
OntoWebber:
Model-Driven Ontology-Based Web Site

Management

Yuhui Jin, Stefan Decker, Gio Wiederhold
Stanford University

{yhjin, stefan, gio}@db.stanford.edu

Abstract. Building data-intensive Web sites and especially Web portals is a costly
task, which requires considerable effort for data integration and maintenance and
usually does not result in many reusable components. This is mainly because most
of the design is hard-coded in static or dynamic Web pages. In this paper we
integrate three different approaches to create a comprehensive solution to Web site
and Web portal creation dubbed OntoWebber. OntoWebber integrates (1) the
explicit modeling of different aspects of Web sites, (2) the use of ontologies as the
foundation for Web portal design and (3) semi-structured data technology for data
integration and Web site modeling. The resulting system and methodology
supports the creation of reusable specifications of Web sites. OntoWebber is the
basis for creating the Semantic Web Community Portal as part of the OntoAgents
project, which will help the Semantic Web research community (distributed on the
Web) to exchange and share knowledge conveniently and effectively.

1 Motivation

Building data-intensive Web sites is a high-effort task, which usually does not result in many
reusable components, mainly because nowadays most of the design is hard-coded in HTML
and executable code like CGI scripts, Active Server Pages (ASP) or Java Server Pages (JSP).
 Web portals is a special kind of data-intensive Web sites, which presents a large collection
of information related to specific topics and are often organized by hierarchical directories.
Examples of Web Portals are Yahoo!, and company portals, which present available resources
inside and outside the company to their employees to facilitate cooperation. Knowledge
management and dynamic personalization are key features of these Web portals, which make
the management of these portals even more demanding than that of an ordinary Web site.
 Building and maintaining a portal requires considerable effort for data integration and
maintenance, since quite often available information (e.g. inside a large corporation) is
heterogeneous, distributed and constantly changing. Therefore it is highly desirable to
automate the data integration and maintenance tasks as much as possible.
 In software engineering area, design patterns [6], declarative specification approaches and
modeling of software artifacts (using e.g. UML) help to generate reusable components and
models – this is already partially used for modeling Web sites by approaches like WebML [3].
 In the database area, semi-structured data has proven to be very successful as a means to
integrate heterogeneous data sources [7]. The usefulness of semi-structured data approaches
for modeling Web sites was demonstrated by Strudel Web site management system [5].
 Finally, AI-centric approaches have suggested ontologies as a means to organize and
present Web Portals [9] [15].

 OntoWebber brings efforts from all these different areas together into a coherent system and
methodology. It adopts a model-driven, ontology-based approach for declarative Web site
management and data integration, and offers support throughout the life cycle of a Web site,
including design, generation, personalization and maintenance. The fundamental idea behind
OntoWebber is the use of ontologies as the basis for constructing different models necessary
for creating a Web site.
 As a demonstration of our idea, we are building the Semantic Web Community Portal
(SWCP) as part of the OntoAgents project*, which will help the Semantic Web research
community (distributed on the Web) to exchange and share knowledge conveniently and
effectively. The reference ontology used to structure the design of the Web site is the Semantic
Web Research Community Ontology†.
 The rest of the paper is organized as follows: the next section presents the architecture and
different layers of the OntoWebber system. Section 3 defines the different ontologies
necessary to specify a Web site, and describes the modeling of the SWCP as a running
example. Section 4 discusses the Web site generation process. Finally Section 5 and 6 present
related work, conclusion and future work.

2 The OntoWebber Web Site Management System

In this section, we first describe the system architecture, with all the important software
components and how they offer support throughout a Web site’s life cycle. Then we introduce
the Web site design methodology, which is based on an ontology-based declarative modeling
approach.

2.1 OntoWebber Architecture

The architecture of OntoWebber system is shown in Figure 1, which can be decomposed into
four layers:
 Integration layer. The integration layer resolves syntactic differences between different
distributed heterogeneous data sources. We have adapted approaches for integration of
heterogeneous information sources (e.g. the TSIMMIS approach [7]) by establishing a joint
data format over all information sources. As for the semi-structured data format, we have
chosen RDF (Resource Description Framework) since it is essentially identical to the OEM
(Object Exchange Model) format used in the TSIMMIS project. The key point of our approach
for information integration is we convert all types of data into RDF data using the reference
ontology, and only perform queries locally to the resulting data stored in the central repository,
without going to the data sources.
 We currently support three kinds of source data in this layer: RDF data can be directly
passed to the articulation layer. Data and ontologies in the UML/XMI format are rewritten by
the Data Translator using the InterDataWorking approach described in [12], before passed to
the articulation layer. Data sources based on HTML are wrapped and written as RDF data
using the reference ontology, thus the resulting RDF data needs no articulation and is directly
stored into the repository. Please note that instance data and ontologies are handled uniformly
– ontologies are just another kind of data.

* The work is supported by the Defense Advanced Research Projects Agency through the Air Force Research
Laboratory.
†http://www.semanticweb.org/ontologies/

Site View SpecificationsSource
Data

Domain
Ontology
Library

Navigation Schema

Presentation Schema

Site-Modeling Ontology

DAML/RDF repository

Data

Translator

Ontology

Articulator

Query

Engine

Site Builder

Source
Meta-data

Inference Engine

Integration
Layer

Articulation
Layer Composition Layer Generation

Layer

Administrator

Browsable
Web Site

Data
Source

Data
Source

Data
Source

Site Engineer

Figure 1. OntoWebber System Architecture

Wrappers

Content Schema

Maintenance Schema
Personalization Schema

 Articulation layer. The articulation layer resolves the semantic differences between the
different data sources. Even if all source data have been converted into the RDF format. To be
able to use the data for the site generation we need to relate the incoming data to the reference
ontology of OntoWebber. Since different data providers may use different vocabularies
(domain ontologies) to annotate their data, ontology articulation [13] bridges the semantic gap
by establishing mapping rules between the concepts and relationships described in source
ontologies to those in the reference ontology. Then the data can be queried based on the
reference ontology of the OntoWebber system.
 Composition layer. At this stage, the reference ontology and RDF data are available,
together with articulation rules that relate the source data to the reference ontology. The
ontologies for site modeling are a set of predefined schemas using DAML+OIL, available in
the central repository as well. Thus, a particular site view consisting a set of Web pages can be
created from the underlying data. A site view specification is a set of site models describing
different aspects of a site view based on the site modeling ontologies (see Section 3). Later the
site view specification is exported to the query engine (located in the next layer) to be
instantiated as Web pages in the desired format. Site models can be constructed using provided
software components and are materialized in DAML+OIL. Initially, a default site view is
instantiated from a predefined site view specification for general public access. Other site
views can be created for specific user or user group by defining their own site view
specifications. Furthermore, by declaratively modeling personalization and maintenance of a
site, we can achieve these tasks after the site generation phase.
 Generation layer. A browsable Web site can be generated by instantiating the
corresponding site view with data in the repository. This is done by the query engine, which
queries the site view specification for the specific site view to be generated, at the same time
queries the data to produce Web pages in desired format. There is a continuum of possibility

of query compilation to materialize Web pages for the site view. By declaratively specifying
models, we can achieve all possibilities, i.e. full compilation, partial compilation, or
interpretation of Web pages, and choose the optimal compilation strategy depending on
various factors such as site requirements, user characteristics, etc.. Details are discussed in
Section 4.2.

2.2 Web Site Design Methodology

The design of a Web site is an iterative process [3][14]. Each cycle goes through the following
steps:
 (1) Requirements analysis. This involves the detailed analysis of objectives of the site,
data characteristics, user requirements, etc.. These aspects are the foundation for the site
modeling process.
 (2) Domain ontology design. The site modeling process starts from designing the default
domain ontology, which also serves as the reference ontology for ontology articulation.
Analysis of the data helps to extract the common elements to be included in the default
domain ontology. The objectives and usage of the Web site will also influence the scope and
complexity of the ontology.
 (3) Site view design. A site-view graph is a graphical representation of three aspects of a
site view, i.e., navigation, content, and presentation. The design of the site-view graph is
determined by factors like characteristics, preferences, and requirements for targeted users of
the site.
 (4) Personalization design. Based on user analysis, different personalization elements need
to be defined, including categorical information about the user, such as age, browser type, etc.,
and user requirements such as what operations are expected when changes occur on certain
data. If some data elements of interest are missing from the site-view graph designed in step 3,
we also need to go back and refine the graph.
 (5) Maintenance design. Here we will not dealing with functionality maintenance, which
relates to software engineering issues, such as debugging and empowering the software. We
only focus on the data maintenance aspect of a Web site. Data maintenance involves
manipulating data when certain data changes. Therefore, we need to find out all the anticipated
changes of the data, and the corresponding actions to be performed.

3 Modeling of Web Site

From a data management perspective, a Web site here can be considered as a collection of
data, including site modeling schemas, site models (i.e., instance of modeling schemas), and
source data (i.e., instance of site models). Site model is a notion we use to define all the
models we used in the site modeling process, each represents a different aspect of the Web
site. There are altogether six types of site models which are shown in Figure 2. To facilitate
the processing of these models for Web site management, these six types of site models can
further be classified into two categories, site-specific and site-view-specific. If a site model for
a particular Web site is site-specific, that means there is only one of this type of models for the
Web site. Domain model, personalization model and maintenance model all belong to this
category. For instance, a personalization model captures all the information about users of a
Web site, therefore only one personalization model is needed for any Web site. On the other
hand, there can be multiple site-view-specific models for a particular Web site. These models

Domain Model Navigation Model

Presentation
Model

Maintenance Model

Content
Model

Personalization Model

Figure 2. Site Models and Their Relationship

site-specific site-view-specific

are only specific to a particular site view, tailored for a particular user. Navigation model,
content model and presentation model belong to this category. Take content model as an
example, for a particular Web site, there could be many content models, though each is
associated with a specific site view. Put it another way, a particular site view specification
contains a navigation model, a content model, and a presentation model. And a Web site
contains multiple site view specifications.
 The relationship of the site models is also shown in Figure 2. There is an arrow between two
models if the source model refers to the destination model as part of its operational data.
Specific to a particular site view, the navigation model specifies the navigational structure of
the site view without concerning what content will be associated with primitive elements of
the structure. Based on the domain model, content model then relates concepts in the domain
to the primitives in the navigation model. The primitives in the navigation model can also be
associated with appropriate presentation styles by the presentation model. Specific to the Web
site, the domain model defines all the concepts and their properties and relationships in the
domain. The personalization model handles the update of individual-dependent data according
to user preferences over navigation, content and presentation aspects of their own site views.
All these models are part of the operational data for the maintenance model, which not only
manages source data, but the other models as well.
 The distinct separation of these site models facilitates the conceptual modeling process.
Designers can focus on each aspect of the site design at a time without bothering with detailed
dependencies on different aspects other than those explicitly specified in the model. Models
can also be reused easily, such as the reuse of favorite presentation style with different content
and navigation models. The declarative specification of these models also makes it much
easier to change any aspect of the site, simply by defining rewriting rules for the models.
 The vocabulary (ontologies) for describing site models is a set of pre-defined site modeling
schemas using DAML+OIL. Table 1 shows the relationship between models, the schemas
used to define them, and meta-schemas (schemas used to define the modeling schemas).

s
Site model

Domain model
Navigation model
Content model
Presentation model
Personalization mod
Maintenance model

Table 1. Relationship between models and schema
Site modeling schema Meta-schema
DAML+OIL DAML+OIL
Navigation schema DAML+OIL
Content schema (and upper ontology) DAML+OIL
Presentation schema DAML+OIL

el Personalization schema (and upper ontology) DAML+OIL
Maintenance schema (and upper ontology) DAML+OIL

event

condition

action

Trigger

Event entity+

timeStamp*

status

Condition

Rule

Action

OperationNotification
timeStamp*

DataSource

message*

timeStamp*

Add

SiteModel

Delete

RewriteModel
model+

statement+

query+

NavigationModel

ContentModelPersalizationModel

DomainModel MaintenanceModel
PresentationModel

uri*

source+

domainModel

updateFreq*

lastCrawlTime*

crawlStatus*
SVSpecModel

SSpecModel

Conjuction
body

head

conjuct

Conjuct

Subject

Predicate

Object

Statement subject

predicate

object

Item

Variable Resourcename*

ArticulationRule

Figure 3. Upper Ontology for Site Modeling

Literal

 (Note that in this paper, we will use this graphical representation to describe schemas and
models, just for illustration purpose. The corresponding serialization in DAML+OIL should be
straightforward. Nodes in the graph stands for classes in the ontology, the properties of the
class are listed beside it. Solid arrows are used for specifying property values as instances of the
pointed class, and the dashed arrows represent sub-class relationship. Asterisk sign (*) indicates
the value of the property is a literal, and plus sign (+) means the property value is an instance of
a certain class but solid arrow to that class is omitted for readability of the graph.)

 To illustrate the process of modeling a Web site, we will present all site modeling schemas
and a set of site models described using corresponding schemas for an example site view. The
site view can be further instantiated with the data collected from research communities
distributed on the Web, and serves as a simplified version of the SWCP.

3.1 Upper Ontology

Before we discuss all site modeling schemas and example site models, we need to define an
upper ontology which contains all the necessary concepts either not captured by any of the
schemas (e.g., data sources), or will be shared among multiple schemas (e.g., triggers). Figure
3 shows the graphical representation of the upper ontology.
 As can be seen in the upper ontology, we define the six types of site models as first class
objects. This makes models describing the Web site part of the processible data. Management
of Web site can thus be reduced to the management of site models. These site models belong
to two distinct categories, SSpecModel (site-specific model), and SVSpecModel (site-view-
specific model), as we have discussed before. In the upper ontology, we also explicitly define
data sources, rules, and triggers, which will be used later in defining schemas for individual
site models.

Person name*

age*

address*

email*

homepage*

Employee

Student studiesAt

Event

Conference

Meeting

Exhibition

title*

date*

location*series*

topic+

University hasParts

President

student Organization

affiliation

AcademicStaff cooperateWith

worksAtProject

publication

name

location

carriesOut

employs

SoftwareComponent hasPrice*

topic+

participant+

Publication title*

year*

keyword*

abstract*
Project name*

isAbout+

hasProduct

financedBy+

carriedOutBy+

head+

ResearchGroup head

member

Book InProceedingsisbn*

author+

price*

publisher+

edition*

editor+

author+

volumn*

publisher+

pages*

Development-
Project

ResearchProject

Product name*

developedBy

3.2 Domain Modeling

The domain model is actu
domain, and extracting co
reference ontology in ont
foundation for modeling
modeling is DAML+OIL.
Figure 4 (Note some classe

3.3 Site View Modeling

To facilitate the process o
view, we have designed a
three aspects of a site vie
specification can be gene
pages in desired format fro

3.3.1 Site-view Graph

The site-view graph is a
contains a minimal set of
typical Web site.

Figure 4. The domain model for SWCP
ally an ontology constructed by analyzing the collected data in the
mmon concepts, their properties and relationships. It is used as the
ology articulation for mapping source ontologies to it, and as a
other aspects of a particular site view. The schema for domain
The domain model for the example site view of SWCP is shown in
s and properties such as constraints are omitted due to space limit).

f modeling navigation, content, and presentation of a particular site
graphical representation called a site-view graph to incorporate these
w. By designing a site-view graph, three models of the site view

rated based on the graph, and later guide the instantiation of Web
m the underlying data.

simplified conceptual model to describe hypertext on the Web. It
 design primitives for composing basic information structures in a

Static
T: Homepage
A: Researchers
A: Publications
A: Projects
A: Search

List
T:Researchers
E:Academic
-Staff
IP: name
OP: name

Fact
T:Researcher
E:Academic
-Staff
OP: *

List
T: Collaborator
E: Academic
-Staff
IP: name
OP:name,email

List
T:Publications
E:Publication
IP: year, title
OP: title

Slide
T: Publications
E: Publication
IP: year
OP: *

List
T: PubInYear
E: Publication
IP: year
OP: title,

keywords

Fact
T: Publication
E: Publication
OP: *

List
T: Projects
E: Project
IP: name
OP: *

Query
T: Search
E: Publication
InP: keyword

(T: title E: entity IP: Indexed Properties OP: Output Properties InP: Input Properties * : all properties)

Figure 5. An example of a site-view graph

P1

P2 P3 P4 P5

P6

P8

P7

P9

L1 L2 L3 L4

L11

L9

L6
L7

L12

L8 L10

L5
C7C6

Pi

Ci

Page

card

link
Li

 Design primitives. The basic elements of a site-view graph are cards, pages and links. A
card is the minimal unit of a site-view graph. A page contains one or more cards and
corresponds to a physical Web page. Links are used to connect cards to form the navigational
structure of the site-view graph. Pages are connected only through the links attached to their
cards. The semantics of these design primitives are defined in the schemas for navigation,
content and presentation. Each schema categorizes and attaches necessary properties to these
design primitives. For instance, a card is attached with properties about coming and outgoing
links in navigation schema, entity property in content schema, and font property in
presentation schema.
 To see how these design primitives fit together to form a complete site-view graph, an
example of a site-view graph for the SWCP is presented in Figure 5. The details about the
graph will be explained in the rest of the section when we describing each model in site view
specification.
 Web information structures. The typical information structures on the Web can be
categorized into three basic types [8]:

• Sequential. A linear form of information flow, the simplest and most common structure.
The linkage from page P6 to P7 in Figure 5 is an example.

• Hierarchical. A hierarchical structure involves having a page linking to lower level pages
of detail. An example could be the root page P1 links to next level of pages P2 to P5 in
Figure 5.

• Associative. This structure involves nonlinear navigation, fundamentally any structure that
is not sequential or hierarchical. L7 in figure 5 is an example where the retrieval of a list of
publications as search result from database helps to form the linkage between the two
pages.

 The information structure of a site view is usually a combination of the above structures.
The provided design primitives are able to form all these basic information structures, which
are the building blocks of a site view.
 Minimalist Approach. Web sites that are too complicated for their intended user will likely
frustrate the user and make site maintenance a nightmare. Sophistication could add value if
applied appropriately, but still it depends on the nature of the Web site, and the intended user.
When modeling a site view, we explicitly offered a set of guidelines, in favor of a predictable
and consistent user interaction and ease of maintenance.
 A minimalist design includes the following ingredients. A site-view graph always starts
from a default root page, with links to the first level of pages. Content information is
categorized and aggregated by cards and pages. Only one type of content is contained in each
card. Navigation is made possible only through links. Moreover, a site map is generated out of
the site-view graph, which can be presented in a separate page or as part of the root page. This
site map makes the structure of the site visible to users, and gives the location information so
they know where they are and where they can go.

3.3.2 Navigation modeling

The navigation model of a site view is a description of the site-view graph with respect to how
the cards and pages are connected through links, without concerning what semantics will be
associated with these primitives. The schema for navigation modeling is shown in Figure 6.
 We classified cards into two categories, dynamic cards and static cards. Dynamic card
contains content that depends on the changes of source data, i.e., the query used to generate
the content needs to be reevaluated if source data changes. A further classification of dynamic
card is the following four types of card. Each represents a typical way to structure information
within a card:

• Fact Card. Only one instance of the entity will be shown with specified output properties
in the card.

• List Card. A list of instances of the entity will be shown, with indexes on key properties
(i.e., some literal properties of the class). And each instance will be shown with specified
output properties.

Page

Card

FactCard QueryCard

SlideCardListCard

id*

inLink

outLink+

inPage+

id*
Link id*

sourceCard+

destCard+

StaticCard

SeqCard

DynamicPage

StaticPage

DynamicCard

hasCard

hasCard

Figure 6. Navigation Schema

RootPage

• Slide Card. A sequence of instances of the entity will be shown with specified output

properties in the card, one instance at a time, and hyperlinks are created to browse nearby
instances (in the order given by specified key properties) in the sequence.

• Query Card. A set of input properties needs to be filled out to search for entities satisfying
these criteria.

 The list-card and slide-card are both a type of sequence-card, which means the content of
these cards is a sequence of instances. Details about how content is generated and presented in
the card are discussed in content modeling (see Section 3.3.3). Static card contains content
which is source data independent, such as static text, and images. A common example is the
root page of a site view, which is always a static card, with predefined anchor texts leading to
the next level pages. Pages are also classified into dynamic and static types according to the
types of cards they contain.
 Navigation model of a site view can be defined using the given schema. As an example, a
portion of the navigation model for the example site view is presented in Figure 7.

3.3.3 Content Modeling

The content model associates meanings to design primitives in the site-view graph. The
schema used for content modeling is shown in Figure 8. It basically specifies two aspects of
content modeling. One is how to present the content in a rendered card (part of a Web page),
the other is how to generate the content for a specific card.
 How to present the content in a card can be explained by meanings of the attached
properties to different card classes in the content schema. Each card has a property ‘title’ that
can be used when rendering the card in Web pages. For a static card, we define all types of
static elements that can be contained in the card, i.e., text, image, and anchor.

P7 type

id

hasCard

C7 type

id

inPage

inLink

outLink

L9 type

id

sourceCard

destCard

DynamicPage

SlideCard

“P7”

“C7”

“L9”

Link

L10

C6

Figure 7. Navigation model for example site view

NativeLink

StaticLink DynamicLink query

variable+

initProp+

sourceAnchor+

destStaticCard+

Card

FactCard
QueryCard

SlideCard
ListCard

StaticCard element

SeqCard indexProp+

inputProp+

Text ImagetextData*

anchor

title*

uri*

StaticElement

Anchor

TextAnchor ImageAnchor

link+

textData* image

DynamicCard

inCard+

entity+

ForeignLink

Link

sourceAnchor+

uri*

Rule

Query

Figure 8. Content Schema

title*

outputProp+

outputProp+

outputProp+

 For a dynamic card, a property ‘entity’ takes a value as a class in the domain model. The
content of the card is instantiated with instances of this class. The ‘outputProp’ property of a
card specifies what properties of each instance are listed on the card. For sequence-card, the
‘indexProp’ property specifies the set of indexed properties used in ordering the listed
instances. A constraint on this property (which is omitted in Figure 8) is it must take values
that are literals (i.e., can not be type of ‘resource’). Consider an example in Figure 5, card C7
is a slide-card, which is a type of sequence-card, it has the following listed properties: title
‘Publications’, which can be the name of the card when it is rendered in a Web page; entity
‘Publication’, which means only instances of class Publication can be contained in the card;
indexed property ‘year’ (note we can have more properties listed to form a multi-key index),
so the order of listed publication instances has to be determined by values of their ‘year’
property; output property ‘*’, this means values of all the properties of publication instances
are shown in the card.
 The generation of content (i.e., instances of entity property of a card) can be realized by
attaching certain properties to link classes. Links can be either foreign (linking to a page
outside the current Web site) or native (linking to a Web page inside the current Web site).
Native links can be either static or dynamic. Static links connect cards without any information
flow, while dynamic links always connect dynamic cards, where the content in the destination
card is determined by information passed from the source card. To instantiate the destination
card with desired content, we associate three properties to a link: a query property, which can
be assigned with a query the execution of which produces the content of the card; a binding-
variable property, which indicates variables in the query which will be instantiated with data
values passed from the source card; and initiating-property property, which helps to create a
hyperlink in the source card. The query is a type of ‘Rule’ class, and the binding-variable is a
type of ‘Variable’ class. A query will first be rewritten with binding variables replaced with
data values passed from source card, then executed to produce the instances.

Researcher
name: Bart Simpson

age: 12

address: Springfield, US

email: bart@us

homepage: http://….

publication

Publications
title: Semantic Web

year: 2001

keyword: Web, XML

abstract: Semantic Web…

Prev Next First Last

X - C6 instance card Y - C7 instance card

L9

Figure 9. An example of content instantiation

 An example of content instantiation is shown in Figure 9, where we extracted the portion of
site-view graph (see Figure 5) containing card C6, C7 and link L9. In this example, we name
the C6 instance card as X, and similarly, the C7 instance card as Y. Suppose X is already
instantiated with an instance of class ‘AcademicStaff’, whose URI is ‘Bart’ (we use first name
of the instance as the URI only for illustration purpose). And now we need to instantiate Y,
which is intended to have a slide show of all instance publications of ‘Bart’.
 The way the instantiation is done is by specifying appropriate values to the query and
binding-variable properties of link L9. The query‡ attached with link L9 is:

 The binding-variable value of link L9 is ‘A’. To add a hyperlink in X, the initiating property
takes the value as ‘publication’. Then the query is evaluated after replaced the variable ‘A’
with the URI ‘Bart’. Given destination card is a slide-card, a set of Web pages is instantiated
with each instance in the query result (assume we are instantiating Web pages statically).
These Web pages are linked together by pre-defined hyperlinks in a slide-card, such as ‘Prev’
and ‘Next’, and ordered by the indexed properties of the card C7. Finally, a static card
containing an anchor which links to the first of these Web pages is created and added into X.
The name of the anchor is given by the initiating property, which is ‘publication’.
 Another different type of query is that for link L7 in Figure 5. Because the source card is a
query-card, the instances to be contained in the destination card cannot be compiled statically.
The variable binding has to take place at run-time when user specifies the search criteria. The
query for L7 is

‡ Qu
deve
FORALL P,K,T <-
P[type->Publication] and P[keyword->K] and
P[title-> T]
FORALL A,P <-
A[type->AcademicStaff] and A[publication->P]

eries and rules in this paper are written in TRIPPLE notation. TRIPPLE is an inference engine we are
loping for the OntoAgents project. Note that O[P->V] stands for a statement in RDF (O,P,V).

Page

Layout

Card

background

layout

FrameLayoutFlowLayout

GridLayout
mainCard

Image

font*

size*

color*

row*

column*

totalRow*

TotalColumn*

Figure 10. Presentation schema

 The binding variable is ‘K’. And initiating property is NULL, since no need to have
hyperlink in the search page. After replacing variable K with values entered by the user, the
query will return titles of all the publication instances with the specified keywords. An
instance of the destination card will then be instantiated dynamically as a list of titles of
publications.

3.3.4 Presentation Modeling

The third aspect of a site view is the presentation model. By associating presentation elements
to design primitives in the site-view graph, the presentation model specifies the look-and-feel
of the Web pages generated from the site view. The schema for creating presentation models is
shown in Figure 10.
 The background of the page can be chosen as an instance of images. Card and page both
have style elements like font, color, etc., with the elements of card, if present, overriding those
of the containing page. The layout of cards in a page can be one of the three types. The flow
layout (default layout) arranges all the cards in a row, the grid layout maps these cards to
certain position on the screen, and the frame layout places one card, denoted by mainCard
property, in the static frame, and other cards in the dynamic one.

3.4 Personalization Modeling

Personalization in our approach includes providing personalized content collection,
navigational experience, and presentation style through adapting the site view to the needs of
users. This is accomplished by manipulating all three models of the site view. The schema for
personalization modeling is shown in Figure 11. Users are explicitly modeled by three
properties, i.e., capacity, interest and request.
 Capacity property describes basic information about the user, such as age, preferred
browser type, connection speed, etc.. The capacity of a user can be used to assign user to
certain predefined groups, and adjust presentation styles for better online experience. Interest
aspect of the user includes the three models of the site view of the user. These models specify
the user’s site view and can be rewritten to specify a new site view. And request property
defines triggers which will be fired if certain conditions are satisfied, the actions of the trigger
is either update the site view by model rewriting, or notify user by messages.

User

Capacity

Interest

Request

username*

password*

capacity

interest

request

name*

age*

gender*

occupation*

incomeLevel*

browserType*

conectionSpeed*

navigateModel+

contentModel+

presentModel+

Trigger

Figure 11. Personalization schema

 Basically, two types of personalization can be provided by the system. The fine-grained
personalization is achieved by defining the personalization model using the above schema. A
coarse-grained personalization can also be used, by assigning user to specific user group. For
each user group, a particular site view and personalization model is constructed. This can be
modeled by defining similar properties for user groups as for users in the above schema and
add relationship between user and user group. In the course-grained personalization, the site
view of the user will not be updated as often as in the fine-grained personalization, since it
only changes when group view changes. This helps to reduce workload of the system
considerably.

3.5 Site Maintenance Modeling

Maintenance of a Web site typically falls into two categories, content maintenance and
functionality maintenance. The later can be further classified into corrective, adaptive, and
perfective maintenance [14]. Here we will focus on the content maintenance aspect, since the
functionality part is more of a software-engineering issue, while what we are interested is the
data management of a Web site.
 From data management point of view, Web site maintenance can be regarded as a
manipulation of data when certain data changes. Therefore, we come to a simple schema for
maintenance modeling, which is shown in Figure 12.
 Administrator is the target object of maintenance rules, and will update the source data,
meta-data, and site view specifications according to the fired triggers. There are basically two
types of maintenance rules.
 User-oriented rules. Administrator is a super user, who has the authority to initiate actions
that influence users and user groups with certain properties. It can be achieved by rewriting the
personalization model. An example of these rules could be “if any instance of Book about
Semantic Web (e.g. title or keyword contains the phrase) has been published, re-compute the
site views of users who are working on a project about DAML.

Administrator userName*

password*

name*

maintainRule Trigger

Figure 12. Maintenance Schema

 Site-oriented rules. Administrators can also perform operations on meta-data, which
provides basic information about data sources (the frequency of updates, crawl status, etc.) and
about the Web site itself (number of users and user groups, different versions of ontologies,
etc.). This is basically handled by rewriting the maintenance model. For instance, a rule of this
type could be “if source A has changes weekly, and today is six days after the most recent
crawling of the source site, then schedule the crawling for today”.

4 Web Site Generation

The generation of a browsable Web site is an instantiation of a particular site view. It can be
described as a two-phase process. First, integrity constraints are verified over the site view
specification. Second, Web pages are materialized by querying the source data based on the
specified site models.

4.1 Constraint Verification

Constraint verification on a traditional Web site is a difficult task. For example, the checking
of whether each page is reachable from the root page are usually performed by manually
following each link in all the pages, which takes much effort especially when the Web site
contains a large number of pages. The constraints of the Web site generated using our
approach can be easily verified. Since ontologies (i.e., site schemas and models) are explicitly
specified using DAML+OIL, constraint verification becomes a direct application of semantics
of the ontologies. On the other hand, it is also part of the reasoning facility provided by the
inference engine, as we define rules and verify them against the ontologies. Note that a
complete formalization of the ontologies is undesirable as it takes considerable amount of
effort, and offers no obvious benefit.
 There are mainly three types of integrity constraints to be verified against each of the three
models in the site view specification.
 Structural constraints. They dictate all the legal patterns of navigation in the site-view
graph. These are verified against the navigational aspect of the site view. Examples of the
constraints could be expressed as the following rules:
(a) Every dynamic card has at least one incoming link.

<- FORALL C C[type->DynamicCard] ->
 EXISTS L L[type->Link] and C[inLink->L] and L[destCard->C]

(b) Every card is reachable from the root page, this is expressed by defining a property called
‘reachable’ using recursion, and using this property to check the constraint.

 Se
info
(a) T

d

(b) T

e

 P
platf
pres
imag

 C
quer
stati

4.2 S

Afte
be c
carri
base
pres
 B
page
pre-
FORALL X,Y X[reachable->Y] <-
X[type->Card] and Y[type->Card] and
EXISTS L X[inLink->L] and Y[outLink->L]

FORALL X,Y,Z X[reachable->Z] <-
X[type->Card] and Y[type->Card] and Z[type->Card]
and X[reachable->Y] and Y[reachable->Z]

<- FORALL P,X P[type->Rootpage] and X[type->Card]
-> EXISTS Y Y[type->Card] and P[hasCard->Y] and
X[reachable->Y]
mantic constraints. The content model of a site view is validated based on semantic
rmation. Example constraints could be:
he entity associated with a query-card must match the entity associated with its
estination card, since the search result should relate to the same entity.

<- FORALL X,Y,L,E1,E2 X[type->QueryCard] and Y[type->Card] and

L[sourceCard->X] and L[destCard->Y] and X[entity->E1] and
Y[entity->E2] -> E1 = E2
he value of ‘initProp’ property of a dynamic link should be one of the properties of the
ntity associated with the destination card (see Section 3.3.3).

resentational constraints. The look-and-feel of Web pages can be different on different
orm, browser, and even depends on the connection speed. An example of how these
entation elements influence the site view could be: do not allow usage of background
e and frame layout in the site view given a low connection speed.

<- FORALL P,U,C,S U[type->User] and U[capacity->C] and
 C[connetionSpeed->’Low’] and P[type->Page] ->
 NOT EXISTS X P[background->X] and
 NOT EXISTS Y P[Layout->Y] and Y[type->FrameLayout]
<- FORALL L,I,D,E L[type->DynamicLink] and L[initProp->I]
and L[destCard->D] and D[entity->E] -> I[domain->E]
onstraints involving multiple site models are also possible. An example is to verify that
ies produce a full text version of a site view. This requires defining rules to check both the
c elements in the content model and page elements in the presentation model.

ite View Instantiation

r integrity constraints verification has been done, models in the site view specification will
ompiled into Web pages to produce a browsable Web site. A typical instantiation is
ed out by the query engine which generates HTML pages with data from the repository,
d on the navigation and content model, and produce CSS style-sheets based on the
entation model.
ecause all models are specified declaratively, there exists a continuum of possibilities in
 compilation, which did not exist in any prior system. The possibilities range from full

generation of HTML pages at compile time (full compilation), to partial compilation (e.g.

a Java Servlet builds the HTML page, and instantiate pages at runtime out of data stored in
database), to full interpretation (the models are interpreted by an interpreter, which creates the
all HTML output at runtime).
 Different solutions have different application areas. Pre-generation of the HTML code is
desirable if the load of the Web site is extremely high and it is too expensive to access a
database when a request comes in. Unfortunately pre-generation is also the most inflexible
solution – a change to the source data may require a large number of the site views to be re-
instantiated. An example of a full pre-generation system is Strudel. Partial compilation is
desirable, if the load of the Web site is in balance with the need to reflect updates of the
database quickly in the generated HTML code. Torri is an example of a Web site management
system realizing partial compilation. The models defined for the Web site are used to generate
JSP scripts. Finally, full interpretation of the models is the most inefficient, but also the most
flexible way of Web site creation. The MyYahoo.com Web site [10] can be regarded as an
interpretative system. Changes to the layout and the selection of modules are directly reflected
in the personalized view of the Web site.

5 Related Work

Given the amount and complexity of the Web content, research has been conducted in the
large context of extending database techniques for data on the Web, particularly with the goal
of facilitating the creation and maintenance of data intensive Web sites. A few systems, such
as ARANEUS[11], AutoWeb[4], Torri[2], have been developed using a model driven
approach, which is adapted from classical database and hypermedia design methodologies.
These systems have their own data models, query languages, and sets of CASE tools to
facilitate the process of wrapping, modeling, generation and querying. But the common theme
is a high-level description of a Web site by distinct orthogonal dimensions. Those dimensions
include the modeling of information content, page composition, navigation, and presentation.
Personalization by means of user modeling and business rule management has also been added
in later systems. However, none of the approaches deal with integration of heterogeneous data
sources, which is what OntoWebber is explicitly designed for. Since in OntoWebber
ontologies and site models for different aspects of the site are both expressed in RDF, they can
be rewritten and queried statically or dynamically, which is another feature not present in these
systems, because they do not have a unified data model like RDF and do not construct
ontologies for every aspects of site modeling.
 Other systems like Strudel[5] and its variant Tiramisu[1], address the problem of data
integration, and establish a separation over the Web site data management, content and
structure specification, and visual presentation. The emphasis of their approach is the
declarative specification of a Web site’s structure and content. By defining a declarative query
language, they showed how the generation of a Web site can be automated by querying the
data graph to construct a site graph (i.e., site view), and how integrity constraints of the
generated site can be enforced by reasoning over the site structure. However, they do not have
fine-grained modeling hierarchies for each aspects of a Web site as in OntoWebber. Site view
in these systems is simply a data graph containing all the navigation and content information.
The presentation style is hard coded in the HTML templates. While in OntoWebber the site
view is specified as three distinct models to separate the aspect for navigation, content, and
presentation. The rewriting and reusing of these models eases the maintenance work and

enables flexible personalization. Since strudel does not concern the aspects of site maintenance
and personalization, it is actually only an implementation tool, not a management system.
 AI approaches like SEAL[9] focus on the presentation of portals based on a domain
ontology. However, SEAL does not enable the creation of a site by modeling the site itself,
and also offers no support for the integration of heterogeneous data sources. Although SEAL
provides a set of tools (e.g. the Java based rule engine SiLRI), the underlying site still needs to
be created and programmed in a conventional manner.
 The fundamental difference between the OntoWebber approach and previous approaches is
the integration of three different aspects into a coherent framework: (1) integration of
heterogeneous data sources based on a formal model for semi-structured data, (2) explicit
ontologies, which help to structure, create and generate the site, and (3) a rigorous modeling
methodology, which helps to create reusable models.

6 Conclusion and Future Work

We proposed a model-driven ontology-based system architecture for creating data intensive
Web sites and portals. Our approach combines the advantages of different technologies: Semi-
structured data technology is used to integrate heterogeneous data sources; Declarative models
help to define a Web site without hard-coding design into static or dynamic Web pages;
Ontologies are used to provide access to the underlying data and guide the modeling process.
 Future work includes the development and integration of all the software components of the
system. We have already developed a number of tools, such as Web crawler, ontology
articulation tools, data translation tool, ontology construction tool, and RDF query and storage
facilities. However, the graphical Web site modeling tool and the inference engine are still
under development. Furthermore, a number of problems to be considered could be:
 Management of evolving ontologies. Different versions of ontologies (i.e., schemas) might
be incompatible with each other. How to manage evolving ontologies and retain consistency
and usability of ontologies is a necessity for the robustness of a Web site.
 Optimization strategies for site generation. Evaluation and performance measurements of
dynamic and static Web site generation needs to be investigated. And a set of optimization
strategies can thus be defined to guide the cost-effective generation of Web site.
 Adaptation to handle dynamic services. Currently approach of OntoWebber only deals
with static information sources. With UDDI§ and Microsofts.NET initiative, more and more
dynamic Web services will be available, which will be integrated into portals and Web sites.
OntoWebber needs to define appropriate ontologies to be able to handle dynamic services as
well.

References:

[1] Corin R. Anderson, Alon Y. Levy, Daniel S. Weld: Declarative Web Site Management with Tiramisu.
WebDB (Informal Proceedings) 1999: 19-24.

[2] Stefano Ceri, Piero Fraternali, Stefano Paraboschi: Data-Driven, One-To-One Web Site Generation for Data-
Intensive Applications. VLDB 1999: 615-626.

§ http://www.UDDI.org

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fraternali:Piero.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Paraboschi:Stefano.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb99.html

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling Language (WebML): a modeling language for
designing Web sites WWW9 Conference, Amsterdam, May 2000.

[4] Piero Fraternali, Paolo Paolini: A Conceptual Model and a Tool Environment for Developing More Scalable,
Dynamic, and Customizable Web Applications. EDBT 1998: 421-435.

[5] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, Dan Suciu: Declarative Specification of Web Sites with
Strudel. VLDB Journal 9(1): 38-55 (2000).

[6] Gamma, E., Helms, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and Jennifer Widom. "Integrating
and Accessing Heterogeneous Information Sources in TSIMMIS". In Proceedings of the AAAI Symposium on
Information Gathering, pp. 61-64, Stanford, California, March 1995.

[8] Charles J. Lyons, Essential Design for Web Professionals, Prentice Hall, 2000.

[9] A. Mädche, S. Staab, N. Stojanovic, R. Studer, Y. Sure. SEAL - A Framework for Developing SEmantic
portALs. In: BNCOD 2001 - 18th British National Conference on Databases. Oxford, UK, 9th - 11th July 2001,
LNCS, Springer Verlag, 2001.

[10] Udi Manber, Ash Patel, John Robison: Experience with Personalization on Yahoo! Communications of the
ACM Vol. 43, No. 8 (August 2000), Pages 35-39.

[11] G. Mecca, P. Merialdo, P. Atzeni, V. Crescenzi The (Short) Araneus Guide to Web-Site Development -
Second Intern. Workshop on the Web and Databases (WebDB'99) in conjunction with SIGMOD'99, May 1999.

[12] Sergey Melnik, Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the
Web. ECDL 2000 Workshop on the Semantic Web. 21 September 2000, Lisbon Portugal.

[13] Prasenjit Mitra, Gio Wiederhold, Martin L. Kersten: A Graph-Oriented Model for Articulation of Ontology
Interdependencies. Proceedings of the 7th International Conference on Extending Database Technology, EDBT
2000, March 2000 Springer Verlag.

[14] Tomas A. Powell, David L. Jones, Dominique C. Cutts, Web Site Engineering Beyond Web Page Design,
Prentice Hall, 1998.

[15] Steffen Staab, Jürgen Angele, Stefan Decker, Michael Erdmann, Andreas Hotho, Alexander Mädche, Hans-
Peter Schnurr, Rudi Studer, York Sure. Semantic Community Web Portals. In: WWW9 / Computer Networks
(Special Issue: WWW9 - Proceedings of the 9th International World Wide Web Conference, Amsterdam, The
Netherlands, May, 15-19, 2000), 33(1-6): 473-491. Elsevier, 2000.

http://xerox.elet.polimi.it/webml/documents/www9.pdf
http://xerox.elet.polimi.it/webml/documents/www9.pdf
http://dblp.uni-trier.de/db/indices/a-tree/f/Fernandez@Mary_F=.html
http://dblp.uni-trier.de/db/indices/a-tree/f/Florescu@Daniela.html
http://dblp.uni-trier.de/db/indices/a-tree/l/Levy@Alon_Y=.html
http://dblp.uni-trier.de/db/journals/vldb/vldb9.html
ftp://www-db.stanford.edu/pub/papers/tsimmis-abstract-aaai.ps
ftp://www-db.stanford.edu/pub/papers/tsimmis-abstract-aaai.ps
http://dblp.uni-trier.de/db/indices/a-tree/w/Wiederhold@Gio.html
http://dblp.uni-trier.de/db/indices/a-tree/k/Kersten@Martin_L=.html
http://www.springer.de/comp/lncs/index.html

	Site modeling schema
	4 Web Site Generation

