
Automatic Annotation of Web Services based on

Workflow Definitions

Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton, Robert Stevens,
and Carole A. Goble

School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
{khalidb,sembury,norm,rds,carole}@cs.man.ac.uk

Abstract. Semantic annotations of web services can facilitate the dis-
covery of services, as well as their composition into workflows. At present,
however, the practical utility of such annotations is limited by the small
number of service annotations available for general use. Resources for
manual annotation are scarce, and therefore some means is required by
which services can be automatically (or semi-automatically) annotated.
In this paper, we show how information can be inferred about the se-
mantics of operation parameters based on their connections to other
(annotated) operation parameters within tried-and-tested workflows. In
an open-world context, we can infer only constraints on the semantics
of parameters, but these loose annotations are still of value in detect-
ing errors within workflows, annotations and ontologies, as well as in
simplifying the manual annotation task.

1 Introduction

Semantic annotations of web services have several applications in the construc-
tion and management of service-oriented applications. As well as assisting in the
discovery of services relevant to a particular task [7], such annotations can be
used to support the user in composing workflows, both by suggesting operations
that can meaningfully extend an incomplete workflow [3] and by highlighting
inappropriate operation selections [1, 9]. As yet, however, few usable semantic
annotations exist. Manual annotation is a time-consuming process that demands
deep domain knowledge from individual annotators, as well as consistency of in-
terpretation within annotation teams. Because of this, the rate at which existing
services are annotated lags well behind the rate of development of new services.
Moreover, stable shared ontologies are still comparatively rare, with the result
that the annotations produced by one community may be of limited value to
those outside it.

Since resources for manual annotation are so scarce and expensive, some
means by which annotations can be generated automatically (or semi-automatically)
is urgently required. This has been recognised by a handful of researchers, who
have proposed mechanisms by which annotations can be learnt or inferred. Heß



2

et al. have designed a tool called ASSAM [4], which uses text classification tech-
niques to learn new semantic annotations for individual web services from exist-
ing annotations [5]. The tool extracts a set of candidate concepts, from which the
user selects the correct annotation. Patil et al., taking inspiration from the classic
schema matching problem [10], have constructed a framework for automatically
matching WSDL elements to ontology concepts based on their linguistic and
structural similarity [12]. The framework was then adapted to make use of ma-
chine learning classification techniques in order to select an appropriate domain
ontology to be used for annotation [11]. Most recently, Bowers et al. have pro-
posed a technique by which the semantics of the output of a service operation
can be computed from information describing the semantics of the operation’s
inputs and a query expression specifying the transformation it performs [2].

All the above proposals attempt to derive new annotations based on the in-
formation present in existing annotations. In this paper, we explore the potential
uses of an additional source of information about semantic annotations: namely,
repositories of trusted data-driven workflows. A workflow is a network of service
operations, connected together by data links describing how the outputs of the
operations are to be fed into the inputs of others. If a workflow is known to
generate sensible results, then it must be the case that the operation parame-
ters that are connected within the workflow are compatible with one another
(to some degree). In other words, if one side of a data link is annotated, we can
use that information to derive annotation information for the parameter on the
other side of the link. Or, if both sides are annotated, we can compare their
annotations for compatibility and thus detect errors and inconsistencies in their
manually-asserted semantics.

The remainder of the paper is organised as follows. We begin (in Section 2)
by formally defining the concept of a data-driven workflow, and the notion of
compatibility between connected parameters in such workflows. We then discuss
how far we can use the information contained within a set of tested workflows in
order to automatically derive annotations, and present the derivation algorithm
(Section 3). As we shall show, we cannot derive exact annotations using this
approach, but it is possible to derive a looser form of annotation which indicates
a superset of the concepts that describe the parameters’ semantics. We go on
to demonstrate that these loose annotations have utility, despite their imprecise
nature, by showing how they can be used to determine the compatibility of
connected service parameters during workflow composition, as well as cutting
down the search-space for manual annotators (Section 4). We present a prototype
annotation tool that derives loose annotations from workflows (Section 5), and
present the results of applying the tool to a collection of real biological workflows
and annotations, which show the practicality of our approach (Section 6). Finally,
we close the paper by discussing our ongoing work (Section 7).

2 Parameter Compatibility in Data-Driven Workflows

A data-driven workflow is a set of operations connected together using data
links. Thus, for our purposes, we regard a data-driven workflow as a triple swf



3

= 〈nameWf, OP, DL〉, where nameWf is a unique identifier for the workflow, OP

is the set of operations from which the workflow is composed, and DL is the set
of data links connecting the operations in OP.

Operations: an operation op ∈ OP is a quadruple 〈nameOp, loc, in, out〉, where
nameOP is the unique identifier for the operation, loc is the URL of the web
service that implements the operation, and in and out are sets representing the
input and output parameters of the operation, respectively.

Parameters: an operation parameter specifies the data type of an input or out-
put, and is a pair 〈nameP, type〉, where nameP is the parameter’s identifier (unique
within the operation) and type is the parameter’s data type. For web services,
parameters are commonly typed using the XML Schema type system, which
supports both simple types (such as xs:string and xs:int) and complex types con-
structed from other simpler ones.

Data links: a data link describes a data flow between the output of one opera-
tion and the input of another. Let IN be the set of all input parameters of all
operations present in the workflow swf, i.e. IN ≡ { i | i ∈ in ∧ 〈 , , in , 〉 ∈
OP}. Similarly, let OUT be the set of output parameters present in swf, i.e.
OUT ≡ { o | o ∈ out ∧ 〈 , , , out〉 ∈ OP}. The set of data links connecting the
operations in swf must then satisfy:

DL ⊆ (OP × OUT) × (OP × IN)

Notation: in the remainder of this paper, we will use the following notation:

– SWF is the set of tested workflows given as input to the annotation process.
– OPS is the set of all operations used in SWF, i.e. OPS = { op | op ∈ OP ∧

〈 ,OP , 〉 ∈ SWF )}

– DLS is the set of all data link connections in SWF, i.e. DLS = { dl | dl ∈

DL ∧ 〈 , ,DL〉 ∈ SWF}.
– INS is the set of all input parameters appearing in SWF, i.e. INS = { i | i ∈

in ∧ 〈 , , in, 〉 ∈ OPS}.
– OUTS is the set of all input parameters appearing in SWF, i.e. OUTS =

{ o | o ∈ out ∧ 〈 , , , out〉 ∈ OPS}.

2.1 Parameter Compatibility

If a workflow is well-formed then we can expect that the data links within it will
link only those parameters that are compatible with one another. In its simplest
form, this means that the two parameters must have compatible data types (as
described within the WSDL description file for web service operations). However,
when services are semantically annotated, it is also necessary to consider the
semantic compatibility of connected parameters. Exactly what this means will
depend on the form of annotation used to characterise parameter semantics,
although the basic principles should be the same in most cases.



4

For the purposes of this paper, we will consider a particular form of semantic
annotation that was developed within the ISPIDER project1, to facilitate the
identification and correction of parameter mismatches in scientific workflows [1].
In ISPIDER, semantic annotations are based upon three distinct ontologies, each
of which describes a different aspect of parameter semantics and each of which
is defined using the Web Ontology Language (OWL) [8]. These are the Domain

Ontology, the Representation Ontology and the Extent Ontology.

The Domain Ontology describes the concepts of interest in the application
domain covered by the operation. This is the commonest form of semantic an-
notation for services, and several domain ontologies have been developed for
different application domains. An example is the ontology that was created with
the myGrid project, that describes the domain of bioinformatics [13]. Typical
concepts in this ontology are ProteinSequence and ProteinRecord.

Although useful for service discovery, the Domain Ontology is not sufficient
by itself to describe parameter compatibility within workflows, hence the need
for the two additional ontologies. The first of these, the Representation Ontology,
describes the particular representation format expected by the parameter. In an
ideal world, the data type of the parameter would give us all the information
required about its internal structuring. Unfortunately, however, it is extremely
common for the parameters of real web services to be typed as simple strings,
on the assumption that the operations themselves will parse and interpret their
internal components. This is partly a legacy issue (for older services) but it is
also partly caused by the weak type systems offered by many current work-
flow management systems, which do not encourage web service authors to type
operation parameters accurately. Because of this, to determine parameter com-
patibility, it is necessary to augment the information present in the WSDL data
types with more detailed descriptions of the representation formats expected,
using concepts from the Representation Ontology. An ontology of this kind for
molecular biology formats has already been developed under the aegis of the
myGrid project [13], containing such concepts as UniprotRecord, which refers to
a well known format for representing protein sequences, and UniprotAC, which
refers to the accession number format dictated by the Uniprot database.

The final annotation ontology that we use is the Extents Ontology, which
contains concepts describing the scope of values that can be taken by some
parameter. Although in general it is not possible to accurately describe the
extents of all parameters, in some cases this information is known. For example,
the TrEMBL database2 is known to contain information about a superset of
the proteins recorded in the SwissProt database3, and there are several species-
specific gene databases that are known not to overlap. Information about the
intended extents of parameters can help us to detect incompatibilities of scope in
workflows that would otherwise appear to be well-formed. An example concept

1 http://www.ispider.man.ac.uk/
2 http://www.ebi.ac.uk/trembl/
3 http://www.ebi.ac.uk/swissprot



5

from the Extent Ontology is UniprotDatastore, which denotes the set of protein
entries stored within the Uniprot database.

In order to state the conditions for parameter compatibility in terms of these
three ontologies, we assume the existence of the following functions for returning
annotation details for a given parameter

domain: OPS × (INS ∪ OUTS) → θdomain

represent: OPS × (INS ∪ OUTS) → θrepresent

extent: OPS × (INS ∪ OUTS) → θextent

where θdomain is the set of concepts in the Domain Ontology, θrepresent the set
of concepts in the Representation Ontology and θextent the set of concepts in
the Extent Ontology. We also assume the existence of the function coveredBy()

for comparing extents (since the standard set of OWL operators aren’t sufficient
for reasoning with Extent Ontology concepts). Given two extents e1 and e2, the
expression coveredBy(e1, e2) has the value true if the space of values designated
by e1 is a subset of the space of values designated by e2 and false otherwise.

Parameter compatibility: Let (op1,o,op2,i) be a data link connecting the output
parameter o of the operation op1 to the input parameter i of the operation op2.
The parameters op1.o and op2.i are compatible iff4:

(i) o.type � i.type: the data type of the output op1.o is a subtype of the data
type of the input op2.i; and

(ii) domain(op1,o) ⊆ domain(op2,i): the semantic domain of op1.o is a subconcept
of op2.i’s domain; and

(iii) represent(op1,o) = represent(op2,i): the output and input parameters adopt
the same representation; and

(iv) coveredBy(extent(op1,o),extent(op2,i)): the extent of op1.o is contained within
the extent of op2.i.

3 Deriving Parameter Annotations

In addition to using the rules for parameter compatibility to test a workflow
for errors, we can also use them in a generative way to infer information about
the semantics of linked parameters in workflows that the user believes to be
error-free. We will use a simple example to illustrate this idea. Consider the pair
of workflows shown in Figure 1. Both these workflows are intended to perform
simple similarity searches over biological sequences. The first finds the most sim-
ilar protein to the one specified in the input parameter. To do this, it retrieves
the specified protein entry from the Uniprot database, runs the Blast algorithm
to find similar proteins, and then extracts the protein with the highest simi-
larity score from the resulting Blast report. The second workflow finds similar
sequences to a given DNA sequence. It retrieves the DNA sequence from the
DDBJ database5, searches for similar sequences using Blast and finally extracts
the sequences of all matches from the Blast report.

4 The symbol � stands for a subtype of, and the symbol ⊆ for a subconcept of.
5 http://www.ddbj.nig.ac.jp



6

extent(GetDDBJEntry,o) = DDBJDatastore

GetDDBJEntry

i o

oi

i

i
(b)

(a) GetUniprotEntry Blast

Blast

domain(GetDDBJEntry,o) = DNASequence
represent(GetDDBJENtry,o) = Fasta

o

o

o

o

i

i

domain(GetTopHit,i) = SequenceAlignmentReport
represent(GetTopHit,i) = BlastReport
extent(GetTopHit,i) = AnyTextFile

domain(GetResults,i) = DNASeuquenceAlignmentReport
represent(GetResults,i) = BlastReport
extent(GetResults,i) = AnyTextFile

Operation output
Operation inputAnalysis operation

Data link

Legend

GetTopHit

GetResults

domain(GetUniprotEntry,o) = ProteinSequence
represent(GetUniprotEntry,o) = Fasta
extent(GetUniprotEntry) = UniprotDatastore

Fig. 1. Example workflows

Notice that, in this simple example, the parameters of the Blast operation
have not been annotated, while the parameters of the other operations have.
However, since these are thoroughly tested workflows, their data links must all
be compatible and we can therefore infer some information about the annota-
tions that the Blast operation ought to have. For example, if we focus on just the
domain annotations, we can see that the input Blast parameter must be compat-
ible with both ProteinSequence and DNASequence, since parameters conforming
to both these concepts are connected to it. In fact, by the rules of compatibility,
we can infer that:

(ProteinSequence ∪ DNASequence) ⊆ domain(Blast , i)

Unfortunately, we cannot infer the exact annotation, as we may not have been
given a complete set of workflows (by which we mean a set of workflows that
contains every possible connection of compatible parameters). All we can safely
do is infer a lower bound on the annotation of the input parameters and an upper
bound on the annotation of the output parameters. Thus, in the case of the Blast

input parameter, we can use the derived lower bound just given to indicate the
fragment of the ontology that must contain its true domain annotation (shown
in Figure 2)—in this case, all the super-concepts of the union of ProteinSequence

and DNASequence6 .
We call these lower and upper bounds loose annotations, to distinguish them

from the more usual (tight) form of annotation in which the exact concept cor-
responding to the semantics of the parameter is given. All manually asserted
annotations at present are tight annotations (though in the future users may

6 The ontology fragment shown in Figure 2 does not contain the lower bound concept
ProteinSequence ∪ DNASequence , since it is not a (named) concept within the on-
tology. However, since OWL language allows the formation of new concepts using,
amongst others, the union and intersection operators, the true annotation may in
fact be the lower bound itself (i.e. ProteinSequence ∪ DNASequence). Other, less
expressive, ontology languages such as RDFS, do not allow this possibility.



7

Thing

BiologicalDomainConcept

BiologicalModifierConcept

BiologicalFeature

BiologicalSequence
Concept

Subconcept of

Legend

Fig. 2. Fragment of the domain ontology

prefer to assert loose annotations for difficult cases where they are unsure of the
correct semantics).

Based on this reasoning, we can derive a method for inferring loose annota-
tions for operation parameters, given a set of tested workflows SWF and a set
of (loose or tight) annotations for some subset of the operations that appear in
SWF. Since the compatibility relationship between input and output parameters
is not symmetrical, we must use a different method for deriving input parameter
semantics from that used for deriving output semantics.

3.1 Derivation of Input Parameter Annotations

Given an input parameter of some operation, we can compute three sets of loose
annotations, based on the compatibility rules for each of the three annotation
ontologies, as follows.
− getInputDomains: OPS × INS → P(θdomain)

This function computes a loose domain annotation, by locating the subset of the
ontology that must contain the correct annotation. It first finds all operation
outputs that are connected to the given input in SWF. It then retrieves the do-
main annotations for these outputs, unions them and returns all super-concepts
of the resulting new concept.
− getInputRepresentation: OPS × INS → θrepresent

This function computes a representation annotation. Since we assume that each
parameter can support only one representation format, we can infer a tight
representation annotation for the input parameter, rather than a loose one. To
do this, we first find all output parameters that are connected to the given
input, and retrieve their representations from the annotation repository. If all the
output parameters have the same representation, then this can be returned as the
derived annotation for the input parameter. Otherwise, a null result should be
returned and the conflict should be flagged to the user. In our example (Figure 1),
the representation annotation that is inferred for the Blast input parameter is
Fasta.
− getInputExtents: OPS × INS → P(θextent)

This function computes a loose extent annotation, by locating the fragment of
the extent ontology that must contain the correct annotation. It first finds all
output parameters that are connected to the input by workflows in SWF, and



8

then retrieves their extent annotations. Finally, it searches the Extent Ontology
for all extents known to cover the union of the retrieved extents, and returns the
resulting set of concepts. In our example, the extent of the Blast input parameter
is an extent which covers the union of UniprotDatastore and DDBJDatastore, if
one exists.

3.2 Derivation of Output Parameter Annotations

Derivation of annotations for output parameters follows much the same pattern
as for input parameters, except that we infer upper bounds on their semantics
rather than lower bounds.
− getOutputDomains: OPS × OUTS → P(θdomain)

This function computes a loose domain annotation for the given output param-
eter. It first finds all input parameters that are connected to it in the workflows
in SWF, and retrieves their domain annotations. It then returns all domain con-
cepts that are subconcepts of the intersection of the retrieved concepts. In our
example, the output parameter of the Blast operation must be a subconcept of
(SequenceAlignmentReport∩ProteinSequenceAlignmentReport). Since, according
to the domain ontology, the second of these two concepts is a subconcept of the
first, this can be simplified to: domain(Blast , o) ⊆ ProteinSequenceAlignmentReport .
− getOutputRepresentation: OPS × INS → θrepresent

As with the inference of input representation annotations, the representation of
an output parameter should be the same as that given for all connected inputs,
provided there is no conflict. In our example, the annotation inferred for the
Blast operation output parameter is BlastReport.
− getOutputExtents: OPS × OUTS → P(θextent)

This function computes a loose extent annotation by locating the subset of the
Extent Ontology that must contain the correct extent. It first finds all input
parameters that are connected to the given output and retrieves their extent
annotations. It then searches the Extent Ontology for all extents that are cov-
ered by the intersection of the retrieved extents, and returns the result. In our
example, we can infer that the extent of the Blast operation output must be
contained within the AnyTextFile extent.

3.3 Annotation algorithm

Given the functions for deriving annotations for individual parameters just de-
scribed, we can construct an algorithm (shown in Figure 3) that will derive
all annotations automatically from a set of tested workflows and an incomplete
repository of semantic annotations. This algorithm iterates over the parameters
present in the workflows, deriving new annotations for each of them using the
functions given above. The resulting annotations are then examined by the sub-
routine presented in Figure 4. If there is no existing annotation for a parameter,
then the derived annotation is asserted (i.e. entered into the annotation reposi-
tory). If a manual annotation is already present, then this is compared with the
derived annotation to check for any conflicts. If the two are compatible, then no



9

Algorithm DeriveAnnotations
inputs OPS
outputs OPS
begin
1 for each op ∈ OPS do

2 for each i ∈ op.in do

3 Cdomain := getInputDomains(op,i)
4 crepresent := getInputRepresentation(op,i)
5 Cextent := getInputExtents(op,i)
6 ExamineDerivedAnnotation(op,i,Cdomain,crepresent,Cextent)
7 for each o ∈ op.out do

8 Cdomain := getOutputDomains(op,o)
9 crepresent := getOutputRepresentation(op,o)
10 Cextent := getOutputExtents(op,o)
11 ExamineDerivedAnnotation(op,o,Cdomain,crepresent,Cextent)
end

Fig. 3. Annotation algorithm

further action need be taken. If not then the discrepancy should be flagged to
the user.

Conflicts are detected in the following cases:

– Domain conflict: there exists a conflict in the domain semantics when a tight
domain annotation does not belong to the subset of the domain ontology
indicated by the derived (loose) annotation for the same parameter (line 5).

– Representation conflict: there exists a conflict in representation if the de-
rived representation concept is different from the asserted representation
concept for that parameter (line 11).

– Extent conflict: there exists a conflict in extent if the tight extent annotation
does not belong to the subset of the extent ontology specified by the derived
annotation for the same parameter (line 17).

There are several situations that can lead to conflicts, each of which requires a
different corrective action.
− In the case of domain and extent conflicts, it may be that the manual and
derived annotations are in reality compatible, but that an error in the ontology
means that this compatibility cannot be detected by our algorithm. In this case,
the problem may be corrected by adding new specialisation relationships to the
ontology, until the annotations become compatible.
− One or more of the previously asserted annotations for the parameters involved
in the conflict may be incorrect. Once the user is confident that the incorrect
annotations have been identified, they can be deleted or refined to remove the
conflict. However, since the problem parameter may be linked to many services
in the workflow repository, determining exactly where the problem lies (i.e. with
which parameter annotation) may require some detective work on the part of



10

Algorithm ActOnDerivedAnnotations
inputs (op,p) ∈ (OPS × (INS ∪ OUTS),

Cdomain ⊆ θdomain, crepresent ∈ θrepresent, Cextent ⊆ θextent

outputs op ∈ OPS
begin
1 if (Cdomain 6= φ) then

2 if (domain(op,p) = null) then

3 assertDomain(op,p,Cdomain)
4 else

5 if (domain(op,p) 6∈ Cdomain) then

6 domainConflict(op,p,Cdomain)
7 if (crepresent 6= null) then

8 if (represent(op,p) = null) then

9 assertRepresentation(op,p,crepresent)
10 else

11 if (represent(op,p) 6= crepresent) then

12 representationConflict(op,p,crepresent)
13 if (Cextent 6= φ) then

14 if (extent(op,p) = null) then

15 assertExtent(op,p,Cextent)
16 else

17 if (extent(op,p) 6∈ Cextent) then

18 extentConflict(op,p,Cextent)
end

Fig. 4. Algorithm for Acting on Derived Annotations

the user. If workflow provenance logs exist, then they can help in this process,
since they would allow the user to examine the data values produced by or for
the offending parameter during workflow execution. This may reveal the source
of the error.
− One of the workflows involved in the conflict may not in fact have been
thoroughly tested and may contain some connected parameters that are incom-
patible. It should be deleted from the workflow repository and the process of
annotation derivation begun again from scratch.

4 Uses of Loose Annotations

The loose annotations derived by the method described in the preceding section
contain considerably less information than conventional, tight annotations, and
they are therefore correspondingly less useful. The question remains, therefore,
as to whether the effort in collecting loose annotations is worthwhile. In this
section, we demonstrate that loose annotations do have utility, despite their
imprecise nature, by considering just two potential applications: the inspection
of parameters ’ compatibility in workflows and speeding up the process of manual
annotation for unannotated service parameters.



11

4.1 Inspecting Parameter Compatibility in Workflows

One of the original aims of the three annotation ontologies made use of in this pa-
per was to allow mismatched data links, i.e. data links connecting incompatible
parameters, in workflows to be detected and flagged to the user for correction.
However, this assumes that all annotations are tight. When we have the possi-
bility of loose annotations also being present in the annotation repository, can
we still detect parameter compatibility in workflows?

In fact, even with loose annotations, it is still possible to determine com-
patibility of parameters in the following cases. Let op1 and op2 be two linked
operations, and o and i their respective output and input parameters. Suppose
that loose annotations for both parameters op1.o and op2.i have been derived
by the algorithm presented in the previous section. In this case, the parameters
op1.o and op2.i are definitely compatible if:

(i) o.type � i.type, and
(ii) ∀ ci ∈ getOutputDomains(op1,o), ∀ cj ∈ getInputDomains(op2,i), ci ⊆ cj , and
(iii) represent(op1,o) = represent(op2,i), and
(iv) ∀ ci ∈ getOutputExtents(op1,o), ∀ cj ∈ getInputExtents(op2,i), coveredBy(ci,cj).

If we compare these conditions with those for full parameter compatibility (based
on tight annotations), we can see that conditions (i) and (iii) are unchanged.
Conditions (ii) and (iv) have both been altered to take into account the presence
of loose annotations. In the case of domain compatibility, for example, we require
that all the concepts returned by getOutputDomains(op1,o) must be subconcepts of
all the concepts returned by getInputDomains(op2,i). This may well be a stronger
condition for compatibility than is actually required, but it is conservatively
true, given the information we have available in the loose annotations.

If the conditions given above are not satisfied, however, then we cannot say
whether the parameters are compatible or not. We can still flag these connections
to the user for their attention, but must allow the user to accept them as correct
(i.e. compatible) based on their better knowledge of the real semantics of the
parameters involved.

4.2 Supporting the Manual Annotator

Another application for loose annotations is in supporting human annotators in
extending the repository of service annotations. If the user starts to annotate an
operation parameter that has a loose annotation derived for it, then he or she
only has to choose from the (hopefully small) subset of the ontology indicated by
the loose annotation, rather than from the full set of ontology concepts. Where
the ontology is large and/or complex, this can result in a significant time saving
for the human annotator. For example, when specifying the domain semantics
of the input parameter belonging to the Blast operation given in our earlier
example, the user has only to choose from a collection of 5 concepts specified by
the loose annotation, rather than the full 1556 concepts in the myGrid ontology.
This also helps to avoid errors and inconsistencies in manual annotation.



12

5 Implementation

In order to assess the value of this method of deriving annotations, we have
developed a prototype annotation tool that infers loose annotations and presents
the results to the user through the GUI illustrated in Figure 5. The Annotation
Editor, labelled A, shows the contents of the workflow repository being used for
annotation derivation, and any existing (tight) annotations presently stored for
the operation parameters in the annotation repository. This panel also contains
the controls that launch the annotation derivation process.

Fig. 5. Annotation system (GUI)

The resulting annotations are shown in the Operation Parameter Explorer
panel (labelled B). Tight and loose annotations are distinguished here, and any
conflicts will be highlighted. The final panel (labelled C) is the Ontology Ex-
plorer, which allows the user to view the fragments of the ontology indicated by
a loose annotation, and to make a selection of a specific concept, to convert the
loose annotation into a tight one.

6 Application to Bioinformatics Web Services

In order to further assess the value of the annotation derivation mechanism
described here, we applied the algorithm and tool to a repository of workflows
and annotations taken from the domain of bioinformatics. A large number of
public web services are available in bioinformatics. For example, the myGrid
toolkit provides access to over 3000 third party bioinformatics web services. The
Taverna repository also contains 131 workflow specifications, and the myGrid
web service registry, Feta [6] provides parameter annotations for 33 services7.

7 Note here how the number of annotations lags behind the number of available ser-
vices.



13

We used these as inputs to our algorithm, and were able to derive 35 domain
annotations for operation parameters, a selection of which are shown in Table 1.
The concept given in the final column indicates either the upper bound (in
the case of an output parameter) or the lower bound (in the case of an input
parameter) derived by our algorithm. Upon analysis with the help of a domain
expert, 18 of the derived annotations were found to be correct and 11 were found
to be incorrect. A further 6 annotations could not be checked as the parameters
in question belonged to services that have either moved or no longer exist, and
thus could not be examined to determine the semantics of their parameters.

Service operation Providera Parameter I/O Derived concept
1 addTerm EBI geneOntologyID I GeneOntologyTermID
2 blastFileComparer myGrid blastResult I BlastAlignmentReport
3 getFastaDDBJEntry DDBJ result O Sequence
4 getGenePredict VBI in0 I Sequence
5 getHsaIds myGrid query I EMBLAccessionNumber
6 blastx ncbi myGrid query sequence I Sequence
7 lister myGrid listerReturn O EnzRestReport ∩ DNASeq

a

EBI stands for European Bioinformatics Institute, DDBJ for DNA Data Bank of Japan, and VBI
for Virginia Bioinformatics Institute.

Table 1. Examples of derived parameter annotations

Of the 11 incorrect annotations, 3 were identified thanks to the conflicts auto-
matically detected between the asserted and derived annotations. For example,
the annotation given for the input parameter query sequence of the blastx ncbi

operation states that it is a NucleotideSequence, while the derived annotation
specified that it must be a superconcept of Sequence (row 6). According to the
myGrid ontology, NucleotideSequence is not a super-concept of Sequence, hence the
conflict. After diagnosis, the derived annotation was found to be incorrect. Two
further errors were discovered when the derived loose annotation specifies an
empty subset of the ontology, it is the case for the output listerReturn (row 7).

The remaining 6 incorrect derived annotations were not detected automati-
cally by our tool, but were diagnosed when we investigated the derived annota-
tions for correctness. They were all found to be due to either incorrect manual
annotation or incompatibilities in the input workflows. Of the total 11 errors, 4
were found to be due to errors in the original annotations and 7 due to incom-
patibilities between connected parameters in the workflows.

This experiment showed that it is possible to derive a significant number of
new annotations from even a small annotation repository. We were also able to
detect 5 incorrect parameter annotations—quite a high number given the small
scale of the inputs. However, the results also show that errors in workflows can
lead to errors in derived annotations, and hence the importance of using only
tried and tested workflows. This is not a problem where derived annotations can
be examined for correctness by a user, but more care must be taken if they are
to be created in a wholly automatic manner.



14

7 Conclusions

In this paper, we have presented an approach for automatically deriving semantic
annotations for web service parameters. Our method improves over existing work
in this area in that, in addition to facilitating the manual annotation task, it can
also be used for examining the compatibility of parameters in workflows.

Our preliminary experiment has provided evidence in support of our annota-
tion mechanism and shown its effectiveness and ability to discover an important
number of annotations and help detecting mistakes in existing annotations based
on a relatively small set of annotations. The next step is to evaluate the proposed
techniques on a larger scale, and to explore their applications in supporting the
annotation task more generally. For example, it may be possible to use collec-
tions of loose annotations to diagnose problems in ontology design, as well as
in semantic annotations and workflows. There are also potential applications in
guiding the work of teams of human annotators, to ensure that the most useful
services are given priority during annotation.

References

1. K. Belhajjame, S. M. Embury, and N. W. Paton. On characterising and addressing
mismatches in scientific workflows. In International Workshop on Data Integration
in the Life Sciences (DILS 06). Springer, 2006.

2. S. Bowers and B. Ludäscher. Towards automatic generation of semantic types in
scientific workflows. In WISE Workshops, 2005.

3. J. Cardoso and A. P. Sheth. Semantic e-workflow composition. J. Intell. Inf. Syst.,
21(3), 2003.

4. A. Heß, E. Johnston, and N. Kushmerick. Assam: A tool for semi-automatically
annotating semantic web services. In ISWC, 2004.

5. A. Heß and N. Kushmerick. Learning to attach semantic metadata to web services.
In ISWC, pages 258–273, 2003.

6. P. W. Lord, P. Alper, Ch. Wroe, and C. A. Goble. Feta: A light-weight architecture
for user oriented semantic service discovery. In ESWC, 2005.

7. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5), 2004.

8. D. L. McGuinness and F. v. Harmelen. Owl web ontology language overview. In
W3C Recommendation, 2004.

9. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. VLDB J., 12(4), 2003.

10. P. Mitra, G. Wiederhold, and M. L. Kersten. A graph-oriented model for articu-
lation of ontology interdependencies. In EDBT, 2000.

11. N. Oldham, Ch. Thomas, A. P. Sheth, and K. Verma. Meteor-s web service anno-
tation framework with machine learning classification. In SWSWPC, 2004.

12. A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. Meteor-s web service
annotation framework. In WWW, 2004.

13. Ch. Wroe, R. Stevens, C. A. Goble, A. Roberts, and R. M. Greenwood. A suite
of daml+oil ontologies to describe bioinformatics web services and data. Int. J.
Cooperative Inf. Syst., 12(2), 2003.


