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Abstract. Information integration and retrieval have been important
problems for many information systems — it is hard to combine new in-
formation with any other piece of related information we already possess,
and to make them both available for application queries. Many ontology-
based applications are still cautious about integrating and retrieving in-
formation from natural language (NL) documents, preferring structured
or semi-structured sources. In this paper, we investigate how to use on-
tologies to facilitate integrating and querying information on parallel leaf
shape descriptions from NL documents. Our approach takes advantage
of ontologies to precisely represent the semantics in shape description, to
integrates parallel descriptions according to their semantic distances, and
to answer shape-related species identification queries. From this highly
specialised domain, we learn a set of more general methodological rules,
which could be useful in other domains.

1 Introduction

Information integration and retrieval have been important problems for many
information systems [1] — it is hard to combine new information with any other
piece of related information we already possess, and to make them both available
for application queries. Most information in descriptive domains is only available
in natural language (NL) form and often comes parallel, i.e., the same objects or
phenomena are described in multiple free-styled documents [2]. With ontologies
being shared understandings of application domains, ontology-based integration
and retrieval [3] is a promising direction. However, many ontology-based ap-
plications avoiding integrating and retrieving information from NL documents,
preferring structured or semi-structured sources, such as databases and XML
documents.

In this paper, we investigate how to use ontologies to facilitate integrating
and querying information on parallel leaf shape descriptions from botanical doc-
uments. As one of the premier descriptive sciences, botany offers a wealth of
material on which to test our methods. Our observation is that if the parallel
information can be extracted and represented in a uniform ontology, the explic-
itly written information can be accessed easily and the implicit knowledge can
also be deduced naturally by applying reasoning on the whole ontology. We have
recently demonstrated that it is feasible for an ontology-based system to use this



method to capture, represent and use the semantics of colour descriptions from
botanical documents [4]. In this paper, we focus on another specialised aspect
— leaf shape descriptions.

As a highly domain-dependent property, shapes are not easily described in
NL. Unlike colours, a specialist terminology is used to describe shapes that
naturally occur in each domain, combined with general NL syntax. For instance,
the leaves of the aspen trees are described differently in five floras:3

– broadly ovate to suborbicular or oblate-orbicular
– broadly ovate to orbicular
– kidney-shaped, reniform or oblate
– suborbicular
– almost round

To capture the semantics in these descriptions and formalise them into an on-
tology system is our concern. Our approach takes advantage of ontologies to
represent the semantics in shape descriptions precisely, to integrate parallel de-
scriptions according to their semantic distances, and to answer shape-related
species identification queries.

1. Firstly, we need an appropriate semantic model in which the semantics in
shape descriptions can be captured and the compatibility between descrip-
tions can be measured. We adopt a known shape model, called SuperFor-
mula [5], to model common leaf shape terms. Based on this we derive a
domain-dependent four-feature leaf shape model. The semantics of complex
descriptions are precisely constructed from those of simple terms by apply-
ing a small number of morpho-syntactic rules. The quantitative semantics is
then represented in the OWL-Eu ontology language [6].

2. Secondly, we propose a distance function, based on the four-feature leaf shape
model, to calculate distances between parallel information (e.g., the distance
between “linear to ovate” and “narrowly elliptic”), so as to facilitate a proper
strategy of integrating such information.

3. Thirdly, we use the OWL-Eu subsumption reasoning to check if one shape
description is more general than another one. Such a reasoning service is
helpful in answering species identification queries, for example, to search all
species which have “ovate to elliptic” leaves (more examples in Section 5)
over the integrated information.

In order to check the feasibility of the above approach, we develop and im-
plement a shape reasoner, based on the FaCT-DG Description Logic reasoner [7,
8]. The shape reasoner integrates parallel shape information based on their se-
mantic distances; it also answers queries over the integrated information. We
will show that semantic distances can also improve the presentation of the query
results: they help by (i) measuring how well the results match the query, and (ii)
presenting the best results first. We evaluate our approach in two steps. Firstly,
we ask a domain expert to check how good our proposed semantic model and

3 A flora is a treatise on or list of the plants of an area or a period.



semantic distance function are. Secondly, we evaluate the query results from our
shape reasoner based on the reliable semantic distance function.

The rest of the paper is structured as follows. Section 2 introduces a known
shape model and our four-feature leaf shape model. In Section 3, we show how
the semantics in a complex leaf shape description is constructed and represented
formally. Section 4 introduces distance-based integration and some experimental
results. Section 5 investigates how to query on the integrated information and
improve the presentation of returned results by ranking them, based on their
degree of match to a particular query. Section 6 discusses related work and
Section 7 concludes this paper.

2 A Multi-Parametric Semantic Model For Leaf Shapes

Shape modelling is not easy, in the sense that it is highly domain dependent.
People have tried to use cylinders [9] or superquadrics [10] as primitives to model
abstract shapes. For real shapes in nature, several modelling methods have also
been tried, such as interpolation methods which use polynomials or splines to fit
curves. Since the pioneering work of D’Arcy Thompson [11], bio-mathematicians
have investigated describing natural shapes and forms by using morphometric
methods [12]. Outlines and landmark-based patterns are used to represent natu-
ral shapes. However, their high-dimensional representation cannot be interpreted
easily and is not suitable in a logic-based system.

Gielis [5] recently proposed the Superformula, which in polar co-ordinates (r,
θ), is:
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This can generate approximations to many naturally occurring shapes and forms.
Although it is not easy to find the precise parameters (m, a, b, n1, n2, n3) for
a particular shape, the simplicity and expressiveness of this formula encouraged
us to use it for modelling leaf shapes.

Here, we consider only simple leaves4 for demonstrating the feasibility of
our method. We selected 21 common simple leaf shape terms from Botanical

Latin [13]. Based on our experiments and experts’ evaluation, for each term, we
found a 6D vector (m, a, b, n1, n2, n3) which generates its prototypical shape.
For instance, the parameters (2, 1, 1, 1,−0.5, 0.5) generates a “cordate” shape.
Figure 1 (a) shows some other shapes.

The terminology is limited while real shape variations are continuous. There-
fore, in order to describe continuous shape variations, one has to compare the
real shapes with prototypical ones. If a real shape Si is similar enough to the
prototypical shape S of a shape term T , i.e., their distance d(Si, S) < ǫ, then it
can be named by term T . Thus each term does not correspond to a point but
a region around that point in the multi-parametric space.5 Complex leaf shape

4 Simple leaves are entire (without teeth or lobes) and bilaterally symmetric about
their main vein.

5 According to the conceptual space theory [14], this region must be convex.



linear oblong rhombic lanceolate

ovate elliptic obovate cuneate

spatulate oblanceolate orbicular reniform

cordate deltoid hastate sagittate

(a) Common leaf shapes (b) 4-feature leaf shape model
generated by the SuperFormula derived from the SuperFormula

Fig. 1. Leaf shape modelling

descriptions, such as “narrowly ovate to elliptic”, also correspond to certain re-
gions. Since the shape of such regions is still unknown [14], we use a simple
definition: the region for a shape term contains all points whose distance to its
prototype point is smaller than a predefined threshold.

Unfortunately, the six parameters of the Superformula are not directly related
to any visible leaf features, which makes it extremely difficult to measure shape
distance directly based on the 6D vectors. Therefore, we devised a special leaf
shape model. Four basic features are calculated from the shape generated by the
Superformula, see Figure 1 (b):

– length-width ratio: f1 = L1

width
;

– the position of the widest part: f2 = L2

L1

;

– the apex angle: f3 = a;

– the base angle: f4 = b.

In this four-feature shape model, each term corresponds to a region with a small
range in each feature while the region of a complex shape description is con-
structed from those of simple terms (see next section for details). The distance
function between shape regions is defined in Section 4.

3 From NL Phrases to Ontological Representation

3.1 Morpho-Syntactic Rules

One term is usually not enough to cover the natural shape variations of one
species, hence complex descriptions have to be used (as shown in Section 1). In
order to capture the semantics of these descriptions, we need to know how they
are constructed from basic terms.



Leaf Shape Description Pattern Example
1. Single term “ovate”
2. Modified term “broadly elliptic”
3. Hyphenated expression “linear-lanceolate”
4. Range built by “to” “oblong to elliptic”
5. Multiple ranges connected by coordinators “linear, lanceolate or narrowly elliptic”

(“and”,“or”), or punctuations “ovate and cordate”

Table 1. Leaf shape description patterns

We carried out a morpho-syntactic analysis on 362 leaf shape descriptions of
291 species from five floras.6 The description patterns are summarised in Table 1.

3.2 Semantics for Complex Descriptions

The semantics of complex descriptions is constructed by applying certain opera-
tions on that of basic terms. Firstly, basic shape regions are generated, including:

Single term : Given the 6D vector of a simple term, we calculate its four fea-
tures (f1, f2, f3, f4), then we generate a region with a small range in each
feature, i.e., (rf1

, rf2
, rf3

, rf4
), where rfi

= [fi × 0.9, fi × 1.1], for i = 1, . . . , 4.
Modified term : Leaf shapes are normally modified in terms of their length-

width ratio, e.g., “narrowly” and “broadly.” As side effects, apex and base an-
gle also change. According to our experiments, if “narrowly” and “broadly”
are defined as:

“narrowly:” f1

′

= f1 × 1.2

fi

′

= fi × 0.9, for i = 3, 4

“broadly:” f1

′

= f1 × 0.8

fi

′

= fi × 1.1, for i = 3, 4

then the region around the new point (f1

′

, f2, f3

′

, f4

′

) represents the best
“narrowly” and “broadly” shape of this term.

Hyphenated expression : According to the experts we consulted, a hyphen-
ated expression “X-Y” means an intermediate shape between X and Y. The
intermediate features between X and Y are calculated as follows:

hfi =
fX i + fY i

2
, for i = 1, . . . , 4 (2)

The region is generated correspondingly.

Secondly, we combine basic regions to construct the region for the complex
descriptions.

1. If basic shapes are connected by one or more “to”s, the final region should be
the whole range from the first one to the last one. That is, the range which
covers two basic regions (r1

f1
, r1

f2
, r1

f3
, r1

f4
) and (r2

f1
, r2

f2
, r2

f3
, r2

f4
) is (Rf1

, Rf2
,

Rf3
, Rf4

), where Rfi
= [min(r1

fi
, r2

fi
), max(r1

fi
, r2

fi
)].

6 They are Flora of the British Isles [15], New Flora of the British Isles [16], Flora

Europaea [17], The Wild Flower Key [18] and Gray’s Manual of Botany [19].



2. If basic shapes are connected by any of these symbols: “or,” “and,” comma
(“,”) or slash (“/”), they are kept as separate regions, i.e., disjoint from each
other. Notice that “and” is treated as a disjunction symbol, because it does
not indicate a logical conjunction in a NL scenario [20]. Instead, it normally
indicates that the shapes could both be found in nature for the same species,
similar to the meaning of “or”.

By using an NL parser with corresponding operations, the semantics of a
complex description can be constructed into a multi-parametric representation.
Next, we need to formalise the semantics in our plant ontology.

3.3 Representing Shape Descriptions in Ontologies

As the W3C standard ontology language OWL DL [21] does not support XML
Schema user-defined datatypes, we use the OWL-Eu language [6] suggested by a
W3C Note [22] from the Semantic Web Best Practice and Deployment Working
Group. OWL-Eu supports customised datatypes through unary datatype expres-
sions (or simply datatype expressions) based on unary datatype groups. This
support of customised datatypes is just what we need here to capture feature
information of leave shapes. Like an OWL DL ontology, an OWL-Eu ontology
typically contains a set of class axioms, property axioms and individual axioms.7

Here we use the FaCT-DG ontology reasoner, a Datatype Group extension of
the FaCT reasoner, which supports reasoning in OWL-Eu ontologies that do not
contain nominals.8

The fragment of our plant ontology Os contains Species, Leaf and LeafShape as
primitive classes; important object properties include hasPart and hasShape; im-
portant datatype properties include hasLengthWidthRatio, hasBroadestPosition,
hasApexAngle and hasBaseAngle, which are all functional properties.9 Each
datatype property and its range is also defined, for example,

DatatypeProperty(hasBaseAngle Functional range(and(≥ 0,≤ 180))),

where and(≥ 0,≤ 180) is a unary conjunctive datatype expression representing
the sub-type [0,180] of Integer. Typical relations between classes include:

Species ⊑ ∃hasPart.Leaf (Each species has a part: leaf)

Leaf ⊑ ∃hasShape.LeafShape (Each leaf has a property: leafshape)

Actural leaf shapes are defined using the above primitive classes and properties,
where datatype expressions are used to restrict the values of four features. For
example, the shape “ovate” is defined as the following OWL-Eu class:

Ovate ≡ LeafShape ⊓

∃hasLengthWidthRatio.(and(≥ 15,≤ 18)) ⊓ ∃hasApexAngle.(and(≥ 41,≤ 50))

∃hasBroadestPosition.(and(≥ 39,≤ 43)) ⊓ ∃hasBaseAngle.(and(≥ 59,≤ 73))

7 See [6] for more details on datatype expressions and unary datatype groups.
8 Details of the FaCT-DG reasoner as well as its flexible reasoning architecture can

be found in [8] and http://www.csd.abdn.ac.uk/∼jpan/factdg/.
9 A functional datatype property relates an object with at most one data value.



L 2

L 1

r 1

r 2

(b)

L 2

L 1

r 1

r 2

(a)

L 2

L 1

r 1 r 2

(C)

Fig. 2. Three relations between two ranges

Similarly, complex shape descriptions are also represented as OWL-Eu classes
based on the regions with constraints on the four features. Ontological represen-
tations of shape descriptions enable us to carry out species identification queries
based on their leaf shapes (see Section 5 for more details).

4 Distance-based Integration

The example in Section 1 shows that parallel descriptions are very common
among existing floras. In this section, we present a distance-based integration
approach for parallel shape descriptions.

4.1 Distance Definition for Leaf Shape Descriptions

Parallel information is assumed to be complementary, possibly with a certain
degree of overlap.10 It is not appropriate to simply combine two or more pieces
of information without carefully studying how similar or how different they are.
However, measuring the distances between shape descriptions is not easy, while
defining the distance between shapes itself is already an inherently ill-defined
problem. For example, how far is “linear to ovate” from “linear to elliptic”?

As introduced in Section 3, a complex shape description is translated into a
vector, and each element is a range in one feature, i.e., (Rf1

, Rf2
, Rf3

, Rf4
). In

order to calculate the distance between such vectors, distances in each element
range should first be calculated. There are three different types of relations
between two ranges, shown in Figure 2. We define the following distance function
for two arbitrary ranges r1 and r2:

d(r1, r2) =

(

1 − L1

L2
if r1 and r2 overlap

1 + L1

L2
otherwise;

(3)

where L2 is the length of minimal super-range which contains both r1 and r2,
and L1 is defined as follows: when r1 and r2 overlap (see (a) and (b)), L1 is the
length of the overlapping part; otherwise, for (c), L1 is the length of the gap
between two ranges. If two ranges r1 and r2 only share one point, we say they
meet each other and L1 = 0.

10 [23] showed that, when information was collected from six parallel descriptions of a
representative sample of plant species, over half the data points came from a single
source, while only 2% showed outright disagreement between sources.



The distance d(r1, r2) is nicely scaled into the range [0, 2): if d(r1, r2) = 0, r1

equals r2; if 0 < d(r1, r2) < 1, r1 and r2 overlap; if d(r1, r2) = 1, r1 meets r2; if
1 < d(r1, r2) < 2, r1 and r2 are disjoint; as two ranges move further apart from
each other, the distance gets closer to 2.

The distance along each feature is calculated by using Formula (3). The whole
distance between two shape regions R1 and R2 is then calculated as:

d(R1, R2) =
4

X

i=1

wi × dfi
(4)

where dfi
is the distance in the feature fi, wi is the corresponding weight for the

feature fi, and
∑4

i=1 wi = 1 holds.11 The d(R1, R2) has similar mathematical
properties to d(r1, r2), but is harder to interpret due to the influence of the
weighting. According to our experiments with a domain expert from the Museum
of Manchester,12 this similarity distance function is valid and corresponds closely
to how experts judge similarity between shapes.

4.2 Integration based on Semantic Distances

We can now compute the distance between two descriptions, as calculated by
Formula 4. If two descriptions are “close” or “similar” enough, although they
might not be identical (for various reasons), it is better to combine them into one
single “super-description” so that redundancies can be removed. Otherwise, it is
safer to leave them separate because they are likely to provide complementary
information of the same object. If a reasonable threshold is chosen, our inte-
gration process can automatically combine similar descriptions and keep others
separate.

So, for a single species, the recursive integration process on the collections of
shape regions from parallel descriptions is as follows:

Step 1 Calculate the distances between any pair of regions.
Step 2 Select two closest regions and check whether they are similar enough,

i.e., whether their distance is less than the threshold. If they are not similar
enough then the integration stops; otherwise, the smallest region containing
both of them is generated (this is same operation as building “to” ranges).
This new region replaces the original two as their integrated result.

Step 3 Go back to Step 1 to check the updated collection of regions to see
whether there are any further pairs of regions requiring integration.

4.3 Experiments on Integration

We selected 410 species from the floras mentioned in Section 3 and the online
efloras,13 so that each of the selected species is described in at least two flo-

11 From our statistical analysis on real text data, f2 is the most distinguishing feature.
However, there is no satisfactory way to find the optimal weights.

12 The contact information for our domain expert is available on request.
13 This is an international project (http://www.efloras.org/) which collects plant tax-

onomy data from several main floras, such as Flora of China, Flora of North America,



Species Leaf Shape Descriptions
Integration Results

Rf1
Rf2

Rf3
Rf4

ovate or ovate-elliptical to

1.21–2.87 0.27–0.57 0.10–0.35 0.27–0.37

Salix elliptical- or obovate-lanceolate
pentandra broadly lanceolate to ovate-oblong
(Laurel willow) broadly elliptical

broadly lanceolate, ovate-oblong,
or elliptic-lanceolate

Glinus obovate or orbiculate to broadly spatulate
0.90–2.33 0.46–0.80 0.34–0.47 0.04–0.44lotoides obovate to oblong-spatulate

orbiculate or more or less cuneate
Spinacia hastate to ovate 1.22–1.63 0.08–0.39 0.17–0.25 0.37–0.63
oleracea ovate to triangular-hastate 1.81–2.21 0.45–0.55 0.27–0.33 0.27–0.33

oblong
Alternanthera oblanceolate or spatulate 2.83–3.46 0.62–0.76 0.28–0.34 0.09–0.11
paronychioides elliptic, ovate-rhombic, or oval 2.39–2.92 0.72–0.88 0.34–0.42 0.03–0.04

elliptic, oval or obovate 1.45–2.57 0.40–0.69 0.17–0.38 0.22–0.32

Table 2. Examples of integration results, where Rf1
is the range of the length-width

ratio, Rf2
is the range of the position of the widest part, Rf3

is the range of the apex
angle: Rf4

is the range of the base angle

ras. Some species only exist in particular regions, so parallel information is not
guaranteed for each species.

In order to calculate the threshold for the integration, we selected a group
of parallel descriptions from the dataset, which are not identical yet are still
considered to be similar enough to be combined. The average distance of these
parallel descriptions is used as the threshold, which turned out to be 0.98.

In Table 2, we list the original descriptions of several species with their in-
tegrated results. An overview of these parallel data is presented clearly. Some
species’ leaves, such as the first two, are described differently but all descriptions
more or less agree with each other, therefore they are integrated into a single re-
gion with combined constraints on its four features. Here, the integration reduces
the redundancies among the parallel information.

Other species, such as the last two, have quite different leaf shapes. These
shapes are “dissimilar” enough to be kept as complementary information. If the
species itself has wide variations, one author might not capture them all. Inte-
gration of parallel information makes the whole knowledge as nearly complete as
possible. By comparing original descriptions and integrated ones, we can easily
find some geographically-caused variations.

5 Results on Ranking of Responses to Queries

One of the advantages of putting NL information into a formal ontology is to
make the knowledge in NL documents easier to access. After leaf shape infor-
mation is represented formally, we can query species based on their leaf shapes.
Similar to the method used in [4], firstly, the queried shape is represented by
an OWL-Eu class Q. The shape reasoner interacts with FaCT-DG reasoner and

Flora of Pakistan, etc. Plant species descriptions are available in electronic form, but
are still written in the common style of floras, i.e., semi-NL.



Species Leaf Shape Descriptions
Matching

Distance Ranking
Type

Comastoma muliense lanceolate to elliptic Exact 0.00 1
Polygonatum biflorum narrowly lanceolate to broadly elliptic Plugin 0.23 6
Hydrangea longifolia lanceolate Subsume 0.85 453

Rhodiola smithii
linear to oblong

Intersection 0.44 64
narrowly ovate to ovate-linear

Table 3. Query results for “lanceolate to elliptic” (partial)

returns a list of species, whose leaf shapes (in terms of the four features) either
exactly match Q, are subsumed by Q, subsume Q (also called plugin matching),
or intersect with Q.

Some results for the query: “any possible species with lanceolate to elliptic
leaves,” is shown in Table 3. The matching type indicates the logic relations
between the matched species and the query. Because our method uses the real
semantics for querying, it can find some hidden results which are ignored by
keyword matching, e.g., the last species in Table 3. However, the problem is
that it is not clear how well a result matches the query. The user has to go
through the whole list and judge by himself.

Since our distance measure has been confirmed to be valid (see Section 4.1),
we can use this distance as a criterion to quantify how well a logically matched
species matches the query. A shorter distance means a better match. We sort the
whole list based on the distance between each species’ leaf shape and the queried
one. Based on the matching ranks, as those in the last column of Table 3, the
better matched results can be recovered easily.

We further enlarged our dataset from the eFloras, including 1154 species,
some of which were described in more than one flora. Parallel descriptions were
integrated first and then all queries are based on integrated knowledge. If one
species has more than one shape region which matches the query, only the “best-
match” (with the smallest distance to the query) is selected to join the ranking.
We carried out 10 queries on basic terms and range phrases. Most queries finished
in 1–2 seconds, the others took less than 5 seconds, on a 2G Hz Pentium 4 PC.

We compared our method with the keyword-based method over the 10 queries.
For each query, results returned by both methods were merged into a single list,
in the ascending order of their distances to the query. The ordered list was
then divided into five groups, representing top 20% matched species, 20–40%
matched ones, and so on. In each group, we counted the number of the species
that the keyword-based method missed and that our method missed, respec-
tively (see Figure 3 (a)). The numbers above each pair of columns is the mean
similarity distance of that group. It shows that our method is able to find some
well matched results (with small similarity distances) which are not matched by
keyword search.

Due to the strictness of logic reasoning, our method failed to find some good
results (judged by the expert). Therefore, we decreased the strictness level; if
there are at least three features matched, the species is also returned if its dis-
tance to the query is less than the threshold which was used for integration.



1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) All four features are matched

O
cc

ur
re

nc
e

(d
iv

id
ed

 b
y 

th
e 

to
ta

l n
um

be
r 

of
 a

ll 
re

su
lts

)

0.36056
0.64407

0.7767

0.8517

0.98799
4−feature matched but not keyword matched
keyword matched but not 4−feature matched

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

(b) At least three features are matched

O
cc

ur
re

nc
e

(d
iv

id
ed

 b
y 

th
e 

to
ta

l n
um

be
r 

of
 a

ll 
re

su
lts

)

0.38171 0.66679

0.79547

0.87475

1.0074

(3+)−feature matched but not keyword matched
keyword matched but not (3+)−feature matched

Fig. 3. Comparison of semantic-based query and keyword-based query

Condition
Semantic matching Keyword matching
Precision Recall Precision Recall

4 features are perfectly matched 0.99888 0.55237 0.84474 0.65417

At least 3 features are matched 0.96642 0.72727 0.84430 0.65327
Table 4. Comparison between different levels of matching

The performance was evaluated similarly, shown in Figure 3 (b). More hidden
results were returned by our method while the quality (i.e., mean distances)
keeps stable.

We use the standard precision/recall14 to measure the performance of our
method against keyword-based querying. From Table 4, we can see that when
the strictness of matching criterion is loosened the precision decreases while the
recall increases; this is a typical balancing problem.

In short, our approach outperforms the keyword-based method; this is be-
cause the former takes the real semantic of shape descriptions into account, while
the latter simply checks the word matching of the descriptions.

6 Related Work

Sharing information among multiple sources occurs at many different levels.
Access to a semantics is crucial for successful information integration and re-
trieval [1, 3]. Instead of working on structured or semi-structured data, our work
focuses mainly on integrating parallel NL information extracted from homoge-
neous monolingual (English) documents.

Many information integration systems have adopted ontologies as their work-
ing platform because of the various semantic expression of domain knowledge

14 The precision indicates the proportion of answers in the returned list that were
correct, while the recall is the proportion of correct answers in the whole data set
that were found. Here, the correctness of a species is judged by whether the distance
of its leaf shape description to the query is less than the integration threshold.



contained in ontologies [3, 24, 25] and powerful formal-logical reasoning tools sup-
ported by them [26–28]. Unfortunately, most systems stop at collecting and re-
organising information from multiple sources instead of really integrating them
based on their meanings.

The main obstacle for an ontology-based system to process NL documents
is that the NL semantics is difficult to interpret. Many methods to capture and
represent the semantics in NL have been tried, such as those multi-dimensional
concept modelling including Osgood’s semantic differential [29], lexical decompo-
sition [30], etc. Using spatial or geometrical structures to model concepts has also
been exploited in the cognitive sciences [31, 14]. The limitations of their methods
are either the dimensions are difficult to interpret or they are qualitative which
prevents the semantics to be precisely captured.

It is not easy for a logic system to represent continuous ranges. OWL-Eu
supports representing numerical ranges but still cannot express other ranges, e.g.,
“ovate to elliptic”. Using a semantic model to some extend helps the ontology
system to represent such ranges. Furthermore, our work shows that datatype-
enabled ontology reasoning can be very useful for real world applications.

Similarity measurement has been investigated in different knowledge repre-
sentation systems and used in many applications [14, 32], while similarity ranking
is still one of the new ideas for current ontology techniques [33]. Traditionally,
only subsumption checking is used to answer queries. Until recently, some other
types of matching, such as intersection matching, are also considered for special
cases [34]. However, there is little effort to integrate logic reasoning and similar-
ity measuring. Such integration can determine how well results match the query
and therefore can improve the usability of final results.

7 Conclusion

Ontology-based information integration in descriptive domains often comes to
grief when comparison and integration have to be based on real semantics. En-
couraged by our earlier work on processing parallel colour descriptions [4], we
have applied the same methodology on leaf shape descriptions, where we intro-
duced the notion of semantic distance to help parallel information integration
and improve the usability of query results.

It turns out that the distances between shape descriptions are very hard to
define. To solve the problem, we have derived a domain-dependent four feature
leaf shape model. In our model, distances between the shapes are very well
captured by the distances between the features, which has been evaluated by our
domain expert. Besides the support of distance-based integration, our ontology-
based approach (OA) outperforms the keyword-based approach (KA) because
OA considers both the syntax and semantics of shape descriptions, while KA
considers neither.

Most importantly, from the experiments in colour and leaf shape domain, we
have learnt a set of more general methodological rules for processing parallel de-
scriptive information in an ontology-based system. Key tasks we have identified



include: (i) it is unlikely that a universal semantic model for all different domains
exists, so for each domain, an appropriate (no need to be perfect) model has to
be chosen in order to get useful results; (ii) based on the semantic model, single
terms have to be located, the effect of modifiers has to be defined and ranges
have to be built properly; (iii) in order to integrate parallel information, a proper
distance measurement is crucial to quantify the similarities among information
from multiple sources; (iv) depending on the application, more expressive rep-
resentation and additional reasoning may be necessary to solve real problems.
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