
A semantic model for specifying
data-intensive Web applications

using WebML
Sara Comai Piero Fraternali

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Piazza L. Da Vinci, 32
I-20133 Milano, Italy

comai,fraterna@elet.polimi.it

Abstract. WebML (Web Modelling Language) is a language for the design of data-
intensive Web sites. It is supported by visual tools allowing the definition of the con-
ceptual data organization and of the pages and links of the actual hypertext(s) which
constitute a Web application. In this paper we describe a semantic model for WebML
hypertexts by means of Statecharts. Statecharts provide a formal description of the
clicking behavior and page data fill of WebML applications. The proposed semantic
model has guided the implementation of the WebML runtime and the construction of
advanced specification checking functions embedded in the WebML design tools. In
particular, developers are supported in the identification of design and runtime prob-
lems caused by non-determinism, racing conditions and deadlocks.

1 Introduction

Web applications have spread in every sector of the human activity, well beyond the bound-
aries of document-oriented systems, for which the Web has been initially conceived.

The enormous demand for Web-enabled applications, both novel or resulting from the
re-engineering of existing systems, coupled to the chronic lack of skilled IT personnel, puts
forth a dramatic request for better software engineering practices, similar to those adopted in
more mature software fields, like database and object-oriented development.

For improving productivity, a broader coverage of the tasks of Web site development
is imperative, because the vast majority of Web development tools available on the market
still concentrate only on design and implementation, paying little attention to requirement
analysis and conceptual modelling [7]. Therefore, implementing and maintaining a large Web
site is still a very human-intensive and error-prone activity, which does not benefit from the
availability of a formal development process, supported by modelling notations and CASE
tools.

To cope with these requirements, the research community has proposed several approaches
for the so-called model-driven design of Web sites [1, 5, 8, 9, 11], which share the idea of
leveraging semi-formal notations to express the data structure and hypertext topology of a
Web site and of using conceptual-level specifications to drive the design and implementation.

WebML [3] is one of the proposals for the conceptual specification and automatic im-
plementation of Web sites. A WebML specification is directed labelled graph, internally rep-
resented as an XML document written according to the WebML DTD, which describes the
topology of one or more hypertexts conceived to publish information on a set of applica-
tion objects. The WebML language is backed by a suite of software tools, which transforms
visual WebML specifications into server-side page templates and database queries, which
implement the desired Web site.

Differently from previous proposals, which were mostly introduced informally and by
examples, WebML anchors Web site specifications to a sound formal basis, by associating
a formal semantics to the semi-formal visual notation. This paper introduces WebML’s for-
mal semantics, which is based on the use of STATECHARTS [10] to express the dynamic
behavior of a Web site.

As a consequence of establishing a formal model, Web site specifications acquire an un-
ambiguous meaning and lend themselves to automatic checking for correctness or desired
properties. Moreover, the formal semantics can be used as a yardstick to evaluate the cor-
rectness of CASE tools generating running Web sites from WebML specifications, because
the runtime behavior of the generated site must obey the expected behavior expressed by the
formal semantics.

2 Overview of WebML

A WebML specification consists of two major components:

� The structure model, describing the conceptual organization of the application data;

� One or more hypertexts (site views in the WebML jargon) defined on top of the structure
model, which express the organization and linking of pages used to publish the application
data.

The approach adopted by WebML is data-driven: first the structure of the data is described,
then, on the basis of such structure, the hypertext is defined, as explained in the following
subsections. For further details about the syntax of WebML the reader may refer to [3] and to
the Web site http://webml.org.

2.1 Structure model

The structure model describes the conceptual data organization, and is compatible with the
Entity-Relationship data model, used in conceptual database design, and with UML class di-
agrams, used in object-oriented modelling. The fundamental elements of the structure model
are entities, defined as containers of data elements, and binary relationships1, defined as
semantic connections between pairs of entities. Entities have attributes representing the prop-
erties of the real world objects and relationships are characterized by named relationship
roles (i.e., the two directions in which a binary relationship can be traversed) and cardinality
constraints associated to each role.

1WebML presently supports only binary relationship without attributes; work on supporting content units
defined over generalized n-ary relationships and relationship attributes is ongoing.

Example I: Figure 1 shows a simple structure schema for the publication of an hypertext
describing data about books: the rectangles in the graph represent entities, while edges rep-
resent relationships (for brevity, relationship roles names are omitted). In the example, each
book is written by one or more authors and has a unique publisher; moreover, each book may
be associated with zero or more reviews.

BOOK AUTHOR

REVIEW PUBLISHER

BOOK-REVIEW BOOK-PUBLISHER

0:n

1:1

1:n 1:n

1:1

1:n

BOOK-AUTHOR

Figure 1: Example of structure schema

2.2 Hypertext

A WebML hypertext consists of a set of pages, depicted as rectangles, connected by non-
contextual links, represented by oriented arcs. The content of a page is expressed by means of
content units. Different kinds of unit are provided by WebML, denoted by different symbols.
Units may be connected by contextual links, also graphically depicted by means of oriented
arcs (See Figure 3). We describe first content units; then, we clarify the use of contextual and
non-contextual links.

Units publish information about the objects of the structure schema: each unit is defined
over a master object, an entity or a relationship role2, which gives content to the unit.

WebML offers six predefined content units to assemble read-only hypertexts (additional
units are available for content management applications):

� Data units: they are used to publish a set of attributes of a single object (e.g. the data of a
single book). The graphical representation of WebML data units is shown in Figure 2.a.

� Index units: they are used to represent sorted lists of objects, where each object is denoted
by some representative attributes (e.g. an index of authors may show the first name and
last name of each author). Index units are typically linked to a data unit, which shows
the details of the object selected from the index (e.g. the data of the selected author). The
graphical representation of index units is shown in Figure 2.b.

� Multidata units: they show multiple objects together, by repeating the presentation of
several, identical data units3 (e.g., all the books written by an author). See Figure 2.c for
the graphical representation.

2A relationship role univocally determines a source entity and a destination entity, based on the direction in
which the relationship is considered.

3In the following sections, multidata units will be treated as a finite set of data units, and therefore will not
be considered explicitly.

� Scroller units: they provide the commands to scroll over an ordered set of objects. They
are generally connected to a data unit showing the current item of the sequence. The
graphical representation is shown in Figure 2.d.

� Filter units: they allow the user to specify search criteria by means of a search form.
Typically, a filter unit is connected to an index unit showing the result of the search (e.g.
the user inserts the category of a book, and the list of books belonging to this category is
shown). The graphical representation of filter units is shown in Figure 2.e.

� Direct units: they associate one object to a single other object along a one-to-one or many-
to-one relationship (possibly the identity relationship). They are generally connected to a
data unit showing the unique target of the one-to-one or many-to-one relationship (e.g.,
the data of a book may be connected through a direct unit to the data of its unique pub-
lisher). The graphical representation is shown in Figure 2.f.

Figure 2: Graphical representation of WebML units

Example II: Consider for example the hypertext depicted in Figure 3. It contains three pages:
the home page, the books’ index page and the book page. The home page is empty (we
suppose that it contains only unmodeled, presentation-oriented content) and is connected
by a link to the books’ index page, which contains two units: a filter defined over books
(BookFilter) allows one to search all books based on some keywords (e.g. with respect to
their category), and is linked to an index unit (BookIndex), which represents the list of books
matching the search criteria expressed in the filter unit. The books’ index is connected to a
data unit in a separate page (BookPage). This page contains several pieces of information,
which are shown when the user clicks on an entry in the index of books: the data of the
selected book (BookData), the data of its publisher (PublisherData), the index of its authors
(AuthorIndex), and a scroller unit defined over the book’s reviews (ReviewScroller), which
allows the user to orderly browse the book’s reviews, displayed one by one in a data unit
(ReviewData). A direct unit (Book2Publisher) is interposed between the BookData unit and
the PublisherData unit, to associate the book to its unique publisher.

An important difference exists between non-contextual links connecting pages and con-
textual links between units: the former are a mere navigational device used to change page,
the latter imply the transportation of navigation context from the source to the destination
unit. Navigation context is information passed from one unit to another one in order to make
the second unit computable from the data in the structure layer. For example, in Figure 3
the link exiting the home page is a non-contextual link and does not carry any information;
instead, the link between the BookIndex unit listing a set of books and the BookData unit
showing the data of a particular book is contextual: it must carry the identifier of the book
selected in the index, for the data unit to be computable. Note that, as shown in this example,

Figure 3: Example of WebML pages

when the source and the destination units of a contextual link belong to different pages, also
navigation between pages is performed.

WebML units are both producers and consumers of navigation context. For example, an
index unit typically produces the identifier of the object selected from the user; however, it
may also consume context, e.g., to display a list of objects connected by a relationship to an
input object. For example, in Figure 3 the AuthorIndex unit, listing the authors of a particular
book, needs the OID of the current book to be computed: indeed, according to the schema
of Figure 1, given the current book, the target objects of the relationship between book and
author can be identified.

The following table illustrates the input and output context of the different WebML units.

Unit Input parameters Output parameters

Data unit
Selected instance (OID of the
current instance)

Current instance

Index unit
Owner of the relationship

�
,

Optional predicate
� Selected item, Owner of the relationship

�

Multidata unit
Owner of the relationship

�
,

Optional predicate
� Selected item (possibly all the items), Owner

of the relationship
�

Filter unit
Owner of the relationship

�
,

Optional predicate
� New Predicate, Owner of the relationship

�

Scroller unit
Owner of the relationship

�
,

Optional predicate
� Selected item, Owner of the relationship

�

Direct unit Owner of the relationship Target of the relationship
�

�
When a unit is defined over a relationship role, the OID of an instance of the source entity participating

to the relationship (called the relationship’s owner, in the WebML jargon) is required.�
When the unit is preceded by a filter unit, a predicate is passed to compute the result set of the search.�
The target of a one-to-one or many-to-one relationship is the unique object associated to the owner of the

relationship.

As shown in the example of Figure 3, a WebML page typically contains several units
linked in a network topology to produce the desired communication effect. In order to specify
how the context is propagated along the chains of linked units, WebML permits the designer
to declare links (both contextual and non-contextual) as automatic or clickable. The former
are ”automatically clicked” by the WebML runtime system, to propagate context from the
source to the destination unit of the link even in absence of user’s action. The latter do not
exhibit such behavior, but the user must explicitly activate the link for context propagation to
occur.

When links are automatic the output parameters of the unit wherefrom the link exits may
need proper initialization: the output of an index or scroller unit is initialized to the first in-
stance of the underlying entity or relationship; the output predicate of a filter unit is initialized
to ”true”, to select all objects of the underlying entity or relationship.

For example, in Figure 3, when the BookPage is accessed, the OID of the book to be
displayed is passed to the book data unit by its incoming contextual link. Then, propagation
of context occurs inside the BookPage page. If all the links between units in BookPage are
automatic, context information flows from unit to unit without the user’s intervention: the
OID of the selected book flows to the subsequent units, thus showing also the index of authors,
the publisher’s data, the first review and the scroller commands to access the other reviews.
The first review is chosen by default by the system, which initializes the output parameter of
the scroller unit.

Conversely, if the links exiting the book data unit are defined as clickable, when the Book-
Page is accessed only the data of the selected book are shown; then the user must click on the
provided anchors (one for each link) to transfer the output context and see also the other data
in the page. Notice the importance of the automatic links in practical applications: they allow
to automatically display information bound to the current data. A more sophisticated example
showing the use of automatic and clickable links will be presented in the next section.

3 Semantics of WebML

In the previous section we introduced the syntax and the main characteristics of WebML;
now we describe its semantics.

Before introducing a formal description of the behavior of a dynamic Web site, we ex-
tend the hypertext of Figure 3 in order to show some particular behaviors and problems that
highlight the benefits of having a semantic model.

The WebML specification of Figure 4 extends the previous hypertext with the authors’
index page.

Figure 4: Example of a Web site

Let us carefully analyze such page. It contains several kinds of information to be shown:
the index of all the authors (AllAuthorIndex), the data of a selected author (AuthorData),
the list of the books of such author (BookIndex1) and the data of one book selected from
such list (BookData1). Note that the two first links transport the identifier of the selected
author, while the third link transports the identifier of the selected book. Depending on how
the links between units are specified, i.e. automatic or clickable, this page behaves differently.
Suppose that all the links between the units be automatic, i.e. the first click of every link is
automatically done by the system without any intervention of the user: when this page is
accessed it displays the list of all the authors, the data of the first author of the index (chosen
as default by the system), the list of the books of such author and, finally, the data of the first
book of the book index (chosen as default by the system). All these data are automatically
shown. Then, the user may select a different author from the author index or a different book
from the book index: in both cases all the data related to the units following the considered
index change accordingly. That is, if a new author is selected from AllAuthorIndex the data
of the new author are shown, together with his/her books and the data of the first of such

books; if a new book of the author is selected from BookIndex1 the data of the selected book
are displayed. Notice how the automatic links allow to define default choices without leaving
empty parts in the page.

Consider now the case where the links exiting the index units are defined as clickable and
the link exiting the author data unit is still automatic: the behavior of the same page would
be different, since the first choice of each index is not performed by the system, but for each
index the system waits until the user clicks on an item. This means that, when the page is
entered the first time it contains only the list of the authors; then, when the user selects one
of such authors, his/her data together with the list of his/her books are shown; finally, when
the user selects one of the books of the author also the data of the books are shown. Then,
the user may e.g. select a new book from BookIndex1: as a consequence the data of the new
selected book are displayed as in the previous case. Instead, if the user selects a new author
from AllAuthorIndex, the data of the new author are displayed together with his/her books’
list but no data about a particular book are shown until the user explicitly selects one item.
Notice that in this case the page content changes, i.e., initially only one unit is populated, then
after user’s clicking two other units are filled and so on.

So, depending on the kinds of link (automatic or clickable) the behavior of the page is
different, since information may be automatically displayed or not displayed at all, and page
composition may change after user clicking. For complex pages containing several units the
same page may have different configurations at runtime depending on the kinds of links and
on user’s behavior; such configurations can be properly described by a semantic model.

Let us consider another important aspect that need to be considered. From the authors’
index page, it is possible to reach the page displaying further information about the selected
book (a direct unit is used to represent the identity relationship, i.e., the current book itself)
and from this page it is possible to go back to the authors’ index page, by selecting one of the
book’s authors. When a page may be reached from different pages, the page must be correctly
computed for every single access. When designing a Web site several pages could in fact be
reused for displaying the same kind of information.

Let us focus on the authors’ index page again: when it is reached from the book page the
contextual link enters the second unit (AuthorData) of the chain. In this case the first unit in
the chain (AllAuthorIndex) may cause some problems. The list of all the authors can always
be displayed, independently of how the page is accessed, since this unit does not receive any
input context. But what about its outgoing link? If it is clickable, the system waits until the
user selects a new item: so, if the page is accessed from the book page the remaining part of
the page is computed for the author selected in the book page and it is not changed until a
new author is selected from the AllAuthorIndex. Instead, what does it happen if the outgoing
link is automatic? Does the system automatically display the data of the first author of such
index or the data of the author selected in the book page?

To answer questions like this we need a semantic model, describing the precise behavior
of the hypertext, whose interpretation may become difficult for complex sites. Then, on the
basis of the semantics the system can be actually implemented and the correctness of the
specification can be automatically checked. To formalize the semantics we adopt Statecharts,
which allow to easily describe any dynamic system behavior. Indeed, each page of the site can
be represented as a state. Intuitively, when we navigate through the different pages we change
state. We can change page by clicking on the anchors provided by the current page: the action
of clicking represents the event which makes the system change its current state. In a similar

way, also the content of the pages may be represented by concurrent states, each representing
the behavior of a single unit: the content of a unit is shown depending on the possible events
automatically generated by the system (e.g. when there are automatic links to be followed) or
by possible selections performed by the user. In the sequel we formally describe how to map
a generic WebML specification into a Statechart describing its semantics. We first provide
some preliminary definitions. Then, we define how to map pages into states and how to map
units contained inside a page into concurrent states. Finally, we will see that this model allows
to analyze the behavior of the system in critical cases, where for example non-determinism
or racing conditions arise.

3.1 Preliminary Definitions

The concepts of a WebML hypertext introduced in the previous sections can be formally
described as follows:

Definition 1: (WebML hypertext): a WebML hypertext is a triple (
�

, � ,) where
�

is
a set of units, � is a set of pages, and 	 is a set of links.

�
, � and 	 are such that: 1) links in

	 connect either two pages in � or two units in
�

; 2) units in
�

are contained in pages in � ;
3) one page in � is defined as the home page.

In the sequel we represent links between units with the pair (
�� ,
�) and links between
pages with the pair (��� , ��).

Units of a page are classified based on the topology of the links that connect them:

Definition 2: (Access, depending, and stand-alone units) Let � =(
�

, � ,) be a WebML
hypertext. Let
�� �

be a unit contained in page ����� . Then,
 is an access unit if it
has incoming contextual links originating from outside of � ; it is a depending unit if it has
incoming contextual links originating from units inside � ; it is a stand-alone unit if it has no
incoming contextual links.4

We now introduce the variables and alphabets for events (E), conditions (C) and actions
(A) needed for mapping WebML concepts to Statecharts:

Definition 3: (Variables and E[C]/A alphabets) Let � =(
�

, � ,) be a WebML hyper-
text. Let
�� (� = ���������) be the units in

�
, ��� (� = ����� �"!) be the links in 	 and ��� (� = ��������#) be

the pages in � . Then, we define the following variables, events, conditions and actions:

4Note that a unit may have multiple incoming links, and thus be both an access and a depending unit. The
actual link used at runtime to access a page determines the role of the unit.

Type Name Description NULL
value

Variable access link $ � It refers to the contextual link through
which page $ � has been accessed.

yes

Variable recomputable % �
It is a boolean variable stating if the con-
tent of unit % � can be re-calculated for dis-
play or not.

yes

Variable input context % � It contains the input context of unit % � . yes

Variable output context % � It contains the output context of unit % � . yes

Event
output context % � available
(i=1 &'&'& n)

It denotes that the content of unit % � has
been calculated and its output context is
available in variable output context % � .

—

Event
clicked on anchor (
(j=1 &'&'& m)

It denotes that the user has clicked on the
anchor corresponding to link (. —

Condition access link $*) (% �) It checks if there exists an access link en-
tering unit % � in page $*) .

—

Action
initialize output % �
(i=1 &'&'& n)

It initializes all the output parameters of
unit % � . —

As customary in Statecharts we use the polymorphic symbol + to denote both the empty
event, used to specify automatic transitions, and the empty action.

3.2 Page configuration

We first define how to map the pages of a generic WebML hypertext into a Statechart: given a
WebML hypertext all the pages are mapped into states and all the links (both non-contextual
and contextual) are mapped into transitions among such states as follows:

Definition 4: (WebML hypertext Statecharts) Let � =(
�

, � ,) be a WebML hypertext.
Then, the corresponding WebML hypertext Statecharts is obtained as follows:

� For each �,�-�.� a top-level state / �,� is created;

� For each non-contextual link �0�21435��768��) 9:�;	 a transition from / �< to / ��) is created
with

– E[C]/A= + [=?>@
BA]/access link �C) :=NULL if the link is automatic,

– E[C]/A=clicked on anchor �0� [=?>@
�A]/access link �C) :=NULL if the link is clickable.

� For each contextual link ���D1E3F
�GH6I
�JK9L�M	 with
CGONP�� and
�JQNP��) , a transition from
/ �� to / ��) is created with

– E[C]/A=clicked on anchor �0� [=?>@
�A]/output context
BG available; access link �C) := �R�
if the link is clickable,

– E[C]/A=output context
BG available[=?>@
�A]/access link �C) := �R� if the link is automatic.

� Page ��SUTWVYX is the initial state.

Example III: The WebML hypertext of Figure 4 is mapped into the hypertext statechart
shown in Figure 5: the four pages are mapped into four states and all the links among such
pages are mapped into transitions. In particular, from the home page two non-contextual links

(transitions 1 and 2) depart, which are activated when the event of clicking on the correspond-
ing anchors occurs. Since the links are non-contextual no access link is set for the following
pages. From the authors’ index page a link departs toward the book page: it is activated when
the user clicks on the anchor of the link (transition 3) provided in correspondence of the book
data unit (BookData1), setting the current link as active for the book page. This last operation
is necessary when the page can be accessed through different links in order to consider the
correct incoming link. This transition notifies also that the output context of BookData1 has
been computed and is available to be used to compute the new page. Analogously, two con-
textual links, one from the books’ index page to the book page (transition 4) and one from
the book page to the authors index page (transition 5) are obtained.

1

/access_link_BookIndexPage:=NULL

clicked_on_anchor_l4[true]

S_AuthorIndexPage

S_HomePage

S_BookIndexPage

S_BookPage

/access_link_AuthorIndexPage:=NULL
clicked_on_anchor_l1[true] clicked_on_anchor_l2[true]

/output_context_BookIndex2_available,
/output_context_BookData1_available,
clicked_on_anchor_l3[true]

/output_context_AuthorIndex_available
clicked_on_anchor_l5[true]

3

2

4

5

access_link_BookPage:=l3

access_link_AuthorIndexPage:=l5

access_link_BookPage:=l4

Figure 5: WebML hypertext statechart

3.3 Unit Configurations

Once the pages have been mapped into states, the content of each page can be described.
Given a page of the WebML hypertext, the units in it are mapped into a set of concurrent
states, each describing the behavior of a single unit.

Intuitively, each unit can be either in a disabled state, where no data are shown, or in an
enabled state where its content is displayed according to the input context. At page entry,
a unit is disabled by default. Then, one ore more transitions may lead to the enabled state.
From this state one or more transitions are defined, either to go back to the disabled state
or to re-enter the enabled state, possibly changing the unit content (see Figure 6). The kinds
of events, conditions and actions of the transitions depend on on the fact that the unit is an
access, a standalone or a depending unit.

Definition 5: (WebML unit Statechart) Let � =(
�

, � ,) be a WebML hypertext. Let
�Z�;� be a page containing one or more units and / � be its corresponding state. Then, for
each unit
C) contained in � the following states are introduced:

� A concurrent state /
�) nested at the first level of / � is created;

� A state /\[H�5]W^`_bacX8[
C) nested inside /
B) is created and set as initial state;

� An state /\XWd ^�_bacX8[
C) nested inside /
B) is created containing the entry action recom-
putable
C) :=false;

A set of transitions between /e[H�5]W^`_bafXW[
C) and /\XWd ^�_bacX8[
C) are introduced as follows:

� If
C) is an access unit, then, for each contextual link �5g1h3F
<76I
C) 9Q�P	 with
<jiNk� a
transition from /e[H�5]W^`_bacX8[
B) to /\XWd�^`_bacX8[
C) is added with

E[C]/A= + [output context
�mlon NULL AND access link p(
B))]
/input context
B) :=output context
* ;
access link p:=NULL.

The transition states that at page entry the output context of the source unit of the incom-
ing link becomes the input context of the access unit.

� If
C) is a standalone unit, then a transition from /-[H�5]F^�_bacX8[
C) to /\XWd ^�_bacX8[
C) is added with
E[C]/A= + [=?>@
�A]/ + . The transition states that a standalone unit is automatically enabled at
page entry.

� If
B) is a depending unit, then for each contextual link �5O1�3F
<76I
C) 9p�q	 with
<rNs�
– The following transitions or actions are added to the state of the source unit
C ,

which feeds navigation context to the depending unit
e) :
t A new ring transition on /uXFd�^`_bafXW[
< is added with:

E[C]/A=clicked on anchor �v [=?>@
�A]/ recomputable
* :=true, wx1k�y6������K6I� .
This transitions expresses that a unit feeding another unit inside the same page
may need re-computation (this happens if there is a cycle of links leading back
to the unit).
If the outgoing link �v is clickable action output context
* :=NULL is added
to all the other transitions entering /uXFd�^`_bafXW[
� ; this expresses that for clickable
links there is the need of cleaning the output context, when the destination unit
is enabled.
If the outgoing link �v is automatic, the action initialize output
* is added to all
the other transitions entering /eXWd ^�_bacX8[
< . This expresses that for automatic links
there is the need of properly initializing the output context, when the destination
unit is enabled.

t Action output context
� available is added as entry action in /uXWd ^�_bacX8[
< to
activate the depending units.

t Actions output context
* :=NULL; output context
� available are added to
the transitions from /eXWd ^�_bacX8[
< to /\[H�5]W^`_bacX8[
� . These transitions indicate that
the unit cannot be computed and therefore also their depending units must be
inhibited by setting the passed context to NULL.

– The following transitions are defined for the depending unit
e) :
t A transition from /e[H�5]F^�_bacX8[
C) to /\XWd ^�_bacX8[
C) is created with:

E[C]/A=output context
� available[output context
*ml:n NULL AND NOT ac-
cess link p(
B)) AND recomputable
B)] /input context
B) :=output context
* .
This transitions expresses that the depending unit is enabled when the output
context of its feeding unit becomes available and is not null, the unit has not

been directly accessed from outside the page and is re-computable (i.e., its con-
tent has not already computed in the context propagation, e.g., due to link cy-
cles).

t A ring transition on /eXWd ^�_bacX8[
C) is added having:
E[C]/A=output context
� available[output context
*ml:n NULL AND recom-
putable
B)]
/input context
B) :=output context
� . This transition ensures that if the input
context changes also the output context is re-calculated.

t A transition from /eXFd�^`_bafXW[
C) to /\[H�5]F^�_bacX8[
C) is created with:
E[C]/A=output context
� available[output context
* =NULL]/ + . This transi-
tion states that the unit is disabled if due to some event (e.g., a user click on a
preceding index in the same page) and to the context propagation rules the input
context of the depending unit becomes null.

Note that access and standalone units have no transition from the enabled to the disabled
state, because for such units it is not possible to change their content once they have been
calculated. For example, in the page containing the index of all the books’ authors, such
index is immediately shown at page entry and no event can change its content.

Example IV: Consider the authors’ index page of Figure 4: Figure 6 expresses the hypertext
of its first two units, i.e. AllAuthorIndex and AuthorData. For the other units the mapping is
applied in an analogous way. Here we suppose that the link between the units be automatic.

1

5

S_AllAuthorIndex S_AuthorData

S_disabled_AllAuthorIndex

recomputable_AllAuthorIndex:=false

/initialize_output_AllAuthorIndex

/recomputable_i:=true (i=AllAuthorIndex,...)

clicked_on_anchor_l5 [true]

available

output_context_AllAuthorIndex_

ENTRY:

S_enabled_AllAuthorIndex

S_AuthorIndexPage

output_context_AllAuthorIndex_available

[output_context_AllAuthorIndex<>NULL

AND recomputable_AuthorData

AND NOT access_link_AuthorIndexPage(AuthorData)]

S_disabled_AuthorData

S_enabled_AuthorData

output_context_AuthorData_available

recomputable_AuthorData:=false

ENTRY:

[output_context_AllAuthorIndex=NULL]

[output_context_AllAuthorIndex<>NULL

AND access_link_AuthorIndexPage(AuthorData)]

/output_context_AuthorData:=NULL;

output_context_AllAuthorIndex_available

(Other concurrent states)

/input_context_AuthorData=ouput_context_AllAuthorIndex;

initialize_output_AuthorData

initialize_output_AuthorData;

access_link_AuthorIndexPage:=NULL

output_context_AllAuthorIndex_available

/input_context_AuthorData=ouput_context_AllAuthorIndex;

AND recomputable_AuthorData]

initialize_output_AuthorData

3

4

6

2

[true]ε

ε

output_context_AuthorData_available

[output_context_AuthorIndex<>NULL

/input_context_AuthorData=ouput_context_AuthorIndex;

Figure 6: WebML unit configuration statechart

For each unit a concurrent state is created, having two internal states (disabled and en-
abled).

The first unit (AllAuthorIndex) is a standalone unit and therefore it is automatically en-
abled (see transition 1). Since its outgoing link is automatic, it also initializes its output with
default values: in our system it automatically selects as output the identifier of the first author
listed in the index. When the enabled state is entered the unit is set as non-recomputable, i.e.

its content cannot be automatically recomputed5, and its output context is rendered available
to the depending units. The ring transition on the enabled state (transition 2) is triggered when
the user selects a new item from the index unit: all the units can then be recomputed accord-
ing to the new choice (for the index unit we may for example highlight the current choice, for
the data unit connected to the index we must show the new selected author, and so on).

The second unit (AuthorData) is both a depending unit, since it depends from the AllAu-
thorIndex unit, and an access unit, when the page is accessed from the book page. Due to the
two access methods, its corresponding state embodies two different transitions (transitions 3
and 6) for passing from the disabled to the enabled state.

As a depending unit the unit is enabled when the output context of the AllAuthorIndex
unit is available (transition 3), i.e., every time a new selection in the author index is made by
the user or possibly by the system itself. It is fired only if the output context is valid, if the
unit has not been already computed, and if there are not any active access links which must be
calculated first. Then, it sets its input context to the value of the output context of the unit from
which it depends and initializes its output context. Once in the enabled state, it shows the data
of the current author and, as in the previous case, it is set as non-recomputable and renders
its output available to the following depending unit. From the enabled state two transitions
exit: if the user selects a new author from the index a new output context is available: if the
context is valid the current state is re-entered and recomputed for the new context (transition
4), i.e., the new current author is shown, otherwise the unit must not be displayed and the unit
returns to the disabled state (transition 5). In this latter case the output context of the unit is
set to NULL and becomes available to its depending units which cannot be displayed.

As a depending unit the AuthorData unit is enabled when the page variable access link
is active for its incoming link (transition 6). Notice that if the page is entered from the book
page such variable has been set as active by its incoming link (see transition 4 in Figure 5).
If the context is valid the output context is properly initialized and variable access link is
unset. Notice that when the page is accessed from the book page only transition 6 is enabled,
while transition 3 cannot be triggered. Now we are able to answer the question we issued in
Section 3 about the behavior of the page when the outgoing link of the AllAuthorIndex unit
is automatic: when the page is accessed from the book page, according to our semantics, the
system displays the data of the author selected in the book page and not the first author of the
AllAuthorIndex unit.

3.4 Checking the Consistency of WebML Specifications

The specification of WebML semantics through Statecharts allows the designer to better grasp
the application behavior and to predict potential critical cases, e.g., non-deterministic and
deterministic conflicting transitions, racing conditions, deadlocks and so on. Here, we only
show a simple case by means of an example.

Example V: Consider the WebML page of Figure 7: two indexes allow the reader to display
information on a certain book. The user may select either a bestselling book from the first
index or a recent book using the second one, and the data about the selected book are shown
in the data unit. If the two links between the index units and the data unit are defined as

5The problem of recomputing the content of a unit becomes relevant in case of cycles among units where all
the links are defined as automatic.

Figure 7: Example of WebML page with racing condition

automatic, the selected item for both indexes is initialized, which results in an unpredictable
navigation context to be passed to the data unit (see statechart in Figure 8).

In a typical implementation, propagation of context along links takes places according to
some implementation-dependent order, and thus, since the result of applying the two transi-
tions depends on their execution order, a racing condition arises [10].

Notice that, although automatic links are very useful for the specification of automatic
behaviors, their use must be carefully controlled to avoid unpredictable behaviors as shown
in this example.

The Statechart semantic model has been applied to other, more complex, WebML primi-
tives, including AND-OR nested pages, data entry forms, and update operations. Many subtle
behavioral issues have been clarified before implementation with the aid of the illustrated ap-
proach.

4 Implementation

The proposed semantic model has set the basis for the implementation of the WebML tool
suite.

Figure 9 represents the architecture of WebML, which can be divided into three layers:

1. The Design Layer: it includes WebML Control Center, which is the core software element
of the WebML architecture, supporting the visual specification of Web sites. Designers
use Control Center to input the data structure, the hypertexts diagrams, and presenta-
tion directives6. WebML specifications are stored as XML documents, which feed the
WebML code generator. The output of the code generator is a set of page templates and
unit descriptors, which enable the execution of the application in the runtime layer. A page
template is a template file (e.g., a JSP file), which expresses the content and mark-up of
a page in the mark-up language of choice (e.g. in HTML, WML, etc.). A unit descriptor
is an XML file, which expresses the dependencies of a WebML unit from the data layer
(e.g., the name of the database and the code of the SQL query from which the population
of an index must be computed). Both the templates and the unit descriptors are produced

6Presentation directives are expressed as XSL style sheets, which apply to XML documents conforming to
the WebML DTD.

by a set of translators coded in XSL and executed by a standard XSL processor. WebML
Control Center provides also an interface to the Data Layer to assist the designer in map-
ping an abstract WebML structure schema to an existing data repository (e.g. a relational
database).

2. The Runtime Layer: it includes a stack of software components, which produce the actual
pages of the application from page templates. Presently, WebML runs on top of any ex-
isting JSP 1.1 execution engine, enriched with a thin layer of Java classes decoupling the
processing of WebML units from the access API of the data layer. This layer is responsi-
ble of extracting the data from the data repository (WebML RunTime) and of formatting
it to compose the actual page (WebML TagLib).

3. The Data Layer: it includes the repository of data necessary to instantiate the page tem-
plates. The inputs to the Data Layer are requests from the runtime layer for data access.
The output is the requested content. Presently, WebML can access data stored in any
JDBC-compliant relational database and in XML documents.

Three components of the architecture illustrated above have been influenced most by the
work on WebML semantics:

� WebML Control Center: the WebML design tool has been extended with a module re-
sponsible of checking the consistency of the WebML specifications and of producing
warnings and error reports. Checking rules are coded in XSL and enforced by a standard
XSL processor. They embody several conservative correctness checks for alerting the de-
signer of potentially dangerous hypertext configurations, e.g., unit and link mismatches,
racing conditions and deadlocks.

� The WebML template generator: it embodies the page, unit, and link behavior specified
in the Statecharts semantic model. E.g., the sequence of operations needed to correctly
generate the passage of context among units and the navigational logics (automatic and
clickable links) are encoded at this level.

� The WebML runtime, which insulates the WebML templates from the data source. It has
been revised in several aspects to adhere to the described formal semantics. Indeed, this
module actually executes the operations specified in the page templates and unit descrip-
tors, by querying the needed data and checking the actual presence of the data in the data
source.

The presence of the Statecharts formal semantics has permitted WebML developers to
examine on the paper alternative execution options for WebML constructs, and to compare
the behavior of the implementation with the expected hypertext execution semantics.

5 Related Work

WebML [3] is one of a family of proposals for the model-driven development of Web sites,
which includes also other approaches, e.g., Araneus [11], and Strudel [5]. Like Araneus and
Strudel, WebML allows to define the site’s structure and content: in the former, the Entity-
Relationship model is used to describe the data structure and a conceptual model is used to de-
fine the site’s hypertext; the latter relies on a data model for semi-structured information and

sites are specified through queries expressed in the StruQL language over the semi-structured
data model.

WebML shares several features also with the languages for hypermedia applications, such
as HDM - Hypermedia Design Model [9], OOHDM - Object Oriented HDM [12] and RMM
- Relationship Management Methodologies [9], from which its basic notations and concepts
derive. However, w.r.t. such models WebML has been simplified in order to be effectively
supported by CASE tools, and new features specific to data-intensive Web applications have
been integrated.

W.r.t. all such approaches (Araneus, Strudel and the hypermedia models), WebML pages
and units may be structured in complex ways by means of linking and nesting and exhibit a
more sophisticated navigation context semantics, which permits one to define a wide spec-
trum of page configurations and interactive page-fill behaviors. Indeed, by linking the dif-
ferent kinds of units it is possible to obtain a variety of navigation modes and by defining
links as automatic rather than clickable also the content filling of the pages at runtime can be
designed. Therefore also our semantics, focusing on the description of such features is quite
sophisticated and is not associated only to the simple navigation among pages.

In literature navigation semantics has already been described by means of formal meth-
ods: in [13] Petri Nets are used to describe hypertext systems; in [15] and [6, 14] Statecharts
are employed to describe navigation browsing. Statecharts are a more powerful mean for the
description of reactive systems, since they allow the specification of hierarchical structure;
therefore they seem to be suitable for the specification of hypermedia applications requiring
synchronization control across different levels of the hierarchical structure.

In [15] Statecharts are used to describe the behavior of hypertext networks: however, the
focus is on the specification of system interface behaviors, e.g., related to buttons, frames and
so on. Instead, in [6, 14] a model based on Statecharts, called HMSB - Hypermedia Model
Based on Statecharts, is used to specify both the structural organization and the browsing se-
mantics of hypermedia applications. Here the focus is on synchronization of multimedia data
(i.e. text, audio, animations, images and so on). An environment, called HySChart, supporting
the authoring of structured hyperdocuments based on the HMSB model has been proposed,
which can be used also as a front-end for Web applications. Compared to the HMSB model,
the WebML semantic model addresses structured, data-intensive hypertexts, which do not
consist of page instances connected by links, but of page templates, composed by content
units which retrieve data from a data layer (e.g. a relational database). For this reason the
navigation semantics of WebML results in a more complex specification. Moreover, w.r.t.
[6, 14], Statecharts in WebML are not used as a notation for specifying the Web application,
but they merely represent the method to formally describe its semantics: in fact, the WebML
tools provide a more intuitive graphical notation for the specification of an hypertext, and
rely on the formal semantics to provide an efficient specification checker for such hypertext
model.

Finally, a different approach based on a generalization of Statecharts is used in OOHDM,
which employs ADVcharts [2]. ADVcharts use notations from Petri Nets and statecharts
and are used to provide a formal semantics of Abstract Data Views, a concept for design-
ing interactive user interfaces. Diversely from our approach, ADVcharts address the formal
specification of dynamic aspects of user interfaces, which are seen as composition of simple
visual objects.

6 Conclusions

In this paper we have presented a semantic model for the WebML site design language. The
model relies on the mapping of WebML constructs (pages, units, and links) into a Statechart.
This mapping caters for all the design primitives of WebML, which are able to formally
express the clicking (and automatic) behavior of complex, real-life data-intensive Web appli-
cations. The proposed semantics has been extensively used as a reference in the implemen-
tation of the WebML design and runtime tools. In the future, further aspects of the WebML
language, designed to cope with sophisticated application requirements (e.g., nested pages,
update operations, data entry units) will also be given a formal semantics using Statecharts,
to formally investigate their properties and runtime behavior and direct their integration in
the WebML design and execution environment.

References

[1] A. Bongio, S. Ceri, P. Fraternali, A. Maurino: Modeling Data Entry and Operations in WebML. WebDB
(Informal Proceedings) 2000: 87-92

[2] L.M.F. Carneiro, D.D. Cowan, C.J.P. Lucena. ”ADVcharts: a Graphical Specification for Abstract Data
Views”. CASCON’93, Toronto, Canada, pp. 84-96 October, 1993.

[3] S. Ceri, P. Fraternali, A. Bongio. ”Web Modeling Language (WebML): a Modeling Language for Design-
ing Web Sites”. Computer Networks, 33, pp. 137-157 (2000).

[4] S. Ceri, P. Fraternali, A. Maurino, S. Paraboschi: One-to-One Personalization of Data-Intensive Web Sites.
WebDB (Informal Proceedings) 1999: 1-6

[5] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, D. Suciu. ”Overview of Strudel - A Web-Site Manage-
ment System”. Networking and Information Systems 1(1): 115-140 (1998).

[6] M.C. Ferreira De Oliveira, M.A.S. Turine, P.C. Masiero. ”A Statechart-based Model for Modeling Hyper-
media Applications”. ACM TOIS, April, 2001.

[7] P. Fraternali. ”Tools and Approaches for Developing Data-Intensive Web Applications: A Survey”. ACM
Computing Surveys 31(3): 227-263 (1999)

[8] F. Garzotto, P. Paolini, D. Schwabe. ”HDM - a Model-based Approach to Hypertext Application Design”.
ACM Transaction on Information Systems 11(1), January, 1-26, 1993.

[9] T. Isakowitz, W. Sthor, P. Balasubramanian. ”RMM: a Methodology for Structured Hypermedia Design”.
CACM, 38(8), pp. 34-44 (1995).

[10] D. Harel, A. Naamad. ”The STATEMATE Semantics of Statecharts”. TOSEM 5(4): 293-333 (1996).

[11] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, G. Sindoni. ”The Araneus Web-Base Management System”.
SIGMOD Conference 1998: 544-546

[12] D. Schwabe, G. Rossi. ”The Object-Oriented Hypermedia Design Model”. Communications of the ACM
38, 8, 45-46, 1995.

[13] P. Stotts, R. Furuta. ”Petri-Net-Based Hypertext: Document Structure with Browsing Semantics”. TOIS
7(1): 3-29 (1989)

[14] M. A. S. Turine, M. C. Ferreira de Oliveira, P. C. Masiero. ”HySCharts: A Statechart-Based Environment
for Hyperdocument Authoring and Browsing”. Multimedia Tools and Applications 8(3): 309-324 (1999).

[15] Y. Zheng, M. Pong. ”Using Statecharts to Model Hypertext”. ECHT 1992: 242-250, 1992.

S_disabled_BestBookIndex

recomputable_BestBookIndex:=false

/initialize_output_BestBookIndex

/recomputable_i:=true (i=BestBookIndex,...)

clicked_on_anchor_l6 [true]

available

output_context_BestBookIndex_

ENTRY:

S_enabled_BestBookIndex

[true]ε

S_BestBookIndex

/recomputable_i:=true (i=CurrentBookIndex,...)

clicked_on_anchor_l7 [true]

S_CurrentBookIndex

S_disabled_CurrentBookIndex

S_enabled_CurrentBookIndex

ENTRY:

recomputable_CurrentBookIndex:=false

output_context_CurrentBookIndex_

available

/initialize_output_CurrentBookIndex

ε [true]

S_disabled_BookData

S_enabled_BookData

recomputable_BookData:=false

ENTRY:

S_BookData

ouput_context_BestBookIndex

AND NOT access_link_SelectBookPage(BookData)] AND NOT access_link_SelectBookPage(BookData)]

/input_context_BookData:=

AND recomputable_BookData

[output_context_CurrentBookIndex<>NULL

output_context_CurrentBookIndex_available

ouput_context_CurrentBookIndex

output_context_BestBookIndex_available

output_context_BestBookIndex_available

[output_context_BestBookIndex=NULL]

[output_context_BestBookIndex<>NULL

AND recomputable_BookData

/ ε

output_context_CurrentBookIndex_available

[output_context_CurrentBookIndex=NULL]

ε/

output_context_BestBookIndex_available

[output_context_BestBookIndex<>NULL

AND recomputable_BookData]

/input_context_BookData:=

/input_context_BookData:= ouput_context_BestBookIndex

output_context_CurrentBookIndex_available

[output_context_CurrentBookIndex<>NULL

AND recomputable_BookData]

/input_context_BookData:= ouput_context_CurrentBookIndex

S_SelectBookPage

Figure 8: Statechart of a page with racing condition

Application directory

WebML Control Center

presentation specifications
Structure, hypertext and

Unit descriptors (XML)

Design Layer

Page templates
(e.g. in JSP 1.1)

Web server

JSP engine

WebML TagLib

WebML runtime

Runtime Layer

JDBC

Database

Data Layer

Figure 9: The WebML architecture

