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Abstract. Semantic Web languages are being used to represent, encode and ex-
changesemanticdata in many contexts beyond the Web – in databases, multia-
gent systems, mobile computing, and ad hoc networking environments. The core
paradigm, however, remains what we call theWeb aspectof the Semantic Web
– its use by independent and distributed agents who publish and consume data
on the World Wide Web. To better understand this central use case, we have har-
vested and analyzed a collection of Semantic Web documents from an estimated
ten million available on the Web. Using a corpus of more than 1.7 million docu-
ments comprising over 300 million RDF triples, we describe a number of global
metrics, properties and usage patterns. Most of the metrics, such as the size of
Semantic Web documents and the use frequency of Semantic Web terms, were
found to follow a power law distribution.

1 Introduction

Unpacking the phraseSemantic Webimmediately produces its two constituent concepts:
it is (i) a semantic framework to represent the meaning of data that is (ii) designed for
use on the Web. Most current research, both basic and applied, has focused on the first of
these and largely ignored the second. An obvious lesson from the last ten years of Web-
based developments is we must not underestimate the impact of the (still emerging)
Web on technology and society.

Reviewing recent papers in journals and conferences one finds many on all aspects
of RDF and OWL as knowledge representation languages – complexity, scalability,
completeness, efficient reasoning algorithms, integration with databases, rule exten-
sions, expressing uncertainty, human friendly encodings, etc. Developing systems and
tools that use these languages for ontology engineering, visualization, manual markup,
etc. is also a popular topic. Finally, application papers typically center on using RDF
based representations to express the knowledge and data needed for particular problem
domains, such as workflow models, action descriptions, healthcare records, policy en-
forcement, or user preferences. For the most part, this work touches little on issues that
stem for the (initial) intended use of Semantic Web languages for publishing and using
ontologies and data on the World Wide Web.
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A great deal of practical work has been done, of course, on developing Web ap-
propriate standards for the Semantic Web and harmonizing them with existing Web
standards and practices. Many applications and testbeds have also focused on core Web
paradigms, such as semantically enhanced Web services and policy-driven negotiation
for Web resource access. Our claim is that we need more research on modeling and un-
derstanding how Semantic Web concepts and technology is and can be used on the Web.
In this respect, we stand on the shoulders of those who call for“Creating a Science of
the Web”[1].

There are also many useful and important applications of Semantic Web languages
and systems that do not involve the Web. RDF and OWL are used in agent communi-
cation languages [2], instant messaging [3], and in GIS systems [4], to name just a few.
We believe that theWeb aspectof the Semantic Web remains as the common, unifying
vision, one in which millions of people, agents and applications publish and consume
knowledge and data using the evolving Web standards and protocols [5].

In this paper, we focus on characterizing the Semantic Web on the Web, i.e., as a col-
lection of loosely federated knowledge bases that are semantically encoded in Semantic
Web languages but are physically published and consumed on the Web by independent
agents. Our work consists of three parts:

– designing a conceptual model.Instead of using the current model of the Semantic
Web, i.e., one universal RDF graph, our new model covers both structure (RDF
graphs) and provenance (Web documents and associated agents).

– creating a global catalog.A global catalog of online Semantic Web data has long
been desired but missing; therefore, we have developed effective harvesting meth-
ods and have accumulated a significant dataset.

– measuring data.Using our conceptual model, we measure the collected dataset to
derive interesting global statistics and implications.

Related work. While some research has tried to characterize the reach and patterns of
use of the Semantic Web on the Web, they have not attempted to be systematic and have
used limited datasets.

Harvesting and simple summary.A number of simple systems have been designed
to find and collect RDF documents on the web, including Eberhart’s RDF crawler [6],
OntoKhoj [7], the DAML Crawler [8]. Several repositories for Semantic Web docu-
ments have been created and maintained using a combination of manual and automatic
techniques. These include the DAML Ontology Library [9] which collected a modest
number of Semantic Web documents (at most 22,000) with a limited summary of doc-
ument properties such as parse error types, document size, documents per website, and
namespace building usage. Additional relevant work can be found in Web characteriza-
tion literature [10, 11] which studies global distributions of document properties such
as the average size of web documents.

Characterizing the universal RDF graph.Gil et al. [12] analyzed the structure of a
RDF graph that results from merging nearly 200 documents from the DAML Ontology
Library. The dataset is too limited to be a representative of the entire Semantic Web and
even the subset of ontologies on the Semantic Web.

Rating Semantic Web ontologies.Several studies have tried to measure the quality
of Semantic Web ontologies, i.e. Semantic Web documents that define or contribute



to the definition of classes and properties. Most [13, 14] employ content analysis on
ontologies with various foci, such as building a comprehensive evaluation framework
[15], qualifying concept consistency [16, 17], quantifying the graph structure of class
and property taxonomy hierarchy [18–21], and measuring the structure and the instance
space of a given ontology [22]. These studies have been limited in two ways. First, they
have only analyzed ontologies, which we estimate account for only about 1% of the
RDF documents on the Web. Second, the empirical evaluations are based on very small
datasets, typically of fewer than 30 documents.

Characterizing social networks in FOAF.One of the most successful application of
RDF is the use of the FOAF ontology to encode social networks. Several studies [23–26]
have analyzed large amounts of FOAF data, typically by collecting FOAF documents
via specialized crawlers and then making statistical measurements on vocabulary usage
and network structure. Although the evaluation datasets are large, their sources and vo-
cabularies are limited. Most FOAF documents are obtained from a few portal websites
such thewww.livejournal.comblogging system.

Contributions. Our work is a systematic study of the semantic aspect and the web as-
pect of the Semantic Web. It is highlighted by contributing a new conceptual model
of the Semantic Web on the Web, harvesting a significant dataset that is much larger
and more diverse than other existing work, and inheriting and introducing wide spec-
trum of measurements for global properties on both semantic structure and knowledge
provenance of the Semantic Web.

In section two of this paper we explain our conceptualization of the Semantic Web
on the Web. Section three briefly illustrates our harvesting methods and evaluates the
significance of harvest result. Sections four and five elaborate our metrics and findings
about the global properties of the Semantic Web and section six offers some concluding
remarks. In this paper, we assume, for simplicity’s sake, that the following namespaces
are defined:rdf for RDF, rdfs for RDF schema,owl for OWL, foaf for FOAF, dc for
Dublin Core Element andwn for WordNet.

2 The Conceptual Model of the Semantic Web on the Web

The foundation for our Semantic Web characterization is the Web Of Belief Ontology
which captures not only the semantic structure of RDF graph but also its provenance in
terms of the Web and the agent world. This paper only covers the essential notions from
the model and readers are invited to see [27] for details.

A Semantic Web document(SWD) is an atomic Semantic Web “data transfer
packet” on the Web. It is both a Web page addressable by a URL and an RDF graph
containing Semantic Web data. It can be a static or dynamic web page, for example
one generated by a database query. In particular, SWDs can be divided intopure SWDs
(PSWDs), which are completely written in Semantic Web languages, andembedded
SWDs(ESWDs), which embed RDF graphs in their text content, e.g., HTML docu-
ments containing Creative Commons license metadata.

TheURI reference(URIref) of anrdfs:Resourceconveys dual semantics: (i) a unique
identifier for the resource, and (ii) the Web address of the SWD defining the resource.
URIrefs are widely used to merge RDF graphs distributed on the Semantic Web. A



resource’s semantics depends on its usage in an RDF graph. In particular, we are inter-
ested inSemantic Web terms(SWTs), i.e., named resources that havemeta-usages
(being used as classes or properties) in SWDs. Six types of use are defined below and
illustrated in Figure 1. For a given RDF graph, a resourceX is:

– defined as a class (DEF-C)if there exists a triple of the form(X, rdf:type, C)where
C is rdfs:subClassOf rdfs:Class. For example,foaf:Personis defined as a class in
triple t3.

– defined as a property (DEF-P)if there exists a triple(X, rdf:type, P)whereP is
rdfs:subClassOf rdf:Property. For example,foaf:mboxis defined as a property in
triple t1.

– populated (or instantiated) as a class (POP-C)if there exists a triple( a , rdf:type
, X) where a can be any resource. For example,rdfs:Classhas been populated as a
class in triplet3.

– populated (or instantiated) as a property (POP-P)if there exists a triple( a , X ,
b) where a and b can be any resource (or literal). For example,rdf:typehas been

populated as a property in triplet3.
– referenced as a class (REF-C)if X is of typerdfs:Classaccording to the ontology

constructs from Semantic Web languages exceptrdf:type. For example,foaf:Person
is referenced as a class in triplet2.

– referenced as a property (REF-P)if X is of typerdf:Propertyaccording to ontol-
ogy constructs from Semantic Web languages exceptrdf:type. For example,foaf:mbox
is referenced as a property in triplet2.

rdf:type

rdfs:Classfoaf:Personfoaf:mbox

rdfs:domainrdf:type

rdf:Property t2 t3t1

Fig. 1.This RDF graph adapted from the FOAF ontology illustrates some of the relations defined
in theWeb of Beliefontology.

Note that we may find multiple types of meta-usage of a URI in different SWDs,
including some rare and undesired cases: the SWTrdfs:subClassOfis defined as a prop-
erty by the RDFS ontology and also as a class by another SWD3.

Two additional concepts are used studying ontologies.Semantic Web Ontology
(SWO) is a sub-class of Semantic Web document and physically groups definitions of
SWTs. An SWO is identified by containing (i) DEF-C, DEF-P, RDF-C, REF-P meta-
usages or (ii) instances ofowl:Ontology4. Semantic Web Namespace(SWN) is a sub-
class ofrdfs:Resourceand logically groups SWTs and enables distributed definition
(i.e., users can define the SWTs using the same SWN in different SWOs). An SWN is
identified as the namespace part of an SWT.

3 http://ilrt.org/discovery/2001/09/rdf-schema-tests/rdf-schema.rdfs
4 The Swoogle system has experimented with different heuristics for identifying a SWD as an

SWO and is currently using this very liberal one.



3 Creating a Global Catalog

In order to build a global catalog of the Semantic Web on the Web, we need to harvest
publicly accessible SWDs. There are two primary difficulties: (i) SWDs are sparsely
distributed on the Web and found on sites in varying density, e.g.www.cnn.comhosts
no SWDs butwww.liverjournal.comhas millions; and (ii) Confirming that a document
contains RDF content requires RDF parsing which entails high cost when done for
millions of documents.

3.1 Estimating the number of online SWDs

The scale and complexity of harvesting task is dominated by the number of online
SWDs, which we have estimated using the Google search engine5 Since Google does
not index all SWDs and its estimated total result is coarse, we use it to derived anorder
of magnitudeestimate of the total number of online SWDs.

In theory, the search query“rdf” would suffice because the RDF namespace is
declared by virtually all SWDs. In pracice, however, this simple Google query has two
problems. First, it does not cover all indexed SWDs. For example, many RSS 1.0 files,
which are RDF documents, are not matched by it. Second, it matches many documents
that are not SWDs. For example the query “rdf filetype:html” identifies more than 38
million HTML documents. Based on queries run on 12 May 2006, we estimate that
there are between107 and109 Semantic Web documents online.

– For a conservative estimate we emphasize precision and use a query where most re-
sults will be SWDs. The query “rdf filetype:rdf” produced 4.91M estimated matches.
The constraint “filetype:rdf” was chosen because it is the most common file exten-
sion used among SWDs, and more than 75% web documents using it are SWDs6.
This yields a conservative estimate of107 SWDs.

– For an optimistic estimate we emphasize recall using a query whose results will in-
clude most online SWDs. The query “rdf OR inurl:rss OR inurl:foaf -filetype:html”
produces about 205M results. This derives an optimistic estimate of109 SWDs.

3.2 A Hybrid Semantic Web Harvesting Framework

Most existing harvesting methods are limited in significance or diversity. Conventional
Web crawling approaches [6, 7] are inefficient because most hyperlinks in Web docu-
ments (including SWDs) point to conventional Web documents. Similarly, brute-force
sampling, i.e., testing port 80 of reachable IP addresses [11], introduces prohibitive cost
in validating millions of web documents. Meta-search based approaches [28] are limited
by the inability to filter out conventional web documents from search engine results and
the fact that some search engines intentionally ignore SWDs. Manual submission based
approaches, such as that used for the DAML ontology library [9] and SchemaWeb [29]

5 We have found the Google and Yahoo search engines to have the most RDF documents in-
dexed, with Google having more than twice as many as Yahoo.

6 Other constraints usually returns fewer results, e.g. ”owl filetype:owl” returns 55K results.
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Fig. 2. The Swoogle system uses an adaptive Semantic Web harvesting framework with three
different kinds of crawlers.

scale poorly and are difficult to maintain. RDF crawlers (also known as scutters7 or Se-
mantic Web crawlers) [30, 31] are limited because the seeding URLs (i.e., the starting
points of crawling) are hard to obtain and surfing heuristics (i.e., patterns for selecting
hyperlinks to SWDs) are often biased.

In order to effectively harvest as many as possible SWDs on the Web with minimum
cost, we developed a automatic, hybrid Semantic Web harvesting framework [27] that
integrates several harvesting methods. Figure 2 illustrates its work-flow, which has the
following major steps.

1. Bootstrapping. Manual submissions are used to bootstrap the harvesting, provid-
ing seeds for Google-based meta-crawling and bounded HTML crawling.

2. Google-based Meta-crawling.Meta crawling [32] involves directly harvesting
URLs from search engines without crawling the Web. Google is chosen because
it indexes the largest number of Web documents and offers richer query constraints
than others. We collect seeds from manual bootstrapping input and theinductive
learner that selects “good” seeds from the harvestedSwoogle sample dataset. A
“good” seed is a Google query whose results contain high percentage of SWDs,
e.g., most URLs returned by the queryrdf filetype:rdfare indeed SWDs.

3. Bounded HTML crawling. HTML crawling (i.e., conventional Web crawling)
harvests web documents by extracting and following hyperlinks, and is useful in
harvesting clusters of SWDs on the Web. Ourbounded HTML crawlingimposes
some thresholds (e.g., search depth, maximum number of URLs, and minimum
percentage of SWD) to limit search space and ensure efficiency. For example,
we have harvested many PML documents8 by a bounded HTML crawl starting at
http://iw.standford.edu/proofs. Again, manual submission and automated inductive
learner are involved in collecting seeding URLs.

7 See the Scutter specification at http://rdfweb.org/topic/ScutterSpec.
8 SWDs that populate instances of the Proof Markup Language(PML) ontology

(http://inferenceweb.stanford.edu/2004/07/iw.owl).



4. RDF crawling. TheRDF crawlerenhances conventional HTML crawling by adding
RDF validation and hyperlink extraction components. It visits newly discovered
URLs and periodically revisits pages to keep metadata current. For each URL, it
tries to parse an RDF graph from the document using RDF parsers (e.g. Jena). If
successful, it generates document level metadata and also enqueues the new dis-
covered URLS that may link to SWDs.

5. Inductive learner and Swoogle Sample dataset.The sample dataset covers the
metadata of the SWDs confirmed by RDF crawling. Based on the features (e.g.
URL, term frequency, the source website) of harvested documents and their labels
(e.g. whether they are SWD, embedded SWD or non-SWD), an automated induc-
tive learner is used to generate new seeds for Google-based Meta-crawling and
Bounded HTML crawling.

The crawler schedules its methods using the following harvesting strategies: (i)
SWO harvesting has the highest priority since they are critical for users to encode and
understand Semantic Web data; (ii) PSWDs are harvested with higher priorities than
ESWDs because the former usually contain more Semantic Web data than the latter;
and (iii) we delay harvesting URLs from websites where more than 10,000 SWDs have
already been found (e.g., liveJournal) to avoid having the catalog dominated by SWDs
from a few websites.

3.3 Harvesting Result and Performance

The datasetSW06MAY resulted from harvesting data between January 2005 and May
2006. It has 3,675,153 URLs, including 1,448,504 (40%) confirmed as SWDs, 13%
confirmed as non-SWDs, 9% unreachable URLs, and 38% unpinged (not yet visited)
URLs. The confirmed SWDs are from 162,245 websites9 and contribute 279,461,895
triples. AlthoughSW06MAYis much smaller than the Web with its 11.5 billion docu-
ments [33], it is much larger than any existing datasets, including:

– (2002) Eberhard [6] reported 1,479 valid SWDs out of nearly 3,000,000 URLs.
– (2003) OntoKhoj [7] reported 418 ontologies out of 2,018,412 URLs after 48-hour crawling.
– (2004) DAML Crawler reported 21,021 DAML files out of 743,017 URLs.

Significance of ontology discovery.SW06MAY contributes 83,007 SWOs including
many unintended ones, such as (i) instance data with unnecessary class or property
definitions or references, e.g., 55,565 (66.9%)PML documentsfrom onto.stanford.edu,
and 882 (1.1%)semantic blog documentsfrom lojjic.net, and (ii) instance data that
has unnecessary instances ofowl:Ontology, e.g., 4,437 (5.3%)publication metadata
pagesfrom www.aifb.uni-karlsruhe.deand moreweb portal metadata pagesfrom onto-
ware.org. Therefore, the “true” number of SWOs in SW06MAY is just 22,123 (26.7%)
SWOs after removing the “unintended” ones. Moreover, this number can further re-
duced to 13,012 (15.7%) since there are many duplications10.

9 A website is uniquely identified by its domain name (host name part of a URL) but not it’s IP
address. Virtual hosting can result in one IP address hosting many web domains.

10 We are currently detecting duplicate SWDs by simply comparing the md5sum of two tar-
get documents. While crude, the method is efficient and useful. For example, we have found



Significance of dataset growth.The significance ofSW06MAYcan be verified by its
fast growth trend. Figure 3a shows the numbers of total URLs (url), pinged URLs (ping),
confirmed SWDs (swd) and confirmed pure SWDs (pswd) discovered before the date on
x-axis, and it exhibits a steady growing trend. The “ping” curve touches the “url” curve
because our harvesting strategy delays harvesting URLs from websites hosting more
than10, 000 URLs until all other URLs have been visited. The increasing gap between
“ping” curve and “swd” curve indicates that harvesting recall increases at the expense
of the decrease of precision.

(a) dataset growth
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Fig. 3. The SW06MAY dataset has nearly 4M URLs collected from more than 160K sites. An
analysis of the dataset demonstrates the growth in Semantic Web documents (left) and also pro-
vides evidence that our hybrid harvesting framework is sound (right).

Significance analysis on website coverage.We further evaluate the significance of
SW06MAYby comparing itswebsite coverage(i.e., the number of pure SWDs per web-
site) with Google’s estimation. In Figure 3b, each dot on the curve denotes the web-
site coverage of one website that hosts at least ten pure SWDs. For each of the 1,355
websites in the graph, we use “Google” dots to show the optimistic Google estimation
of website coverage with an additional “site” constraint, e.g., “(rdf OR inurl:foaf OR
inurl:rss) -filetype:html site:www.cs.umbc.edu”. The figure shows that Google’s esti-
mate, even with high variance, exhibits a trend similar toSW06MAY’s estimate. We
conclude that theSW06MAYprovides evidence in the basic soundness of our harvesting
approach. Moreover, we suggest three causes of the variance: (i) Google’s estimation
may be too high since it is optimistic; (ii) The Google query site constraint searches all
sub-domains of the site (e.g., site:w3.org also returns results from www4.w3.org), but
SW06MAY’s results only return results from the specified site; and (iii) our harvesting
framework may index fewer SWDs (see Google dots above the curve) because it uses
far less harvesting seeds than Google and keeps a long “unpinged” list, or index more
SWDs (see Google dots below the curve) because it complements Google’s crawling
limitation.

166 different SWDs having the same md5sum as the SWOhttp://purl.org/dc/terms. Trying to
proving semantic equivalence is in general, not an option.
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Fig. 4.An analysis of the SW06MAY dataset shows the distribution of SWDs and SWOs (after re-
moving unintended ones) over selected top-level domains. Codes used are jp:Japan, de:Germany,
uk:United Kingdom, us:United States, pt:Portugal, and other:remaining TLDs.

4 Measuring Semantic Web documents

SWD Top-level Domains.Analyzing the top-level domains (TLDs) of SWDs suggests
the degree to which Semantic Web data is published by region and type of organization.
Using SW06MAY we calculated the number of websites, SWDs and pure SWDs for the
top ten TLDs as shown in Figure 4. The TLDs are ordered by the number of websites.
Figure 4a shows that pure SWDs dominate the Semantic Web while SWOs are few in
number. Figure 4b reveals several points. First, the “.com” domains have contributed
the largest portion of hosts (71%) and pure SWDs (39%). Examining the data indicated
two reasons: “.com” sites make heavier use of virtual hosting technology and publish
many RSS and FOAF documents. Second, most SWOs are from “.org” domains (46%)
and “edu” (14%). This is likely due of the deep interests in developing ontologies from
academic and non-profit organizations.

SWD Source Websites.Figure 5 depicts the cumulative distribution of the number
of PSWDs per website. The curves do contain skewed parts: (i) the sharp drop at the
tail of curve (near 100,000 on x-axis) is caused by our harvesting strategy that delays
harvesting websites after finding more than 10K SWDs; and (ii) the drop at the head of
curve is due to virtual hosting technology11. Interestingly,livejournal.comis involved
in both. Both curves in Figure 5 show power law distribution and the similar parameters
of the two regressed equations support the conclusion that the distribution is invariant.

Table 1 lists the ten domains hosting the largest number of pure SWDs. The “con-
tent” column shows the topic of website, and the “unpinged” column indicates that
we intentionally delay crawling some giant websites. SWDs from these websites are
automatically generated and well inter-linked. The 6th and 9th websites are recently
promoted to this list.

SWD Age. We measure an SWD’s age by its last-modified time extracted from the
HTTP response header. Figure 6a shows cumulative distribution of last-modified time,
i.e., the number of PSWDs and SWOs with a last-modified before the date on X-axis.
SWD’s with no reported last-modified time are excluded. Note that the “pswd” curve
exhibits an exponential distribution, indicating that many new PSWDs have been added

11 Many social networking sites offer each user a unique virtual host name.
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Fig. 5.Data from SW06MAY shows that the distribution of the number of websites hosting more
thanm pure SWDs follows a power law. The straight lines correspond to regression function with
the given equations. TheR2 values close to one indicate good regressions.

rank website # PSWDs# unpinged content
1 www.livejournal.com 100,518 88,962foaf, personal profile
2 www.tribe.net 80,402 25,234foaf
3 www.greatestjournal.com 62,453 849 foaf
4 onto.stanford.edu 45,278 403 pml, portal proof
5 blog.livedoor.jp 31,741 12,776foaf
6 r622-1.mpiwg-berlin.mpg.de 25,733 136 vml annotation
7 www.ecademy.com 23,242 3,308foaf
8 www.hackcraft.net 16,238 0 dc, book annotation
9 open.bbc.co.uk 14,544 350,473dc, BBC program annotation
10 www.uklug.co.uk 13,263 2 rss

Table 1. This table lists the ten largest source websites of pure Semantic Web documents
(PSWDs) from May 2006. Theunpingedcolumn gives the number of URLs discovered on the
site that are suspected of also being Semantic Web documents but have not yet been processed.

to the Semantic Web or that many old ones are being actively modified. The “swo”
curve additionally excludes PML documents and exhibits exponential distribution with
a flat tail, which we interpret as indicating a more active ontology development earlier
in the time period transitioning to more reuse later.

Figure 6b shows two distributions of last-modified time collected in Aug 2005 and
May 2006 respectively. The difference before August 2005 represents a loss of 155,709
PSWDs and is due to documents going offline (25%) and being updated (75%). The
difference after that is caused by updated documents and newly discovered PSWDs.
The non-trivial at which PSWDs go offline significantly affects the growth of Semantic
Web data.

SWD Size.We measure an SWD’s size as the number of triples in the SWD’s RDF
graph. Figure 7a shows the distribution of SWD’s size, i.e., the number of SWDs hav-
ing exactlym triples, and Figure 7b the corresponding cumulative distribution. Figure
7c depicts the distribution of ESWD’s size. Most ESWDs are very small with 62%
having exactly three triples and 97% having ten or fewer triples. These contribute sig-
nificantly to the big peak in Figure 7a. Figure 7d shows the distribution of the size
of PSWDs, with most (60%) having five to 1000 triples. The peaks in the curve are



(a) cumulative distribution of age of PSWDs and 

SWOs in SW06MAY

y = 9E-51e
0.1006x

R
2
 = 0.9891

1

100

10000

1000000

Apr-98 Apr-00 Apr-02 Apr-04 Apr-06

date

#
 o

f 
d

o
c
u

m
e
n

ts

pswd swo Expon. (pswd)

(b) distributions of age of PSWD in SW05AUG 

and SW06MAY

0

100000

200000

300000

400000

May-00 May-01 May-02 May-03 May-04 May-05 May-06

date

n
u

m
b

e
r 

o
f 

d
o

c
u

m
e
n

ts

SW05AUG SW06MAY

Fig. 6. Distributions of the last-modified time of PSWDs and SWOs.

caused by automatically generated SWDs which publish Semantic Web data in fixed
patterns. For example, many PML documents have exactly 28 or 36 triples, and many
RSS documents have exactly 130 triples12. The large number of SWOs with fewer than
four triples are mainly RDF and OWL test documents. SW06MAY’s largest SWO13 has
1,013,493 triples and defines 337,831 classes and properties.
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(c) size distribution of embedded SWDs
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Fig. 7. The distributions of the number of triples per SWD

SWD Size Change.Updating a SWD usually result in in a change in its size. We have
investigated this by tracking the size changes for different versions of an SWD. The
SW06MAYdataset has 183,464 PSWDs that are alive (sill online) and for which we

12 A typical RSS file has onerss:channelwith eight triples, fifteenrss:iteminstances each with
seven triples, and onerdf:Seqwith seventeen triples connecting therss:channelto the item
instances.

13 http://www.fruitfly.org/~cjm/obo-download/obo-all/ncbitaxonomy/ncbitaxonomy.owl



have at least three versions. For these, 37,012 (20%) lost a total of 1,774,161 triples;
73,964 (40%) gained a combination of 6,064,218 triples, and the rest 72,488 (40%)
maintained their original size14. The statistics also show that the total number of triples
keeps increasing; therefore, we hypothesize the volume of Semantic Web data is in-
creasing.

5 Measuring Semantic Web Terms

Semantic Web Terms (SWTs) are classes and properties that are named by non-anonymous
URIrefs. TheSW06MARdataset has 1,576,927 distinct Semantic Web terms defined
with respect to 14,488 Semantic Web namespaces. We derive four SWT-usage patterns
by analyzing the combination of six basic types of meta-usages.

– Only a few classes (1.5%) and properties (1.0%) have both explicit definitions and
instances.

– Most SWTs (95.1%) have no instances, and some SWTs (2.2%) have no definitions.
– Some SWTs (0.08%) mistakenly have both class and property meta-usage.
– Some SWTs (0.08%) only have REF-C or REF-P meta-usages. While some are

XMLSchmaterms and not RDF, others appear to be due to errors or misuse.

SWT Definition Complexity. A simple way to measure the complexity of a SWT is to
count the number of triples used to define it. Figure 8a shows the cumulative distribu-
tion of the size of SWT definitions in the curve labeled “all”. This follows a power law
distribution with the deviations at the head and tail reflecting a preference for defining
SWTs using a manageable number of triples, two to ten triples in most cases. Terms that
can be defined in just a few triples are not very useful, and the definitional size of com-
plex terms can be reduced by defining and using auxiliary definitions. One observed
definition has nearly 1000 triples15. We’ve divided definitional triples into two classes:
annotation and relation triples, whoserdf:objects arerdfs:Literals andrdf:objects, re-
spectively. Note that relation triples are more common. We also noticed that 104,152
SWTs have been defined in more than one SWOs.

(a) definition quality
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Fig. 8. The cumulative distribution of meta-usages of SWT

14 Most of the PSWDs maintaining their size are RSS documents.
15 The SWD http://elikonas.ced.tuc.gr/ontologies/DomainOntologies/middleontology defines

theMOSemanticRelationTypeclass using 973 triples.



SWT Instance Space.Since Semantic Web data include both definitions and instance
data, we measure the instance space of the Semantic Web by counting POP-C and POP-
P meta-usages of SWTs16. Figure 8b shows the cumulative distribution of the number
of SWTs populated as a class (or property) by at leastm instances (or SWDs). All
four curves follow a power law distribution. For both classes and properties, most are
defined but never directly used. Only 423 classes have been instantiated by more than
100 SWDs and just 2,115 have more than 100 instances. The number of properties used
is somewhat higher, with 1,489 SWTs used to define data in more than 100 SWDs and
5,404 properties used in more than 100 assertions.

Table 2 lists popular classes and properties. The number of an SWT’s class-instances
is usually proportional to the number of SWDs populating the SWT; however, excep-
tions exist. For example, while thewn:Nounclass has significant number of instances,
they are mostly in a few huge SWDs. In general, the Semantic Web’s instance space is
dominated by three categories: (i) instances of meta-ontologies such as OWL, (ii) in-
stances of a small number of very popular ontologies such as DC, FOAF, and RSS; and
(iii) instances from giant data files, such as WordNet and National Library of Medicine’s
Medical Subject Headings (MeSH) ontology.

resource URI #swd #instance
Most instantiated classes ordered by #swd
http://xmlns.com/foaf/0.1/Person 499,67111,686,519
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq 290,321 308,907
http://purl.org/rss/1.0/channel 282,677 289,160
http://purl.org/rss/1.0/item 259,220 4,277,868
http://xmlns.com/foaf/0.1/Document 223,510 247,311
Most instantiated classes ordered by #instance
http://xmlns.com/foaf/0.1/Person 499,67111,686,519
http://purl.org/rss/1.0/item 259,220 4,277,868
http://www.cogsci.princeton.edu/ ∼wn/schema/Noun 56 3,697,400
http://www.w3.org/2002/07/owl#Class 68,053 1,795,941
http://www.nlm.nih.gov/mesh/2004#Concept 38 1,551,046
Most instantiated properties ordered by #swd
http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1,170,97543,291,848
http://purl.org/dc/elements/1.1/title 801,25413,448,548
http://xmlns.com/foaf/0.1/mbox sha1sum 462,198 2,633,739
http://purl.org/dc/elements/1.1/description 453,826 2,874,327
http://www.w3.org/2000/01/rdf-schema#seeAlso 432,28812,330,223

Table 2. This table shows the most popular Semantic Web classes and properties based on the
number of Semantic Web documents (SWDs) that use them and, for classes, also on the number
of immediate instances.

RDFS and OWL usage.To what degree does the current Semantic Web make use
of RDFS and OWL? One simple way of addressing this question is to examine the

16 Since no RDFS or OWL inferencing is done, the statistics reflect immediate class instances.



number of SWDs that use the RDFS and OWL namespaces. The OWL namespace has
been declared by 112,870 SWDs (8%) and actually used by 108,059 (7%). The RDFS
namespace enjoys more use, being declared by 677,049 (47%) and used by 537,614
(37%) SWDs.

What about their terms? Not surprisingly,owl:Class is the most used term from
the OWL namespace with 1,795,941 instantiations in 68,053 SWDs. Contrasting this
with rdfs:Class, which has 327,485 instantiations by 8,572 SWDs, seems to suggest that
OWL is being more heavily used than RDFS. However, the relationship is not so simple.
When examining properties, rdf:Property has 529,052 immediate instantiations from
58,598 SWDs, considerably more than the OWL property terms owl:ObjectProperty
(169,885 assertions in 8,041 SWDs) and owl:DatatypeProperty (48,386 assertions in
4,557 SWDs).

For RDFS and OWL properties, the most used properties isrdf:type, followed by
some annotation properties such asrdfs:seeAlsoandrdfs:label. Among those proper-
ties that are used as ontology constructs,owl:sameAsandrdfs:subClassOfare the most
used. We also noticed significant use of two OWL equality assertions:owl:sameAs
(279,648 assertions in 17,425 SWDs) andowl:equivalentClass(69,681 assertions in
4,341 SWDs). Their common use may be an indication of increased ontology align-
ment. We have found limited use of properties that require OWL DL or OWL FULL
reasoning support. The most common one in our dataset wasowl:unionOfwhich is used
in only 2,527 SWDs.

Instantiation of rdfs:domain. Semantic Web data is published asynchronously by au-
tonomous and distributed agents which may use, and misuse, a variety of ontologies.
Given enough data, we can attempt to reverse-engineer the definitions of classes and
terms introduced by ontologies. Consider instances of therdfs:domainrelation which
associates a class with properties that describe its instances. We have observed 111,071
unique instantiations ofrdfs:domain, and the number of instantiations that have been
observed in at leastm instances (or SWDs), again, follows a power law distribution.

The highly instantiatedrdfs:domainrelations are mainly from popular instance
space such as FOAF and RSS documents. An interesting observation is thatrdfs:seeAlso
property has been frequently used asinstance propertyof foaf:Person. This correspond-
ing definition cannot be found in the RDFS or FOAF ontologies although it has been
informally mentioned in FOAF specification. The popularity of instantiation is usually
determined by the number of SWDs that has the instantiation; moreover, we also no-
ticed a popular instantiation – the domain ofwn:wordFromis wn:Nounwhich has over
6.5 million occurrences in only 56 SWDs.

We can use data on the instantiations ofrdfs:domainrelation to derive the most
used properties of a given class. For example, for immediatefoaf:Personinstances, the
most common properties used arefoaf:mboxsha1sum(461,922 SWDs),rdfs:seeAlso
(385,516), andfoaf:nick (361,901). We can also find strong co-occurrence association
among properties of a class. The propertiesgeo:lat(85,742) andgeo:long(85,741) are
virtually always used together in modifying a classgeo:Point. This kind of information
can be used to help publishers choose a good set of properties, which may be from
different ontologies, for a given class. Moreover, we can use such information in on-



tology revision, e.g., adding the missingrdfs:domaindefinition or revise incompatible
definition.

6 Conclusions

The Semantic Web is not just one universal RDF graph but a federated collection doc-
uments distributed on and accessed via the World Wide Web. It must be studied from
both theWeb perspectiveand thesemantic perspective. In order to characterize the Se-
mantic Web on the Web and guide Web-scale data access, we estimated the size of the
Semantic Web using Google, implemented a hybrid framework for harvesting Semantic
Web data, and measured the results to answer questions on the Semantic Web’s current
deployment status.

The statistics where characterized by power law distributions and “complex system”
behavior in many cases and, in general, support several conclusions about the emerging
Semantic Web. (i) Semantic Web data is growing steadily on the Web even when many
documents are only online for a short-while. (ii) The space of instances is sparsely
populated since most classes (>97%) have no instances and the majority of properties
(>70%) have never been used to assert data. (iii) Ontologies can be induced or amended
by reverse engineeringthe instantiations of ontological definition in instance space [27].

Our work raises question about the current paradigm for ontologies and URIrefs.
Is the concept of an “ontology” as a collection or container for Semantic Web terms
needed or even useful? An ontology object encourages self consistency but introduces
some limitations as well. Recent work on ontology partitions argues against large,
monolithic ontologies in favor of having many interconnected components. We might
even eliminate namespaces as boundaries. For example, the Dublin Core Element on-
tology has been widely used together with terms from many other semantic web on-
tologies. Another debatable item is the URIref. We use triples to annotate an URIref
that is an identifier of a resource. Multiple RDF graphs from different documents de-
scribing the same URIref can introduce inconsistency. Integrating these definitions may
encounter several questions: (i) are URIrefs good enough for grouping the triples de-
scribing it; (ii) can we ensure that all of the graphs are accessible to consumers; and (ii)
should all be used or should some be rejected as untrustworthy.
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