
Semantic Web Modeling and
Programming with XDD

Chutiporn Anutariya1, Vilas Wuwongse1, Kiyoshi Akama2 and Vichit Wattanapailin1
1 Computer Science & Information Management Program,

School of Advanced Technologies, Asian Institute of Technology
Pathumtani 12120, Thailand

2 Center for Information and Multimedia Studies,
Hokkaido University, Sapporo 060, Japan

Abstract. XML Declarative Description (XDD) is a unified modeling language with
well-defined declarative semantics. It employs XML as its bare syntax and enhances
XML expressive power by provision of mechanisms for succinct and uniform
expression of Semantic Web contents, rules, conditional relationships, integrity
constraints and ontological axioms. Semantic Web applications, offering certain Web
services and comprising the three basic modeling components: application data,
application rules and logic, and users’ queries and service requests, are represented in
XDD language as XDD descriptions. By integration of XDD language, Equivalent
Transformation computational paradigm and XML syntax, XML Equivalent
Transformation (XET)—a declarative programming language for computation of
XDD descriptions in Equivalent Transformation computational paradigm—is
developed. By means of XDD and XET languages, a new declarative approach to the
development and the execution of Semantic Web applications is constructed.

Keywords. Semantic Web, Semantic Web applications, Semantic Web services,
XML Declarative Description, XML Equivalent Transformation.

1 Introduction

The Semantic Web [7] is a vision of the next-generation Web which enables Web
applications to automatically collect Web contents from diverse sources, integrate and
process information, and interoperate with other applications in order to execute
sophisticated tasks for humans. For the current Web to evolve from a global repository of
information primarily designed for human consumption into the Semantic Web,
tremendous effort has been devoted to definition and development of various supporting
standards and technologies. Prominent markup languages with an aim to define a syntax
convention for descriptions of the semantics of Web contents in a standardized
interoperable manner include XML, RDF, RDF Schema, OIL [6,8,12] and DAML+OIL
[13]. Moreover, for Web applications to effectively communicate and interoperate in the
heterogeneous environment, a standard Agent Communication Language (ACL) [15]
becomes a necessity. Two major current ACLs are Knowledge Query and Manipulation

Language (KQML) [9] and Foundation for Intelligent Physical Agents ACL (FIPA-ACL)
[10,15].

With an emphasis on the modeling and the development of Semantic Web applications
offering certain Web services, there arises a need for a tool which is capable of modeling
their three major components: application data, application rules and logic, and queries
and requests. XML Declarative Description (XDD) [5,17]—a unified, XML-based
Semantic Web modeling language with well-defined semantics and a support for general
inference mechanisms—aims to fulfill such a requirement. XDD does not only allow direct
representation and manipulation of machine-comprehensible Web contents (such as
documents, data, metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL
syntax), but also provides simple, yet expressive means for modeling their conditional
relationships, integrity constraints and ontological axioms as well as Semantic Web
applications. XDD serves the three important roles: content language, application-rule
language and query or service-request language, in modeling such three main components
of Semantic Web applications.

Based on XDD language, a declarative programming language, i.e., XML Equivalent
Transformation (XET) is constructed. Given an application’s model specification,
represented in terms of an XDD description, an XET program capable of executing and
handling the application’s queries as well as service requests can be obtained directly.

Thus, the developed technologies—XDD and XET languages—present a new paradigm
for modeling and programming Semantic Web applications. By integration with existing
Web and agent technologies, XDD and XET also allow both syntactic and semantic
interoperability among Web applications, and hence enable the development of intelligent
services as well as automated software agents.

Section 2 formalizes an extended XDD language with set-of-reference functions,
Section 3 presents an XDD approach to modeling Semantic Web resources and
applications, Section 4 describes XET programming language and outlines an approach to
its employment in Web application development, Section 5 demonstrates a prototype
system which adopts the developed technologies, Section 6 reviews current related works,
and Section 7 draws conclusions.

2 XML Declarative Descr iption

XDD [5,17] is a language the words and sentences of which are XML expressions and XML
clauses, respectively. XML expressions are used to express explicit and implicit as well as
simple and complex facts, while XML clauses are employed to represent ontology, implicit
and conditional relationships, constraints and axioms. First, the data structure of XML
expressions and their sets, characterized by an XML Specialization System, will be given
and then followed by the syntax and semantics of XML clauses.

2.1 XML Specialization System

XML expressions have a similar form to XML elements except that they can carry
variables for representation of implicit information and for enhancement of their expressive
power. Every component of an XML expression—the expression itself, its tag name,
attribute names and values, pairs of attributes and values, contents, sub-expressions as well

Table 1: Variable types.

Variable Type
Variable Names
Beginning with

Instantiation to

N-variables: Name-variables
���

Element types or attribute names
S-variables: String-variables

���
Strings

P-variables: Attribute-value-pair-variables
���

Sequences of zero or more attribute-
value pairs

E-variables: XML-expression-variables
���

Sequences of zero or more XML
expressions

I-variables: Intermediate-expression-variables
���

Parts of XML expressions
Z-variables: Set-variables

���
Sets of XML expressions

as some partial structures—can contain variables. XML expressions without variables are
called ground XML expressions or simply XML elements, those with variables non-ground
XML expressions. Table 1 defines all types of variables and their usages.

An XML expression takes formally one of the following forms:

1. evar,
2. 	 t a1=v1 … am=vm pvar1 … pvark /
 ,
3. 	 t a1=v1 … am=vm pvar1 … pvark
 vm+1 	 /t
 ,
4. 	 t a1=v1 … am=vm pvar1 … pvark
 e1 … en 	 /t
 ,
5. 	 ivar
 e1 … en 	 /ivar
 ,

where � evar is an E-variable,
� k, m, n � 0,
� t, ai are names or N-variables,
� pvar i is a P-variable,

� vi is a string or an S-variable,
� ivar is an I-variable,
� ei is an XML expression.

The domain of XML expressions and their sets can be defined as follows:

��

X : the set of all XML expressions,

��

X : the subset of � X which comprises all ground XML expressions in � X,

�� = � X � 2(� X � VZ) : the set of all XML expressions in � X and sets of XML

expressions and Z-variables in 2(� X � VZ), and

�� = �

X � 2� : the set of all ground XML expressions in � X, and sets of ground XML
expressions in 2� X.

Note that elements of the sets � and � may be at times referred to as objects and ground

objects, respectively, and when it is clear from the context, a singleton { X} where X � VZ is
a Z-variable, will be written simply as X.

Instantiation of those various types of variables is defined by basic specializations, each
of which has the form (v, w) where v specifies the name of the variable to be specialized
and w the specializing value. For example, (����� �����! , ���"� �#���%$), (�&��� �����%$, �'�)(+*) and (�&,-� * ,
(��,.� */ , ��,.� *0$)) are basic specializations which rename the N-variable �&��� �����1 to ���"� �#���%$,
instantiate the N-variable �&��� �����%$ into the tagname �'�0(+* , and expand the E-variable �&,-� *
into the sequence of the E-variables ��,.� *2 and ��,.� *0$, respectively. There are four types of
basic specializations:

Figure 1: Successive applications of basic specializations c1, …, c5 to a non-ground XML
expression a in

�
X by the operator � , yielding a ground XML expression g in � X.

1. Rename variables.
2. Expand a P- or an E-variable into a sequence of variables of their respective types.
3. Remove P-, E- or I-variables.
4. Instantiate variables to XML expressions or components of XML expressions which

correspond to the types of the variables, i.e., instantiate:
 N-variables to element types or attribute names,
 S-variables to strings,
 E-variables to XML expressions in � X,

 I-variables to XML expressions which contains their sub-elements at an arbitrary

depth, or
 Z-variables to sets of XML expressions and Z-variables.

The data structure of XML expressions and sets of XML expressions are characterized
by a mathematical abstraction, called XML Specialization System, which will be defined
in terms of XML specialization generation system � = � � , � , � , ��� , where

 � is the set of all basic specializations, and

 � is a mapping from � to partial_map(�) (i.e., the set of all partial mappings on �),

called the basic specialization operator; it determines, for each basic specialization c
in � , the change of objects in � caused by c.

Non-ground XML expression a: 	�

��������������
�� ����� "!$#&%' "()��*,+-��.0/1+32	 4,57698�:<;,= 2&>� "?@��A�#&��B�CD	"E 4�5F698�:<;,= 24�GH69I	"E)

�������J������
�� ����� "!�2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	 4K576L8�:H;�S 20>� 0?F��AQ#"�JB�CR	0E 4K5$6L8�:H;KS 24KG&6LI	0EQ
L�����M���1���J
M� ���'� 0!�2

	K
9�����M�<�1����
N� �)��� 0!T#"%) 0(Q��*K+R�1.O/�+�2	�U�#"?F�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?@�"24KG&6LI	0EQ
L�����M���1���J
M� �)��� 0!�2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	KU�#"?@�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?F�"24KG&6LIV= 4KG&6DIWS	0EQ
L�����M���1���J
M� ���'� 0!�2

	�
L�����M���1���J
M� ���'� 0!T#"%) 0()��*K+R�1.O/�+�2	KU�#"?@�"20>J 0?@�JA)#"��B�C-	0EXU�#"?@�"2	KB) ���� ��� O!�2KY��1#1���"
N	0EQB) ���� ��� O!�24KG&6DIWS	"EX
9�����M�<�1����
N� �)��� 0!J2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	KU�#"?@�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?F�"2	KB� ��1� ��� 0!J2�Y��1#1���"
M	0EXB� ��1� ��� 0!J2	0>�#"Z #"
L[<20\�.�.�.�.O	0E]>J#"Z #"
L[<2	0EQ
L�����M���1���J
M� ���'� 0!�2

V
ar

ia
bl

e
ex

pa
ns

io
n

c 3
:

^_` a
b c^
_` a
bd c
_` a
be ff

Variable renaming c1:g 4K5$6L8�:H;K= h 4K576L8�:H;�S i
jj jj

Variable instantiation c2:g 4K5$6L8�:H;KS h@U�#"?@�1i
kk kk

ll ll

Variable instantiation c4:g 4KG"6LIW= hm	KB) ���� ��� 0!�2Y��1#1���"
	0EXB� ��1� ��� 0!J2"i

nn nn

Variable instantiation c5:g 4KG&6LIWS ho	">J#"Z #"
L[<2\�.�.�.�.	"E3>�#"Z #"
L[H2"i

pp pp

Ground XML expression g:

Figure 2: Specialization of a non-ground set of XML expressions in
�

 into a ground set of

XML expressions in � by the operator � using a specialization
���

 in � .

Figure 1 illustrates examples of a non-ground XML expression a in � , basic
specializations c1, …, c5 in � and their successive applications to a by the operator � in
order to obtain a ground XML expression g in � .

Denote a sequence of zero or more basic specializations in � by a specialization.
Based on the XML specialization generation system � = � � , � , � , ��� , the XML

Specialization System is � = � � , � , � , � � , where

 � = � * is the set of all specializations, and

 � : � � partial_map(�) is the specialization operator which determines, for each

specialization s in � , the change of each object a in � caused by s such that:
o � (�)(a) = a, where � denotes the null sequence,
o � (c 	 s)(a) = � (s)(� (c)(a)), where c � � and s �
� .

Intuitively, the operator � is defined in terms of the operator � such that for each a � � and
s = (c1 … cn) ��� , � (s)(a) is obtained by successive applications of � (c1), …, � (cn) to a.
Note that, when � is clear from the context, for � � � , � (�)(a) will be written simply as a � .

With reference to Figure 1, let a specialization � in � denote the sequence of the basic
specializations c1, c2, c3, c4 and c5; by the definition of � , g = � (�)(a) = a� . Similarly,
Figure 2 shows examples of a non-ground set of XML expressions A in � , a specialization
��
 in � and its application to A by the operator � , in order to obtain a ground set of XML

expressions G in � , i.e., G = � (��
)(A) = A��
.
2.2 XDD: Syntax

The definitions of XML declarative descriptions with references and its related concepts are
given next in terms of the XML specialization system � .

A non-ground set of XML expressions A �� ��
�� ��

 � 	 4K5$6L8�:H; 20>� 0?F��AQ#"�JB�CR	0E 4K576D8�:H; 20h	 4K5$6L8�:H; 20>O(��@#1���<CR	"E 4K576L8�:H; 20h4��,6�� IH8 �
A ground set of XML expressions G �� �� �� �� � 	��J? ��Z �[�1�"2">J 0?@�JA)#"��B�CR	"E��J? ��Z �[�1�"20h	��J? ��Z �[�1�"2"> (��@#1���<C-	0E��J? ��Z �[�1�"20h	��J? ��Z �[�1�"2��<�"
L���! CR	0E"�J? ��Z �[�1�"2"h	��J? ��Z �[�1�"2�#V
N(�!Q�1�%$QCR	0E"�J? ��Z �[�1�"2&�

Specialized into
by � (

���
)

' (*),+.-0/�1 2 �43�57698":�;<;>=' (*?@+BADCD- 2*EGF �43�57698":�;<;>H�I�;>JK;>LNM�O F�P �43�57698":�;<;>H 2F �43�57698":�;<;>H*QRJBS4TU;>; �KO F*P �43�546 8�:�;>;<HWVX=
A specialization

�� ��Y�� ��
 which changes the non-ground set A to the ground set G by Z Instantiation of the N-variable 4V5K6 83:J; occurred in the elements of the set A into the tag

name G7[]\4^ _4`�IJI , Z Instantiation of the Z-variable 4U�W6 �XI�8 into the set of two XML elements:
{ a G�[b\�^ _�`�I<Idc,e I*fMI*gihYj alk Gm[b\�^ _m`<I<I*c , a Gm[b\�^ _�`�I<Idc�nofqp�r�I<Its7j a,k Gm[b\�^ _�`�I<Idc } .

Table 2: Definitions of the concepts constraints, references and XML clauses on
�

.

Concept Being in Ground
Form IFF

Application of a Specialization �� ��
 �� ��,�� �� Yielding

A constraint: q(a1, … , an)

where n > 0, q � and ai �
�

ai � � for 1 � i � n q(a1, … , an)
�
 = q(a1

�
, … , an

�
)

A reference: r = � a, f, P�
where - a �

�
,

- f � and
- P is an XML declarative descrip-

tion which will be called the
referred description of r

a � � r
�
 = � a, f, P� � = � a � , f � , P�

An XML clause: H � B1, B2, ..., Bn
where - n � 0,

- H is an XML expression in
�

X,
- Bi is an XML expression in

�
X, a

constraint or a reference on
�

, and
- the order of Bi is immaterial.

Comprising only
ground objects,
ground constraints
and ground refer-
ences

H
�
 � B1

�
, B2

�
, ..., Bn

�

Let be a set of constraint predicates and the set of all mappings: 2� � 2� , the

elements of which are called reference functions. An XML declarative description on � ,
simply called an XDD description, is a (possibly infinite) set of XML clauses on � . Table 2
defines concepts of constraints, references and XML clauses on � .

The notion of constraints introduced here is useful for defining restrictions on objects in � , i.e., both on XML expressions in � X and on sets of XML expressions in 2(� X � VZ). Given
a ground constraint q(g1, … , gn), gi � � , its truth or falsity is assumed to be predetermined.
Denote the set of all true ground constraints by Tcon. For instance:

 Define ��� (a1, a2) as a constraint which will be true iff a1 and a2 are XML elements of
the forms 	 ��
 (
� v1	�� ��
 (
� and 	!��
 (
� v2	�� ��
�(
� , respectively, where v1, v2 are
numbers and v1 > v2. Obviously, a constraint ��� (��
�(
� 10	�� ��
�(
� , 	 ��
 (
� 5	�� ��
 (
�)
is a true ground constraint in Tcon.
 Define a constraint ����
�� � (G, g) which will be true, iff G is a set of XML elements and
g the XML element 	���*���
�� ��� v	����&*���
 � �!� , where v denotes G’ s cardinality.

The concept of references defined here together with an appropriate definition of a set-of-

reference function in will be employed to describe complex queries/operations on sets of
XML expressions such as set construction, set manipulation and aggregate functions, e.g.,
min, max and count in SQL. Given a, x � � X, let fx,a � denote a set-of-reference function

and be defined as follows: For each G " � X,

fx,a(G) = { { x � � � X | � � � , a � � G } } . (1)

In other words, for each subset G of � X, fx,a(G) is a singleton set, the element of which is a
set of ground XML expressions of the form x � , for any specialization � � � , which makes
a � become a ground XML expression in G. Intuitively, a and x are used to define the
condition for constructing a set and to determine the elements comprising that set,

respectively, i.e., x � � fx,a(G) iff a� � G. The objects a and x will be referred to as filter and
constructor objects, respectively. Given a specialization � in � , application of � to fx,a yields
fx,a � = fx� , a� . For example, assuming that G is the set

{ 	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 �����%(���� ��� 	�� , (���� ��� *�*�� ,
 	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 ���/��� *�* 	�� , (���� ��� *�*�� ,
 	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 ����
�������	�� , (�� � ��� *�* � } ,

then
f ��� "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?<> !@> 9A(*.�B'� "B'4�/*0*1 (*��256C+�7*8 9;:�-A-,4 (G)

= { { 	�� ��� �#�ED5D � �)(+*���
�� � (���� ���
 ��� , 	�� ��� �#�ED5D � �0(+*F��
��
��"���G
 � � } } .

In other words, such a set-of function filters the XML elements of the set G with the pattern

	 , (�� � ��� *�*���� �H� �
� ������
�� ��
 � ���%� � 	�� , (���� ��� *�*�� — the filter object

and then constructs the resulting set of XML elements using the pattern

	�� ��� ���ID5D � �0(+*��!���.� � � � — the constructor object

Note that the effect of the binding of the variable ���%� � in the filter object will also cascade
to the constructor object.

Based on the definition of the set-of function, a reference r = � S, fx,a, P� , for x, a � � X
and S � 2(� X � V), is called a set-of reference.

Given an XML clause C = (H J B1, B2, ..., Bn), H is called the head and (B1, B2, ..., Bn)
the body of C, denoted by head(C) and body(C), respectively. The sets of all XML
expressions, constraints and references in the body of C are denoted by object(C), con(C)
and ref(C), respectively. Thus, body(C) = object(C) � con(C) � ref(C). If n = 0, such a
clause is called a unit clause, if n
 0, a non-unit clause. When it is clear from the context, a
unit clause (H J) is written simply as H, i.e., the left-arrow symbol is omitted. Therefore,
every XML element can be considered as a ground XML unit clause, and moreover every
XML document can be modeled as an XDD description comprising solely ground XML
unit clauses.

The heights of an XML clause C and of an XDD description P, denoted by hgt(C) and
hgt(P), are defined as follows:

 If ref(C) = K (C contains no reference), then hgt(C) = 0;
Otherwise hgt(C) is the maximum height of all the referred descriptions contained in
its body plus one.
 hgt(P) is the maximum height of all the clauses in P.

2.3 XDD: Declarative Semantics

Given an XDD description P on � , its declarative semantics, denoted by (P), is defined
inductively as follows:

1. Given the meaning (Q) of an XDD description Q with the height m, a reference r =

� g, f, Q� is a true reference, iff g � f((Q)). For any m � 0, define Tref(m) as the set
of all true references, the heights of the referred descriptions of which are smaller
than or equal to m, i.e.:

Tref(m) = { � g, f, Q� | g � � , f � , hgt(Q)
�
 m, g � f ((Q)) } (2)

2. The meaning (P) of the description P is a set of XML elements defined by:

(P) =
���
� �1

)(][
n

n
PT (3)

where - K is the empty set,
 - TP

1(K) = TP(K) and [TP]n(K) = TP([TP]n-1(K)) for each n
 1, and
 - the mapping TP: 2� � 2� is:
For each G " � , g � TP(G) iff there exist a clause C � P and a specialization � �
�
such that C � is a ground clause, with head g and all objects, constraints and
references in its body belong to G, Tcon and Tref(n), for some n 	 hgt(P),
respectively, i.e.:

TP(G) = { head(C �) | C � P, � ��� , C � is a ground clause,
object(C�) " G, con(C �) " Tcon,
ref(C�) " Tref(n), n 	 hgt(P) }

(4)

Intuitively, the meaning of a description P, i.e., (P), is a set of all XML elements, which
are directly described by and derivable from the unit and the non-unit clauses in P,
respectively, i.e.:

 Given a unit clause (H J) in P, for � � � :

H � � (P) if H � is an XML element.

 Given a non-unit clause (H J B1, ..., Bi, Bi+1, ..., Bj, Bj+1, …, Bn) in P, assuming

without loss of generality that B1, ..., Bi are XML expressions, Bi+1, ..., Bj are
constraints, and Bj+1, ..., Bn are references, for � � � :

H � � (P) if - H � is an XML element,

- B1 � , ..., Bi � � (P),

- Bi+1 � , ..., Bj � are true constraints, and
- Bj+1 � , ..., Bn � are true references.

Based on the formalized concepts of XDD language, Figure 3 demonstrates two XDD
descriptions denoted by Q and P, and then determines their semantics, which is sets of
XML elements denoting certain objects and their relationships in a real-world domain.

3 Modeling Semantic Web Resources and Applications

XDD language allows collections of Semantic Web resources, such as documents, data,
metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL syntax, to be
represented in terms of XDD descriptions. In the descriptions, explicit information items
are directly expressed as ground XML unit clauses, while rules, conditional relationships,
integrity constraints and ontological axioms are formalized as XML non-unit clauses. The
descriptions’ semantics, which can be directly determined under the language itself, is
defined as sets of XML elements—surrogates of objects and their relationships in a real-
world domain.

{ C1:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+ $ O+N2H>� H?���A'#<� 	HEq�1?P��Z �[)� �<2 �

 C2:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+�����+]2��O#<Z � !'� �<	<E �1?P��Z [Q� �<2 �

 C3:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+ $ O+N2H>&(�,# ��	<E �1?P��Z [Q� �<2 � }

(a) XML Declarative Descr iption Q.

Z hgt(C1) = hgt(C2) = hgt(C3) = hgt(Q) = 0 Z�� (Q) = { 	*�1?T��Z [Q� �P�&� � � � � H!�*V+ $ O+N2H>� &?,�1A�#<� 	HEq�1?T��Z [Q� �<2
 	*�1?T��Z [Q� �P�&� � � � � H!�*V+����<+N2	�0#<Z � �<	HE �1?P��Z [Q� �<2
 	*�1?T��Z [Q� �P�&� � � � � H!�*V+ $ O+N2H>&(q�,# �3	HEq�1?T� Z [)� �<2 }

(b) The height and the meaning of Q.

{ C4:
	U$ �>��-# �D�]U0(1?P%��<
 2	
�>&� !1(�?T	<E $ �>1�-# �D�]U0(�?T%��<
 2

 � �

�"� ��� � , f ���
! #%$'& &)(*$,+�-,.�/A0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B � "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q� ,
 � H(1!�� g
��&� ��� � , 		� � � (�Z �32	
�>&� !1(�?T	<E�� � � (1Z �32Hi�� }

(c) XML Declarative Descr iption P.

Z hgt(C4) = hgt(Q) + 1 = 1, and hgt(P) = 1.

Z f ��� "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6C+�7*8 9;:�-A-�=*> ?<> !3> 9*(*.�B'� "B'4�/A0*1 (*��256C+�7*8 93:�-,-A4 ((Q)) =
 { { 	U$ ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 , 	U$ ����-# �D�V!�#<?,�<*V+L>"(�,# �3+DE'2 } }

Z � � �����q;�� , f ��� "! #%$'& &�(*$A+�-,.�/A0*1 (32 4 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B � "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q�
is a true reference, iff

�"� ��� � is specialized into the set

 { { 	U$ ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 , 	U$ ����-# �D�V!�#<?,�<*V+L>"(�,# �3+DE'2 } }
Z The constraint � H(1!�� is a true constraint, iff
�>&� !1(�? is specialized into the number 2.

Z�� (P) = { 	U$ �>1�-# �D�]U0(�?T%��<
�2	��	<E $ �>1�-# �D�]U0(�?T%��<
 2 } .

(d) The height and the meaning of P.

Figure 3:XDD descriptions Q and P and their declarative semantics.

Besides its employment to model various kinds of Semantic Web resources, XDD can
also be applied to describe certain operations such as queries, document transformation and
processing rules as well as program specifications. Figure 4 illustrates examples of
Semantic Web resource modeling and a query formulation and shows that although
information about senior employees and their bonuses is not explicit, it can be deductively
inferred based on the clause R3; this representation offers a more compact form and
provides an easier way of information modification than explicit enumeration of such
information. With this simple, yet expressive modeling mechanism, XDD can readily be
applied to model Semantic Web applications.

A Semantic Web application, offering certain Semantic Web services, comprises three
main components: application data, application rules or logic, and users’ queries or
requests for services. For instance: In a Semantic Web search engine, offering an
information-gathering service,

 its application data: a catalog or descriptions of Semantic Web contents,
 its application rules: domain-model ontologies and axioms, and
 its requests: user queries describing their informational needs.

In a business-2-business (B2B) commerce application, its three components are

 a catalog of available products and services,
 business rules and policies such as price discounting and refund rules, and
 queries and business transactions such as a request for a quotation and an order

placement.

XDD language provides means for modeling Semantic Web applications in that it
enables direct representation of:

 application data (facts), encoded in XML, RDF, OIL or DAML+OIL syntax, in terms
of XML ground unit clauses,
 application rules or logic in terms of XML non-unit clauses—the heads and bodies of
the clauses describe the consequences and antecedents of the rules, respectively—and
 users’ queries or service requests in terms of XML non-unit clauses—the heads of the
clauses describe the structure of the query results or the service responses and the
bodies specify the queries’ selection conditions or the service requests and their
constraints.

Thus, XDD language has the three vital roles:

 content language,
 application-rule language, and
 query or service-request language.

See Figure 4 for an example of each role. Basically, each query/request will be executed on
a specified collection of application data and rules and will return as its answer a set of
XML elements, derivable from such a collection and satisfying all of its conditions. More
precisely, given a set of application data and rules, modeled as an XDD description P, and a
query/request, formulated as an XML clause Q: (H J B1, B2, ..., Bn), the response to Q is
the set

{ H � | H � � (P � { Q}), � � � } .

By employment of Equivalent Transformation (ET) computational paradigm [2,3], which
is based on semantics-preserving transformations (equivalent transformations) of
declarative descriptions, the computation of an answer/response to such a query/request Q
is carried out by successive transformations of the XDD description P � { Q} into a simpler
but equivalent description, from which the answer can be obtained readily and directly. In
brief, P � { Q} will be successively transformed until it becomes the description

P � { Q1, …,Qn} ,

where n � 0 and the Qi are ground XML unit clauses.
Note that in order to guarantee correctness of a computation, only equivalent

transformations are applied at every step. The unfolding transformation, a widely-used
program transformation in conventional logic programming, is a kind of equivalent
transformation. Other kinds of equivalent transformations can also be devised, especially
for improvement of computation efficiency. Thus, ET provides a more flexible, efficient
computational framework.

XET, a declarative programming language for computation of XDD descriptions in ET
paradigm, will be presented next.

E1:
��������� 	�

������� ����� �����
������������

 "!��$#

��������� �&%$��
'�(

�)��������

����*�+,��- ��%.

�0/1#
��
2�435�
+,
2#26���+,��7��
�98�:0�2/.
2� 3��
+,
2#
��
2�46��
- �
��%1#<;� � � � ��2/=
2�46��
- �
��%1#

�2/.�������4	�

�����(� ���&� ���5#

E3:
�������>� 	�

������� ���&� �����
������������

 �?��$#

�������>� �&%$��
@��

�)��������

����*�+,��- ��%$

�0/9#
��
2� A1���)�B��

�)��������

����

 �C��0/1#
��
2� 3��
+,
2#2	�

��

DFEG:0�2/=
2�435�
+,
2#
��
2� 6��
- �
��%1#2H� � � � ��</=
2� 6��
- �
��%1#

�2/.������� 	�

�)�)��� ���&� ���5#
E2:

��������� 	�

������� ����� �����
������������

 �C��$#
��������� �&%$��
'�(

�)��������

����*�+,��- ��%.

�0/1#
��
2�4A9�����I�(

�)��������

����

 "!��0/1#
��
2�435�
+,
2#26��
JK�
�GL1:0�2/=
2�435�
+,
2#
��
2�46��
- �
��%1#<M� � � � ��2/=
2�46��
- �
��%1#

�2/.�������4	�

�����(� ���&� ���5#

E4:
�������>� 	�

������� ���&� �����
������������

 �H��$#

�������>� �&%$��
@��

�)��������

����*�+,��- ��%$

�0/9#
��
2� A1���)�B��

�)��������

����

 �C��0/1#
��
2� 3��
+,
2#
NO������

@PQ:0�2/.
2� 35�
+R
2#
��
2� 6��
- �
��%1#2?� � � � ��</=
2� 6��
- �
��%1#

�2/.������� 	�

�)�)��� ���&� ���5#

(a) M odeling of appl ication data – descr ipt ions of employee obj ects, based on RDF infr astr uctur e.

R1:
��*�+R��S2

- �
�&� ���T�������)��U<V2W4XY������������� ���
�&

�KU<V2W4Z[-

\$

- �]!(/9#

^ ��������� 	�

�)�)��� ���&� ���_�
�������&��U<V<W4Z`#
��������� ��%.��
@��

���������)

����*�+,��- ��%$

�a/1#
��
2� A1�����I��

���������)

��U<V<W4X�/1#
U<bcW�d1egf

�2/=������� 	�

������� ����� ���"#2:

%
%
%
%
%
%

If Y is described as a re-
source of the type *
+I�
- �$%)
.

and its A��h��� property is
another resource X, then one
can derive that X is the first-
leveled �h�h��� of Y.

R2:
��*�+R��S2

- �
�&� ���T�������)��U<V2W4Xi�)�������(��� ���
��

��U<V2W�jk-

\$

- ��U<V<W(l<m�/1#

^ ��*�+,��S2

- �
��� ���T�����)����U<V<W XY�)����������� ���
��

��U<V2W4Zn-

\$

- ��U<V2W�l�/1#2o
��������� 	�

�)�)��� ���&� ���_�
�������&��U<V<W�jp#

��������� ��%.��
@��

���������)

����*�+,��- ��%$

�a/1#
��
2� A1�����I��

���������)

��U<V<W4Z5/1#qU<b2W(dregf

�2/=������� 	�

������� ����� ���"#2o
NO����st��35��+u#2U<V2W�l<�2/.35��+u#2o"�<NO����

������+u#�!)�2/vNO����

������+u#2o

��S2

����- ��#2U<V2W�l<m<�2/.S2

����- �>#2wv:

%
%
%
%
%
%

If X is the nth-leveled �h�h���
of Y and Y is referred to as a
direct �
�$��� of an *
+I�h- �$%�
.
 Z,
then one can imply that X is
the (n+1)th-leveled �h�$��� of
Z.

R3:
��������� 	�

������� ����� �����
����������U<V2W4X'#

��������� �&%$��
'�(

�)��������

����6�

��� ����*�+,��- ��%$

�0/9#
��
2�4A9��������#2U<V2W�x<ycl<z<{h�2/=
2�4A9��������#
��
2�46������������ ���
�&
2#

��������� A1�
|5#2U<j2W({hdr}��2/=������� A1�
|"#
�2/.
2� 6��������(��� ���
��
2#
��
2�46��
- �
��%1#<U<V2W�{h~r�0�2/=
2�46��
- �
��%1#�U<bcW�dregf

�2/.�������4	�

�����(� ���&� ���5#
^ ��������� 	�

������� ����� �����
����������U<V2W4X'#

���������4�&%$��
@��

���������)

�K�v*�+R��- ��%$

�0/9#
��
2� 6��
- �
�(%r#2U<V<W({h~r�0�2/.
2� 6��
- �
�(%r#�U<bcW�d1egf

�2/.�������4	�

�����(� ���&� ���5#2o
� U<j2W({hdr}�o f �=� ���0� �&��� ���a�(��� �a���
����� �h� �=� �.����������� ��� � �(�r�(�����a�
����� F�a�(���(� ��� ����� ���h�>��� �K� ��¡&��� �h�>��� ¢v£&¤�� � o
{ E1,…, E4, R1, R2} ¥ o¦ ��������sQU<j2W�{hd1}�o"��S2

�)��- �>#<U<V2W�l<z<eg�2/.S2

����- ��#2wvo
§ E�sv��3���+u#2U<V<W�l<z<eg�2/.35��+g#2o"��3���+u#2?��2/.35��+u#2wvo
¨ ��- sQ�K35��+g#2U<V2W�{h~r�0�2/.35��+g#2o"� ¨ ��- �&� ��- �

�)#<C��</ ¨ ��- �&� ��- �

�)#<o

��S2

����- �>#2U<V<W�x2ycl<z<{h�2/.S2

����- ��#2wv:

%
%
%
%
%
%
%
%
%

For an
.+I�
- �$%)
.
 X who has
more than 3 ���
�h�$�&�h� �
�.�a
.� (of
any level), then X is con-
sidered to be a 6h
.�
� �$�&©
*
+I�
- �$%�
.
 and will receive a
double-salary �
�$�h�
� . A list
of all ���
�h�$�&�
� �h�.�a
.� of X is
also included in X’ s descrip-
tion.

 (b) M odeling of appl ication r ules and logic – descr ipt ions of r elat ionships among employee obj ects.

Q: �2NO����JF

�)#<U<V2W�l<~regd1�</QNO����JK

��#
^ ��������� 	�

�)�)��� ���&� ���_�
�������&��U<V<W4X@#

��������� ��%.��
@��

���������)

��ª�*�+,��- ��%$

ªa/1#
��
2� 35�
+R
2#26���+R�)7��
�98�:0�2/=
2�435�
+,
2#�U<bcW�d1e«f2m

�2/=������� 	�

������� ����� ���"#2o
��*�+,��S2

- �
��� ���T�����)����U<V<W XY�)����������� ���
��

��U<V2W4Z¬-

\$

- ��C)/9#<o
��������� 	�

�)�)��� ���&� ���_�
�������&��U<V<W4Z`#

��������� ��%.��
@��

���������)

��ª�*�+,��- ��%$

ªa/1#
��
2� 35�
+R
2#2U<V2W�l<~regdr�2/=
2�435�
+,
2#�U<bcW�d1e«f2­

�2/=������� 	�

������� ����� ���"#2:

%
%
%

A query Q finds �h�.+t
.� of all
Somchai P.’s second-leveled ���h�h�h�®�
� �h�.�0
.� .

(c) M odeling of a quer y.

Figure 4: Modeling of an application.

4 XET Programming Language

XET (XML Equivalent Transformation) [18] is a declarative programming language which
can directly and succinctly manipulates XML data. By integration of XDD language, ET
computational paradigm and XML syntax, XET possesses XDD’s expressiveness and ET’s
computational power as well as XML’s flexibility, extensibility and interchangeability.
Therefore, XET naturally unifies “Documents’ , “Programs” and “Data” , and with its
computational and reasoning services, it also unifies “Document Processing
(Transformation)” , “Program Execution” and “Query processing” . Available XML editing
and validating tools can also be employed to edit and validate XET programs. The syntax
of XET language, described by XML Schema, is available in [18]. XET provides useful
sets of built-in operations including:

Note: Step

kk kk
 can be automated.

Figure 5: A declarative approach to Semantic Web application development.

Operational System

Modeling of
Application

Data and Logic
using XDD
language

Application
Implementation

using XET
language

Model Specification:
an XDD descr iption P

Program
Refinement

An XET program
 P.xml

Program
Compilation and

System Setup

An XET program
 P.xml

An XET
program P.xml Addition of new ET

rules for improvement
of computational
efficiency

�� ��

�� ��

�� ��

�� ��

A query/request
represented in terms of

XDD/XET language

Result

 Data type checking
 Document well-formedness and
validity checking
 Arithmetic operations and relations
 String manipulation operations

 XML expression unification and matching
 XML expression operations
 Input/Output operations
 File manipulation operations
 Communication services

Once an XDD description which models a Semantic Web application’s data and logic
has been formulated, an XET program corresponding to such a description can be obtained
directly. The obtained XET program can be iteratively refined, if new ET rules have been
devised for improvement of computational efficiency. Finally, using XET compiler [18], the
program is compiled and an operational system obtained. In response to a query/request
submitted in terms of XDD or XET language, the system executes it and returns its result.
Based on such processes, Figure 5 outlines a new declarative approach to Semantic Web
application development. With reference to the XDD description and the query Q of Figure
4, an XET program corresponding to such a description is given by Figure 6 and the answer
to the query Q by Figure 7.

Note that the declarative semantics of an XET program can be determined based on that
of its respective XDD description.

Figure 8 depicts an example scenario of Semantic Web service execution, which starts
when a user or an application A issues a query describing a service need together with
constraints and preferences to a Semantic-Web-Service Search Engine B, which will then
searches, from its database of Web services, for Semantic Web applications offering the
demanded services with the requested properties and restrictions. Based on the returned list
of applications, A selects an appropriate one, say Semantic Web application C, and sends it
a query or a service-request as well as user constraints and preferences. C then executes
such a query or request with respect to its data and application rules and logic. During its
execution, C may forward corresponding sub-queries and/or sub-requests to other related
applications based on its defined rules and logic and wait for their replies and responses.
Once the execution has been finished, a reply to A’ s query/request is returned. Note that
Steps 1 and 2 can be skipped, if the user/application A knows at a priori which application
provides the desired service. Similarly, at Steps 5.1 and 5.3 if the application C does not
know which application it should interoperate, it may ask B for a list of applications
offering the required services. In addition, during the execution, it is often a case that
communicating parties may involve in a negotiation for modification of service conditions.

From the example scenario, one may observe that XDD and XET can serve as a tool for
modeling and implementing a wide diversity of Semantic Web applications offering
various kinds of services. Consider, for instance, the Semantic-Web-Service Search Engine
B, which maintains a database of Web services described by means of Web-service
metadata and provides a search facility for finding of particular services satisfying some
specified criteria. Such a search engine is simply modeled as an XDD description
comprising XML unit clauses, describing a collection of registered services and their
properties/capabilities (in terms of Web-service metadata), and XML non-unit clauses,
modeling Web-service ontologies as well as implicit relations among services in the
collection. From such a description, an XET program which is capable of searching for
services with desired properties and constraints can be obtained directly. Other applications
C, D and E serving certain specific services can also be modeled and implemented in a
similar manner.

���������
	���
�������� ����������� �����������! �"#�#�����������
�%$'&(�)�(*��+��,��
-.-0/1/1/32 /34'2
#�%�5-.6�7'7'75-0859'-.9'9':;�%$�&<:��>=?���+���#:@����A��
����������� �B���<*��+��,'�
-.-0���C,�2
#�%�5-.�#����DE� �>F'*��B�G��H(
�F�����D
��'���I�J >"�KG�����C�L���@2 ���>$5�(M

���������
N�O'� ��PQ� ���>��RS��$��B�;M�6T9T4VU5��-0�������
N�O'� ��PQ� ���>�>RV�%$'�B�;M
���������
W(��F���M

X#Y Z\[@]_^.`�a;b.Y
c dfe;c g�h�i�jfg'kfefl#m�`'npo�mrq
X#Y Z\[@] e�s�d;`3Y `�a;g�k\Y b0`�l�mrt\uGdpv gps<`�`'m�w<q
X�`']_x\i'u�`�q�y\g�u�b.zfi�c�{p|EX�w�`�]
xpi'u�`'q
X�`'] y\i'v i'Y s�q�}�n�npnpnpX�w�`'] y\i'v i'Y s�q

X�w<Y Zp[@]
^.`�afb.Y
c dfe;c g�h\q
~

��-0�������
W0��F���M
���������
N�O'� �������L�B���< ���,�N��B� ����D
#�'�),��;D
��@D �+=?����U5�<M

X��<`�e;]
�\`�i�Z�q
X#t\uGd\��`�v i�e;c g�h�j;gpafapl�m���� ���@:%� m'a\k\j;g�Y Z�c hfi�e�`�l�m���� ���@:%� m�v `��<`�v l#m��'� ���@:;�'6 m�w<q

X�w��<`�e;]_�.`�i�Z�q
X��<`�e;]
�(gpZps�q

X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq
X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�]
�(gpa;a�Y `�afg'k\Y b0`'l#m��'� ���@:�� m�w<q � ���;:%���C,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;]
��h\c [%s�q

X�x�k\uGq���� ���@:@�'6 X�w<x�k\uGq�X�x�k\uGq#opX�w<x�k\uGq
X�w��<`�e;]
��h\c [%s�q

X�w��<`�e;]_�<gpZps�q
X��<`�e;]
�(gpZps�q

X#t\uGd\��`�v i�e;c g�h�j;gpafapl�m���� ���@:%� m'a\k\j;g�Y Z�c hfi�e�`�l�m���� ���@:%� m5v `��<`'v l�m���� ���@:@� m�w<q
X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq

X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�]
�(gpa;a�Y `�afg'k\Y b0`'l#m��'� ���@:�� m�w<q � ���;:%�B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;] ��ZpZ�h\k\uGj;`'Y
l�m���� ���;:@� m'i�ZpZ\`�hfZ�k\uGl#mropm�Y `�a\k\v e;l�m���� ���@:@�'6 m�w<q

X�w��<`�e;]_�<gpZps�q
��-0�������
N#O'� �BM
���������
N�O'� �������L�B��� � ���'D
#�@ ���,��),��;D
#�@D �+=?�)�IU5�<M

X��<`�e;]
�\`�i�Z�q
X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq

X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#m�y\`'h\c g�Y
t\uGdpv gps<`�`'m�w<q
X�`�] y�k\j;g�Y Z�c hfi�e�`'q

X#Y Z\[@]_�(i���q � � ���@:��>��� X�w<Y Z\[@]_�(i���q
X�wI`'] y�k\jfg�Y Z�c hfi�e�`'q
X�`�]
�(g�h\kfapq���� ���@:@��
#�'O�� X�w�`�]
�(g�h\kfa\q
X�`�] y\i�v i�Y s�q���� ���@:%����� X�w�`'] y\i'v i'Y s�q � ���@:��B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X�w��<`�e;]_�.`�i�Z�q
X��<`�e;]
�(gpZps�q

X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq
X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�] y\i�v i�Y s�q���� ���@:%����� X�w�`'] y\i'v i'Y s�q � ���@:��B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;] y\`�e_�B[@q

X��<`�ef] y\`�e;q � � ���;:%����� X�w��<`�ef] y\`�e;q
X��<`�ef] ��g�hfa;efY
kfbfe_g'Y
q

X#Y Z\[@]_�<c�Y `�a;g�k\Y b0`�l�m���� ���@:%� m�w<q
X�wI�>`�e;] ��g�hfa;e;Y
kfb0e�g�Y
q
X��<`�ef]_{;i�e�e�`'Y
h\q

X#t\uGd\�>`'v i�e;c g'h�j;gpafapl�m���� ���;:%� m'a\k\j;g�Y Z�c hfi�e_`�l�m���� ���;:%� m�w(q
X�wI�>`�e;]
{;i�e�e�`'Y
h\q

X�w��<`�e;] y\`�e���[@q
X��>`�e;] ��g�k\hfe;q

X��<`�ef] y\`�e;q � � ���;:%����� X�w��<`�ef] y\`�e;q
X��<`�ef]_��`�a\k\v efq��'� ���@:;�'O'� X�wI�>`�e;]
��`�a\k\v e;q

X�w��<`�e;] ��g'k\hfefq
X��>`�e;] �Qt�h\k\uGj;`'Y
opl#m��'� ���@:;�'O'� m�h\k\uGj;`'Y
��l�m���m�w<q
X��>`�e;]
��k\v�h\k\uGjf`�Y
l�m���� ���;:%����� m�uGk\v e;c dpv c `'Y
l#mr�pm5Y `�a\k\v e;l�m���� ���;:@��
#�'O�� m�w<q

X�w��<`�e;]_�<gpZps�q
��-0�������
N#O'� �BM

��-0�������
	��%
��5�%���CM

Figure 6: An XET program P.xml.

A list of facts
corresponding to the
XML unit clauses
E1, ..., E4.

An XET rule
corresponding to
the XML non-unit
clauses R1 and R2.

An XET rule
corresponding to
the XML non-unit
clause R3.

Figure 7: The answer to the query Q.

Figure 8: A scenario for Semantic Web service execution.

Semantic-Web-Service
Search Engine

B

User /Application
A

Issue a query describing a
service need together with user
constraints and preferences

A database of
Semantic Web
service proper-
ties and capa-
bilities

�� ��

Select an appropriate
application and send it a
query/service-request as well as
user constraints and preferences

Semantic Web
Application

C

�� ��

Find Web services
fulfilling the need

�� ��

Execute the query/request
with respect to its application

data and rules/logic.

�� ��

Sub-query/sub-request
5.1

Reply/
response

5.2
Sub-query/
sub-request

Reply/response
5.4

Return an
answer/response

�� ��

Return a list of Semantic
Web applications offering
the demanded service

�� ��

� Application data � Application rules and logic

5.3

Semantic Web
Application

D

Semantic Web
Application

E

�	� d�}QW�
Gzr�4dRlr~�e_d
������zrd��������
����
.�v� �<
.�.�c#

�1N5�h��JO
.�>#1V���~����vlr~�e_d��r/�N5�
��JO
.�>#
�1/���
.�v� �<
.�.�2#
����
.�v� A��h�h%�#

�G�&�h�Q� 	<
.���>�®� �
�a� �$�,�.�h�h�h�a�O�(V���~����aXF�)#
�O�®�
�Q� �0%)�

I�&
.���$�
�®�>
.�G��*
+I�
- �$%)
.
.�4/�#
�O
1� 32�.+I
1#r6h�$+I�>7h�.�h8$:4�r/�
1� 3<�.+I
1#
b���~����vd�e_frm

�1/)�®�
�Q� 	<
.�����&� �h�0� �$�c#
�G*
+I�
S9
.- �.�0� �$�,�h�$�����G��V���~�� �0XK�

���h�
�$�&�h� �h�.�0
.�G��V���~����aZK��-
.\)
.- �OC�/�#
�G�&�h�Q� 	<
.���>�®� �
�a� �$�,�.�h�h�h�a�O�(V���~����aZ���#

�O�®�
�Q� �0%)�

I�&
.���$�
�®�>
.�G��*
+I�
- �$%)
.
.�4/�#
�O
1� 32�.+I
1#rV���~����vlr~�e_d��1/)
1� 32�.+I
1#
b���~����vd�e_fr­

�1/)�®�
�Q� 	<
.�����&� �h�0� �$�c#
�1/���
.�v� A��$�
%�#

�"!�� d�}QW�
Gzr�4d
�

�	# lr{%$,d��&�	'�d���d�(*)�+ �,!-# lr{.$Rd��/�
��# lr{%$Rd��&� # ��zrlrd�d10-+ �"!-# lr{%$,d��&�

The answer to the query Q
-- the names of all Somchai

P.’s second-leveled
subordinates.

An XET rule cor responding to the query Q

An application
running the XET
program P.xml

Figure 9: Prototype Semantic Web application.

5 Prototype Application

Founded on the proposed framework, a prototype Semantic Web application, which
provides product-information-gathering as well as e-shopping services, has been
implemented by means of XDD modeling language and XET programming language. The
employed XDD and XET languages have been enhanced with the ability to handle rule
conflicting problems using rule prioritization information [11]. Such an additional feature
enables, for example, a formalization of a discounting policy stating that if a customer is a
member of the store, a 10 percent discount is offered, and if a customer has a late-payment
history, no discount is offered and that the latter has higher priority than the former [11].
Due to space limitation, declarative semantics of prioritized XDD descriptions and XET
programs is omitted; its formal definition is available in [18].

To buy some products (Figure 9), a customer may fill out an order form and submit it on-
line to the application Web site or directly send an HTTP request with appropriate
parameters encoded in XML to the application URL. The application first checks its stock,
and if the products are available, it will calculate the order’s price, send a request to a credit
card company (another Semantic Web application) for a debit of the customer’s account,
send a request to a shipping company and then wait for their responses. After the order
process has been finished, the application notifies the customer of the completed process.

Customer

Submit an order

The Prototype
Application

�� ��

 Process order
2.1 Check product availability

2.2 Calculate order price

�� ��

Request for credit card
debiting

2.3

Response
2.4

Request for a
shipping service

Response
2.6

Order-process-
completion message

�� ��

� Descr iptions of products � Order processing, pr ice discounting,
warrantee, delivery and refund rules

2.5

Credit Card
Company

Shipping
Company

6 Related Works

Business Rule Markup Language (BRML) [11] is an XML-based language for encoding of
Courteous Logic Programs (CLP)—an extension of conventional logic programs by
inclusion of the ability to express prioritized conflict handling. BRML is a language in the
RuleML Initiative, which has been specifically designed to represent business rules and
policies. However, since BRML provides merely an XML embodiment of CLPs, its
expressive power is relatively limited in that its sole permitted representation is atomic
formulae with simple-structure terms. Complex XML data with nesting structures cannot be
directly represented in BRML. Instead they require appropriate translations into
corresponding sets of atomic formulae. Figure 10, for example, shows the CLP’s and
BRML’s representations of the XML element E1 and the XML clause R1 of Figure 4.
Comparing XDD with BRML, one can readily observe that XDD provides a more direct
and succinct modeling mechanism; While possessing sufficient expressive power to
represent simple as well as complex statements and relations, its representation is still
readable.

�������4�&%$��

sv

 <!)o"*�+R��- ��%$

w

2� 3��
+,

sQ

 "!)o"6���+,��7��
�98�:0w

2� 6��
- �
�(%$sv

 <!)o";� � � � �w

2� 8����)� �&� ����sQ

 "!)o"8���� �

�����$

�
��

��w

�K�)- �5#
��

����-
2#

��7�

�
�"#
����- � �&

���
-9����

��� �)�
��

�����(����� ��%.��

�.#

���®�������&� ���_���
+R

����

 <!)�0/1#
���®�������&� ���_���
+R

����*�+,��- ��%$

�0/9#

�2/.�)- � ��

�(�
-&#
�2/.7�

�
�5#

�2/=

����-
2#
��</=��- �"#

(a) The CLP’s representation of the XML element E1. (b) The BRML’s representation of the XML element E1.

S�!�� *�+,��S2

- �
�&� ����s����9o���	�o !�w
^ �(����� ��%.��

s���	�o"*�+R��- ��%$

w�

2� A1�����)s���	�o����9wv:
�K�)- �5#

��

����-
@����-

- �
��

- ����S�!��$#
��7�

�
�"#

����- � �&

���
-9����

��� �)�
��

����*�+,��S2

- �
�&� �����$#
��\$�
��� �
��-
@���
+,

�����9�0/9#
��\$�
��� �
��-
@���
+,

���
	��0/9#
���®�������&� ���_���
+R

���$!��0/1#

�2/.�)- � ��

�(�
-&#
�2/.7�

�
�5#
��������%r#

���
���5#
���®��- � �&

���
-9����

��� ���
�&

�����������4�&%$��

�$#

��\.�
��� �
��-
@���
+,

�K��	G�a/1#
��\.�
��� �
��-
@���
+,

�K�v*�+R��- ��%$

�0/9#

�2/.�®��- � �&

���
-&#
���®��- � �&

���
-9����

��� ���
�&

����
2� A1���)���$#

��\.�
��� �
��-
@���
+,

�K��	G�a/1#
��\.�
��� �
��-
@���
+,

�K���1�a/1#

�2/.�®��- � �&

���
-&#
�2/.�
���"#

�2/.������%r#
�2/=

����-
2#

�</=��- �"#
(c) The CLP’s representation of the XML clause R1. (d) The BRML’s representation of the XML clause R1.

Figure 10: The CLP’s and BRML’s representations of the element E1 and the clause R1 of Figure 4.

OIL [6,8,12] and DAML+OIL [13] are the two most recent, improved ontology-based
semantic markup languages for Web resources which extends RDF Schema by richer sets
of modeling primitives. However, their current versions still lack expressive power in that
arbitrary rules and axioms cannot be described [6]. Since these languages’ schemas and
instances, which are encoded in RDF/XML serialization, can be directly represented in
XDD as XML unit clauses, XDD can be employed to serve as their foundation, in order to
help enhance their expressiveness [17]. Therefore, resources and applications modeled by
these languages become immediately instances of XDD language and hence directly
programmable by XET language. Note that with the awareness of the DAML+OIL’s
limitation in representing rules and axioms, the language is being extended with the ability
to express Horn clauses and will be called DAML-L [16].

With reference to the overall process of Semantic Web service implementation defined in
[11,16], XDD can be uniformly employed to materialize each step of the process:

 Service Advertisement and Discovery: A collection of service properties and
capabilities described by means of metadata or Semantic Web Service Markup
Language [16] can be directly represented as XML unit clauses, and their additional
constraints and relations modeled in terms of XML non-unit clauses. Based on such
declarative advertisements of Web services, discovery of a particular service having
specific properties and capabilities is expressed as an XML non-unit clause, which
will be evaluated on the Web service database and return as its reply a list of
applications or service providers offering the requested service.
 Negotiation: Given particular negotiation rules and procedures for selection of Web
services (e.g., response time, data accuracy and cost conditions), corresponding XML
non-unit clauses can be declaratively defined. Besides definition of such rules, an
appropriate employment of Agent Communication Language (ACL) [15] which
allows the negotiating parties to effectively communicate and interoperate must also
be considered. By a careful formulation and implementation of the two major current
ACLs (i.e., KQML [9] and FIPA-ACL [10,15]) in XDD [14], XDD readily provides
an effective communication in the negotiation stage, allowing every negotiating party
to communicate with one another via XDD uniform interface, and hence enabling a
higher level of interoperability.
 Service Execution: Execution of a service according to a given procedure can be
represented in XDD by appropriate XML clauses. Based on such a declarative
specification, an application can automatically execute the service.
 Service Composition and Integration: It is often a case that a service is designed as a
composition or an integration of other existing services. The execution of such a
composite service often requires interaction with those related services in terms of
request-for-service calls and returned responses. Using XDD, one can represent
service composition and integration by an XML clause, the head of which specifies
the composite service and the body of which describes the composition rule as well as
the service calls and the data to be exchanged with other services. Such service calls
and exchanged data could be embodied in an ACL.
 Service Customization: In order to increase the level of share-ability, reusability and
user’s satisfactory of provided services, a service may be defined by a particular
generic procedure which can then be customized for execution of a specific service
request. Such a generic procedure is described by a set of XML clauses, and its

customization is realized by either parameter instantiation or by addition of XML
clauses into it—this latter case is equivalent to program refinement. Note that
different customizations normally lead to different sequences and results of service
execution.

In summary, with these supports, XDD readily provides sufficient Semantic Web
modeling facilities for development of intelligent, automated Web applications requiring
interoperation with other independently-developed applications.

7 Conclusions

The proposed XDD language is an expressive modeling language which allows collections
of Semantic Web resources (modeled in terms of XML, RDF, OIL or DAM+OIL) to be
directly represented with their semantics precisely and formally determined. In addition to
such a resource modeling facility, XDD also provides a means for descriptions of Web
resource manipulations, service provisions and business rules and processes. Moreover, its
extension [18] by the ability to handle rule conflicting problems has enhanced its
expressive power to be sufficient to capture and describe complex and conflicting rules and
logic in Semantic Web applications.

Founded on XDD’s expressive power and ET’s computational efficiency, XET
programming language and its compiler have also been developed. By means of XDD and
XET languages, the paper has proposed a declarative framework for Semantic Web
application development and has demonstrated that a variety of Semantic Web applications
and services is simply expressible by XDD and hence programmable by XET. Moreover,
the development of the prototype system based on the proposed framework has helped
prove the framework’s viability and potential in real applications. Integration of the
proposed framework with appropriate Web and agent technologies allows intelligent as
well as automated Web services, which demand syntactic and semantic interoperability, to
be easily and rapidly developed. Note also that an XET program which performs particular
tasks can be exchanged, shared and reused by multiple applications.

References

[1] K. Akama, Declarative Semantics of Logic Programs on Parameterized Representation Systems.
Advances in Software Science and Technology 5 (1993) 45–63.

[2] K. Akama, Declarative Description with References and Equivalent Transformation of Negative
References. Technical Report, Department of Information Engineering, Hokkaido University, Japan
(1998).

[3] K. Akama, T. Shimitsu and E. Miyamoto, Solving Problems by Equivalent Transformation of
Declarative Programs. Journal of Japanese Society of Artificial Intelligence (JSAI) 13(6) (1998) 944–
952 (in Japanese).

[4] K. Akama, C. Anutariya, V. Wuwongse and E. Nantajeewarawat, A Foundation for XML Databases:
Query Formulation and Evaluation. Technical Report, Computer Science and Information Management
Program, Asian Institute of Technology, Thailand (1999)

[5] C. Anutariya, V. Wuwongse, E. Nantajeewarawat and K. Akama. Towards a Foundation for XML
Document Databases. Proc. 1st Int. Conference on Electronic Commerce and Web Technologies (EC-
Web 2000), London, UK. Lecture Notes in Computer Science, Springer Verlag 1875 (2000) 324–333.

[6] S. Bechhofer et al., An Informational Description of Standard OIL and Instance OIL. White Paper (Nov.
2000). Available at http://www.ontoknowledge.org/oil/downl/oil-whitepaper.pdf

[7] T. Berners-Lee, Weaving the Web. Harpur, San Francisco (1999).
[8] S. Decker et al., The Semantic Web: The Roles of XML and RDF, IEEE Internet Computing, (Sep./Oct.

2000) 63–74.
[9] T. Finin, Y. Labrou and J. Mayfield, KQML as an Agent Communication Language. Software Agents,

AAAI/MIT Press (1997).
[10] FIPA: FIPA Specification, Version 2.0, Part 2: Agent Communication Language (1997)

Available at http://www.fipa.org/spec/f8a22.zip
[11] B.N. Grosof, Y. Labrou, and H.Y. Chan, A Declarative Approach to Business Rules in Contracts:

Courteous Logic Programs in XML. Proc. 1st ACM Conf. on Electronic Commerce (EC99), ACM Press
(1999).

[12] F.V. Harmelen, and I. Harrocks, FAQs on OIL: The Ontology Inference Layer. IEEE Intelligent Systems
15(2) (Nov./Dec. 2000) 69–72.

[13] J. Hendler and D. McGuinness, The DARPA Agent Markup Language. IEEE Intelligent Systems 15(2)
(Nov./Dec. 2000) 72–73.

[14] S. Jindadamrongwech, An Agent Communication Language using XML Declarative Description.
Master’s Thesis, Computer Science and Information Management Program, Asian Institute of
Technology, Thailand (2000).

[15] Y. Labrou, T. Finin, and Y. Peng, Agent Communication Languages: The Current Landscape. IEEE
Intelligent Systems, 14(2) (Apr./May 1999) 45–52.

[16] S.A. McIlraith, T.C. Son, and H. Zeng, Semantic Web Services. IEEE Intelligent Systems, 16(2)
(Mar./Apr. 2001) 46–53.

[17] V. Wuwongse, C. Anutariya, K. Akama and E. Nantajeewarawat: XML Declarative Description (XDD):
A Language for the Semantic Web. IEEE Intelligent Systems (to appear).

[18] V. Wattanapailin, A Declarative Programming Language with XML. Master’s Thesis, Computer Science
and Information Management Program, Asian Institute of Technology, Thailand (2000).

