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Abstract. XML Declarative Description (XDD) is a unified modeling language with 
well-defined declarative semantics. It employs XML as its bare syntax and enhances 
XML expressive power by provision of mechanisms for succinct and uniform 
expression of Semantic Web contents, rules, conditional relationships, integrity 
constraints and ontological axioms. Semantic Web applications, offering certain Web 
services and comprising the three basic modeling components: application data, 
application rules and logic, and users’  queries and service requests, are represented in 
XDD language as XDD descriptions. By integration of XDD language, Equivalent 
Transformation computational paradigm and XML syntax, XML Equivalent 
Transformation (XET)—a declarative programming language for computation of 
XDD descriptions in Equivalent Transformation computational paradigm—is 
developed. By means of XDD and XET languages, a new declarative approach to the 
development and the execution of Semantic Web applications is constructed. 

Keywords.  Semantic Web, Semantic Web applications, Semantic Web services, 
XML Declarative Description, XML Equivalent Transformation. 

1 Introduction 

The Semantic Web [7] is a vision of the next-generation Web which enables Web 
applications to automatically collect Web contents from diverse sources, integrate and 
process information, and interoperate with other applications in order to execute 
sophisticated tasks for humans. For the current Web to evolve from a global repository of 
information primarily designed for human consumption into the Semantic Web, 
tremendous effort has been devoted to definition and development of various supporting 
standards and technologies. Prominent markup languages with an aim to define a syntax 
convention for descriptions of the semantics of Web contents in a standardized 
interoperable manner include XML, RDF, RDF Schema, OIL [6,8,12] and DAML+OIL 
[13]. Moreover, for Web applications to effectively communicate and interoperate in the 
heterogeneous environment, a standard Agent Communication Language (ACL) [15] 
becomes a necessity. Two major current ACLs are Knowledge Query and Manipulation 



Language (KQML) [9] and Foundation for Intelligent Physical Agents ACL (FIPA-ACL) 
[10,15].  

With an emphasis on the modeling and the development of Semantic Web applications 
offering certain Web services, there arises a need for a tool which is capable of modeling 
their three major components: application data, application rules and logic, and queries 
and requests. XML Declarative Description (XDD) [5,17]—a unified, XML-based 
Semantic Web modeling language with well-defined semantics and a support for general 
inference mechanisms—aims to fulfill such a requirement. XDD does not only allow direct 
representation and manipulation of machine-comprehensible Web contents (such as 
documents, data, metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL 
syntax), but also provides simple, yet expressive means for modeling their conditional 
relationships, integrity constraints and ontological axioms as well as Semantic Web 
applications. XDD serves the three important roles: content language, application-rule 
language and query or service-request language, in modeling such three main components 
of Semantic Web applications. 

Based on XDD language, a declarative programming language, i.e., XML Equivalent 
Transformation (XET) is constructed. Given an application’s model specification, 
represented in terms of an XDD description, an XET program capable of executing and 
handling the application’s queries as well as service requests can be obtained directly.  

Thus, the developed technologies—XDD and XET languages—present a new paradigm 
for modeling and programming Semantic Web applications. By integration with existing 
Web and agent technologies, XDD and XET also allow both syntactic and semantic 
interoperability among Web applications, and hence enable the development of intelligent 
services as well as automated software agents. 

Section 2 formalizes an extended XDD language with set-of-reference functions,   
Section 3 presents an XDD approach to modeling Semantic Web resources and 
applications, Section 4 describes XET programming language and outlines an approach to 
its employment in Web application development, Section 5 demonstrates a prototype 
system which adopts the developed technologies, Section 6 reviews current related works, 
and Section 7 draws conclusions. 

2 XML Declarative Descr iption 

XDD [5,17] is a language the words and sentences of which are XML expressions and XML 
clauses, respectively. XML expressions are used to express explicit and implicit as well as 
simple and complex facts, while XML clauses are employed to represent ontology, implicit 
and conditional relationships, constraints and axioms. First, the data structure of XML 
expressions and their sets, characterized by an XML Specialization System, will be given 
and then followed by the syntax and semantics of XML clauses. 

2.1 XML Specialization System 

XML expressions have a similar form to XML elements except that they can carry 
variables for representation of implicit information and for enhancement of their expressive 
power. Every component of an XML expression—the expression itself, its tag name, 
attribute names and values, pairs of attributes and values, contents, sub-expressions as well  



Table 1: Variable types. 

Variable Type 
Variable Names 
Beginning with 

Instantiation to 

N-variables: Name-variables 
���

Element types or attribute names  
S-variables: String-variables 

���
Strings  

P-variables: Attribute-value-pair-variables  
���

Sequences of zero or more attribute-
value pairs 

E-variables: XML-expression-variables 
���

Sequences of zero or more XML 
expressions 

I-variables: Intermediate-expression-variables 
���

Parts of XML expressions 
Z-variables: Set-variables 

���
Sets of XML expressions 

 

as some partial structures—can contain variables. XML expressions without variables are 
called ground XML expressions or simply XML elements, those with variables non-ground 
XML expressions. Table 1 defines all types of variables and their usages.  

An XML expression takes formally one of the following forms: 

1. evar, 
2. 	 t  a1=v1 … am=vm   pvar1 … pvark / 
 , 
3. 	 t  a1=v1 … am=vm   pvar1 … pvark
   vm+1 	 /t 
 , 
4. 	 t  a1=v1 … am=vm   pvar1 … pvark
   e1 … en 	 /t 
 , 
5. 	 ivar 
  e1 … en 	 /ivar 
 , 

where �  evar is an E-variable, 
� k, m, n �  0, 
� t, ai are names or N-variables, 
� pvar i is a P-variable, 

� vi is a string or an S-variable, 
� ivar is an I-variable,  
� ei is an XML expression.  

The domain of XML expressions and their sets can be defined as follows: 

��

X  : the set of all XML expressions, 

��

X  : the subset of � X which comprises all ground XML expressions in � X, 

�� = � X �  2( � X �  VZ) : the set of all XML expressions in � X and sets of XML 

expressions and Z-variables in 2( � X �  VZ), and 

�� = �

X �  2� : the set of all ground XML expressions in � X, and sets of ground XML 
expressions in 2� X. 

Note that elements of the sets �  and �  may be at times referred to as objects and ground 

objects, respectively, and when it is clear from the context, a singleton { X}  where X �  VZ is 
a Z-variable, will be written simply as X. 

Instantiation of those various types of variables is defined by basic specializations, each 
of which has the form (v, w) where v specifies the name of the variable to be specialized 
and w the specializing value. For example, ( ����� �����! , ���"� �#���%$ ), ( �&��� �����%$ , �'�)(+* ) and ( �&,-� * , 
( ��,.� */ , ��,.� *0$ )) are basic specializations which rename the N-variable �&��� �����1  to ���"� �#���%$ , 
instantiate the N-variable �&��� �����%$  into the tagname �'�0(+* , and expand the E-variable �&,-� *  
into the sequence of the E-variables ��,.� *2  and ��,.� *0$ , respectively. There are four types of 
basic specializations:  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Successive applications of basic specializations c1, …, c5 to a non-ground XML 
expression a in 

�
X by the operator � , yielding a ground XML expression g in � X. 

1. Rename variables. 
2. Expand a P- or an E-variable into a sequence of variables of their respective types. 
3. Remove P-, E- or I-variables. 
4. Instantiate variables to XML expressions or components of XML expressions which 

correspond to the types of the variables, i.e., instantiate: 
 N-variables to element types or attribute names, 
 S-variables to strings, 
 E-variables to XML expressions in � X,  

 I-variables to XML expressions which contains their sub-elements at an arbitrary 

depth, or 
 Z-variables to sets of XML expressions and Z-variables. 

The data structure of XML expressions and sets of XML expressions are characterized 
by a mathematical abstraction, called XML Specialization System, which will be defined 
in terms of XML specialization generation system �  = � � , � , � , ��� , where 


 � is the set of all basic specializations, and 

 �  is a mapping from �  to partial_map( � ) (i.e., the set of all partial mappings on � ), 

called the basic specialization operator; it determines, for each basic specialization c 
in � , the change of objects in �   caused by c. 
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Figure 2: Specialization of a non-ground set of XML expressions in 
�

  into a ground set of 

XML expressions in �   by the operator �  using a specialization 
���

  in � . 

Figure 1 illustrates examples of a non-ground XML expression a in � , basic 
specializations c1, …, c5 in �  and their successive applications to a by the operator �  in 
order to obtain a ground XML expression g in � . 

Denote a sequence of zero or more basic specializations in �   by a specialization. 
Based on the XML specialization generation system �  = � � , � , � , ��� , the XML 

Specialization System is �  = � � , � , � , � � , where 

 �   = �  * is the set of all specializations, and 

 �  : �  �  partial_map( � )  is the specialization operator which determines, for each 

specialization s in � , the change of each object a in �   caused by s such that: 
o � (� )(a) = a, where �  denotes the null sequence, 
o � (c 	  s)(a) = � (s)( � (c)(a)), where c � �   and s �
� . 

Intuitively, the operator �  is defined in terms of the operator �  such that for each a � �  and 
s = (c1 … cn) ��� , � (s)(a) is obtained by successive applications of � (c1), …, � (cn) to a. 
Note that, when �  is clear from the context, for �  �  � , � ( � )(a) will be written simply as a � . 

With reference to Figure 1, let a specialization �  in �  denote the sequence of the basic 
specializations c1, c2, c3, c4 and c5; by the definition of � , g = � ( � )(a) = a� . Similarly, 
Figure 2 shows examples of a non-ground set of XML expressions A in � , a specialization 
��
 in �  and its application to A by the operator � , in order to obtain a ground set of XML 

expressions G in � , i.e., G = � ( ��
)(A) = A��
. 
2.2 XDD: Syntax 

The definitions of XML declarative descriptions with references and its related concepts are 
given next in terms of the XML specialization system � .  

A non-ground set of XML expressions A �� ��  
�� ��
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  which changes the non-ground set A to the ground set G by Z Instantiation of the N-variable 4V5K6 83:J;  occurred in the elements of the set A into the tag 

name G7[]\4^ _4`�IJI ,  Z Instantiation of the Z-variable 4U�W6 �XI�8  into the set of two XML elements: 
{  a G�[b\�^ _�`�I<Idc,e I*fMI*gihYj alk Gm[b\�^ _m`<I<I*c , a Gm[b\�^ _�`�I<Idc�nofqp�r�I<Its7j a,k Gm[b\�^ _�`�I<Idc  } . 



Table 2: Definitions of the concepts constraints, references and XML clauses on 
�

. 

Concept Being in Ground 
Form IFF 

Application of a Specialization �� ��
 �� ��,�� ��   Yielding 

A constraint:  q(a1, … , an) 

where n > 0, q �   and ai �  
�

 

ai �  �   for 1 �  i �  n q(a1, … , an)
�
  = q(a1

�
, … , an

�
) 

A reference:  r = � a, f, P�  
where  - a �  

�
,  

- f �   and  
- P is an XML declarative descrip-

tion which will be called the 
referred description of r 

a �  �  r
�
 = � a, f, P� �   =  � a � , f � , P�  

An XML clause: H  �  B1, B2, ..., Bn  
where - n �  0, 

- H is an XML expression in 
�

X, 
- Bi is an XML expression in 

�
X, a 

constraint or a reference on 
�

, and 
- the order of Bi is immaterial. 

Comprising only 
ground objects, 
ground constraints 
and ground refer-
ences 

H
�
  �  B1

�
, B2

�
, ..., Bn

�
 

Let  be a set of constraint predicates and  the set of all mappings: 2�  �  2� , the 

elements of which are called reference functions. An XML declarative description on � , 
simply called an XDD description, is a (possibly infinite) set of XML clauses on � . Table 2 
defines concepts of constraints, references and XML clauses on � .  

The notion of constraints introduced here is useful for defining restrictions on objects in � , i.e., both on XML expressions in � X and on sets of XML expressions in 2( � X �  VZ). Given 
a ground constraint q(g1, … , gn), gi �  � , its truth or falsity is assumed to be predetermined. 
Denote the set of all true ground constraints by Tcon. For instance:  


 Define ��� (a1, a2) as a constraint which will be true iff a1 and a2 are XML elements of 
the forms 	 ��
 (
� v1	�� ��
 (
�  and 	!��
 (
� v2	�� ��
�(
� , respectively, where v1, v2 are 
numbers and v1 > v2. Obviously, a constraint ��� ( 	 ��
�(
� 10	�� ��
�(
� , 	 ��
 (
� 5	�� ��
 (
� ) 
is a true ground constraint in Tcon. 
 Define a constraint ����
�� � (G, g) which will be true, iff G is a set of XML elements and 
g the XML element 	���*���
�� ��� v	����&*���
 � �!� , where v denotes G’ s cardinality.  

The concept of references defined here together with an appropriate definition of a set-of-

reference function in  will be employed to describe complex queries/operations on sets of 
XML expressions such as set construction, set manipulation and aggregate functions, e.g., 
min, max and count in SQL. Given a, x �  � X, let fx,a �   denote a set-of-reference function 

and be defined as follows: For each G "  � X, 

fx,a(G) = { { x �  � � X | �  �  � ,  a �  �  G } } . (1) 

In other words, for each subset G of � X, fx,a(G) is a singleton set, the element of which is a 
set of ground XML expressions of the form x � , for any specialization �  �  � , which makes 
a �  become a ground XML expression in G. Intuitively, a and x are used to define the 
condition for constructing a set and to determine the elements comprising that set, 



respectively, i.e., x �  �  fx,a(G) iff a�  �  G. The objects a and x will be referred to as filter and 
constructor objects, respectively. Given a specialization �  in � , application of �  to fx,a yields 
fx,a �  = fx� , a�  . For example, assuming that G is the set  

{  	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 �����%(���� ��� 	�� , (���� ��� *�*�� ,  
 	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 ���/��� *�* 	�� , (���� ��� *�*�� , 
 	 , (���� ��� *�*���� �	� �
� � ����
�� ��
 ����
�������	�� , (�� � ��� *�* � } , 

then  
f ���  "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?<> !@> 9A(*.�B'�  "B'4�/*0*1 (*��256C+�7*8 9;:�-A-,4 (G)  

=  {  { 	�� ��� �#�ED5D � �)(+*���
�� � (���� ��� 
 ��� , 	�� ��� �#�ED5D � �0(+*F��
�� 
��"���G
 � � }  } . 

In other words, such a set-of function filters the XML elements of the set G with the pattern  

	 , (�� � ��� *�*���� �H� �
� ������
�� ��
 � ���%� � 	�� , (���� ��� *�*��   — the filter object 

and then constructs the resulting set of XML elements using the pattern  

	�� ��� ���ID5D � �0(+*��!���.� � � � — the constructor object 

Note that the effect of the binding of the variable ���%� �  in the filter object will also cascade 
to the constructor object. 

Based on the definition of the set-of function, a reference r = � S, fx,a, P� , for x, a �  � X 
and S �  2( � X �  V), is called a set-of reference.  

Given an XML clause C = (H J  B1, B2, ..., Bn), H is called the head and (B1, B2, ..., Bn) 
the body of C, denoted by head(C) and body(C), respectively. The sets of all XML 
expressions, constraints and references in the body of C are denoted by object(C), con(C) 
and ref(C), respectively. Thus, body(C) = object(C) �  con(C) �  ref(C). If n = 0, such a 
clause is called a unit clause, if n 
  0, a non-unit clause. When it is clear from the context, a 
unit clause (H J  ) is written simply as H, i.e., the left-arrow symbol is omitted. Therefore, 
every XML element can be considered as a ground XML unit clause, and moreover every 
XML document can be modeled as an XDD description comprising solely ground XML 
unit clauses. 

The heights of an XML clause C and of an XDD description P, denoted by hgt(C) and 
hgt(P), are defined as follows: 


 If ref(C) = K  (C contains no reference), then hgt(C) = 0; 
Otherwise hgt(C) is the maximum height of all the referred descriptions contained in 
its body plus one. 
 hgt(P) is the maximum height of all the clauses in P. 

2.3 XDD: Declarative Semantics 

Given an XDD description P on � , its declarative semantics, denoted by (P), is defined 
inductively as follows: 

1. Given the meaning (Q) of an XDD description Q with the height m, a reference r = 

� g, f, Q�  is a true reference, iff g �  f( (Q)). For any m �  0, define Tref(m) as the set 
of all true references, the heights of the referred descriptions of which are smaller 
than or equal to m, i.e.: 



Tref(m) = { � g, f, Q�   |   g �  � ,   f �  ,   hgt(Q) 
�
 m,   g �  f ( (Q)) }  (2) 

2. The meaning (P) of the description P is a set of XML elements defined by: 

(P) = 
���
� �1

)(][
n

n
PT  (3) 

where  - K  is the empty set,  
 - TP

1(K ) = TP( K ) and [TP]n( K ) = TP([TP]n-1( K )) for each n 
  1, and 
 - the mapping TP: 2� � 2�  is:  
For each G "  � , g �  TP(G) iff there exist a clause C �  P and a specialization �  �
�  
such that C �   is a ground clause, with head g and all objects, constraints and 
references in its body belong to G, Tcon and Tref(n), for some n 	  hgt(P), 
respectively, i.e.: 

TP(G) = { head(C � ) | C �  P,   �  ��� ,   C �   is a ground clause, 
object(C� ) "  G,   con(C � ) "  Tcon, 
ref(C� ) "  Tref(n),   n 	  hgt(P) }  

(4) 

Intuitively, the meaning of a description P, i.e., (P), is a set of all XML elements, which 
are directly described by and derivable from the unit and the non-unit clauses in P, 
respectively, i.e.: 


 Given a unit clause (H J  ) in P, for �   �  �  : 

H �   �  (P)  if H �   is an XML element. 

 Given a non-unit clause (H J  B1, ..., Bi, Bi+1, ..., Bj, Bj+1, …, Bn) in P, assuming 

without loss of generality that B1, ..., Bi are XML expressions, Bi+1, ..., Bj are 
constraints, and Bj+1, ..., Bn are references, for �   �  �  : 

H �   �  (P)  if -  H �   is an XML element,  

-  B1 � , ..., Bi �   �  (P),  

-  Bi+1 � , ..., Bj �   are true constraints, and 
-  Bj+1 � , ..., Bn �   are true references. 

Based on the formalized concepts of XDD language, Figure 3 demonstrates two XDD 
descriptions denoted by Q and P, and then determines their semantics, which is sets of 
XML elements denoting certain objects and their relationships in a real-world domain. 

3 Modeling Semantic Web Resources and Applications 

XDD language allows collections of Semantic Web resources, such as documents, data, 
metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL syntax, to be 
represented in terms of XDD descriptions. In the descriptions, explicit information items 
are directly expressed as ground XML unit clauses, while rules, conditional relationships, 
integrity constraints and ontological axioms are formalized as XML non-unit clauses. The 
descriptions’  semantics, which can be directly determined under the language itself, is 
defined as sets of XML elements—surrogates of objects and their relationships in a real-
world domain.  



{  C1: 
	d�1?P��Z  �[)� �T�H� � � � �  &!�*V+ $  O+N2H>� H?���A'#<� 	HEq�1?P��Z  �[)� �<2 �

 C2: 
	d�1?P��Z  �[)� �T�H� � � � �  &!�*V+�����+]2��O#<Z � !'� �<	<E �1?P��Z  [Q� �<2 �  

 C3: 
	d�1?P��Z  �[)� �T�H� � � � �  &!�*V+ $  O+N2H>&( �,# ��	<E �1?P��Z  [Q� �<2 �   }  

(a) XML Declarative Descr iption Q. 

Z hgt(C1) = hgt(C2) = hgt(C3) = hgt(Q) = 0 Z�� (Q) = {   	*�1?T��Z  [Q� �P�&� � � � �  H!�*V+ $  O+N2H>� &?,�1A�#<� 	HEq�1?T��Z  [Q� �<2   
 	*�1?T��Z  [Q� �P�&� � � � �  H!�*V+����<+N2	�0#<Z � �<	HE �1?P��Z  [Q� �<2
 	*�1?T��Z  [Q� �P�&� � � � �  H!�*V+ $  O+N2H>&(q�,# �3	HEq�1?T� Z  [)� �<2   }  

(b) The height and the meaning of Q. 

{  C4: 
	U$  �>��-# �D�]U0(1?P%��<
 2	
�>&� !1(�?T	<E $  �>1�-# �D�]U0(�?T%��<
 2

  

 �   � 

�"� ��� � ,  f ���  
! #%$'& &)(*$,+�-,.�/A0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B �  "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q� , 
   �  H(1!�� g 
��&� ��� � , 		� � � (�Z �32	
�>&� !1(�?T	<E�� � � (1Z �32Hi��    }  

(c) XML Declarative Descr iption P. 

Z hgt(C4) = hgt(Q) + 1 = 1, and hgt(P) = 1. 

Z f ���  "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6C+�7*8 9;:�-A-�=*> ?<> !3> 9*(*.�B'�  "B'4�/A0*1 (*��256C+�7*8 93:�-,-A4 ( (Q)) =  
   {  {  	U$  ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 ,  	U$  ����-# �D�V!�#<?,�<*V+L>"( �,# �3+DE'2  }  }  

Z � � �����q;�� , f ���  "! #%$'& &�(*$A+�-,.�/A0*1 (32 4 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B �  "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q�   
is a true reference, iff 

�"� ��� �  is specialized into the set  

   {  {  	U$  ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 ,  	U$  ����-# �D�V!�#<?,�<*V+L>"( �,# �3+DE'2  }  }  
Z The constraint �  H(1!��  is a true constraint, iff 
�>&� !1(�?  is specialized into the number 2. 

Z�� (P) = { 	U$  �>1�-# �D�]U0(�?T%��<
�2	��	<E $  �>1�-# �D�]U0(�?T%��<
 2 } . 

(d) The height and the meaning of P. 

Figure 3:XDD descriptions Q and P and their declarative semantics. 

Besides its employment to model various kinds of Semantic Web resources, XDD can 
also be applied to describe certain operations such as queries, document transformation and 
processing rules as well as program specifications. Figure 4 illustrates examples of 
Semantic Web resource modeling and a query formulation and shows that although 
information about senior employees and their bonuses is not explicit, it can be deductively 
inferred based on the clause R3; this representation offers a more compact form and 
provides an easier way of information modification than explicit enumeration of such 
information. With this simple, yet expressive modeling mechanism, XDD can readily be 
applied to model Semantic Web applications. 

A Semantic Web application, offering certain Semantic Web services, comprises three 
main components: application data, application rules or logic, and users’  queries or 
requests for services. For instance: In a Semantic Web search engine, offering an 
information-gathering service, 


 its application data: a catalog or descriptions of Semantic Web contents, 
 its application rules: domain-model ontologies and axioms, and 
 its requests: user queries describing their informational needs. 



In a business-2-business (B2B) commerce application, its three components are 

 a catalog of available products and services, 
 business rules and policies such as price discounting and refund rules, and 
 queries and business transactions such as a request for a quotation and an order 

placement. 

XDD language provides means for modeling Semantic Web applications in that it 
enables direct representation of: 


 application data (facts), encoded in XML, RDF, OIL or DAML+OIL syntax, in terms 
of XML ground unit clauses, 
 application rules or logic in terms of XML non-unit clauses—the heads and bodies of 
the clauses describe the consequences and antecedents of the rules, respectively—and 
 users’  queries or service requests in terms of XML non-unit clauses—the heads of the 
clauses describe the structure of the query results or the service responses and the 
bodies specify the queries’  selection conditions or the service requests and their 
constraints. 

Thus, XDD language has the three vital roles:  

 content language,  
 application-rule language, and  
 query or service-request language.  

See Figure 4 for an example of each role. Basically, each query/request will be executed on 
a specified collection of application data and rules and will return as its answer a set of 
XML elements, derivable from such a collection and satisfying all of its conditions. More 
precisely, given a set of application data and rules, modeled as an XDD description P, and a 
query/request, formulated as an XML clause Q: (H J  B1, B2, ..., Bn), the response to Q is 
the set 

{ H �   | H �  �  (P �  { Q} ), �  �  �  } . 

By employment of Equivalent Transformation (ET) computational paradigm [2,3], which 
is based on semantics-preserving transformations (equivalent transformations) of 
declarative descriptions, the computation of an answer/response to such a query/request Q 
is carried out by successive transformations of the XDD description P �  { Q}  into a simpler 
but equivalent description, from which the answer can be obtained readily and directly. In 
brief, P �  { Q}  will be successively transformed until it becomes the description  

P �  { Q1, …,Qn} ,  

where n �  0 and the Qi are ground XML unit clauses. 
Note that in order to guarantee correctness of a computation, only equivalent 

transformations are applied at every step. The unfolding transformation, a widely-used 
program transformation in conventional logic programming, is a kind of equivalent 
transformation. Other kinds of equivalent transformations can also be devised, especially 
for improvement of computation efficiency. Thus, ET provides a more flexible, efficient 
computational framework. 

XET, a declarative programming language for computation of XDD descriptions in ET 
paradigm, will be presented next. 
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Figure 4: Modeling of an application. 



4 XET Programming Language 

XET (XML Equivalent Transformation) [18] is a declarative programming language which 
can directly and succinctly manipulates XML data. By integration of XDD language, ET 
computational paradigm and XML syntax, XET possesses XDD’s expressiveness and ET’s 
computational power as well as XML’s flexibility, extensibility and interchangeability. 
Therefore, XET naturally unifies “Documents’ , “Programs”  and “Data” , and with its 
computational and reasoning services, it also unifies “Document Processing 
(Transformation)” , “Program Execution”  and “Query processing” . Available XML editing 
and validating tools can also be employed to edit and validate XET programs. The syntax 
of XET language, described by XML Schema, is available in [18]. XET provides useful 
sets of built-in operations including: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Step 

kk kk
 can be automated. 

 

Figure 5: A declarative approach to Semantic Web application development.  
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 Data type checking 
 Document well-formedness and 
validity checking 
 Arithmetic operations and relations 
 String manipulation operations 


 XML expression unification and matching 
 XML expression operations 
 Input/Output operations 
 File manipulation operations 
 Communication services

Once an XDD description which models a Semantic Web application’s data and logic 
has been formulated, an XET program corresponding to such a description can be obtained 
directly. The obtained XET program can be iteratively refined, if new ET rules have been 
devised for improvement of computational efficiency. Finally, using XET compiler [18], the 
program is compiled and an operational system obtained. In response to a query/request 
submitted in terms of XDD or XET language, the system executes it and returns its result. 
Based on such processes, Figure 5 outlines a new declarative approach to Semantic Web 
application development. With reference to the XDD description and the query Q of Figure 
4, an XET program corresponding to such a description is given by Figure 6 and the answer 
to the query Q by Figure 7. 

Note that the declarative semantics of an XET program can be determined based on that 
of its respective XDD description. 

Figure 8 depicts an example scenario of Semantic Web service execution, which starts 
when a user or an application A issues a query describing a service need together with 
constraints and preferences to a Semantic-Web-Service Search Engine B, which will then 
searches, from its database of Web services, for Semantic Web applications offering the 
demanded services with the requested properties and restrictions. Based on the returned list 
of applications, A selects an appropriate one, say Semantic Web application C, and sends it 
a query or a service-request as well as user constraints and preferences. C then executes 
such a query or request with respect to its data and application rules and logic. During its 
execution, C may forward corresponding sub-queries and/or sub-requests to other related 
applications based on its defined rules and logic and wait for their replies and responses. 
Once the execution has been finished, a reply to A’ s query/request is returned. Note that 
Steps 1 and 2 can be skipped, if the user/application A knows at a priori which application 
provides the desired service. Similarly, at Steps 5.1 and 5.3 if the application C does not 
know which application it should interoperate, it may ask B for a list of applications 
offering the required services. In addition, during the execution, it is often a case that 
communicating parties may involve in a negotiation for modification of service conditions. 

From the example scenario, one may observe that XDD and XET can serve as a tool for 
modeling and implementing a wide diversity of Semantic Web applications offering 
various kinds of services. Consider, for instance, the Semantic-Web-Service Search Engine 
B, which maintains a database of Web services described by means of Web-service 
metadata and provides a search facility for finding of particular services satisfying some 
specified criteria. Such a search engine is simply modeled as an XDD description 
comprising XML unit clauses, describing a collection of registered services and their 
properties/capabilities (in terms of Web-service metadata), and XML non-unit clauses, 
modeling Web-service ontologies as well as implicit relations among services in the 
collection. From such a description, an XET program which is capable of searching for 
services with desired properties and constraints can be obtained directly. Other applications 
C, D and E serving certain specific services can also be modeled and implemented in a 
similar manner.  
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Figure 6: An XET program P.xml. 
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Figure 7: The answer to the query Q. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: A scenario for Semantic Web service execution.  
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Figure 9: Prototype Semantic Web application. 

5 Prototype Application 

Founded on the proposed framework, a prototype Semantic Web application, which 
provides product-information-gathering as well as e-shopping services, has been 
implemented by means of XDD modeling language and XET programming language. The 
employed XDD and XET languages have been enhanced with the ability to handle rule 
conflicting problems using rule prioritization information [11]. Such an additional feature 
enables, for example, a formalization of a discounting policy stating that if a customer is a 
member of the store, a 10 percent discount is offered, and if a customer has a late-payment 
history, no discount is offered and that the latter has higher priority than the former [11]. 
Due to space limitation, declarative semantics of prioritized XDD descriptions and XET 
programs is omitted; its formal definition is available in [18]. 

To buy some products (Figure 9), a customer may fill out an order form and submit it on-
line to the application Web site or directly send an HTTP request with appropriate 
parameters encoded in XML to the application URL. The application first checks its stock, 
and if the products are available, it will calculate the order’s price, send a request to a credit 
card company (another Semantic Web application) for a debit of the customer’s account, 
send a request to a shipping company and then wait for their responses. After the order 
process has been finished, the application notifies the customer of the completed process. 
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6 Related Works 

Business Rule Markup Language (BRML) [11] is an XML-based language for encoding of 
Courteous Logic Programs (CLP)—an extension of conventional logic programs by 
inclusion of the ability to express prioritized conflict handling. BRML is a language in the 
RuleML Initiative, which has been specifically designed to represent business rules and 
policies. However, since BRML provides merely an XML embodiment of CLPs, its 
expressive power is relatively limited in that its sole permitted representation is atomic 
formulae with simple-structure terms. Complex XML data with nesting structures cannot be 
directly represented in BRML. Instead they require appropriate translations into 
corresponding sets of atomic formulae. Figure 10, for example, shows the CLP’s and 
BRML’s representations of the XML element E1 and the XML clause R1 of Figure 4. 
Comparing XDD with BRML, one can readily observe that XDD provides a more direct 
and succinct modeling mechanism; While possessing sufficient expressive power to 
represent simple as well as complex statements and relations, its representation is still 
readable. 
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Figure 10: The CLP’s and BRML’s representations of the element E1 and the clause R1 of Figure 4. 



OIL [6,8,12] and DAML+OIL [13] are the two most recent, improved ontology-based 
semantic markup languages for Web resources which extends RDF Schema by richer sets 
of modeling primitives. However, their current versions still lack expressive power in that 
arbitrary rules and axioms cannot be described [6]. Since these languages’  schemas and 
instances, which are encoded in RDF/XML serialization, can be directly represented in 
XDD as XML unit clauses, XDD can be employed to serve as their foundation, in order to 
help enhance their expressiveness [17]. Therefore, resources and applications modeled by 
these languages become immediately instances of XDD language and hence directly 
programmable by XET language. Note that with the awareness of the DAML+OIL’s 
limitation in representing rules and axioms, the language is being extended with the ability 
to express Horn clauses and will be called DAML-L [16]. 

With reference to the overall process of Semantic Web service implementation defined in 
[11,16], XDD can be uniformly employed to materialize each step of the process: 


 Service Advertisement and Discovery: A collection of service properties and 
capabilities described by means of metadata or Semantic Web Service Markup 
Language [16] can be directly represented as XML unit clauses, and their additional 
constraints and relations modeled in terms of XML non-unit clauses. Based on such 
declarative advertisements of Web services, discovery of a particular service having 
specific properties and capabilities is expressed as an XML non-unit clause, which 
will be evaluated on the Web service database and return as its reply a list of 
applications or service providers offering the requested service. 
 Negotiation: Given particular negotiation rules and procedures for selection of Web 
services (e.g., response time, data accuracy and cost conditions), corresponding XML 
non-unit clauses can be declaratively defined. Besides definition of such rules, an 
appropriate employment of Agent Communication Language (ACL) [15] which 
allows the negotiating parties to effectively communicate and interoperate must also 
be considered. By a careful formulation and implementation of the two major current 
ACLs (i.e., KQML [9] and FIPA-ACL [10,15]) in XDD [14], XDD readily provides 
an effective communication in the negotiation stage, allowing every negotiating party 
to communicate with one another via XDD uniform interface, and hence enabling a 
higher level of interoperability. 
 Service Execution: Execution of a service according to a given procedure can be 
represented in XDD by appropriate XML clauses. Based on such a declarative 
specification, an application can automatically execute the service.  
 Service Composition and Integration: It is often a case that a service is designed as a 
composition or an integration of other existing services. The execution of such a 
composite service often requires interaction with those related services in terms of 
request-for-service calls and returned responses. Using XDD, one can represent 
service composition and integration by an XML clause, the head of which specifies 
the composite service and the body of which describes the composition rule as well as 
the service calls and the data to be exchanged with other services. Such service calls 
and exchanged data could be embodied in an ACL. 
 Service Customization: In order to increase the level of share-ability, reusability and 
user’s satisfactory of provided services, a service may be defined by a particular 
generic procedure which can then be customized for execution of a specific service 
request. Such a generic procedure is described by a set of XML clauses, and its 



customization is realized by either parameter instantiation or by addition of XML 
clauses into it—this latter case is equivalent to program refinement. Note that 
different customizations normally lead to different sequences and results of service 
execution.    

In summary, with these supports, XDD readily provides sufficient Semantic Web 
modeling facilities for development of intelligent, automated Web applications requiring 
interoperation with other independently-developed applications.  

7 Conclusions 

The proposed XDD language is an expressive modeling language which allows collections 
of Semantic Web resources (modeled in terms of XML, RDF, OIL or DAM+OIL) to be 
directly represented with their semantics precisely and formally determined. In addition to 
such a resource modeling facility, XDD also provides a means for descriptions of Web 
resource manipulations, service provisions and business rules and processes. Moreover, its 
extension [18] by the ability to handle rule conflicting problems has enhanced its 
expressive power to be sufficient to capture and describe complex and conflicting rules and 
logic in Semantic Web applications. 

Founded on XDD’s expressive power and ET’s computational efficiency, XET 
programming language and its compiler have also been developed. By means of XDD and 
XET languages, the paper has proposed a declarative framework for Semantic Web 
application development and has demonstrated that a variety of Semantic Web applications 
and services is simply expressible by XDD and hence programmable by XET. Moreover, 
the development of the prototype system based on the proposed framework has helped 
prove the framework’s viability and potential in real applications. Integration of the 
proposed framework with appropriate Web and agent technologies allows intelligent as 
well as automated Web services, which demand syntactic and semantic interoperability, to 
be easily and rapidly developed. Note also that an XET program which performs particular 
tasks can be exchanged, shared and reused by multiple applications.  
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