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Abstract. This paper lays out the design rationale of RuleML, a rule markup language for the Semantic Web. 
We give an overview of the RuleML Initiative as a Web ontology effort. Subsequently, the modular syntax 
and semantics of RuleML and the current RuleML 0.8 DTDs are presented (focusing on the Datalog and 
URI sublanguages). Then we discuss negation handling, priorities/evidences, as well as agents and RuleML. 
We next proceed to RuleML implementations via XSLT and rule engines. In our conclusions, we continue to 
explore the bigger picture of ontologies and discuss some requirements for a future RuleML. An appendix 
shows our Semantic Web scenario in the insurance industry. 

 
 
1. Introduction 
 
 Rules have traditionally been used in theoretical computer science, compiler technology, 
databases, logic programming, and AI. The Semantic Web tries to represent information in 
the World Wide Web such that it can be used by machines not just for display purposes, but 
for automation, integration, and reuse across applications; it has recently advanced to a W3C 
Activity. Rule Markup for the Semantic Web has been a hot topic since rules were identified 
as one of its Design Issues. 
However, Semantic Web rules have been less systematically studied than the 
corresponding ontology (actually, taxonomy) markup. The Rule Markup Initiative tries to 
fill the gap by exploring rule systems (e.g., extended Horn logics) suitable for the Web, 
their (XML and RDF) syntax, semantics, tractability/efficiency, and transformation and 
compilation. Both derivation rules (which may be evaluated bottom-up as in deductive 
databases, top-down as in logic programming, or by tabled resolution as in XSB) (10) and 
reaction rules (also called "ECA" -- "event-condition-action" -- or "trigger" rules), as well 
as possible combinations, are being considered.  
In the context of the Semantic Web, rules may be built on F-logic for RDF inference, as 
pioneered by SiLRI (4). This work has recently been extended for rules with expressive 
bodies (full FOL syntax) in TRIPLE (5). Rules may also be used to enhance the content of 
Web pages and XML documents in various ways. E.g., derivation rules allow the dynamic 
inclusion of derived facts, while reaction rules allow the specification of behavior in 
response to browser events.  
RuleML started on the basis of pre-existing rule markup languages and has already 
inspired further rule-markup projects. As examples, we just sketch our RFML, URML, and 
AORML languages here, but refer readers to http://www.dfki.unikl.de/ruleml/#Participants 
for the complete picture:  

• RFML (Relational-Functional Markup Language) is a (Web-)output format for 
relational-functional knowledge bases and computations implemented as part of the 



Relfun system. The (Web-)input translation of RFML markup into Relfun's Prolog-
like syntax is implemented via an XSLT stylesheet.  

• URML was initially a project to Webize the ART and ARTScript Rule Language 
(11). URML is pushing the effort further to integrate Object Oriented Rule-based 
programming with XML and provide a basis for the implementation of Web objects 
and their manipulation in rules.  

• AORML is a project to define a markup language for agent-oriented business rules 
in the context of Agent Object Relationship (AOR) models.  

 Participants in the RuleML Initiative have expressed an urgent need for a standard rule 
markup language, with translators in and out along with further tools. This need provided 
the impetus for the RuleML effort.  
 This paper lays out the design rationale of the Rule Markup Language (RuleML), the 
Initiative's evolving markup language for the Semantic Web. To accommodate the various 
(Web) rule-user communities from Knowledge-Based Systems to Intelligent Agents to E-
Commerce, a modular hierarchy of sublanguages will be discussed. Rule extensions will 
concern first-class URIs, Web-suited negations, labelings, certainties/priorities, and 
packages. The Initiative also examines where current description methods and 
implementation techniques (e.g., XML DTDs vs. Schemas and C vs. Java-based rule 
engines) are sufficient for such rule markup and where they would need revisions and 
extensions.  
This paper further attempts to contribute to some open issues of Notation 3 (N3) and 
DAML-Rules in relation to RuleML. Finally, by studying issues of combining rules and 
taxonomies via sorted logics, description logics, or frame systems, the paper also touches 
on the US-European proposal DAML+OIL.  
 
2. The RuleML Initiative as a Web Ontology Effort 

 The RuleML Initiative started in August 2000 during the Pacific Rim International 
Conference on Artificial Intelligence (PRICAI 2000). It has brought together expert teams 
from several countries, including leaders in Knowledge Representation and Markup 
Languages, from both academia and industry. The RuleML Initiative is developing an 
open, vendor neutral XML/RDF-based rule language. This will allow for the exchange of 
rules between various systems including distributed software components on the Web, 
heterogeneous client-server systems found within large corporations, etc. The RuleML 
language offers XML syntax for rules Knowledge Representation, interoperable among 
major commercial and non-commercial rules systems.  
 Among our industrial participants are rules engine vendors, Web technology vendors, 
XML/RDF tools vendors and also technology users such as financial corporations, telecom 
companies and some of the major Web portals and ASPs. The RuleML Initiative is 
collaborating with numerous related efforts such as the complementary Java Rules Engine 
API specification, the W3C RDF working group, the DAML group, W3C P3P Activity, 
PMML, and many others. This collaboration will enable RuleML to share mechanisms and 
provide a rules language to existing and emerging industry standards such as the Semantic 
Web and RDF, P3P, CC/PP and EDI (Electronic Data Interchange).  The scenario in 
Appendix 1 exemplifies some inferential and metadata uses of RuleML for the Semantic 
Web.  



 Since RuleML participants organized a Birds Of a Feather (BOF) session at W3C's 
Technical Plenary and WG Meeting Event in February/March 2001, the Initiative has been 
discussing with W3C about possibilities of a working group devoted to Web rules (axioms) 
or to a combination of Web-ontology efforts as expressed by the 'equation' ontology = 
taxonomy + axioms. This would create the chance of a uniform ontology language with a 
description-logic taxonomy and Horn-logic-like rules.  
 In particular, large-scale RuleML rulebase exchange will require a taxonomy of the 
relations defined in the rulebase, where a relation with its arguments becomes a class with 
its slots. Participants in a rulebase exchange could then align each other's relation 
hierarchies to detect incompatibilities prior to merging and firing their rule definitions.  
 Conversely, large-scale DAML+OIL taxonomies will require a rule system to derive/use 
certain implicit information that is not captured by the taxonomy alone. The required rules 
could be marked up according to the suitable RuleML expressive class. DAML+OIL 
taxonomies and RuleML axioms should be expressed in compatible ways, ideally in one 
unified language. To achieve this, the current RuleML 0.8 and DAML+OIL markups could 
be co-developed in the Web Ontology Group towards a common version 1.0.  
 The fact that combined ontology systems quickly become undecidable is not a big issue 
since the higher RuleML expressive classes, e.g. Horn logic, are already undecidable. A big 
issue of the collaboration between DAML+OIL and RuleML, however, is the development 
of an interleaved layered system whose decidable taxonomy expressive classes interact 
well with the decidable or undecidable axiom expressive classes.  
 Initially, the possible combinations of taxonomies and axioms should be systematically 
compared w.r.t. criteria such as naturalness vs. formality, expressiveness vs. efficiency, DL 
terms as types for Horn variables vs. DL terms as Horn premises (or even conclusions), etc. 
On the taxonomy side, this comparison should span the range from order-sorted logics 
(which can be regarded as a degenerate description logic without slots, i.e. only the class 
lattice) to expressive decidable description logics such as ALLNR. On the axioms side, we 
should study the range from versions of Datalog, to Horn logic, to full first-order logic, and 
conservative extensions (e.g., restricted higher-order syntax). The question then is which of 
these respective subclasses go together well w.r.t. our criteria.  
 For example, it is well-known that order-sorted logics go together well with Horn logic 
and even with full first-order logic, as, e.g., shown by solutions to Schubert's Steamroller 
Problem such as (3): the combination reduces the search space. On the other hand, as 
shown by (9), only versions of Datalog seem to go together well with expressive 
description logics such as ALLNR: the combination enlarges the search space. If we allow 
free variations of both the taxonomy and axioms expressive classes, there are also many 
possible combinations in between. However, if a user community can state their 
requirements w.r.t. expressiveness of the taxonomy, the axioms, or both, it will be easier to 
fix the remaining degrees of freedom.  
 When building real Web ontologies it seems wise to start with less expressive classes on 
both the taxonomy and axioms sides, since a builder community cannot anticipate the 
requirements of future user communities. The ontological content should be packaged in an 
as lightweight ontology language as possible to make it available to a maximum number of 
users. The RuleML Initiative tried to prepare such a methodology through the bottom-up 
construction of a system of sublanguages from RDF-like triples to labeled Horn logic with 
equations plus URI individuals and relations. This could be complemented by a bottom-up 
taxonomy-language (re-)construction, and brought together through joint work on ontology 
layering.  



3. The Modular Syntax and Semantics of RuleML 
 
 The modular RuleML design is described in this section. RuleML encompasses a 
hierarchy of rules, from reaction rules (event-condition-action rules), via integrity-
constraint rules (consistency-maintenance rules) and derivation rules (implicational-
inference rules), to facts (premiseless derivation rules). Till now, we have been mostly 
working on derivation rules and facts (cf. appendix 2).  
 The RuleML hierarchy of rules constitutes a partial order rooted in reaction rules. Its 
second main layer consists of, next to each other, integrity-constraint rules and derivation 
rules. The third layer just specializes derivation rules to facts. Thus, the global RuleML 
picture looks as shown in Figure 1.  

 Reaction Rules 
 

 1.                        2. 
 
 

Integrity Constraints              Derivation Rules 
 

                                      3. 
 
                                        

                                            Facts 
 

Figure 1: The RuleML hierarchy top-level. 
 
 Let us discuss the hierarchy's numbered specialization links in turn. (For a more fine-
grained discussion of derivation rules, facts, and their further specialization to RDF triples 
see Figure 2.)  

• Integrity constraints are considered as "denials" or special reaction rules whose only 
possible kind of action is to signal inconsistency when certain conditions are 
fulfilled.  

• Derivation rules are considered as special reaction rules whose action happens to 
only add or 'assert' a conclusion when certain conditions (premises) are fulfilled. 
This asserting of conclusions can be regarded as a purely declarative step, as used 
for model generation and fixpoint semantics. Such rules can thus also be applied 
backward for proving a conclusion from premises.  

• Facts are considered as special derivation rules that happen to have an empty 
(hence, 'true') conjunction of premises.  

 We can now make more precise our views regarding the application direction for the four 
rule categories:  

• General reaction rules can only be applied in the forward direction in a natural 
fashion, observing/checking events/conditions and performing an action if and 
when all events/conditions have been perceived/fulfilled.  

• Integrity constraints are usually also forward-oriented, i.e. triggered by updates, 
mainly for efficiency reasons.  



• Derivation rules, on the other hand, can be applied in the forward direction as well 
as in a backward direction, the latter reducing the proof of a goal (conclusion) to 
proofs of all its subgoals (premises). Since in different situations different 
application directions of derivation rules may be optimal (forward, backward, or 
mixed), RuleML does not prescribe any one of these.  

• For facts or 'unit clauses' it makes little sense to talk of an application direction.  

 While reaction rules, as the all-encompassing rule category, could implement all other 
ones, in RuleML we are introducing tailored special-purpose syntaxes for each of these 
categories. The following markup syntax only serves for our preliminary distinction of the 
four categories (for instance, we plan to permit and/or nestings besides flat conjunctions as 
premises):  

• Reaction rules: <rule> <_body> <and> prem1 ... premN </and> </_body> <_head> 
action </_head> </rule>  

• Integrity constraints: <ic> <_body> <and> prem1 ... premN </and> </_body> </ic> 
implemented by <rule> <_body> <and> prem1 ... premN </and> </_body> <_head> 
<signal> inconsistency </signal> </_head> </rule>  

• Derivation rules: <imp> <_head> conc </_head> <_body> <and> prem1 ... premN 
</and> </_body> </imp> implemented by <rule> <_body> <and> prem1 ... premN 
</and> </_body> <_head> <assert> conc </assert> </_head> </rule>  

• Facts: <fact> <_head> conc </_head> </fact> implemented by <imp> <_head> conc 
</_head> <_body> <and> </and> </_body> </imp>  

 Let us now elaborate on RuleML's derivation rules. Because of the infinity of possible 
rule-markup syntaxes and the rich previous work on semantics of rule-system classes, 
RuleML has attempted the following separation of concerns:  

• The sublanguage hierarchy. Figure 2 shows the 12 sublanguages that together 
constitute the modularized basic RuleML definition. All sublanguages except the 
'UR' (URL/URI) group correspond to well-known rule systems, where each 
sublanguage has a corresponding semantic (model- and proof-theoretic) 
characterization. Current work concerns a more precise URL/URI/URN semantics, 
as discussed in section The RuleML 0.8 DTDs. Sections Negation Handling in 
RuleML and Priorities/Evidences in RuleML prepare modular extensions of this 
basis for negations and priorities, respectively.  

• The concrete markup. In recent months, the RuleML 0.7 DTDs have been 
developed into the RuleML 0.8 DTDs without affecting the above semantics. The 
new markup uses XML in RDF's 'explicit role-markup' style, relativizing XML's 
positionality to places where RDF's Seq containers or DAML+OIL lists would be 
needed. RuleML 0.8 is still being developed in DTDs, but will also be delivered 
(via translators) in XML Schemas. In the next section it will be illustrated with an 
earlier RuleML example, upgraded from 0.7 to 0.8.  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The RuleML hierarchy with 12 derivation-rule sublanguages. 

4. The RuleML 0.8 DTDs 

 The upper layer of the RuleML hierarchy of rules is discussed in section The Modular 
Syntax and Semantics of RuleML. In that terminology, the system of RuleML DTDs 
presented here only covers derivation rules, not reaction rules.  
 This is because we think it is important to start with a subset of simple rules, test and 
refine our principal strategy using these, and then work 'up' to the more general categories 
of rules in the hierarchy. For this we choose Datalog, a language corresponding to 
relational databases (ground facts without complex domains or 'constructors') augmented 
by views (possibly recursive rules), and work a few steps upwards to further declarative 
rules from (equational) Horn logic. We also work upwards from a URL/URI language 
corresponding to simple objects. The join of both of these branches then permits inferences 
over RDF-like 'resources' and can be re-specialized to RDF triples.  
 Regarding the concrete markup syntax, we have been experimenting with several DTDs 
prior to the current, still preliminary, version. The rationale for our current tags is as 
follows.  

• Rather than leaving conjunction implicit, an explicit tag pair <and> ... </and> with a 
sequence of N conjuncts is used (this would preferably be a set of conjuncts), 
preparing the unavoidable explicit markup of other boolean connectives (mainly 
<or> ... </or>) and their nesting.  

• As a result of previous discussions, RuleML now uses an XML-RDF-unified data 
model with "Order-Labeled (OrdLab) Trees" (exemplified in appendix 3) as its 
notational base (2). 

• In particular, we conventionally mark up RDF-like predicates, here called 'roles', by 
"_"-prefixed tags in XML (if all class-like 'type' tags would start with an upper-case 



letter, then 'role' tags could also be distinguished, Java-like, by having them start 
with a lower-case letter, as in The FRODO rdf2java Tool).  

• Using an atom (for a single premise) or an and (for a conjunction of premises) in the 
role of the body and an atomic conclusion in the role of the head, rules aggregate 
two commutative roles; in particular, our Horn-like implication rules equivalently 
become <imp> <_body> <and> prem1 ... premN </and> </_body> <_head> conc 
</_head> </imp> or become <imp> <_head> conc </_head> <_body> <and> prem1 ... 
premN </and> </_body> </imp> (thus unifying KIF's "implication" and "reverse 
implication" syntaxes).  

• The main advantage of roles is that of feature-term or object-centered modeling: If 
some extra information is to be added to an element such as a priority factor to the 
imp element, then it is easy to attach, RDF-like, a new _priority role with a float-type 
value; on the other hand the insertion, XML-like, of the float-type value directly into 
the child sequence would (be harder to read and) cause all subsequent children to 
assume a new position in the element (a problem for processing via XSLT etc.).  

• In the new data model an element can have "mixed content" in the new sense of 
having both 'role' and 'type' children (see the atom examples below whose content 
consists of one _opr-role child and _1, _2, ... var-type children): while the 'type' 
children form an ordered sequence as in XML, without need for RDF's Sequence 
container, (1) the 'role' children are commutative as in RDF (treating an ordered 
sequence as a unit, as if it was reified into a Sequence container).  

 Appendix 2 contains a preliminary DTD for a Datalog subset of RuleML 0.8. Appendix 3 
shows a simple example rule base that conforms to that DTD.  
 As indicated in Figure 2, besides the sublanguages towering above the Datalog DTD, 
there is another major RuleML branch consisting of the sublanguages on top of 'UR'-object 
(URL/URI) DTD. In RuleML we try to build on existing W3C work whenever possible. 
Hence, Uniform Resource Identifiers (URIs) are used to locate, describe and access 
resources and services such as classes, objects, software agents, Web components, Web 
services, etc. The representation of objects as URIs in RuleML will also facilitate the 
integration with related work on ontologies. Web objects and services use a URL/URI as 
their unique object identifier (cf. SHOE, RDF, URML) and the point of access to the Web 
(and in some cases standalone or intranet) resource or software agent. URLs/URIs can be 
embedded in facts, rule conditions and rule actions.  
 The RuleML language thus offers support for URIs in its system of DTDs starting from 
the 'UR' sublanguage. For example, in UR-Datalog, names can be assigned to individuals 
and relations using content markup and/or an URI attribute. The content markup need not 
be unique while the URI attribute is unique. The modular design of RuleML will allow us 
to extend URIs to a number of other addressing schemes.  
 As a simple Datalog example consider the facts in appendix 3, which use content markup 
to name, perhaps not uniquely, an individual book. Alternatively, in UR-Datalog the first of 
these facts, say, can use a URI under an href attribute of the empty ind element as follows: 



 
<fact>

<_head>
<atom>

<_opr><rel>sell</rel></_opr>
<ind>John</ind>
<ind>Mary</ind>
<ind href="http://www.ibiblio.org/xml/books/bible2"/>

</atom>
</_head>

</fact>

 
 Moreover, the second of these facts, say, can now combine the original content markup 
with the URI attribute as follows:  
<fact>

<_head>
<atom>

<_opr><rel>keep</rel></_opr>
<ind>Mary</ind>
<ind href="http://www.ibiblio.org/xml/books/bible2">XMLBible</ind>

</atom>
</_head>

</fact>

 
 It should be noted that, content markup not being unique, a given URI can be combined 
with different content markups in different elements. Thus, the second fact, say, could also 
use the same URI with this time an extended PCDATA New XMLBible. Conversely, of 
course, two different URIs can be combined with the same content markup.  

5. Negation Handling in RuleML 

 In natural language, and in practical knowledge representation systems, such as the IBM 
business rule system CommonRules (6) that is based on the formalism of extended logic 
programs, there are two kinds of negation: a weak negation expressing non-truth (in the 
sense of "I don't like snow"), and a strong negation expressing explicit falsity (in the sense 
of "I dislike snow"). In RuleML, the weak negation connective is denoted by 'not' and the 
strong negation connective by 'neg'. In the case of a complete predicate, such as being an 
odd number, both negations collapse: 'not odd(x)' is equivalent to 'neg odd(x)', or in other 
words, the non-truth of the atom 'odd(x)' amounts to its falsity. In the case of an incomplete 
predicate, such as 'like', we only have that the strong negation implies the weak negation: 
'neg like(I,snow)' implies 'not like(I,snow)', but not conversely. Also, while the double 
negation form 'neg not' collapses (according to partial logic, see [Wag98]), the double 
negation form 'not neg' does not collapse: not disliking snow does not amount to liking 
snow.  
 Using two kinds of negation in derivation rules has been proposed independently in (7) 
and (12). Rules with weak negation, or with other non-persistent connectives, lead to 
nonmonotonic inference. It is well-known that the semantics of nonmonotonic knowledge 
systems is not based on all models of a knowledge base but solely on the set of all intended 
models. E.g., for relational databases, which can be viewed as the most fundamental case 
of a knowledge system, the intended models are the minimal ones. The model-theoretic 
semantics of nonmonotonic rules is based on the concept of stable (generated) models in 



classical and partial logic (see 7, 8 and 9). Notice that classical logic can be viewed as the 
degenerate case of partial logic when all predicates are total.  
 Under the preferential semantics of stable (generated) models, the weak negation 'not' 
corresponds to negation-as-failure in Prolog and to the EXCEPT operator in SQL in the 
following way: a query expression "give me all objects x such that 'p(x) and not q(x)'" 
corresponds to the SQL expression 'P EXCEPT Q' where P and Q denote the tables that 
represent the extensions of the predicates p and q. Since SQL tables were not intended to 
be able to represent incomplete predicates, SQL does not contain a strong negation 
operator.  

 Because in many computational domains predicates are assumed to be complete 
(according to the Closed-World Assumption), 'not' is used more frequently than 'neg'. An 
example of a rule that defines a derived attribute of a certain class in a UML class model is 
the following: A car is available for rental if it is physically present, is not assigned to any 
rental order, is not scheduled for service, and does not require service. This rule defines the 
derived Boolean attribute 'isAvailable' of the class 'RentalCar' by means of the stored 
Boolean attributes 'isPresent', 'requiresService', 'isScheduledForService', and an association 
'isAssignedTo' between cars and rental orders, here called 'isAssignedToRentalOrder'. 
The association is shown more explicitly in the UML class model of Figure 3.  
<imp>

<_head>
<atom>

<_opr><rel>isAvailable</rel></_opr>
<var>Car</var>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>isPresent</rel></_opr>
<var>Car</var>

</atom>
<not>

<atom>
<_opr><rel>isAssignedToRentalOrder</rel></_opr>
<var>Car</var>

</atom>
</not>
<not>

<atom>
<_opr><rel>isScheduledForService</rel></_opr>
<var>Car</var>

</atom>
</not>
<not>

<atom>
<_opr><rel>requiresService</rel></_opr>
<var>Car</var>

</atom>
</not>

</and>
</_body>

</imp>



 

 
Figure 3: A UML model of the class RentalCar with the derived Boolean attribute /isAvailable. 
 
 The strong negation is an "open world" negation, since in an open world such as the 
Web, the non-truth (or failure) of a statement does not imply its falsity. By combining weak 
and strong negation, one can express default rules (in the sense of Reiter's default logic) in 
a natural way. An example of this is the rule "a document that is not classified as being 
official has normally to be treated as an unofficial document". Such a rule could, for 
instance, supplement an ontology about enterprise documents and help answering queries 
about unofficial documents. Let us assume that EEEBizz classifies documents by means of 
a 'full'/'partial'/'open'-valued Approval property, while EEEComm classifies documents 
with the help of a 'yes'/'no'-valued Released property. Then, we may want to use a rule that 
allows to conclude a strongly negated atom on the basis of either of two weakly negated 
atoms (the or in the _body could be eliminated via separate rules for the disjuncts):  
<imp>

<_head>
<neg>

<atom>
<_opr><rel>isOfficialDocument</rel></_opr>
<var>DocumentName</var>

</atom>
</neg>

</_head>
<_body><or>

<not>
<atom>

<_opr> 
  <rel href="http://www.eeebizz.com/rdf sch#Approval"/> 
 </_opr>

<var>DocumentName</var>
<ind>full</ind>

</atom>
</not>
<not>

<atom>
<_opr> 

  <rel href="http://www.eeecomm.net/rdf-voc#Released"/> 
 </_opr>

<var>DocumentName</var>
<ind>yes</ind>

</atom>
</not>

</or></_body>
</imp>

 Notice that this rule allows to conclude that a document is unofficial unless the contrary 
is known. Therefore, it would provide the conclusion that a certain document is unofficial 
even if it suggests to be official (at its own URI) but is not classified properly (at the 
metadata's URI). This rule cannot be applied if there is an explicit 'full Approval' 



classification and an explicit 'yes, Released' classification of the document (according to 
the respective definitions of EEEBizz and EEEComm).  
 For example, suppose the metadata consist only of the following 'full Approval' fact, an 
RDF triple (according to the URC-bin-data-ground-fact DTD of RuleML, cf. Figure 2) 
about a joint-mission document:  
<fact>

<_head>
<atom>

<_opr><rel href="http://www.eeebizz.com/rdf-sch#Approval"/></_opr>
<ind href="http://www.eeebico.org/docs/joint-mission.html"/>
<ind>full</ind>

</atom>
</_head>

</fact>
 
 The first disjunct is false since its 'Approval' atom unifies with the fact (via the binding of 
<var>DocumentName</var> to <ind href="http://www.eeebico.org/docs/joint-mission.html"/>); but 
the second disjunct is true for lack of a corresponding 'yes, Released' fact; so the default 
rule classifies the document as unofficial.  

6. Priorities/Evidences in RuleML 

 The following is an example using an auto insurance scenario. This example involves 
two conflicting rules, shown below. The first rule, which applies to drivers under 25 years 
of age, states that after the accident, the premium will increase by 40%. On the other hand, 
in the second rule, because the customer is on the family plan, his or her premium will not 
increase after the first accident. This example is treated in more detail in appendix 1.  
The first rule, applicable to drivers under 25:  
<imp>

<_rlab><ind>beginners</ind></_rlab>
<_spriority><ind>0.75</ind></_spriority>
<_head>

.......
</_head>
<_body>

<and>
...

<atom>
<_opr><rel>customerUnder25</rel></_opr>
<var>customer</var>

</atom>
</and>

</_body>
</imp>

 
The second rule, applicable to drivers with a family plan:  
<imp>

<_rlab><ind>family</ind> </_rlab>
<_spriority><ind>0.9</ind> </_spriority>
<_head>

.......
</_head>
<_body>

<and>
<atom>

<_opr><rel>FamilyAutoPlan</rel></_opr>
<var>customer</var>
<var>familyauto</var>

</atom>
</and>

</_body>
</imp>



 Both research prototypes and commercial rules engines offer a facility for controlling rule 
execution and conflict resolution. In RuleML, one can define either quantitative priorities 
declaring a numerical Priority property for rules or qualitative priorities using Overrides 
facts over rule labels.  
 A quantitative priority is a numerical value indicating the salience (or the evidence) of a 
rule. We consider supporting both static and dynamic salience. A static priority value can 
be represented by a constant or a variable. A dynamic salience is represented using a 
variable or a function or relation call: the numerical value is calculated at runtime from the 
current binding environment.  
 Qualitative priorities are represented using facts comparing rule labels. This approach is 
influenced by the rules conflict handling in BRML, based on partially-ordered 
prioritization information (6). Qualitative priorities using the Overrides fact can be 
generated from numerical saliences. For example, in the auto insurance example above, 
since rule labeled 'family' (salience 0.9) is higher priority than rule labeled 'beginners' 
(salience 0.75), we can generate the following qualitative priority fact: Overrides(family, 
beginners), which means that rule family will always win if it enters in a conflict with rule 
beginners.  
 
7. Agents and RuleML 

 Biological and artificial systems that interact with their (natural or virtual) environment 
on the basis of their mental state, and exhibit some degree of autonomy, are called 
"agents". The most basic mental components of an agent are its perceptions of events (in 
the form of incoming messages) and its beliefs (or knowledge). Further important 
components are  

• memory about past events and actions,  
• commitments towards other agents to perform certain actions,  
• claims against other agents,  
• goals in the form of state conditions to be achieved by means of planning and plan 

execution, and  
• intentions in the form of action plans that have been chosen to be executed.  

 A sophisticated software agent may be specified by  
• an RDFS-based taxononmy for defining the schema of its mental state,  
• a set of RDF facts for specifying its factual (extensional) knowledge,  
• a set of RuleML integrity constraints for excluding non-admissible mental states,  
• a set of RuleML derivation rules for specifying its terminological and heuristic 

(intensional) knowledge, and  
• a set of RuleML reaction rules for specifying its behavior in response to 

communication and environment events.  
 Thus, it will be possible to completely specify a software agent using RDF/RDFS and 
RuleML. Executing such an agent specification requires a combination of a knowledge 
subsystem (including an inference and an update operation), a perception (or incoming 
message handling) subsystem and an action (or outgoing message handling) subsystem.  
 Michael Sintek has recently implemented a much simpler first example of a RuleML 
querying agent. This is a servlet (running in Tomcat) that receives RuleML rulebases in an 



RDF-based RuleML syntax (since it uses The FRODO rdf2java Tool) together with some 
queries, evaluates them with XSB Prolog (in auto-tabling mode, which should be 
equivalent to bottom-up evaluation), and returns the result as an HTML page containing 
the bindings as facts of instantiated queries. A future version must, of course, return a 
RuleML file. It can be tried at this URL: Click on 'example' and paste the RDF RuleML 
popping up into the input window (note that pasting XML/RDF cannot be directly done in 
IE, only in Netscape; use "view source" in IE). Alternatively, you can use the Prolog parser 
and RDF translator to generate the RDF RuleML. Since it cannot be guaranteed that the 
above URLs will always work (server reboots etc.), this picture shows the agent in action.  
 
8. RuleML Implementations via XSLT and Rule Engines 

 XSLT can itself be regarded as a rule-based programming language operating on XML 
elements. These elements can also be other rules expressed in XML. The RuleML Initiative 
has been implementing the translation between various rules systems using XSLT 
stylesheets. The first XSLT stylesheet from RuleML to another system demonstrated the 
translation of RuleML 0.7 to RDF; it can be seen as a preparation of our transition towards 
the current more RDF-oriented RuleML 0.8.  
 One of the most popular (reaction) rule engines currently available free for non-
commercial use is JESS (Java Expert System Shell). Jess is implemented in the Java 
language. It was originally inspired by the CLIPS expert system shell, but has grown into a 
complete, distinct rule-based tool of its own. CLIPS is a development environment for 
rule-based and object oriented expert systems. CLIPS is being used by government 
agencies, research laboratories and universities as well as a number of companies around 
the world.  
 Following the release of RuleML 0.8, we will provide an XSLT style sheet that produces 
Jess code. A style sheet already exists for RuleML 0.7, compatible with Jess 60a5.  
 The example below shows a RuleML 0.8 rule originally authored using RuleML 0.7 and 
translated into Jess using an XSLT stylesheet. This kind of process can be automated easily 
in a Web-based platform using existing XML and XSLT tools and APIs. The same rule is 
translated into Prolog. This demonstrates the flexibility and the power of the rules 
exchange mechanism offered in RuleML.  
The Rule written in RuleML:  
<rulebase label="myRules">

<imp>
<_head><atom>

<rel>likes</rel>
<ind>John</ind>
<var>x</var>

</atom></_head>
<_body><atom>

<rel>likes</rel>
<var>x</var>
<ind>wine</ind>

</atom></_body>
</imp>

</rulebase>

The transformation to Jess gives the following Jess (and CLIPS) rule:  
(defrule myRules-1

"This rule has been generated from RuleML"
(likes ?x wine)

=>
(likes John ?x))



and the transformation to Prolog returns the rule:  
likes(John, X) :- likes(X, Wine).

 With GEDCOM, Mike Dean created the first operational RuleML (0.7) rulebase, where 
rules on family relationships (child, spouse, etc.) are run via XSLT translators to the XSB, 
JESS, and n3/cwm engines. Besides indirectly, via translators, RuleML implementations 
should also be done directly, via rule engines.  
 With Mandarax RuleML, Jens Dietrich has implemented the first complete input-
processing-output environment for RuleML (0.8). For a RuleML 0.8 engine we also 
cooperate with the CommonRules, Euler, and TRIPLE projects and hope to also join forces 
with W3C's N3 and NILE efforts, and with further interested companies.  
 
9. Conclusions 

 Looking at the bigger picture of "ontologies", we will now discuss three related 
requirements for future RuleML versions.  

1) Following our earlier 'taxonomy-plus-axioms' notion of "ontology", RuleML, together 
with DAML-Rules and Euler, can be seen as the "axioms part" working on the "taxonomy 
part" developed by some other effort such as DAML+OIL. Derivation rules are normally 
used in the context of an information model, such as a UML class model, an RDFS-based 
taxonomy (as used in DAML+OIL ontologies), or a predicate logic signature. The 
underlying information model defines a language for expressing logical statements that can 
play the role of an assertion, of a query, or of a condition. It should be possible to include a 
RuleML rulebase (or a reference to a RuleML document) within an XML-based version of 
an information model (such as a UMI document or a RDFS-based taxononmy). Vice versa, 
it should be possible to include (a reference to) such an information model within the 
XML-based RuleML rulebase. Ideally, a 'taxonomy-plus-axioms' ontology should include 
both parts on the same level, as pioneered by SHOE and N3.  

Implied requirement for RuleML: A RuleML rulebase can either be embedded in an 
information model, or its top-level element ("rulebase") can have an attribute that specifies 
its context by refering to a respective XML document.  

2) We could link to UML classes via RuleML variables: <var> could have an attribute 
giving the class constraining it. Also, a DAML+OIL taxonomy could be linked in such a 
"sorted logic" manner. We could additionally allow to plug in some other atom-defining 
formalism as an option. The "atoms" used in the premise and conclusion of a derivation 
rule in the context of a UML class model would then be expressed in OCL. The "atoms" 
used in the premise and conclusion of a derivation rule in the context of a DAML+OIL 
taxononmy would then be expressed in DAML+OIL RDF.  

Implied requirement for RuleML: A separation of concerns: the proper rule language is 
more concerned with sentential connectives and rule keywords, than with the language of 
"atoms". The language of "atoms" can be called the content language of a RuleML 
rulebase. It consists of two layered sublanguages: 1) the predefined constructs of the 
chosen metamodel (like UML or RDFS), and 2) the terms defined by the chosen 
model/taxononmy.  

3) Derivation rules operate on facts that are typically represented in a database, or in an 
XML or RDF document.  



Implied requirement for RuleML: It should be possible to include a RuleML rulebase (or 
a reference to a RuleML document) within an XML or RDF document. Technically, it is 
easy to mix RuleML and other XML namespaces (like for, say, MathML), incl. RDF(S) 
namespaces. For this we assume a ruleml: namespace prefix.  
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Appendix 1: A Semantic Web Scenario in the Insurance Industry 
  
 In this appendix, we provide a Semantic Web scenario applying RuleML in a common 
pragmatic situation. After a car accident, one of the questions people are facing is: how 
much will my premiums increase and how does this accident affect my insurance policy?  
Not all insurance companies follow the same rules or apply the same formula. In the USA 
this results in premium increases that can vary from hundreds of dollars to over a thousand. 
Many companies follow the Insurance Services Office (ISO) standard of increasing your 
premium by 40 percent of their "base rate" after your first at-fault accident. A base rate is 
the average amount of all claims paid, plus the insurance company's processing fee. For 
example, if your company's base rate is $600, your premium after the accident will go up 
by $240.  

 In our scenario, Olivia is a teenager who unfortunately has just had her first car accident. 
She is insured on her mother's premium family insurance plan. This situation involves two 
conflicting rules, as formalized in RuleML below. The first rule, which applies to drivers 
under 25 years of age, states that after the accident, Olivia's premium will increase by 40%. 
On the other hand, the second rule, applying to drivers on a family plan, states that her 
premium will not increase at all after her first accident.  

The first rule, applicable to drivers under 25:  
<imp>

<_rlab><ind>beginners</ind></_rlab>
<_spriority><ind>0.75</ind></_spriority>
<_head>

<atom>
<_opr><rel>calculatePremium</rel></_opr>
<var>customer</var>
<ind>40</ind>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<var>customer</var>
<var>insurance</var>

</atom>
<atom>

<_opr><rel>lifeEvent</rel></_opr>
<var>customer</var>
<ind>accident</ind>
<var>report</var>

</atom>
<atom>

<_opr><rel>customerUnder25</rel></_opr>
<var>customer</var>

</atom>
</and>

</_body>
</imp>

 

 

 

 



The second rule, applicable to drivers with a family plan:  
<imp>

<_rlab><ind>family</ind></_rlab>
<_spriority><ind>0.9</ind></_spriority>
<_head>

<atom>
<_opr><rel>calculatePremium</rel></_opr>
<var>customer</var>
<ind>0</ind>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<var>customer</var>
<var>insurance</var>

</atom>
<atom>

<_opr><rel>lifeEvent</rel></_opr>
<var>customer</var>
<ind>accident</ind>
<var>report</var>

</atom>
<atom>

<_opr><rel>FamilyAutoPlan</rel></_opr>
<var>customer</var>
<var>familyauto</var>

</atom>
</and>

</_body>
</imp>

 
Let us now turn to formalizing the relevant facts.  
 
Olivia is under 25:  
<fact>

<_head>
<atom>

<_opr><rel>customerUnder25</rel></_opr>
<ind>Olivia</ind>

</atom>
</_head>

</fact>

The following RDF-like RuleML facts permit to prove further premises of the above rules 
and also provide metadata descriptions for the required documents referenced and retrieved 
by URIs.  

Olivia has an insurance policy and this document has link .../IMA-0835:  
<fact>

<_head>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<ind>Olivia</ind>
<ind href="http://www.BostonInsurance.com/policy/IMA-0835"/>

</atom>
</_head>

</fact>

 
 
 



 
Olivia is in a family auto plan and this document has link .../FMA-0142:  

<fact>
<_head>

<atom>
<_opr><rel>FamilyAutoPlan</rel></_opr>
<ind>Olivia</ind>
<ind href="http://www.BostonInsurance.com/plan/FMA-0142"/>

</atom>
</_head>

</fact>

 
Olivia's accident report is available at TrafficReport.biz: 

<fact>
<_head>

<atom>
<_opr><rel>lifeEvent</rel></_opr>
<ind>Olivia</ind>
<ind>accident</ind>
<ind href="http://www.TrafficReport.biz/MA/report0712"/>

</atom>
</_head>

</fact>

The 'metafact' below is used to resolve the conflict between rule beginners and rule family 
(cf. section Priorities/Evidences in RuleML):  

<fact>
<_head>

<atom>
<_opr><rel>Overrides</rel></_opr>
<ind>family</ind>
<ind>beginners</ind>

</atom>
</_head>

</fact>

 

 The rulebase presented in this example illustrates the use of Web-based documents in 
rules for matching and inferencing. In this example, we also show how priorities can be 
applied to rules. The Overrides fact above will allow rule family to fire as a higher priority 
rule and save Olivia a good amount of money: her premium will not increase.  



Appendix 2: DTD for a Datalog Subset of RuleML 

<!-- An XML DTD for a Datalog RuleML Sublanguage: Monolith Version --> 
<!-- Last Modification: 2001-07-07 --> 
 
<!-- ELEMENT Declarations --> 
 
<!-- 'rulebase' root element uses 'imp' rules and 'fact' assertions on top-level --> 
<!ELEMENT rulebase ((imp | fact)*)> 
 
<!-- 'imp' rules are usable as general implications on the top-level --> 
<!-- 'imp' element uses a conclusion role _head before a premise role _body, or --> 
<!--  uses a premise role _body before a conclusion role _head --> 
<!ELEMENT imp ((_head, _body) | (_body, _head))> 
 
<!-- 'fact' assertions are usable as degenerate rules on the top-level --> 
<!-- 'fact' element uses just a conclusion role _head --> 
<!-- "<fact>_head</fact>" stands for "_head is implied by true" -->  
<!ELEMENT fact (_head) > 
 
<!-- _head role is usable within 'imp' rules and 'fact' assertions --> 
<!-- _body role is usable within 'imp' rules --> 
<!-- _head uses an atomic formula --> 
<!-- _body uses an atomic formula or an 'and' --> 
<!ELEMENT _head (atom)> 
<!ELEMENT _body (atom | and)> 
  
<!-- an 'and' is usable within _body's --> 
<!-- 'and' uses zero or more atomic formulas --> 
<!-- "<and>atom</and>" is equivalent to "atom"--> 
<!-- "<and></and>" is equivalent to "true"-->  
<!ELEMENT and (atom*)> 
  
<!-- atomic formulas are usable within _head's, _body's, and 'and's --> 
<!-- atom element uses an: --> 
<!-- _opr ("operator of relations") role followed by zero or more arguments, or --> 
<!-- one or more argument followed by an _opr role --> 
<!-- the arguments may be ind(ividual)s or var(iable)s --> 
<!ELEMENT atom ((_opr, (ind | var)*) | ((ind | var)+, _opr))> 
 
<!-- _opr is usable within atoms --> 
<!-- _opr uses rel(ation) symbol --> 
<!ELEMENT _opr (rel)> 
 
<!-- there is one kind of fixed argument --> 
<!-- individual constant, as in predicate logic --> 
<!ELEMENT ind  (#PCDATA)> 
  
<!-- there is one kind of variable argument --> 
<!-- logical variable, as in logic programming -->  
<!ELEMENT var  (#PCDATA)> 
  
<!-- there are only fixed (first-order) relations --> 
<!-- relation or predicate symbol --> 
  
<!ELEMENT rel  (#PCDATA)> 
 
 



Appendix 3: Example RuleML Document: A Rulebase own.ruleml

<?xml version="1.0" standalone="no"?> 
<!DOCTYPE rulebase SYSTEM "http://www.dfki.de/ruleml/dtd/0.8/ruleml-datalog-monolith.dtd"> 
<rulebase> 
 
<!-- start XML comment ... 
This example rulebase contains four rules. The first and second rules are implications; the third and 
fourth ones are facts. 
 
The first rule implies that a person owns an object if that person buys the object from a merchant and 
the person keeps the object. 
 
As an OrdLab Tree: 

imp
|

------------------------------------------
* *

head * body *
* *
* *

atom and
| |

------------- ------------------------------
* | | | |

opr * | | | |
* | | | |

rel var var atom atom
. . . | |
. . . --------------------- --------------
. . . * | | | * | |
. . . opr * | | | opr * | |
. . . * | | | * | |

own person object rel var var var rel var var
. . . . . . .
. . . . . . .
. . . . . . .

buy person merchant object keep person object 
 
... end XML comment --> 
 
<imp> 
  <_head> 
    <atom> 
      <_opr><rel>own</rel></_opr> 
      <var>person</var> 
      <var>object</var> 
    </atom> 
  </_head> 
  <_body> 
    <!-- explicit 'and' --> 
    <and> 
      <atom> 
        <_opr><rel>buy</rel></_opr> 
        <var>person</var> 
        <var>merchant</var> 
        <var>object</var> 
      </atom> 
      <atom> 
        <_opr><rel>keep</rel></_opr> 
        <var>person</var> 
        <var>object</var> 
      </atom> 
    </and> 



  </_body> 
</imp> 
 
 
<!-- The second rule implies that a person buys an object from a merchant 
if the merchant sells the object to the person. --> 
 
<imp> 
  <_head> 
    <atom> 
      <_opr><rel>buy</rel></_opr> 
      <var>person</var> 
      <var>merchant</var> 
      <var>object</var> 
    </atom> 
  </_head> 
  <_body> 
    <atom> 
      <_opr><rel>sell</rel></_opr> 
      <var>merchant</var> 
      <var>person</var> 
      <var>object</var> 
    </atom> 
  </_body> 
</imp> 
  
<!-- The third rule is a fact that asserts that John sells XMLBible to Mary. --> 
  
<fact> 
  <_head> 
    <atom> 
      <_opr><rel>sell</rel></_opr> 
      <ind>John</ind> 
      <ind>Mary</ind> 
      <ind>XMLBible</ind> 
    </atom> 
  </_head> 
</fact> 
  
<!-- The fourth rule is a fact that asserts that Mary keeps XMLBible. 
  
Observe that this fact is binary - i.e., there are two arguments for the relation. RDF viewed as a logical 
knowledge representation is, likewise, binary, although its arguments have type restrictions, 
e.g., the first must be a resource (basically, a URI). Some of the DTD's on the RuleML website handle 
URL's/URI's (UR's); see especially urc-datalog.dtd for inferencing with RDF-like facts  
 
--> 
  
<fact> 
  <_head> 
    <atom> 
      <_opr><rel>keep</rel></_opr> 
      <ind>Mary</ind> 
      <ind>XMLBible</ind> 
    </atom> 
  </_head> 
</fact> 
</rulebase> 
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