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Abstract. This paper discusses technology to support the use of UML for representing
ontologies and domain knowledge in the Semantic Web. Two mappings have been
defined and implemented using XSLT to produce Java classes and an RDF schema
from an ontology represented as a UML class diagram and encoded using XMI. A
Java application can encode domain knowledge as an object diagram realised as a
network of instances of the generated classes. Support is provided for marshalling and
unmarshalling this object-oriented knowledge to and from an RDF/XML serialisation.
The paper also proposes an extension to RDF allowing the identification of property–
resource pairs in a model for which ‘closed world’ reasoning cannot be used due to
incomplete knowledge.

1 Introduction

The vision of the Semantic Web is to let computer software relieve us of much of the burden
of locating resources on the Web that are relevant to our needs and extracting, integrating
and indexing the information contained within. To enable this, resources on the Web need to
be encoded in, or annotated with, structured machine-readable descriptions of their contents
that are expressed using terms or structures that have been explicitly defined in a domain
ontology.

Currently, there is a lot of research effort underway to develop ontology representation
languages compatible with World Wide Web standards, particularly in the Ontology Inference
Layer (OIL [1]) and DARPA Agent Markup Language (DAML [2]) projects. Derived from
frame-based representation languages from the artificial intelligence knowledge representa-
tion community, OIL and DAML schema build on top of RDF Schema by adding modelling
constructs from description logic [3]. This style of language has a well understood semantic
basis but lacks both a wide user community outside AI research laboratories and a standard
graphical presentation—an important consideration for aiding the human comprehension of
ontologies.

This paper discusses Semantic Web technology based on an alternative paradigm that
also supports the modelling of concepts in a domain (an ontology) and the expression of in-
formation in terms of those concepts. This is the paradigm of object-oriented modelling from
the software engineering community. In particular, there is an expressive and standardised
modelling language, the Unified Modeling Language (UML [4]), which has graphical and
XML-based formats, a huge user community, a high level of commercial tool support and
an associated highly expressive constraint language. Although developed to support analysis



and design in software engineering, UML is beginning to be used for other modelling prob-
lems, one notable example being its adoption by the Meta Data Coalition1 [5] for representing
metadata schemas for enterprise data.

The proposed application of UML to the Semantic Web is based on the following three
claims:

� UML class diagrams provide a static modelling capability that is well suited for repre-
senting ontologies [6].

� UML object diagrams can be interpreted as declarative representations of knowledge [7].

� If a Semantic Web application is being constructing using object-oriented technology, it
may be advantageous to use the same paradigm for modelling ontologies and knowledge.

However, there is one significant current shortcoming of UML: it lacks a formal defini-
tion. The semantics of UML are defined by a metamodel, some additional constraints ex-
pressed in a semi-formal language (the Object Constraint Language, OCL), and descriptions
of the various elements of the language in English. The development of formal semantics for
UML is an active area of research as evidenced by a number of recent workshops [8, 9, 10]
and the formation of an open-membership international research group to facilitate work in
this area [11]. In particular, as UML is a very large language with some redundancy, research
is underway to identify a core of UML modelling constructs from which the other language
elements can be derived [12, 13]. A formal definition of this core will then indirectly provide
semantics for the complete language.

The present author believes that future developments in this area will provide at least a
subset of UML with the formal underpinnings required for the unambiguous interpretation of
ontologies. For the present, the use of the more basic features of class and object diagrams
for representing ontologies and knowledge seems no more prone to misinterpretation than the
use of the Resource Description Framework—a language which underlies the Semantic Web
but also lacks official formal semantics (although some have been proposed [14]). It is also
worth noting that many of the difficulties in providing precise semantics for UML lie with its
features for dynamic modelling of systems, rather than the static models used in the present
work.

Further discussion of the benefits and limitations of UML for ontology modelling is be-
yond the scope of this paper which focuses on technology to support the use of object-oriented
modelling for the Semantic Web. An overview of this technology is given in Section 2. Sec-
tion 3 presents an example ontology in UML and gives a brief description of the features of
UML used in this example (for a good introduction to a much larger subset of the language
see Muller [15]). Section 4 describes the techniques used to generate an RDF schema and a
set of Java classes (complete with RDF-based object marshalling support) from a UML on-
tology. Section 5 proposes an extension to RDF that allows the inclusion in an RDF model of
information on how complete that model is for particular property–resource pairs. Some pre-
liminary thoughts on the possibility of performing reasoning with ontologies and knowledge
expressed in UML are presented in Section 6. Finally, Section 7 gives an overview of related
work.

1the MDC has since merged with the Object Management Group to work jointly on the OMG’s Common
Warehouse Metamodel for data warehousing, business intelligence, knowledge management and portal technol-
ogy metadata.
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Figure 1: Overview of the implemented technology for object-oriented knowledge representation

2 Required technology for UML and the Semantic Web

To enable the use of UML representations of ontologies and knowledge, standard formats are
needed to allow both ontologies and knowledge about domain objects to be published on the
Web and transmitted between agents. In addition, there is a need for code libraries to help
application writers parse and internalise this serialised information.

This technology already exists for UML class diagrams. The XML Model Interchange
language (XMI) defines a standard way to serialise UML models. There are also a number
of Java class libraries existing or under development to provide a convenient interface for
applications to access this information. However, there is currently no similar technology
available to help Java applications construct, serialise and read object-oriented encodings of
knowledge that are conceptualised as UML object diagrams. XMI documents can encode the
structure of object diagrams, but this is necessarily done in a domain-independent way using
separate but cross-referenced XML elements for each object, link, link end and attribute–
value binding. What is required is a way to generate from an ontology a domain-specific
encoding format for knowledge about objects in that domain, and an application programmer
interface (API) to allow convenient creation, import and export of that knowledge.

Figure 1 shows an approach to object-oriented ontological and object-level knowledge
representation that has been implemented and is described in this paper. First, a domain ex-
pert designs an ontology graphically using a CASE tool supporting the Unified Modeling
Language, and then saves it using the standard XML-based format XMI (XML Model Inter-
change). A pair of XSLT (Extensible Stylesheet Language Transformations) stylesheets then



take the XMI representation of the ontology as input and produce (i) a set of Java classes
and interfaces corresponding to those in the ontology, and (ii) a representation of the ontol-
ogy using RDF (Resource Description Framework) using the modelling concepts defined in
RDF Schema. The generated Java classes allow an application to represent knowledge about
objects in the domain as in-memory data structures. The generated schema in RDF defines
domain-specific concepts that an application can reference when serialising this knowledge
using RDF (in its XML encoding). The marshalling and unmarshalling of object networks to
and from RDF/XML documents is performed by a pair of Java classes: MarshalHelper
and UnmarshalHelper. These delegate to the generated Java classes decisions about the
names and types of fields to be serialised and unserialised, but are then called back to perform
the translation to and from RDF, making use of an existing Java RDF application program-
mer’s interface [16].

Note that the generated RDF schema does not contain all the information from the orig-
inal UML model. If an application needs access to full ontological information, it can use
the original XMI document with the help of one of the currently available or forthcoming
Java APIs supporting the processing of UML models. The purpose of the RDF schema is
to define RDF resources corresponding to all the classes, interfaces, attributes and associa-
tions in the ontology in order to support RDF serialisation of instance information. For the
sake of human readers, the schema records additional information such as subclass relation-
ships and the domains and ranges of properties corresponding to attributes and associations.
However, this information is not required for processing RDF-encoded instance informa-
tion because each generated Java class contains specialised methods marshalFields and
unmarshalFields containing hard-coded knowledge about the names and types of the
class’s fields. This is a design decision intended to avoid potentially expensive analysis of the
schema during marshalling and unmarshalling. This it should be possible to use this serial-
isation mechanism in situations where optimised serialisation is important, such as in agent
messaging systems.

3 An example domain

This section presents an example ontology modelled as a UML class diagram and some know-
ledge encoded as an object diagram. The ontology defines a subset of the concepts included
in the CIA World Factbook and is adapted from an OIL representation of a similar subset
[17].

3.1 An ontology in UML

Figure 2 presents the CIA World Factbook ontology represented as a UML class diagram.
The version shown here is not a direct translation from OIL: there is an additional class
AdministrativeDivision, UML association classes are used where appropriate, and
instead of defining the classes City and Country as specialised types of Region (Geo-
graphicalLocation in the OIL original), the ontology represents these as optional roles that a
region may have.

The boxes in the diagram represent classes, and contain their names and (where appli-
cable) their attributes. The lines between classes depict association relationships between
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Figure 2: A UML ontology for a subset of the CIA World Factbook

classes. A class A has an association with another class B if an object of class A needs to
maintain a reference to an object of class B. An association may be bidirectional, or (if a
single arrowhead is present) unidirectional. A ‘multiplicity’ expression at the end of an as-
sociation specifies how many objects of that class may take part in that relationship with a
single object of the class at the other end of the association. This may be expressed as a range
of values, with ‘*’ indicating no upper limit. Association ends may be optionally named. In
the absence of a name, the name of the adjacent class, with the initial letter in lower case,
is used as a default name. Associations can be explicitly represented as classes by attaching
a class box to an association (see LandBoundary and AreaComparison in the figure).
This is necessary when additional attributes or further associations are required to clarify the
relationship between two classes.

The dog-eared rectangle in the lower left corner of the figure contains a constraint in the
Object Constraint Language (OCL). This language provides a way to constrain the possible
instances of a model in ways that cannot be expressed using UML’s structural modelling
elements alone. The constraint shown here states that i) a country’s capital is a city in that
country, and ii) if a country c has another as a neighbour, then that neighbouring country has c
as a neighbour. Finally, the keyword “datatype” appearing in guillemets above the class Real
indicates that this is a pre-existing built-in datatype. OCL defines a minimal set of primitive
datatypes and it is currently assumed that the ontology designer has used these primitive
types.

Note that UML includes notation for class generalisation/specialisation relationships, al-
though this is not required for the example presented in this paper.
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Figure 3: Information about New Zealand as a UML object diagram

3.2 Knowledge as an object diagram

Figure 3 presents some knowledge about New Zealand from the CIA World Factbook, ex-
pressed as an object diagram. For brevity, this diagram omits most of New Zealand’s cities
and administrative divisions, and provides no information about the region named Colorado,
to which New Zealand is compared in terms of area.

In object diagrams, rectangles denote objects, specifying their class (after an optional
name and a colon) and the object’s attribute values. The lines between objects show ‘links’:
instances of associations between classes.

4 From UML to RDF and Java

The previous section presented some knowledge expressed as a UML object diagram. This is
an abstract representation of that knowledge. To enable this style of knowledge representation
to be used for Semantic Web applications it is necessary to define an API to allow creation
of the knowledge in this form and a serialisation format to allow Web publication and trans-
mission of the knowledge. These can be generated automatically from an XML encoding of
the Word Factbook using the XSLT stylesheets that have been developed. One stylesheet pro-
duces an RDF schema corresponding to the ontology and the other produces a corresponding
set of Java classes and interfaces.

XSLT is a language for transforming XML documents into other documents. An XSLT
stylesheet is comprised of a set of templates that match nodes in the input document (rep-
resented internally as a tree) and transform them (possibly via the application of other tem-
plates) to produce an output tree. The output tree can then be output as text or as an HTML
or XML document.

The main issue common to both mappings is the problem of translating from UML



classes, which may have different types of features such as attributes, associations and as-
sociation classes, to a model where classes only have fields or (in RDF) properties. It was
also necessary to generate default names for fields where association ends are not named in
the UML model. The OCL conventions for writing navigation paths through object structures
were used to resolve these issues. Also, attributes and association ends with a multiplicity
upper limit greater than one are represented as set-valued fields (bags in RDF Schema) or, in
the case of association ends with a UML “ordered” constraint, list-valued fields (sequences
in RDF Schema). Further details about the mappings have been discussed elsewhere [18] and
are beyond the scope of this paper.

4.1 The generated RDF schema

The Resource Description Framework (RDF) is a simple resource–property–value model de-
signed for expressing metadata about resources on the Web. RDF has a graphical syntax as
well as an XML-based serialisation syntax. For readability, examples in this paper are pre-
sented in the graphical syntax, although in practice they are generated in the XML format.

RDF Schema is a set of predefined resources (entities with uniform resource identi-
fiers) and relationships between them that define a simple meta-model including concepts
of classes, properties, subclass and subproperty relationships, a primitive type Literal,
bag and sequence types, and domain and range constraints on properties. Domain schemas
(i.e. ontologies) can then be expressed as sets of RDF triples using the (meta)classes and prop-
erties defined in RDF Schema. Schemas defined using RDF Schema are commonly called
RDF schemas (small ‘s’).

The main issue in generating an RDF schema that corresponds to an object-oriented model
is that RDF properties are first-class objects and are not defined within the context of a partic-
ular class. This can lead to conflicting range declarations if the same property (e.g. head) is
used to represent a field in two different classes (e.g. Brew and Department). The solution
chosen was to prefix each property name representing a field with the name of the class. This
has the disadvantage that in the presence of inheritance a class’s fields may be represented
by properties with different prefixes: some specifying the class itself and some naming a par-
ent class. This might be confusing for a human reader but is not a problem for the current
purpose: to specify a machine-readable format for object-oriented knowledge interchange.

Figure 4 presents a subset of the generated RDF schema corresponding to the UML model
presented in Figure 2. Only the classes Country and Region and the relationships between
them are included here.

In the standard RDF graphical notation used in the figure, an ellipse represents a resource
with its qualified name shown inside as a namespace prefix followed by a local name. A
namespace prefix abbreviates a Uniform Resource Identifier (URI) associated with a particu-
lar namespace, and the URI for the resource can be constructed by appending the local name
to the namespace URI. A property is represented by an arc, with the qualified name for the
property written beside the arc (in this case the arcs are given labels with the corresponding
URIs shown in the table).

Figure 4 includes one property that is not part of RDF Schema. There is no mechanism in
RDF Schema to parameterise a collection type (such as rdf:Bag) by the class of elements it
may contain. Therefore, the non-standard property rdfsx:collectionElementType
was introduced to represent this information (this is abbreviated in the figure by the arc label
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Figure 4: Part of the World Factbook schema in RDF

et). The definition of this property is shown in Figure 5. The object serialisation mechanism
described in this paper does not require this information but it is useful to people reading the
schema.

The schema in Figure 4 completely defines the encoding of instance data in RDF. Fig-
ure 6 shows how an object diagram is encoded in RDF with reference to the schema. This
corresponds to the central Region and Country objects from Figure 3 together with the
AreaComparison link to the Colorado Region object. The five resources outlined in
bold are the ones being defined. There are two resources of type wfb:Region, one of type
wfb:Country, one of type rdf:Bag (representing the set of the country’s area compar-
isons) and one element in the bag, an instance of the area comparison association class (which
is represented in RDF as the type wfb:AreaComparison). Depending on the needs of the
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Figure 5: An extension to RDF Schema
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Figure 6: Information about New Zealand encoded in RDF

application, defined objects might be assigned URIs or represented as anonymous resources.
In this case, they are anonymous—the labels x and y are included to allow reference to these
resources later in this paper. The rectangles represent RDF literals.

Note that while this graphical notation for RDF looks complicated, its encoding in XML
only requires five XML elements to represent the information, as shown in the appendix.

4.2 The generated Java classes and marshalling framework

The generated RDF schema described in the previous section defines a domain-specific serial-
isation format for object-oriented representation of knowledge about the domain. To facilitate
the processing of knowledge communicated in this form, a set of Java classes can also be gen-
erated from the ontology using XSLT. These allow Java applications to instantiate instances
of the domain concepts. In addition, the generated classes, along with some additional utility
classes, allow these in-memory structures to be marshalled and unmarshalled to and from the
RDF serialisation format defined by the generated RDF schema. The aim of the marshalling
code is to allow a Java application to maintain an internal representation of object-oriented
knowledge and to easily read and write parts of this knowledge to and from a format suitable
for transmission or publication on the Web.

Figure 7 presents a class diagram outlining the structure of the generated Java classes
and the marshalling framework. The class MarshalHelper is part of a support package
used by the generated classes. A static method marshalObjects provides the entry point
for an application to marshal a network of objects. A similar class UnmarshalHelper is



hashcode() : int
equals(o : Object) : boolean
compareTo(o : Object) : int
marshal(h : MarshalHelper)
«abstract» marshalInheritedFields(h : MarshalHelper)
marshalFields(h : MarshalHelper)

OID : int

DomainObject

marshalString(fieldName : String, value : String, known : Boolean)
marshalObjects(objects : Collection, root : DomainObject, namespace : String, os : OutputStream) : QName

MarshalHelper

...
marshalInheritedFields(h);
marshalFields(h);
...

Has empty default definition

name() : String
setName(name : String)
nameKnown() : boolean
setNameKnown(known : Boolean)
Region()
Region(name : String)
marshalInheritedFields(h : MarshalHelper)
marshalFields(h : MarshalHelper)
main(args[] : String)

name : String
nameKnown : boolean = false
...

Region

Defined in all generated classes as:
  super.marshalFields(h);

...
h.marshalString("name", name, nameKnown);
...

Registers class in a properties file, indexed by URI

Adds triple to RDF model, either property value
or statement that property value isn't known

Creates MarshalHelper object h and
for each o in objects calls:
   o.marshal(h)

Figure 7: The structure of the generated classes and the marshalling methods

also provided, but is not discussed here. The class DomainObject is an abstract base class
that all generated classes specialise (the specialisation relationship is represented by a closed
arrow pointing to the more general class). The class Region is shown as an example of a
generated class.

This diagram does not show all the fields and methods. In particular, the class Region
also contains fields and methods related to the association ends as_city, as_country
and as_admin_division from the ontology shown in Figure 2. There are some fields
and methods depicted that are related to whether or not a field value is “known”. This is
discussed in Section 5.

There is a significant difference between knowledge represented propositionally and know-
ledge represented in the form of an object diagram. Propositions are self-contained statements
of knowledge whereas object diagrams are networks of objects. When serialising knowledge,
an application may only wish to include some of the information it knows about a domain.



// Build object diagram
Region rNZ = new Region("New Zealand");
Country cNZ = new Country();
AreaComparison ac = new AreaComparison();
ac.setCountry(cNZ);
ac.setRegion(rNZ);
ac.setProportion("About the size of");
Set comparisons = new HashSet();
comparisons.add(ac);
Region rColorado = new Region("Colorado");
rNZ.setAs_country(cNZ);
cNZ.setRegion(rNZ);
cNZ.setAreaComparisonSet(comparisons);
// Now marshal it
Set toMarshal = new HashSet();
toMarshal.add(rNZ); toMarshal.add(cNZ);
toMarshal.add(ac); toMarshal.add(rColorado);
try {
QName rootQName =
MarshalHelper.marshalObjects(
toMarshal, rNZ, "http://nzdis.otago.ac.nz/nzdata1#",
new FileOutputStream("nz.xml"));

}
catch (MarshallingException e) { ... }

Figure 8: Sample Java code to create and marshal an object diagram

For example, Figure 6 compares New Zealand’s area to that of Colorado, but doesn’t provide
the information that Colorado is an administrative division of the United States. To allow
this selectivity, the marshalObjectsmethod takes a collection of objects as an argument.
Links to any objects outside this collection will not be serialised. To allow a particular entry
point into the knowledge structure to be identified, a root object is specified and the method
returns the qualified name of the RDF resource in the serialised model that represents that
object. A namespace for the serialised information is also provided.

Figure 8 shows the Java code that would produce the RDF serialisation in Figure 6.

5 Modelling incomplete knowledge

Because object diagrams are inter-linked networks of objects rather than sets of discrete facts,
and because classes may have attributes or associations that are optional (i.e. have a multi-
plicity lower bound of zero), it is important to be able to distinguish between a statement that
there are no values for a given property and the omission or lack or knowledge about a given
property. In other words, the recipient of object-oriented information needs a way of knowing
for which objects and which properties a closed world assumption can safely be made. This
is achieved by including extra boolean fields in the generated Java classes that record for each
regular field whether or not its value is ‘known’ or, for set- or list-valued fields, ‘closed’—
meaning that the contents of the set or list provide complete knowledge of that field. Setting
the value of a single-valued field sets its ‘known’ field to true and all fields also have a method
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Figure 10: Meta-knowledge about incomplete information

allowing the programmer to explicitly specify the status of the field.
When unmarshalling an object diagram from the RDF encoding it is assumed that com-

plete information about all properties is included unless otherwise specified (although the
opposite could equally well be implemented as the default assumption). Incomplete infor-
mation is indicated using a non-standard RDF property notClosedFor that associates a
property with a resource, meaning that complete information is not provided for that property
applied to that resource. Figure 9 shows the declaration of the notClosedOn property.

Figure 10 presents an example of this property applied to the encoding of knowledge
about New Zealand that was shown in Figure 6. When combined with the RDF-encoded
information in Figure 6, this specifies that the RDF model does not contain complete (or
possibly any) information about the capital, cities and administrative divisions of the country
represented by the resource labelled x. Also, there is possibly missing information about the
administrative division property of the region represented by the resource labelled y.

In order to have this meta-level information added to the RDF serialisation, the Java code
shown in Figure 8 must have the following lines added before the call to marshalObjects:



cNZ.setCapitalKnown(false);
cNZ.setCitySetClosed(false);
cNZ.setAdministrativeDivisionSetKnown(false);
rNZ.setAs_admin_divisionKnown(false);

Similar mechanisms for handling incomplete knowledge have been used in knowledge
representation systems LOOM [19] (which includes :closed-world and :open-world
relation properties) and CLASSIC [20] (which allows roles to be declared to be ‘closed’).
This notion has also been formalised in description logic by the use of epistemic operators
that modify roles, and in AI planning by the use of “local closed world” formulae [21]. The
notClosedOn property used in this work should also include a reference to the current
RDF model, but this is not currently possible as RDF does not provide a way to declare that
a set of statements collectively constitute a model with a given URI.

6 Reasoning with OCL

The Semantic Web, as envisioned by Tim Berners-Lee [22], includes a logical layer which
allows “the deduction of one type of document from a document of another type; the check-
ing of a document against a set of rules of self-consistency; and the resolution of a query by
conversion from terms unknown into terms known”. One of the biggest challenges for the
Semantic Web community is to find interoperable ways of incorporating inference rules into
ontologies. There is much research to be done in this area. For example, although the XML
DTD for OIL 1.0 defines a rule-base element, its content is unconstrained text and no
semantic connection is made between this rule base and the rest of the language. The RDF
schemas defining later versions of OIL and DAML do not currently contain any way of rep-
resenting rules, although it is a goal of the DAML project to produce an enhanced language,
DAML-L, with support for rules.

It is therefore an important question to evaluate how well UML fares in this regard. In
fact, UML includes a powerful mechanism for expressing inference rules: the Object Con-
straint Language. OCL has been claimed to be “essentially a variant of [first order predicate
logic] tuned for writing constraints on object structures” [23]. This claim is true from a syn-
tactic viewpoint: OCL is sufficiently expressive to represent any first-order inference rules
that an ontology designer may wish to specify (although this expressiveness also means that
reasoning about unconstrained OCL expressions is likely to be undecidable in general). From
a semantic viewpoint, the above claim cannot be verified as OCL currently lacks a formal
specification. However, this shortcoming has been recognised in the UML 2.0 OCL RFP [24]
and at least one proposal for formal semantics for OCL has already been made [25].

The object-oriented syntax of OCL is also unlike any commonly used logical language,
and attempting to write rules in OCL can be frustrating for the inexperienced. A constraint
can often be expressed in several different ways and the resulting expression can look quite
unlike its counterpart in first-order logic. Consider the constraint in Figure 2. The second
conjunct specifies that the neighbourhood relationship between countries is reflexive. The
form of this constraint might be immediately recognised as a standard pattern by an OCL
expert but it is not obvious to the uninitiated.

To enable tractable reasoning about ontologies in UML, and to avoid the awkward syntax
of OCL, it would be useful to define a macro language on top of OCL comprising predicates
such as reflexive(path-expression) which are defined in terms of OCL. The set
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Figure 11: An example of inference over knowledge in UML

of macros could be chosen to ensure that reasoning over these expressions is tractable. This
would also help to allow the translation of rules between UML-based and other representa-
tions of an ontology. This is a subject for future research.

Recent research has also shown how inference rules in UML can be expressed as graph
transformations on the UML metamodel [26, 13]. To give a taste of what inference with UML
might look like, Figure 11 shows how new knowledge in the form of an object diagram can
be generated by combining existing knowledge and information about the ontology. In this
example, one agent has communicated to another that there is an object of class Man with
“Kim” as the value of its name attribute. The other agent knows that there is a Person
object with name Kim and that this object is the child of a Person object with name Bob.
The ontology for this domain states that Man is a specialisation of Person, and includes
two OCL constraints: one defining the derived role (indicated by ‘/’) son (a son is a child
that is a man), and the other stating (rather unrealistically) that the name attribute uniquely
identifies objects of class Person. Over several steps of inference the agent can conclude
that the two objects with name Kim are the same and therefore Kim is a male child, i.e. a son.
Implementing this style of deduction in UML is a subject for future research.

7 Related Work

A number of other projects have investigated the serialisation of instances of ontological
models.

Skogan [27] defined a mechanism for generating an XML document type definition (DTD)
from a UML class diagram and implemented this as a script for the UML-based modelling



tool Rational Rose. This is being used for the interchange of geographical information. The
mapping is only defined on a subset of UML and many useful features of class diagrams,
including generalisation relationships, are not supported.

Work has also been done on producing DTDs [28] and XML schemas [17] from models
expressed in ontology modelling languages (Frame Logic and OIL respectively). The latter
work reported that the XML Schema notion of type inheritance does not correspond well to
inheritance in object-oriented models, which was a factor in the choice of RDF as a serialisa-
tion format in the research described here.

Since its initial proposal, OIL has been redesigned as an extension of RDFS [29]. This
means that an ontology in OIL is also an RDF schema and therefore knowledge about re-
sources in a domain modelled by an OIL ontology can easily be expressed using RDF.

The UML-based Ontology Toolset (UBOT) project at Lockheed Martin is working on
tools to map between UML and DAML representations of ontologies [30]. This project has
a different focus from the work described in this paper. Rather than using the existing fea-
tures of UML to describe ontologies, the language is being extended with a set of UML
‘stereotypes’ (specialisations of UML modelling constructs) that correspond to classes and
properties in the RDF schema for DAML. A proposal has also been made for an extension to
the UML metamodel that would allow global properties in DAML ontologies to be modelled
as aggregations of UML association ends (which are local to classes) [31].

The Web site http://www.interdataworking.com provides a number of ‘gateways’ that can
be used to convert between different data formats. One particular ‘gateway stack’ can be used
to produce an RDF schema from an XMI document, although no information is given about
the mapping and how much of UML is supported. The resulting schema is defined using a
mixture of properties and (meta)classes from RDF Schema (such as rdfs:subClassOf)
and from Sergey Melnik’s RDF representation of the UML metamodel [32]. The schema de-
fines properties and classes that can be referenced when encoding object information in RDF,
and could itself be used as an alternative to an XMI encoding for publishing and serialising an
ontology modelled using UML. However, as XMI is an Object Management Group standard
for model interchange, it is being supported by an increasing number of tools and APIs and
there seem to be few advantages in using a different format for encoding UML models. If it
is required to annotate an ontology with additional information that is not part of the XMI
format (one of Melnik’s desiderata) this could be achieved using external annotations and
XLink [33].

Xpetal [34] is a tool that converts models in the ‘petal’ output format of the UML-based
modelling tool Rational Rose to an RDF representation. No details are provided about the
mapping from UML to RDFS and which UML features are supported.

8 Conclusion

This paper has described technology that facilitates the application of object-oriented mod-
elling, and the Unified Modeling Language in particular, to the Semantic Web. From an on-
tology specified in UML, a corresponding RDF schema and a set of Java classes can be
automatically generated to facilitate the use of object diagrams as internal knowledge repre-
sentation structures and the import and export of these as RDF documents. A mechanism was
also introduced for indicating when an object diagram has missing or incomplete knowledge.

Important areas for future work are the identification of tractable subsets of OCL for



encoding inference rules and the definition of mappings between object-oriented representa-
tions of ontologies and knowledge and more traditional description logic-based formalisms.
This would allow applications to choose the style of modelling most suitable for their needs
while retaining interoperability with other subsets of the Semantic Web.

The software described in this paper is publicly available at http://nzdis.otago.ac.nz/projects
under the name “uml-data-binding”.
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Appendix

The following is an XML serialisation of the RDF model representing information about New
Zealand that was shown in Figure 6.

<rdf:RDF
xmlns:wfb="http://nzdis.otago.ac.nz/0_1/world-fact-book#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<wfb:Region rdf:ID="region1">
<wfb:Region.name>New Zealand</wfb:Region.name>
<wfb:Region.as_country rdf:resource="#country1"/>

</wfb:Region>

<wfb:Country rdf:ID="country1">
<wfb:Country.region rdf:resource="#region1"/>
<wfb:Country.areaComparison rdf:resource="#bag1"/>

</wfb:Country>

<rdf:Bag rdf:ID="bag1">
<rdf:li rdf:resource="#comparison1"/>

</rdf:Bag>

<wfb:AreaComparison rdf:ID="comparison1">
<wfb:AreaComparison.country rdf:resource="#country1"/>
<wfb:AreaComparison.region rdf:resource="#region2"/>
<wfb:AreaComparison.proportion>About the size of
</wfb:AreaComparison.proportion>

</wfb:AreaComparison>

<wfb:Region rdf:ID="region2">
<wfb:Region.name>Colorado</wfb:Region.name>

</wfb:Region>

</rdf:RDF>


