
OntoMap – the Guide to the Upper-Level
Atanas K. Kiryakov, Marin Dimitrov

OntoText Lab., Sirma AI EOOD
Chr. Botev 38A, 1000 Sofia, Bulgaria,{naso,marin}@sirma.bg

Kiril Iv. Simov
Linguistic Modelling Laboratory, Bulgarian Academy of Sciences

Akad. G. Bontchev Str. 25A, 1113 Sofia, Bulgaria, kivs@bgcict.acad.bg

Abstract. The upper-level ontologies are theories that capture the most common con-
cepts, which are relevant for many of the tasks involving knowledge extraction, repre-
sentation, and reasoning. These ontologies use to represent the skeleton of the human
common-sense in such a formal way that covers as much aspects (or ”dimensions”) of
the knowledge as possible. Often the result is relatively complex and abstract philo-
sophic theory.

Currently the evaluation of the feasibility of such ontologies is pretty expensive
mostly because of technical problems such as different representations and terminolo-
gies used. Additionally, there are no formal mappings between the upper-level ontolo-
gies that could make easier their understanding, study, and comparison. As a result,
the upper-level models are not widely used. We present OntoMap — a project with the
pragmatic goal to facilitate an easy access, understanding, and reuse of such resources
in order to make them useful for experts outside the ontology/knowledge engineering
community.

A semantic framework on the so called conceptual level that is small and easy
enough to be learned on-the-fly is designed and used for representation. Technically
OntoMap is a web-site (http://www.ontomap.org) that provides access to upper-level
ontologies and hand-crafted mappings between them. Currently it supports just on-
line browsing and DAML+OIL export. The next step will be to provide the resources
in various formats, including an application server giving an uniform access to the
resources via OKBC. This way OntoMap will become part of the semantic web, i.e.
machine-understandable rather than just human-readable.

1 Introduction

The structure of the paper is as follows: the next section makes an introduction to the Upper-
Level Ontologies, including a principal comparison to the domain-specific ones, discussion
on their relations with the lexical knowledge bases and some incompatibility issues. Sec-
tion 3 discusses the representation languages and primitives with subsections about the most
significant paradigms and a short overview of the approaches for their unification. Section
4 describes the primitives used in the OntoMap project – the OntoMapO ontology. Section
5 focuses on the OntoMapO methodology for mapping concepts between ontologies. More
technically section 6 enumerates the formats in which OntoMap will provide all the ontolo-
gies and mappings. The initial set of ontologies to be hosted and the mappings between them
are discussed in section 7. The next section 8 demonstrates the OntoMap usability with a

sample snapshot. Section 9 provides an idea about the services that could be provided on top
of the results of the project. The next section concludes the paper.

2 Upper-Level Ontologies

The upper-level ontologies capture mostly concepts that are basic for the human understand-
ing of the world. They are ”grounded” in (supported by, wired to) the common sense that
makes it hard to formalize a strict definition for them. They represent the so called prototypi-
cal knowledge.

For example, what should be a formal KL-ONE-style or Frame-style definition of a ”ta-
ble”. Most of the tables have 4 legs, however, there are pretty obvious exceptions for tables
with three legs, single leg or even without anything to be considered as a leg. There could be
also a ”serious” table with 6 legs. What should be the minimum and maximum cardinality for
the slot/role leg? And what should be the type restriction? This is the reason to have most of
the upper-level concepts being primitive in KL-ONE terms – they can only have partial def-
initions, some necessary conditions that involve other partially defined concepts. This is the
practical reason to have the upper-level ontologies (for example, Upper Cyc Ontology, SEN-
SUS, MikroKosmos) defined mainly in terms of taxonomic relations. An attempt to strongly
use attributes in their definitions could be hard, expensive, and usually leads to involvement
of default reasoning or other similar mechanisms that cause intractability.

2.1 Domain-Specific vs. Upper-Level Ontologies

This pseudo-dilemma seems to be mostly a question of goal and scope of the developers
of the ontology rather than a representational or management problem. Of course, there ex-
ists a significant real difference between the two types of ontologies. The domain-specific
ontologies that are trying to capture, for example, a market segment or certain scientific area
typically consist of well-defined concepts. For example, in the natural sciences (Mathematics,
Physics, Chemistry, Biology, Medicine) the knowledge is usually easy to formalize because
it is more or less systematic — it could be expressed using well-defined scientific terms. In
such cases, the objects in the universe of discourse are either purely abstract either they are
some idealized/simplified models of the real phenomena in the world. For instance, a triangle
is nothing more than a polygon with three angles.

2.2 Lexical Knowledge Bases

The so-called lexical knowledge bases (LKB, such as WordNet) are lexicons, thesauri, or dic-
tionaries that attempt to formalize the lexical semantics — the meanings of the words in one
or more natural languages. Similar to the upper-level concepts, the meanings of the words are
grounded in the common understanding of huge populations — there are no formal defini-
tions, the words can bear a number of different meanings often based on associations, typical
uses, collocations, and prototypical knowledge. Going further, the meanings of many words
are just primitive concepts. Historically the LKBs and the upper-level ontologies seriously
influenced each other. Some upper-level ontologies were developed on the basis of a LKB —
such example is the SENSUS ontology ([10]). Other upper-level ontologies were developed

in order to give formal semantics to a LKB — such an example is the EuroWordnet Top On-
tology, [15]. This is the reason to have a number of LKB semantic resources included in the
initial set of ontologies to be hosted in OntoMap.

2.3 Philosophical Diversity

The existence of several upper-level ontologies that disagree on the most basic concepts about
the entities in the world demonstrates a significant philosophical diversity. The practical goals
OntoMap project is after seem to require clarification of these basic discrepancies. Which
properties of the entities in the world are the most basic ones? What follows from different
choices on this level? On which level of generality the differences disappear if they disappear
at all? For example, the top of the MikroKosmos ontology (see [14]) demonstrates a typical
top-level:

ALL
PROPERTY

ATTRIBUTE
RELATION

OBJECT
SOCIAL-OBJECT
PHYSICAL-OBJECT
MENTAL-OBJECT
INTANGIBLE-OBJECT

EVENT
SOCIAL-EVENT
PHYSICAL-EVENT
MENTAL-EVENT

However, it ignores the stuff/object (countable) distinction that is very basic in Cyc (see
[2]) and other upper-level ontologies.

Our understanding is that OntoMap should not try to choose the best upper-model or to
produce a new one. The upper-level have to be chosen according to the specific application –
we just want to make the comparison easier.

2.4 Some Disadvantages of the Automatic Mapping

Automatic mapping or merging of ontologies is not involved in OntoMap — we start with
the assumption that there either exist some hand-crafted mappings, or such can be developed.
Even though it seems that automatic mapping could reduce the efforts, the typical heuristics
employed (see [11], [1]) can have a very limited role in the case of upper-level ontologies
because of a number of reasons:

• there is relatively small number of upper-level resources, because they are complex, ex-
pensive, and (potentially) more reusable than the domain-specific ones;

• they are more complex than the domain-specific ones, because they handle more abstract
and partially defined concepts. Much of the semantics is represented just as a free text
gloss, rather than as a formula in some knowledge representation formalism. So, in many

cases the equivalence (or mapping) between two concepts could be judged only by inter-
pretation of the glosses;

• the mappings between upper-level ontologies are more re-usable because the ontologies
are more reusable;

• the quality of the mapping is extremely important because a mistake in the upper-levels
of an ontology can have terrible effect on the lower levels.

3 Unified Representation Needed

In order to provide a uniform representation of the ontologies and the mappings between
them, a relatively simple meta-ontology (let us call it OntoMapO) of property types and
relation types should be defined. Before presenting OntoMapO we will make an overview of
the related problems and approaches.

3.1 Terminological Diversity

There are number of different notions (or terminologies) that are currently used in knowledge
management community. The differences (both phraseological and conceptual) are rooted in
the main paradigms in the knowledge representation. Here is a non-exhaustive overview of
the most popular ”languages” used by the ontologists:

• concepts, relations, properties— these are usually the terms inspired by the early se-
mantic networks (let us use the abbreviationSemNetbelow), mathematics and philoso-
phy.Conceptsare used to express any kind of static and cognitively autonomous semantic
phenomena. They classify the entities in the domain of discourse — each entity either
belongs to a certain concept’s interpretation, either not. In other words, the information
carried out by the concept is either true for the entity either not. The entities that belong to
the interpretation of the concept are calledinstancesof the concept. Typical concepts are
Person, Food, Meeting, Idea. Thepropertiescome to represent characteristics, aspects, or
attributes of the entities, as well, as relations between them. They are further separated
into attributesandrelations. Typical representatives are: color, gender (attributes); loves,
causes (relations).

• classes, slots, facets and frames— obviously, this is the frame-based terminology (to
be referred asFrames below). Hereclassescorrespond to the concepts while the no-
tion for the instances remains the same. Theslots(especially as they evolved in the last
years) correspond to the properties. Slots are further distinguished intotemplate-slots
(class- or concept-attributes in SemNet) andown-slots(instance-attributes in SemNet).
The template-slots are defined on a class level — for example, Color is a template-slot
for the class Car. In contrast, own-slots connect some values of the template-slots to cer-
tain instances of the class, say Colour(Ferarri, Red).Facetsare properties of the slots, for
example, Domain, Range, Min-Cardinality, Documentation. Formally speaking, they are
own-slots of the slots. There is no clear favorite for a single term corresponding to the
facet notion in the rest of the paradigms;

• concepts, roles, individuals— this is the terminology used in the so called description
logics (DL), the descendants of the KL-One knowledge representation language (CLAS-
SIC, LOOM, KRIS, SHIQ). This paradigm is pretty close to the one used in the semantic
networks. Strictly speaking, it is developed to make them more precise on the epistemo-
logical level. Theroles correspond to the properties, theindividualscorrespond to the
instances;

• classes, objects, attributes- this is the terminology used in theobject-orientedparadigm
(OO), mostly popular for the purposes of the software engineering. Theclassescor-
respond to the concepts while theattributes(also called data members) correspond to
properties. Equivalent of the class-attributes are thestatic data members. Theobjectsare
always instances of certain class;

• collections, individuals, predicates, constants- this is the terminology used by thecy-
clists, the people developing the Cyc knowledge base at Cyc Corp. Roughly, thecol-
lectionscorrespond to concepts,individualsto the instances, and binary predicates (that
are kind of collections themselves) correspond to properties. Theconstantsare names of
collections, individuals, or predicates.

3.2 The Conceptual Level

There are number of attempts to resolve the terminological diversity by managing ontologies
in a representation-independent fashion on the so called knowledge-level or conceptual level.
Two of the most popular approaches are reported in [4] (ODE) and [12] (OntoEdit). Even
sticking to the frame-based terminology the knowledge-model of Protéǵe-2000 (see [13]) is
also a good example for a self-contained and well designed conceptualization that provides
sufficient expressive power to capture ontologies encoded in different languages.

A comprehensive classification of the different kinds of properties is reported in [7] —
according to different combinations of the meta-propertiesidentity, rigidity anddependence
it introduces seven different notions corresponding to ”Concept” in ODE. The primitives used
in Cyc (see [2] and the previous sub-section) are interesting at least because the approach is
proven in a really large-scale knowledge base.

4 OntoMapO: The OntoMap Primitives

OntoMap is trying to use the minimal useful set of primitives. We were led by the understand-
ing that the oversimplification is not that fatal for the overall usability as a complex system of
primitives could be. We tried to design OntoMapO to capture most of the semantics usually
encoded in upper-level models. The guideline was to give access to 80% of the ”knowledge”
content of of the upper-level ontologies within 20% of the complexity of the representation
needed to capture all of it.

We developed a minimalistic meta-ontology that is also as self-describing as possible.
Thus, most of the primitives are defined just in terms of the rest of the OntoMapO primitives.

OntoMapO ontology could be also seen as a language. A simple language that provides
some expressive power via single kind of expressions – binary relations between concepts.
We are intentionally not providing specific syntax in order to keep it as representation in-
dependent as possible. Further in this paper we will use a LISP-like syntax to serialize the

relations, however, it is obvious that many other notations (say XML) could perform equally
well.

4.1 Comparison with Other Approaches

We will try first to give an impression about OntoMapO by quickly comparing it to two well
known approaches for ontology representation.

4.1.1 OntoMap vs. Ontolingua

Each concept is represented in Ontolingua with some twenty slots, many of which are not
obvious for people that do not understand frames. For example, if somebody wants to un-
derstand the definition ofCorporation in the Enterprise Ontology as it is represented
in Ontolingua (see [18] and [17]) s/he has to bother about the meaning of slots likeSet-
Cardinality andRelation-Universe .

We undertake an approach opposite to the one employed in Ontolingua, [5], following the
rationale that even though many distinctions could be clearly defined in Ontolingua the most
of the semantic-model developers cannot understand them. Our vision is that the database
designers, for example, should not be expected to learn complex frame-based theories.

4.1.2 OntoMap vs. RDFS and DAML+OIL

OntoMapO is much similar to the RDFS. The equivalent forrdfs:Class is Concept in
OntoMap and again there are two basic relations: instantiation and inheritance (see subsection
Instantiation in Addition to Inheritance). An equivalent ofrdf:Property in OntoMap is
BinaryRel .

We will try to outline just the major differences:

• in OntoMaprdfs:Resource is missing, actually there is no difference between classes
and resources – they are both considered as concepts (resp.rdfs:Class andConcept).

• as a consequence the property types (resp.rdf:Property or BinaryRel) are con-
sidered as a sub-class of the concepts.

• there is no special relation forrdfs:subPropertyOf – the sub-class relation (resp.
rdfs:subClassOf andChildOf) is used for this purpose.

Similarly to the RDF triples, the basic expressive primitive in OntoMap are directed bi-
nary relations between the concepts that are labeled with other concepts.

The DAML+OIL language (see [8]) can be seen as extension of RDFS. OntoMapO is
much similar and basically simpler than DAML+OIL. It is missing class expressions (no
enumeration, boolean expressions, and property restrictions), Unique and Ambiguous prop-
erties. However, it is not the case that OntoMapO is a sub-language of DAML+OIL, in ad-
dition it has number of primitives for mapping (TopInstance, ExactClass, ParentAsInstance,
and ChildAsClass) and meronymy (PartOf, MemberOf, and SubstanceOf).

4.2 Concepts, Relations, and Ontologies

Conceptis the most basic primitive, so, we are leaving it to the reader’s intuition. Just as a
reference point the concepts could be compared to the constants in Cyc. The concepts could
be related to each other bybinary relations. Each binary relation has a type that is a concept.
Each concept belongs to an ontology and, of course, there could be many different ontologies.

4.3 Instantiation in Addition to Inheritance

Our semantic framework got some inspiration from Cyc, Protéǵe-2000, and RDFS repre-
sentation models (see [2], [13], and [16]) — in addition to the inheritance relations we also
employ as a basic mechanism the instantiation. So, the concepts are not only described by
their parents and children in the subsumption hierarchy but also from the classes that they
belong to. The classes themselves are also concepts that could belong to other classes and so
on. This way an infinite number of meta-levels could be defined.

We will use a simple set-theoretical semantics to explain the distinction between the in-
heritance and instantiation. Suppose that each concept is interpreted as a set of its instances.
So, (InstanceOf I C) means thatI ∈ C. In the same fashion(ChildOf C1 C2)
means thatC1 ⊂ C2. This interpretation has some pretty reasonable consequences:

• the inheritance relations are transitive — if(ChildOf C1 C2) and(ChildOf C2
C3) it follows that(ChildOf C1 C3) . Really, fromC1 ⊂ C2 andC2 ⊂ C3 it follows
thatC1 ⊂ C3

• the instantiation is not-transitive — ifI ∈ C andC ∈ MetaC it does NOT follows that
I ∈ MetaC

• the instantiation is transitive with respect to inheritance — if(InstanceOf I C1)
and(ChildOf C1 C2) it follows that(InstanceOf I C2) . Really, fromI ∈ C1
andC1 ⊂ C2 it follows thatI ∈ C2

An obvious advantage of such extensive use of instantiation is that it makes the hierarchy
less tangled avoiding multiple-inheritance on many places. As a design principle, instantiation
should be used to express non-sortal properties of the concepts (see [7]). For example, in
OntoMapO (see below) we represent the transitivity of a relation type (say,ChildOf) via
instantiation. It is because the fact that certain relation is transitive does not determines its
identity — it is just a rigid property, namely a Category for relations.

4.4 Relations

Each relation between two concepts is an instance of the concept representing its type. Let
us extend the set-theoretical interpretation of our model — if(RelA B C) than the pair
< B, C > ∈ RelA. Suppose there are two conceptsRelA andRelB that represent relation
types and the first one inherits the second one(ChildOf RelA RelB) . Our interpretation
correctly predicts thatRelB holds between all concepts whereRelA holds. Let us show how
it works:

• let have conceptsA andB and there is a relation of typeRelA between them(RelA A
B)

• following our interpretation we can state that< A, B > ∈ RelA

• also(ChildOf RelA RelB) means thatRelA ⊂ RelB

• now it is obvious that< A, B > ∈ RelB, that means that

• there is a relation of typeRelB between the conceptsA andB.

In OntoMapO all the concepts representing relation types should be instances of theBi-
naryRel concept or at least one of its children. Further, OntoMap inference engine con-
siders a binary relation to be transitive iff it is an instance ofTransitiveRel that is a
child of BinaryRel . Examples for transitive relation areChildOf andEquivalent .
Analogously, a concept represents a symmetric relation type iff it is an instance ofSymmet-
ricRel — we can takeInverse relation (discussed below) as such example.

4.5 Each OntoMapO Relation Has an Inverse Relation

Another principle that we followed was to define an inverse relation for each of the On-
toMapO relations except the symmetric ones, of course. The rationale behind this was two-
fold:

• to emphasize that the OntoMap relations (in contrast to the slot notion, for example) does
not give any representational preference to the concept in the first place

• two make the relations easy to read and follow in both directions

So,ChildOf relation has its inverseParentOf relation; InstanceOf is inverse to
ClassOf . In order to keep some correspondence to the frame-based systems we defined
HasSlot relation as an inverse to theDomain relation that could be defined between a
relation type and the concept which instances could be first arguments of the relation. Anal-
ogously,Reifies is inverse to theRange relation that holds between a relation type and
a concept which instances could be second arguments of the relation. Here are some real
constraints that take place in OntoMapO:

• (Domain Inverse BinaryRel) and the equivalent statement that
(HasSlot BinaryRel Inverse)

• (Range Inverse BinaryRel)

• (Domain ChildOf Concept) , equivalently(HasSlot Concept ChildOf)

4.6 How Are the Predefined Relations Special

Let us callvariants of a relationR all its direct or indirect children (i.e. sub-relations or
sub-properties) as well as the relations that are equivalent to it or one of its children.

OntoMap considers as an equivalence relation each relation that is variant ofEquiva-
lent . In a similar fashion, all the variants ofChildOf andParentOf are treated as in-
heritance relations. Analogously, one relation is an instantiation relation iff it is a sub-relation
of InstanceOf or ClassOf relations. Obviously, all the sub-relations ofInverse are
properly interpreted as inversion by the OntoMap inference engine.

This approach makes the primitives that the OntoMap inference engine understands ex-
tensible. For example, when ”explaining” Cyc’s knowledge model to OntoMap it is easy to
define(Equivalent #$genls ChildOf) – this way OntoMap automatically starts to
understand this kind of Cyc inference relations without any need to translate them further.

There is an interesting implementation issue related to this extensibility. In order to infer
all the inheritance relations, the engine should know all the equivalence relations (to be able
to detect the variants ofChildOf andParentOf). However, the opposite is also true. The
appropriate algorithms were implemented.

4.7 The Hierarchy

The hierarchy below is basically an inheritance tree augmented with some instantiation infor-
mation – after each concept name in brackets we have the (most specific) classes it belongs
to.

Top (Concept)
Concept (Concept)

BinaryRel (Concept)
TransitiveRel (Concept)
SymmetricRel (Concept)

Ontology (Concept)
Context (Concept)

ChildOf (TransitiveRel)
MuchMoreSpecific (TransitiveRel)

ParentOf (TransitiveRel)
MuchMoreGeneral (TransitiveRel)

ClassOf (BinaryRel)
ExactClassOf (BynaryRel)

InstanceOf (BinaryRel)
TopInstanceOf (BinaryRel)

SimilarTo (TransitiveRel, SymmetricRel)
Equivalent(TransitiveRel,SymmetricRel)

Inverse (SymmetricRel)
ChildAsClass (BinaryRel)
ParentAsInstance (BynaryRel)
Domain (BinaryRel)
Range (BinaryRel)
HasSlot (BinaryRel)
Reifies (BinaryRel)
DisjointWith (BinaryRel)
IsPartOf (TransitiveRel)
HasPart (TransitiveRel)
MadeOf (BinaryRel)
SubstanceOf (BinaryRel)
MemberOf (BinaryRel)
GroupOf (BinaryRel)

The full definition of OntoMapO in DAML+OIL (version from March, 2001) together
with descriptions of each of the concepts is available at
http://www.ontomap.org/2001/07/ontomapo

5 Ontology-Mapping Primitives

There is no formal difference between the relations that can be used inside an ontology and
those to be used for mapping of concepts in different ontologies. However there are number
of relations that are not expected to be used inside well defined ontology — those should
be used for handling structural differences between different ontologies. For example, the
(TopInstance A B) should be used when a conceptA from one ontology exists as a
conceptB on the upper level of denotation in another ontology, i.e.(ChildOf X A) holds
iff (InstanceOf X B) holds. Such design patterns should not be tolerated inside a single
ontology. Here follow explanations for these relations:

• MuchMoreSpecific , MuchMoreGeneral – the first concept is much more specific
(resp. general) than the second one. Both are transitive and inverse to each other and have
to be used to ”constrain” the meaning of a concept that has not equivalent or even similar
concept in another ontology;

• TopInstance – the first concept is the most general instance of the second one. Inverse
to ExactClass ;

• ExactClass – the first concept is a kind of meta-concept, the second concept is the
most general instance of the first one. Inverse toTopInstance ;

• ParentAsInstance – the first concept is more general than all the instances of the
second one that is a meta-concept. Inverse toChildAsClass

• ChildAsClass – the first concept is a meta-concept (class), all its instances are more
specific than the second concept. Inverse toParentAsInstance

5.1 Representing Ontologies in OntoMap

When an ontology representation has a well defined conceptualization our approach is to map
its primitives to the OntoMapO primitives. For example, importing Upper-Cyc Model ([2])
we just defined that

(Equivalent #$genls ChildOf)
(Equivalent #$isa InstanceOf)

an so forth with the rest of the Cyc’s relations. While OntoMapO interprets each relation
that is equivalent or more specific thanChildOf as inheritance relation it starts perfectly
understand the inheritance in Cyc.

Analogously importing Protéǵe-2000 ([13]) meta ontology we can establish that:

(Equivalent :DIRECT-SUPERCLASSES ChildOf)
(Equivalent :DIRECT-SUBCLASSES ParentOf)
(ChildOf :DIRECT-INSTANCES InstanceOf)
(ChildOf :DIRECT-TYPE ClassOf)

First, let us answer why:DIRECT-TYPE is more specific thanClassOf — in Prot́eǵe
each concept could be instance just of a single class. This limitation makes:DIRECT-TYPE
more specific relation thanClassOf . Even with this complication, OntoMap will be able to
interpret the instantiation as it is defined Protéǵe because:DIRECT-TYPE is a specification
(sub-relation) ofClassOf , so:DIRECT-TYPE is an instantiation relation.

6 Formats and Representations

Publicly available ontologies (or parts of them) will be presented in a number of standard
forms:

• PROLOG and KIF;

• DAML-OIL (already available);

• HTML - an online ontology browser as well as static pages available for download;

• SQL scripts for ORACLE and MS SQL Server;

• Ready-to-use files for MS Access (MDB);

• Online application server accessible via CORBA, EJB, RMI, and SOAP (an RPC protocol
based on XML.)

At present, the only the online ontology browser is implemented.

7 The Initial Set of Ontologies

The following ontologies will be hosted initially:

• Upper Cyc Ontology [UCYC]

• EuroWordnet Top Ontology [EWNTOP]

• EuroWordnet Clusters [EWNCLUST] - the clusters of EWN base concepts classified by
top concepts. An extension of ETOP

• WordNet 1.5 unique beginners [WNUB5]

• WordNet 1.6 unique beginners [WNUB6]

• WordNet 1.7 unique beginners [WNUB7]

• CORELEX [CLEX] - made on top of WNUB5

• MikroKosmos top-level [MKOSTOP]

• SENSUS top-level [SENSTOP]

For each of the ontologies there will be available an ”executive summary” as well as the
most important documents about it (papers, reports, guides and so on), URLs. Of course,
the original ”distributives” provided by the creators will be also available. The following
ontologies are already hosted on OntoMap: UCYC, EWNTOP, WNUB7, and MKOSTOP.
Clear candidates for hosting are (or will be) also OpenCyc, any results of the SUO effort, and
the Simple Core Ontology.

Mappings between some of the ontologies will be provided in order to ensure an easier
understanding and comparison between them. So, the ontologies hosted will form an inter-
connected graph. Such mapping already exists between EWNTOP and UCYC (see [9]). The
mapping between WNUB7 and MKOSTOP and the later two ontologies was recently devel-
oped. Some of the relations in the graph exist because of the nature of the ontologies:

• EWNCLUST and ETOP - the concepts of the former one are just conjunctions of those
of the later one

• CLEX and WNUB5 - same as above

• WNUB5 and WNUB6 - there exist a mapping provided by the creators

• SENSTOP and UCYC - it is available as a part of the UCYC distributives as well as
separately by the SENSUS developers.

The following mappings will be developed as a part of the project:

• EWNCLUST to UCYC

• CLEX to EWNCLUST (both directions)

• WNUB7 to UCYC

• WNUB7 to EWNTOP

The mappings will be available in the same formats as the ontologies. Actually, each
mapping could be seen as an extension of the target ontology. For example, the mapping
between EWNTOP and UCYC can be considered as an extension of the UCYC with the
concepts of EWNTOP that are connected appropriately to the UCYC constants (see [9]).
No ontologies and upper-level models will be developed under the project instead of the
OntoMapO meta-ontology mentioned above.

8 One Usability Example

Here follows an example of how the OntoMap could help understanding a complex case in the
Upper Cyc Ontology - the#$MeetingTakingPlace constant. The comprehension comes
from the two sources: it is deeply positioned in the tangled subsumption hierarchy; and also
some important information is encoded via instantiation. The most readable representation in
[2] is:

The collection of human meeting events, in which #$Persons
gather intentionally at a location in order to com-
municate or share some experience; business is of-
ten transacted at such a meeting. Examples include:
a particular conference, a business lunch, etc.

isa: #$DefaultDisjointScriptType , #$ScriptType ,
#$TemporalObjectType
genls: #$SocialGathering
some subsets: (16 unpublished subsets)

The underlined text represents hyper-references to descriptions of the appropriate con-
stants. Below follows the standard view on the same concept provided by OntoMap:

Concept: #$MeetingTakingPlace [UpperCyc]

Gloss: The collection of human meeting events, in which
#$Persons gather intentionally at a location in or-
der to communicate or share some experience; busi-
ness is often transacted at such a meeting. Exam-
ples include: a particular conference, a business
lunch, etc.

Super-concepts (parents):#$SocialGathering ;
indirect: #$IntangibleIndividual ,
#$CompositePhysicalAndMentalEvent , #$TemporalThing ,
#$PhysicalEvent , #$MentalEvent , #$Intangible ,
#$Thing , #$SpatialThing ,#$MentalActivity ,
#$PurposefulAction , #$Situation , #$HumanActivity ,
#$AnimalActivity , #$Event , #$Action , #$Individual ,
#$SocialOccurrence

Indirect parents in other ontologies:
Physical [EWN Top], Top [EWN Top], Mental [EWN Top],
Social [EWN Top], 2ndOrderEntity [EWN Top]

Instance of: #$DefaultDisjointScriptType
#$TemporalObjectType
indirect: #$Collection , #$ObjectType , #$Thing ,
#$SituationType , #$SetOrCollection , #$Intangible ,
#$MathematicalOrComputationalThing , #$ScriptType

Sub-concepts (children): <none>

Direct instances: <none>

All direct relations:

#$genls : #$SocialGathering
#$isa : #$TemporalObjectType
#$isa : #$DefaultDisjointScriptType

This was a ”snap-shot” of the current on-line interface of OntoMap. Pay attention that
both indirect parents and classes are displayed that is extremely useful — it requires serious
efforts to reconstruct this indirect relations manually. Also, super-concepts in the EuroWord-
net (EWN) Top Ontology can be seen, that provides a good impression about a possible po-
sition of #$MeetingTakingPlace there. These way people that are familiar with EWN
top can get an idea about the meaning of the Cyc constant.

9 Ontology Unification Services

In parallel with the maintenance of the server and updates to the content we will be able to
provide the following services for both domain specific and upper-level ontologies:

• Loading the ontology in OntoMap and hosting it there. This way it will become accessi-
ble in all the formats supported. Also its conformance profile could be determined (see
[3] and Unified Representation section). A security subsystem will be developed, so the
proprietary ontologies will not be publicly available.

• Developing of mappings to ontologies that are already hosted in OntoMap. The mappings
themselves will be also available in all the supported formats.

10 Conclusion

OntoMap project is still in an early phase that makes it hard to evaluate it. The experience
gathered providing the Upper Cyc Ontology as MS Access database is encouraging – even
though the original resource is available for a long time more than two hundred people found
it useful and downloaded it in this shape just for one year. We got a very positive feedback for
another experiment of ours – developing a mapping between the Upper Cyc Ontology and the
EuroWordnet Top Ontology and then providing it as a database as well as an online service.
Even without significant theoretical innovation such facilitatory efforts seem to be important
for the development of the semantic modeling community.

The first interesting result of the project is a Java-written inference engine that already
supports the OntoMapO language – it is sound and complete with its support for inheritance,
instantiation, inverse, transitive, and symmetric relations. The biggest ontology that we ex-
perimented with (Upper Cyc Ontology, about 3000 concepts) can be loaded in few seconds
and than queried in real-time. The inference engine is used for support of an on-line ontology
browser that is publicly available athttp:\\www.ontomap.org . Apart from the engi-
neering work needed to make available the remaining functionality of OntoMap portal we are
constantly working on evaluation and development of the semantic framework – OntoMapO.

References

[1] Campbell, A.E. and Shapiro, S.C.,Algorithms for Ontological Mediation, Technical Report 98-03, Dep.
of CS and Engineering, State Univ. of New York at Buffalo, 1998.

[2] Cyc Ontology Guide: Introduction.
http://www.cyc.com/cyc-2-1/intro-public.html

[3] Genesereth, Michael R., and Fikes, Richard eds.Knowledge Interchange Format draft proposed American
National Standard (dpANS). NCITS.T2/98-004 http://logic.stanford.edu/kif/

[4] Gomez-Perez, A.; Fernandez, M.; Blazquez, M.; Garcia-Pinar, J. M.Building Ontologies at the Knowledge
Level using the Ontology Design Environment.http://delicias.dia.fi.upm.es/articulos/ode/ode.html

[5] Gruber, Thomas R.Ontolingua: A Mechanism to Support Portable Ontologies.Technical Report KSL
92-66, Knowledge System Laboratory, Stanford University, 1991.

[6] Gruber, Thomas R.Toward Principles for the Design of Ontologies Used for Knowledge Sharing.Techni-
cal Report KSL 93-04, Knowledge System Laboratory, Stanford University, 1993.

[7] Guarino, Nicola; Welty, ChristopherA Formal Ontology of Properties.In the Proceedings of the 12th
International Conference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-
les-Pins, France. R. Dieg and O. Corby (Eds.): EKAW 2000, LNAI 1937, pp. 97-112, Springer Verlag,
2000.

[8] Ian Horrocks, Frank van Harmelen, Peter Patel-Schneider (eds.)DAML+OIL (March 2001)
http://www.daml.org/2001/03/daml+oil-index.html

[9] Kiryakov, Atanas; Simov, Kiril Iv.Mapping of EuroWordnet Top Ontology to Upper Cyc Ontology.In:
Proceedings of ”Ontologies and Text” workshop, during EKAW 2000. Juan-les-Pins, French Riviera,
Oct. 2, 2000.http://www.ontotext.com/publications/ index.html# KiryakovSi-
mov2000b

[10] Knight, K. and Luk, S.Building a Large Knowledge Base for Machine Translation.Proceedings of the
American Association of Artificial Intelligence Conference AAAI-94. Seattle, WA, 1994.

[11] McGuinness, Deborah L., Richard Fikes, James Rice, and Steve Wilder,An Environment for Merging and
Testing Large Ontologies, Proceedings of the Seventh International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2000). Breckenridge, Colorado, USA. April 12-15, 2000.

[12] Maedche, A.; Schnurr, H.-P.; Staab, S.; and Studer, R.Representation Language-Neutral Modeling of On-
tologies.In: Frank (ed.), Proceedings of the German Workshop ”Modellierung” 2000. Koblenz, Germany,
April, 5-7, 2000.

[13] Noy, Natalya F.; Fergerson, Ray W.; Musen, Mark A.The Knowledge Model of Protege-2000: Combining
Interoperability and Flexibility.In the Proceedings of the 12th International Conference on Knowledge
Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins, France. R. Dieg and O. Corby
(Eds.): EKAW 2000, LNAI 1937, pp. 97-112, Springer Verlag, 2000.

[14] Ortiz, Antonio Moreno.Managing conceptual and terminological information in a user-friendly environ-
ment.In: Proceedings of ”OntoLex 2000: Ontologies and Lexical Knowledge Bases”, Sozopol, Sept. 8-10,
2000. (to appear)

[15] Vossen, Piek (ed.) EuroWordNet General Document Version 3, Final, July 19, 1999.
http://www.hum.uva.nl/ ewn/

[16] World Wide Web Consortium; Brickley, Dan; Guha, R.V. (eds.)Resource Description Framework (RDF)
Schema Specification, 1999.http://www.w3.org/TR/1998/WD-rdf-schema/

[17] Uschold, Mike; King, Martin; Moralee, Stuart; and Zorgios, YannisThe Enterprise Ontology, The Knowl-
edge Engineering Review, 1998, Vol. 13, Special Issue on Putting Ontologies to Use (eds. Mike Uschold
and Austin Tate).

[18] Uschold, MikeConverting an Informal Ontology into Ontolingua: Some Experiences, Univ. Edinburgh,
Artificial Intelligence Application Institute (AIAI), AIAI-TR-192, March 1996.

