] as a framework for automating the
analysis tasks. For each URI we collected a set of statistics of that document. There
were two types of statistics we collected. The first set contains the statistics that do not
change when a reasoner processes the ontology. We call this set static statistics, and it
includes, for example, number of defined classes, what ontologies are imported (if any),
or which of the OWL species the document belongs to. On the other hand, a second set
of statistics changes depending on whether a reasoning service is present. We call this
set dynamic statistics. For example, the number of concepts that have more than one
parent may change when reasoning is applied since new subsumption relationships can
be discovered by the reasoner. Because dynamic statistics change, we collected both the

8 http://protege.stanford.edu/plugins/owl/owl-library/
9 http://www.daml.org/ontologies/

10 http://obo.sourceforge.net/main.html
11 http://www.schemaweb.info/

4

told (without reasoning), and the inferred (with reasoning) versions. Our method is to
load each URI into SWOOP, collect the static statistics and the told dynamic statistics,
then turn on the Pellet [13] reasoner and collect the inferred dynamic statistics. We list
a few selected categories that are relevant to our discussion in Table 1.

For each OWL ontology, we also collect what OWL constructs are used. We do this
by inserting each ontology into a Jena model and check all triples for OWL vocabulary.
There are 38 boolean values, one for each OWL construct, for each ontology. Note
that we are not keeping track of the usage of OWL:Thing and OWL:Nothing. RDF and
RFDS vocabulary such asrdfs:subClassOf are also not collected.

4 Results

Here we report the analysis performed, results from our analysis, and what trends we
discover.

4.1 OWL Species, DL Expressiveness, Consistency

There are several reasons that make an ontology OWL Full. Bechhofer and Volz dis-
cusses each reason in detail in [2]. Here we summarize them into 4 categories to facili-
tate discussion.

1. (Syntactic OWL Full) In this category, the document contains some syntactic fea-
tures that make the ontology OWL Full. This category includes ontologies that are
missingrdf:type assertions for its classes, properties, individuals, or itself (un-
typed ontology). Missing type triples is easily amended as proposed in [2]. Our
tool Pellet can generate a patch in RDF/XML to add to the original document to
eliminate this type of OWL Fullness.
Another way to be in OWL Full is to have structural sharing. Here we discuss the
sharing of a restriction as an example, but any bnode sharing is likely to lead to
OWL Full. An OWL Restriction in RDF is represented as a bnode. A modeler can
reuse an existing restriction by referring to the bnode ID. However, doing so will
make the ontology OWL Full. On the other hand, if the same modeler creates a
new restriction with the same semantics instead of referring to the existing one,
structural sharing is avoided.

2. (Redefinition of Built-In Vocabulary) Documents that attempt to redefine known
vocabulary (such as those in the OWL or RDFS specification) will be in OWL Full.
Attempting to add new terms in known namespaces (OWL, RDF, RDFS, etc.) will
place the document under OWL Full as well, even innocuous statements such as
subclassingrdf:label .

3. (Mixing Classes, Properties, and Individuals)In OWL DL, the sets ofowl:Class ,
owl:Property , andowl:Individual must be disjoint. The ontologies that
use, for example, classes as instances or classes as properties do not respect such
disjointness, and are classified as OWL Full documents. Some authors do intend to
use instances as classes, for example, for metamodeling purposes. However, there
are many other cases where simply an oversight had occurred. We also mention

5

that in RDFS semantics, the set ofrdfs:Class and rdf:Property are not
assumed to be disjoint, therefore any RDFS schema will be considered as a OWL
Full file. Though if the schema does not use classes and properties interchangeably,
patching up with type triples will likely take the RDFS document out of OWL Full.

4. (Need for Beyond OWL DL) This group uses OWL constructs to create an ontol-
ogy that has expressivity going beyond what OWL DL has to offer. Examples are
those that declare a DatatypeProperty to be inverse functional (e.g.FOAF), or those
that declare cardinality restrictions on transitive properties.

Table 2.Number of Documents in Each Species (species determined by Pellet)

SpeciesRDFSLite DL Full Error
Count 587 199 149 337 3

Now we have a better idea of the syntactic and semantic elements that make an OWL
ontology OWL Full, we are ready to look at our data. By looking at the namespaces
declared in each document, we decide which files are in RDFS, and which ones in
OWL. Using Pellet as an OWL species validation tool, we obtain the distribution of
each OWL species in Table 2. Note that since RDFS does not enforce the disjointness
of the set of classes, the set of properties, and the set of instances, the RDFS files are
technically OWL Full.

We inspected the results Pellet outputs. Out of 924 OWL Full files (including RDFS),
863 can be patched. 30 OWL and 31 RDFS documents can not. Of the 863 patchable
ones, 115 become OWL DL, 192 become OWL Lite, and the remaining 556 documents
are RDFS. Table 3 shows the updated counts.

Table 3.Number of Documents in Each Species (After Patching)

SpeciesRDFS(DL) Lite DL Full Error
Count 556 391 264 61 3

Though Table 3 resembles Table 2, there is one important difference. Note that we
use RDFS(DL) [5] instead of RDFS in this case to emphasize that RDFS(DL) assumes
the disjointness of classes and properties, and is a proper subset of OWL Lite. Of the
307 OWL Full documents that can be patched, 63% become OWL Lite documents, and
just 37% become OWL DL. Two observations can be made. First, The majority (91%)
of the OWL Full documents (from Table 2) can be turned into a decideable portions of
the languages by adding type triples. Secondly, the majority of RDFS documents (95%)
can transition to OWL easily by adding type triples and use OWL vocabulary instead of
RDFS vocabulary.

Of the 30 OWL documents that cannot be patched, nearly all of them contain prob-
lems of redefining built-in vocabulary. One ontology contains structural sharing. There

6

are 8 ontologies that mix the usage of instances, classes, or properties. And there are 2
cases where beyond OWL DL features are detected. In both of these cases, a Datatype-
Property is defined to be inverse functional.

Of the 31 RDFS documents that cannot be patched, most contain wrong vocabulary,
redefinition of known vocabulary, or liberal use built-in vocabulary (such as using
rdfs:subClassOf onxsd:time).

Although species validation gives us a rough idea of the distribution of expressivity
among ontologies, it is not a fine enough measure. OWL Lite has the same expressivity
as the description logicSHIF(D), and OWL DL is equivalent toSHOIN (D). There
is a large expressivity gap between RDFS(DL) and OWL Lite. We group the DL ex-
pressivity of the documents into bins in atttempt to find out how many ontologies make
full use of OWL Lite’s features.

We bin the expressivity of the documents as follows. For simplicity, we ignore the
presence of datatype, soSHIF(D) is considered the same asSHIF . For all ontolo-
gies that contain nominalsO or number restrictionsN , we put them in the most ex-
pressive bin (Bin 4). For example,SHOIN belongs to Bin 4. The next group Bin 3
contains the ones that make use of inversesI or complementsC but not nominals or
number restrictions.SHIF belongs to this group. Bin 2 consists of role hierarchiesH
or functional propertiesF , but not the features Bin 4 or Bin 3 care about. Bin 2 would
containALHF , which is more expressive than RDFS(DL). Lastly, everything else will
fall into the Bin 1, e.g.AL. We expect the first two bins to contain all of the RDFS(DL)
documents and some OWL Lite documents. The question is, of course, how many?

Table 4.Expressivity Binning

Bin Bin 1 (AL) Bin 2 (ALHF) Bin 3 (SHIF) Bin 4 (SHOIN)
Count 793 55 262 151

Table 4 shows the count of each expressivity bin. 14 OWL documents cannot be
processed and are not included in this part of the analysis. The 848 documents in bin
1 and 2 consists of those that are less expressive thanSHIF . Subtracting 848 by the
number of RDFS documents from Table 2, we reveal 261 documents that are OWL
Lite. This is the number of OWL Lite files that do not make use of its full language
expressivity. If we subtract this number from the number of OWL Lite documents in
Table 3, we get 130. Therefore, the number of ontologies that make good use of OWL
Lite features is less than 20% of the total number of OWL ontologies we surveyed here.
This is an indication that the OWL Lite vocabulary guides users to create ontologies
that are far less expressive than what OWL Lite can express. In fact, of the total number
of OWL Lite documents (after patching), 67% use very little above RDFS(DL).

Out of the 688 OWL ontologies, 21 are inconsistent. 18 of the inconsistent ontolo-
gies are due to missing type on literal values. These are simple causes for inconsistency
that can be detected syntactically. Data type reasoners should have a way to automat-
ically fix it. The other three contain actual logical contradictions. There are also 17

7

consistent ontologies that contain unsatisfiable classes. 12 belong to bin 4, while the
rest belong to bin 3.

4.2 Usage of OWL Constructs

In Table 5, we show, for each OWL construct, the number of ontologies that use it. The
table is organized in 5 sections: Ontology, Class, Property, Individual, or Restriction-
Related. Not surprisingly,owl:Class , owl:ObjectProperty , andowl:Data-
typeProperty are used in many ontologies.owl:ObjectProperty occurs in
185 more ontologies thanowl:DatatypeProperty does. One possible explana-
tion is that modelers wish to use the semantically rich property types in OWL such as
owl:InverseFunctionalProperty , owl:SymmetricProperty , owl:
TransitiveProperty , andowl:InverseOf , which can only be used withowl:
ObjectProperty in OWL DL. The fact thatowl:InverseOf alone is used in 128
ontologies seem to support this hypothesis.

Looking at the Class-Related Constructs, we note thatowl:Union (109) is used
more often thanowl:IntersectionOf (69). We believe the difference stems from
the fact that OWL semantics assumes intersection by default when a modeler says ’A
is a subclass of B’ and in a different part of the document ’A is a subclass of C’. This is
semantically equivalent to saying ’A is a subclass of (B and C)’ in OWL. This means in
these non-nested boolean cases, one can express an AND relationship without explic-
itly using ’owl:IntersectionOf’. Another possible contribution to the higher number of
owl:Union is tool artifact. It is well-known that Protéǵe assumes union semantics for
multiple range and domain axioms. That is, if one were to say ’R has domain A’ and
’R has domain B’, then Protéǵe assumes that the user means ’R has domain (A OR B)’
and usesowl:Union . However, we are not sure how many ontologies were created
by using Prot́eǵe.

owl:Imports appears in 221 OWL documents. This seems to suggest that a good
number of ontologies are being reused. However, we do not know how widely an ontol-
ogy is being imported, nor do we know how many ontologies are being imported. Many
institutions that create a suite of ontologies often have heavy use of imports among these
ontologies (e.g. SWEET JPL12). However cross-institutional ontology sharing seems
less common.

There are 253 OWL ontologies that have at least 1 defined individual in this survey.
However, Table 5 shows that very few Individual-Related OWL constructs are used.
Thoughowl:SameAs is used much more often than the others.

4.3 Tractable Fragments of OWL

There has recently been interest in finding useful yet tractable fragments of OWL in the
community13. Recent proposals for tractable Description Logics includeEL+ + [1]
andDL-Lite [3]. EL+ + is an extension ofEL, which is used to model certain medical
domains.DL-Lite, on the other hand, is designed for query answering. We inspect our

12 http://sweet.jpl.nasa.gov/ontology/
13 http://owl-workshop.man.ac.uk/Tractable.html

8

Table 5.OWL Construct Usage

Construct Count Construct Count
Ontology-Related Constructs Class-Related Constructs

owl:Ontology 567 owl:Class 580
owl:OntologyProperty 0 owl:ComplementOf 21

owl:BackwardCompatibleWith 0 owl:DeprecatedClass 2
owl:Imports 221 owl:DisjointWith 97

owl:InCompatibleWith: 1 owl:EquivalentClass 77
owl:PriorVersion 8 owl:IntersectionOf 69
owl:VersionInfo 305 owl:OneOf 43

Individual-Related Constructs owl:Union 109
owl:AllDifferentFrom 6 Property-Related Constructs

owl:DifferentFrom 5 owl:AnnotationProperty 28
owl:DistinctMembers 6 owl:DataRange 14

owl:SameAs 18 owl:DatatypeProperty 277
Restriction-Related Constructs owl:DeprecatedProperty 2

owl:AllValuesFrom 118 owl:EquivalentProperty 25
owl:Cardinality 120 owl:FunctionalProperty 114
owl:hasValue 48 owl:InverseFunctionalProperty30

owl:MaxCardinality 60 owl:InverseOf 128
owl:MinCardinality 99 owl:ObjectProperty 462

owl:onProperty 263 owl:SymmetricProperty 20
owl:Restriction 263 owl:TransitiveProperty 39

owl:SomeValuesFrom 85

OWL ontologies to see how many fall into the expressivities the two languages provide.
We also look at how many OWL ontologies fall into RDFS(DL). Because Pellet’s DL
expressivity checker checks on normalized models, and is not very fine grained (starts
with AL), we use expressivity as reported by SWOOP.

Table 6.Tractable fragments of OWL and how many of each fragment appears in this survey.

Fragment RDFS(DL) DL-Lite EL+ + Non-Tractable
Count 230 94 56 287

Table 6 confirms that many OWL files are in RDFS(DL). Of the other two more
expressive fragments, the number ofDL-Lite documents nearly doubles that ofEL++.
We also look at the OWL constructs for the ontologies that fall into these two fragments.
Table 7 shows the highlight. Although conjunction is the only logical connective the two
fragments allow fully,owl:Intersection not widely used. TheEL++ ontologies
have a much higher percentage in using restrictions and object Properties thanDL-Lite.
However, much higher percentage ofDL-Lite files use datatype property. The large
disparity in the number ofELs++ that use datatype property and object property is
surprising. Finally, we note thatDL-Lite does not allow cardinality greater than one.

9

However, it does allow for functionality. All theDL-Lite documents that make use of
cardinality restrictions are only using cardinality of 1.

Table 7.OWL construct usage forDL-Lite andEL+ +

Constructs DL-Lite EL+ +

owl:Intersection 1(1%) 3(5%)
owl:Restriction 35 (37%) 36 (64%)

owl:ObjectProperty 45 (48%) 43(77%)
owl:DatatypeProperty44 (0.47%) 4 (7%

owl:FunctionalProperty20 (20%) 0 (0%)
owl:Cardinality 21 (22%) 0 (0%)

owl:SomeValuesFrom 0(0%) 33(60%)

4.4 Shape of Class Hierarchy

When we think of defined vocabularies in schemas and ontologies, we often think of
the structure as a tree, where each class is a node, and each directed edge from a parent
to a node denotes subsumption. It may be because of our experience as seeing the
terms being displayed as tree widgets in our ontology editing tools such as SWOOP
or Próeteǵe or because trees are easier to mentally visualize. However, the vocabulary
hierarchy can be all kinds of more general graph structures. In Figure 1 we show the
kinds of graph structure a defined set of vocabulary can take shape. The black-dotted
circle denotes the top concept (e.g. owl:Thing in OWL ontologies). List, lists, tree,
and trees should be familiar to the reader. Multitrees can be seen as a directed acyclic
graph (DAG) where each node can have a tree of ancestors and a tree of children. There
cannot be a diamond structure in a mulitree [8]. If a diamond structure exists, then it
is a general DAG. We can consider the categories list, lists, tree, trees, multitree, and
DAG as a strictly ordered list in increasing order of graph complexity.

We point out that a general graph (where cycles exist) is possible. However, because
the edges represent subsumptions, all the nodes on the cycle are semantically equiva-
lent. Some paths on the cycle may not be obvious, but sound and complete reasoners
will always discover them. Therefore when a reasoner is present, no cyclic graphs of
subsumption hierarchies can appear. There can be cycles in a told structure, though
these are easy to detect syntactically. In addition, because turning on reasoning services
will discover these equivalences and more subsumptions, the graph morphology may
change between the told and the inferred structure. Below we show scatterplots of the
graph morphological changes in the OWL documents. The scatterplots are fashioned
using Spotfire14.

In Figure 2, each square represents an OWL document, and the size of the square
indicates how many classes are in the document. Using the grid point (x,y) closest to
each document and referring to the two axes, we can find out what morphology the class

14 http://www.spotfire.com/

10

hierarchy is in. The vertical axis indicates the morphology in the told structure. The
horizontal axis indicates the morphology in the inferred structure. The data points do
not lie strictly on an intersection of the grid lines because we have jittered the positions
of the data points to avoid occlusions. The jittering also gives a better idea of how many
datapoints are in each grid intersection.

If an ontology is inconsistent when reasoner is turned on, the class hierarchy will
collapse, and there are no structures. We use the category INCONSISTENT to denote
this case. The None structure denotes that the ontology contains no classes, hence there
are no structures. In Figure 2, note the clusters along the diagonal. These indicate that
most ontologies retain their told morphology after a reasoner has been applied. How-
ever, 75 of them did change, 21 of which became inconsistent. 42 ontologies went up
to a more complex structure (e.g. from trees to multitrees). Of the 42 that went up in
graph complexity, 25 came from trees to either DAGs or multitrees. 3 multitrees and
3 lists became DAGs. 5 ontologies that had lists as the told strucure had the tree or
trees strucure when reasoning is turned on. 6 lists became multitrees. The graph mor-
phological changes in increasing graph complexity indicate that more subsumptions are
discovered. The ones in decreasing graph complexity means that equivalences are dis-
covered. The most interesting ones are the ontologies that discover multiple inheritance
in the inferred structure when there was none in the told structure. These are the list,
lists, tree, and trees that became multrees or DAGs. This indicates that some interesting
modeling is at work here, and there are 34 of them.

Figure 2 shows the same scatterplot, but for the RDFS documents. We do not ex-
pect there to be many, if any, changes in graph morphology because every subclass
relationship must be explicitly asserted. In this graph, we clearly see that no RDFS
class strucure has changed as a result of a reasoning service.

Because the morphology changes between the told and the inferred structures can
give indication on which classes are undermodeled or heavily modeled, to be able to
compare them side-by-side and interactively explore them can be potentially useful to
modelers and users. Current ontology editors and visualizers, such as the ones described
in [9] [12] [10] [14], do not directly support this task.

Here we look at the distribution of the largest ontologies in this survey. Of the
19 ontologies that have more than 2000 classes, 14 have the expressivity ofALC or
lower. 2 have the expressivitySHF , 2 haveS, and 1 hasSHOIF(D). In the top
right corner of Figure 2, we see that there are a number of large OWL ontologies
sitting in the (DAG, DAG) position. To explore further, we plotted the inferred graph
morphology against OWL species in Figure 3. The upper right corner shows that many
large ontologies belong to the OWL Lite species, and their class structures are DAGs.
There are 6 ontologies with more than 10000 classes in this survey, 5 of the 6 are
in the (DAG, Lite) cluster. Of these 5, 4 have DL expressivity ofALC, 1 has the the
expressivity ofS. The combination of the most generalized graph structure and the least
expressive species is interesting because it suggests that these ontologies are modeling
fairly complex domains where the class structures are DAGS. However, none of the
OWL DL features are used in the modeling process. Whether the modelers purposely
intended to stay in OWL Lite (for fear of computational complexity in reasoning), or
that OWL Lite provides all the constructs they needed is unclear.

11

Fig. 1.Possible graph morphology of class hierarchies.

Fig. 2. Scatterplots of the graph morphology of OWL documents (on left), and the RDFS docu-
ments (right).

Fig. 3.Scatterplot of the graph morphology of OWL documents against OWL species.

12

5 Future Work

The future work includes a survey on a larger pool of ontologies. For example, many
DAML files can be converted to OWL without any loss of semantics. The only major
difference between the two languages is that DAML has qualified number restrictions.
It would be an interesting to see how many DAML files uses qualified number restric-
tions. In addition, the newly released Swoogle 2006 claims to have indexed many more
semantic documents, including over 10000+ ontologies.

We see in this study that a fairly large number of ontologies use imports. It would
be interesting to find out which ontologies are being imported and by how many others,
what percentage of imports are not used by ontologies developed in the same institution.
Related to this issue is finding out which are the most popularly used ontologies by RDF
files (such as people’s FOAF files). Another issue related to imports is to find out how
many terms are being used in an ontology without importing the ontologies the terms
are defined in.

It would also be interesting to attempt to partition the OWL ontologies using the
modularity framework outlined in [6]. Partitionability of an ontology indicates that there
are, informally, self-contained domains that can be separated, and possibly reused by
other ontologies. The number of ontologies that can be partitioned and the distribution
of the sizes of the partitions can shed some light about practitioners’ modeling practices
in terms of how often/many disjoint domains are used in an ontology.

6 Conclusions

As use OWL grows, assessments of how the language is being used and how modeling
trends begin to emerge is both useful and interesting to the community. By collection
nearly 1300 ontological documents from the Web and analyzing the statistics collected
from them, we were able to note several trends and make interesting observations. There
are higher percentage of OWL DL and OWL Lite files than it was previously reported
in [2]. Most of the OWL Full files surveyed here can be syntactically patched. Of the
patched OWL Full files, roughly one-third becomes OWL DL two-thirds become OWL
Lite. In addition, by adding type triples, most of the RDFS files can easily transition to
OWL files.

We showed that majority of OWL Lite documents fall into the bins of very inexpres-
sive ontologies. The number of ontologies that contain interesting logical contradictions
in this survey is small. But they all have high expressivity. In OWL construct analysis,
we showed thatowl:intersection is used in fewer ontologies thanowl:union .
owl:ObjectProperty is more prevalent thanowl:DatatypeProperty . Though
about one-third of the ontologies contain instances, very few instance constructs are be-
ing used currently. Looking at the graph morphologies, we are able to see where the in-
teresting modeling practices occur. In addition, we conjecture that tools that presents/exploits
the changes between told and inferred structures may allow users to gain understanding
otherwise hard to obtain. We also observe that the largest of the OWL files have the
characteristic that they have a high graph-morphological complexity and relatively low
DL expressivity.

13

7 Acknowledgments

This work was supported in part by grants from Fujitsu, Lockheed Martin, NTT Corp.,
Kevric Corp., SAIC, the National Science Foundation, the National Geospatial Intelli-
gence Agency, DARPA, US Army Research Laboratory, and NIST. Special thanks to
Evren Sirin and Aditya Kalyanpur for their insightful discussions.

References

1. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope.Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

2. Sean Bechhofer and Raphael Volz. Patching syntax in owl ontologies.Proceedings of the
3rd International International Semantic Web Conference, 2004.

3. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati.DL-Lite: Tractable description logics for ontologies.Proceedings of American
Association for Artificial Intelligence (AAAI05), 2005.

4. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena:
Implementing the semantic web recommendations.Proceedings of the 13th World Wide Web
Conference, 2004.

5. Bernardo Cuenca Grau. A possible simplification of the semantic web architecture.Pro-
ceedings of the 13th International World Wide Web Conference (WWW2004), 2004.

6. Bernardo Cuenca-Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Modularity and
web ontologies. 2006. To Appear in Proceedings of the 10thInternational Conference on
Principles of Knowledge Representation and Reasoning (KR2006).

7. Li Ding et al. Swoogle: A search and metadata engine for the semantic web.Proceedings of
the Thirteenth ACM Conference on Information and Knowledge Management, 2004.

8. G. W. Furnas and J.Zacks. Multitrees: Enriching and reusing hierarchical structure.Pro-
ceedings of ACM CHI 1994 Conference on Human Factors in Computing Systems, 1994.

9. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.Int. J. on
Semantic Web and Info. Syst., 1(1), 2004.

10. Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and editing with rea-
soning and explaining for OWL Lite ontologies.Proceedings of the 3rd International Inter-
national Semantic Web Conference, 2004.

11. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking rdf
schemas for the semantic web.Proceedings of the 1rd International International Semantic
Web Conference, 2002.

12. Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating semantic web content with protéǵe-2000. IEEE Intelligent Sys-
tems, 16(11):60–71, 2001.

13. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: A practical owl-dl reasoner. Submitted for publication to Journal of Web Semantics.

14. M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy. Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge acquisition
in Prot́eǵe. Workshop on Interactive Tools for Knowledge Capture (K-CAP-2001), 2001.

15. Christoph Tempich and Raphael Volz. Towards a benchmark for semantic web reasoners -
an analysis of the daml ontology library.

16. Sui-Yu Wang, Yuanbo Guo, Abir Qasem, and Jeff Heflin. Rapid benchmarking for semantic
web knowledge base systems.Proceedings of the 4th International Semantic Web Confer-
ence(ISWC2005), 2004.

