
Proceedings of

SWWS’ 01
The First Semantic Web Working Symposium

Stanford University, California, USA
July 30 - August 1, 2001

We appreciate the constributions from our institutional sponsors:

National Science Foundation

OntoWeb Network

DARPA DAML

INRIA

Administrator
i

We appreciate the contributions from our industrial sponsors:

Administrator
ii

Organizers

Isabel F. Cruz Stefan Decker Jérôme Euzenat Deborah McGuinness
U. Illinois at Chicago
USA
(ifc@cs.uic.edu)

Stanford U.
USA
(stefan@db.stanford.edu)

INRIA
France
(Jerome.Euzenat@inrialpes.fr)

Stanford U.
USA
(dlm@ksl.stanford.edu)

PC Members
Dan Brickley, University of Bristol, UK
Tiziana Catarci, University of Rome "La Sapienza", Italy
Vassilis Christophides, ICS-FORTH, Greece
Steve Demurjian, University of Connecticut, USA
Max J. Egenhofer, University of Maine, USA
Peter Eklund, Griffith University, Australia
Dieter Fensel, Free University of Amsterdam, The
Netherlands
Asunciòn Gomez-Perez, Universidad Politecnica de Madrid
(UPM), Spain
Benjamin Grosof, MIT, USA
Natasha Fridman Noy, Stanford University, USA
Nicola Guarino, CNR, Italy
Pat Hayes, University of West Florida, USA
Jim Hendler, DARPA and University of Maryland, USA
Masahiro Hori, IBM Tokyo Research Laboratory, Japan
Ian Horrocks, University of M anchester, UK
Ora Lassila, Nokia Research, USA

Raphael Malyankar, Arizona State University, USA
Massimo Marchiori, W3C, University of Venice, USA, Italy
Brian McBride, Hewlett Packard, UK
Sheila McIlraith, Stanford University, USA
Robert Meersman, Free University Of Brussels, Belgium
Eric Miller, W3C, USA
Enrico Motta, The Open University, UK
Amedeo Napoli, LORIA, France
Dimitris Plexousakis, ICS-FORTH & Univ. of Crete, Greece
Peter Patel-Schneider, Lucent Technologies, USA
Guus Scheiber, University of Amsterdam, The Netherlands
Amit Sheth, University of Georgia and Taalee Inc, USA
Steffen Staab, University of Karlsruhe, Germany
Heiner Stuckenschmidt, University of Bremen, Germany
Frank van Harmelen, Free University of Amsterdam, The
Netherlands

Reviewers
Sofia Alexaki
Cecilia Bastarrica
Peter Becker
Olivier Brunet
Paul Calnan
Farid Cerbah
Ying Ding
Michael Klein
Maurizio Lenzerini
Tarcisio Lima
Donald Needham
Borys Omelayenko
Charles E. Phillips, Jr.
Jeff Z. Pan
Margie Price
Mitchell Saba
Feng Zhang

Administrator
iii

Administrator
Copyright remains with the authors, and permission to reproduce material printed here should be sought from them. Similarly, pursuing copyright infringements, plagiarism, etc. remains the responsibility of authors.

Semantic Web Working Symposium
 Program

8:00-
9:00

SWWS Registration and Breakfast (at the TCSEQ Center)

9:00-
9:30

Welcome (Organizers & Jim Hendler)
(TCSEQ 200)

9:30-
10:30

Invited Talk by Eric Miller (W3C Semantic Web Activity Leader)
(TCSEQ 200)

10:30-
11:00

Coffee Break (at the TCSEQ Center)

�
M

�
O

�
N

�
D

�
A

�
Y

�
J

�
U

�
L

�
Y

	
3
0

11:00-
12:30

�
W�or�k �i�n�g �Tr�a�c�k �1

�
(�R�o�o�m �C�I�S �-�X �1
0 �1�)

�
O n !t "o#l "o$g%y &a n 'd

�
O n!t "o#l "o$g%y M&a(i n !t)e n&a n *c)e

(Facilitators: Mark

Tuttle, Apelon and

Deborah McGuiness,

KSL, Stanford

University)

The Semantic Web As

"Perfection Seeking": A View

from Drug Terminology

Mark Tuttle, S. Brown, K.

Campbell, J. Carter, K. Keck,

M. Lincoln, S. Nelson, M.

Stonebraker

Industrial Strength Ontology

Management

Aseem Das, Wei Wu &

Deborah McGuinness

OntoMap or How to Choose

Upper-Model in One Day

Atanas Kirakov, Kiril Simov,

Marin Dimitrov

�
W�or�k �i�n�g �Tr�a�c�k +2

�
(,P�a�c�k�ar-d �1
0 �1 �)

.
I n !t)e/r "op)e/r&a0b(i#l(i !t%y1,

.
I n !t)e$g/r&a !t(i "o n1,

2
C "o3mp "o 4s(i !t(i "o n

(Facilitator: Vipul

Kashyap, Telcordia)

Towards Semantic

Interoperability in Agent-based

Coalition Command Systems

David Allsopp, Patrick

Beautement, John Carson,

and Michael Kirton

Object Interoperability for Geo

spatial Applications

Isabel F. Cruz and Paul

Calnan

Semantic Brokerage of

Intellectual Property Rights

Roberto Garcia and Jaime

Delgado

�
W�or�k �i�n�g �Tr�a�c�k

	
3

�
(5B �i�o �T �16775�)

8
(W)e0b9-) :S)e/r ;v(i *c)e 4s &a n 'd

<
A= p= p#l(i *c&a !t(i "o n 4s

(Facilitators: Jim

Hendler, DARPA and

Sheila McIlraith, KSL,

Stanford University)

DAML-S: A Semantic Markup

Language For Web Services

Anupriya Ankolenkar, Mark

Burstein, Jerry R. Hobbs, Ora

Lassila, David L. Martin, Sheila

A. McIlraith, Srini Narayanan,

Massimo Paolucci, Terry

Payne, Katia Sycara, Honglei

Zeng

Serching for services on the

semantic web using process

ontologies

Mark Klein, Abraham Bernstein

Approach to Service

Description for Matchmaking

and Negotiation of Services

David Trastour, Claudio

Bartolini

�T>u?t�or �i�a @l �Tr�a�c�k
�
(�T�C�S AEBQ +2
0
0 �)

(Chair: Charles

Petrie)

�
O n !t "o#l "o$g%y CE n$g(i n)e)e/r(i n$g
(Natalya F. Noy, SMI,

Stanford University)

Administrator
iv

12:30-
02:00

�
L�u�n�c�h �(�a�t �t�h�e 	T
C�S �EQ
C�e�n�t�e�r�) �,

�
D�e�m�o�s �(�a�t �G �a�t�e�s �1 �0�4�)�,

Demos by Verticalnet, Spirit-Soft, Mondeca, Empolis, SC4, Lastmileservice,

UMBC, Stanford Medical Informatics, Griffith University, University of Bristol

02:00-
03:30

�
W�or�k �i�n�g �Tr�a�c�k �1

�
(�C�I�S �-�X �1
0 �1 �)

�
O n !t "o#l "o$g%y &a n 'd

�
O n !t "o#l "o$g%y �M&a(i n !t)e n&a n *c)e

The "Emergent" Semantic

Web: An approach for

derivation of semantic

agreements on the Web

Clifford Behrens, Vipul

Kashyap

Ontology versioning on the

Semantic Web

Michel Klein & Dieter Fensel

Ontology Library Systems:

The key for successful

Ontology Reuse

Ying Ding & Dieter Fensel

�
W�or�k �i�n�g �Tr�a�c�k +2

�
(,P�a�c�k�ar-d �1
0 �1 �)

.
I n !t)e/r "o= p)e/r&a0b(i#l(i !t%y1,

.
I n !t)e$g/r&a !t(i "o n1,

2
C "o3m= p "o 4s(i !t(i "o n

Adding Multimedia to the

Semantic Web: Building an

MPEG-7 ontology

Jane Hunter

Overcoming Ontology

Mismatches in Transactions

with Self-Describing Agents

Drew McDermott, Mark

Burstein and Douglas Smith

�
W�or�k �i�n�g �Tr�a�c�k

	
3

�
(5B �i�o �T �16775�)

8
(W)e0b9-�) :S)e/r ;v(i *c)e 4s &a n 'd

<
A= p= p#l(i *c&a !t(i "o n 4s

The Briefing Associate: A Role

for COTS applications in the

Semantic Web

Marcelo Tallis, Neil Goldman,

Robert Balzer

ITTALKS: A Case Study in the

Semantic Web and DAML

R. Scott Cost, Tim Finin,

Anupam Joshi, Yun Peng,

Charles Nicholas, Harry Chen,

Lalana Kagal, Filip Perich,

Youyong Zou, Sovrin Tolia

Open Learning Repositories

and Metadata Modeling

Hadhami Dhraief, Wolfgang

Nejdl, Boris Wolf, Martin

Wolpers

Tutorial Track
(TCSEQ 200)

Semantic B2B
Integration

(Christoph Bussler
Oracle Corporation)

03:30-
04:00

Coffee Break (at the TCSEQ Center)

Administrator
v

04:00-
06:00

�
W�or�k �i�n�g �Tr�a�c�k �1

�
(�R�o�o�m �C�I�S �-�X �1
0 �1�)

�
O n !t "o#l "o$g%y &a n 'd

�
O n !t "o#l "o$g%y �M&a(i n !t)e n&a n *c)e

UML and the Semantic Web

Stephen Cranefield

Metamodeling Architecture of

Web Ontology Languages

Jeff Pan, Ian Horrocks

DAML+OIL is not Enough

Sean Bechhofer, Carole

Goble, Ian Horrocks

Semantic Web Modeling and

Programming with XDD

Chutiporn Anutariya, Vilas

Wuwongse, Kiyoshi Akama,

Vichit Wattanapailin

�
W�or�k �i�n�g �Tr�a�c�k +2

�
(,P�a�c�k�ar-d �1
0 �1 �)

.
I n !t)e/r "o= p)e/r&a0b(i#l(i !t%y1,

.
I n !t)e$g/r&a !t(i "o n1,

2
C "o3m= p "o 4s(i !t(i "o n

A Framework for Ontology

Integration

Diego Calvanese, Giuseppe

De Giacomo and Maurizio

Lenzerini

A Scalable Framework for

Interoperation of Information

Sources

Prasenjit Mitra, Gio

Wiederhold and Stefan Decker

On the Integration of Topic

Maps data with RDF data

Martin S. Lacher and Stefan

Decker

A formal infrastructure for

Interoperability on the

Semantic Web

Jerome Euzenat

�
W�or�k �i�n�g �Tr�a�c�k

	
3

�
(5B �i�o �T �16775�)

8
(�W)e0b�) :S)e/r ;v(i *c)e 4s &a n 'd

<
A= p= p#l(i *c&a !t(i "o n 4s

CREAM: Creating relational

metadata with a component-

based, ontology-driven

annotation framework

Siegfried Handschuh, Steffen

Staab, Alexander Maedche

OntoWebber: Model-Driven

Ontology-Based Web Site

Management

Yuhui Jin, Stefan Decker, Gio

Wiederhold

Indexing a web site with a

terminology oriented ontology

E. Desmontils, C. Jacquin

A semantic model for

specifying data-intensive Web

applications using WebML

Sara Comai, Piero Fraternali

�T>u?t�or �i�a @l �Tr�a�c�k
�T�C�S AEBQ +2
0
0

�
D)e3m "o 4s

(Facilitator: Natalya F.

Noy, SMI, Stanford

University)

Verticalnet - Aseem Das

Spirit-Soft - Steve Ross-Talbot

Mondeca - Bernard Vatant

Empolis - Hans Holger Rath

LastMileService - Raj Bapna

Stanford Medical Informatics -
Monica Crubezy, Natalya F.

Noy

DSTC/Griffith University
Peter Eklund

07:00 Banquet at the Faculty Club

08:00-
09:00

SWWS Registration and Breakfast (at the TCSEQ Center)

09:00-
10:00

Invited Talk: Michel Biezunski, Steven Newcomb on TopicMaps (Room TCSEQ 200)

�T
�
U

AE
�S

�
D

�
A

�
Y

J

10:00-
10:30

Coffee Break (at the TCSEQ Center)

Administrator
vi

10:30-
12:00

�
P �a�n�e�l �: �E�m�e�r�g�i�n�g �S�e�m�a�n�t�i�c�s �(�R�o�o�m 	T
C�S �E Q �2 �0�0 �)

�
V�i�p�u�l 	K�a�s�h
y�a �p

�
P� a n� e �l�i� s� t� s �:�

O �r�a �L�a �s�s�i�l�a �(�N �
O �K�I �A R!e �s!e �a �r"c#h)$

J�i%m &H !e 'n(d�l!e �r �()D �A R *P �A+)
)D �i!e ,t!e �r -F!e 'n�s!e �l �(-F�r!e !e .U'n�i /v!e �r�s�i,t0 y 1o2f �A%m�s,t!e �r(d�a %m+)

.U%m!e �s#h 3w�a �r)D�a0 y�a �l �(&H!e 3w�l!e ,t,t4-*P �a "c5k�a �r(d+)6
C �l�i2f2f1o�r(d �A 7B!e #h�r!e 'n�s �(8T !e �l"c1o�r(d�i�a+)

12:00-
01:30

Lunch (at the TCSEQ Center),
Demos (at Gates 104),

Demos by Verticalnet, Spirit-Soft, Mondeca, Empolis, SC4, Lastmileservice,
UMBC, Stanford Medical Informatics, Griffith University, University of Bristol

01:30-

03:30

�
W�or�k �i�n�g �Tr�a�c�k �1

�
(�R�o�o�m �C�I�S �-�X �1
0 �1�)

�
O n !t "o#l "o$g%y &a n 'd

�
O n !t "o#l "o$g%y �M&a(i n !t)e n&a n*c)e

Utilizing Host-Formalisms to

Formally Extend RDF-

Semantics

Wolfram Conen, Reinhold

Klapsing

RDF model revisited - or: how

to make the most out of

Reifications and Containers

Wolfram Conen, Reinhold

Klapsing

Track summary and

discussion

Mark Tuttle, Deborah

McGuinness and Stuart

Nelson

�
W�or�k �i�n�g �Tr�a�c�k +2

�
(,P�a�c�k�ar-d �1
0 �1 �)

.
I n !t)e/r "o= p)e/r&a0b(i#l(i !t%y1,

.
I n !t)e$g/r&a !t(i "o n1,

2
C "o3m= p "o 4s(i !t(i "o n

Describing Computation within

RDF

Chris Goad

Design Rationale for RuleML:

A Markup Language for

Semantic Web Rules

Harold Boley, Said Tabet and

Gerd Wagner

Enabling Semantic Web

Programming by Integrating

RDF and Common Lisp

Ora Lassila

Track Summary and

Discussion

Vipul Kashyap

Working Track 3
(Braun Auditorium)
(Web) Services and

Applications

to be announced

Tutorial Track
(TCSEQ 200)

Models and Languages
for Describing and

Discovering E-services
(Fabio Casati and
Ming-Chien Shan,
Hewlett-Packard)

03:30-
04:00

Coffee Break (at the TCSEQ Center)

04:00-
06:00

Facilitators Report and Announcement of BOF Sessions (TCSEQ 200)

�
J

�
U

�
L

�
Y

	
3 �1

07:00 9J�o�i�n�t �R�e�c�e�p�t�i�o�n :w�i�t�h ;I
C
C�S �a �t �t�h�e <F�a �c�u�l�t
y
C�l�u=b

Administrator
vii

8:00-
9:00

Breakfast (at the TCSEQ Center)

09:00-
10:30

Birds of the Feather Sessions in
Gates 104 (40)

Packard 101 (100)
TCSEQ 200

CIS-101 (100)
Joint Session with ICCS/DL

10:30-
11:00

Coffee Break (at the TCSEQ Center)

�
W

AE
�
D

�
N

AE
�S

�
D

�
A

�
Y

�
A

�
U

�
G

�
U

�S
�T

�1

11:00-
12:00

BOF Wrap Up, Follow-up actions and Farewell (TCSEQ 200)

Administrator
viii

PALO
 R

D
M

et
er

 o
r t

im
e

lim
it

6
am

 to
 4

 p
m

 (
M

-F
)

A
pe

rm
it

6
am

 to
 4

 p
m

 (
M

-F
)

A
an

d
C

pe
rm

its
6

am
 to

 4
 p

m
 (

M
-F

)

M
ot

or
cy

cl
e

pe
rm

it
6

am
 to

 4
 p

m
 (

M
-F

)

A,
 C

, a
nd

 Z
 p

er
m

its
6

am
 to

 4
 p

m
 (

M
-F

)

'A
 C

ar
po

ol
' p

er
m

its
 o

nl
y

6
am

 to
 4

 p
m

 (
M

-F
)

Pe
de

st
ria

n
Zo

ne
 a

nd
 p

at
hs

 –

Un
au

th
or

ize
d

m
ot

or
 v

eh
icl

es
 m

ay

be
 c

ite
d

wi
th

 m
ov

in
g

vio
la

tio
n.

Da
ily

 p
ar

ki
ng

 p
er

m
it

sa
le

s:
 8

55

Se
rra

 S
t.,

 M
em

or
ia

l A
ud

. v
isi

to
r

ct
r,

Ho
sp

ita
l S

ec
ur

ity
, T

re
sid

de
r

In
fo

 W
in

do
w,

 B
oo

ks
to

re
.

Di
sa

bl
ed

 P
er

so
n

pe
rm

its
 a

re
 v

al
id

 in
 a

ll
m

ar
ke

d
sp

ac
es

 o
n

ca
m

pu
s.

 D
P

sp
ac

es

ar
e

av
ai

la
bl

e
at

 &
 a

ro
un

d
m

os
t b

ui
ld

in
gs

.

A C ZP

E
A

E
S

S
O

S
T

W
E

IE

M
ak

e
su

re
 to

 c
he

ck
 th

e
ac

tu
al

 s
ig

ns
 in

 th
e

lo
t

be
fo

re
 y

ou
 p

ar
k.

 T
he

pa

rk
in

g
de

sig
na

tio
ns

 o
n

th
is

m
ap

, a
lo

ng
 w

ith
 a

ll o
ur

co

nd
itio

ns
 a

nd
 re

gu
la

tio
ns

,
ar

e
su

bj
ec

t t
o

ch
an

ge
 a

t
an

y
tim

e.

Al
so

 n
ot

e
th

at
 m

an
y

lo
ts

ar

e
sig

ne
d

on
ly

at
 th

e
en

tra
nc

e.
 I

n
"s

ha
re

d"
 lo

ts

–
i.e

.,
th

os
e

po
st

ed

"C
/E

as
t R

es
id

en
ce

s"
 –

yo

u
m

ay
 p

ar
k

wi
th

 e
ith

er

pe
rm

it
de

sig
na

te
d.

Re
si

de
nt

 s
tu

de
nt

 p
er

m
it

al
l h

ou
rs

Q
U

A
R

R
Y

 R
D

Ho
ov

er
 P

av
ilio

n
an

d
Ar

bo
re

tu
m

 C
hi

ld
re

n'
s

Ce
nt

er
(s

ee
 IN

SE
T

at
 u

pp
er

 le
ft)

I
N

S
E

TP
A

L
O

 R
D

These permits valid in
Parking Structures 1 & 2

Ea
st

So
ut

h
W

es
t

In
ne

r E
as

t

St
er

n

Es
co

nd
id

o

S
H

St
an

fo
rd

 H
ou

sin
g

SC
AL

E
(A

pp
ro

x.
)

 5
.2

 in
. =

 1
 m

ile
 (

1
: 1

2,
00

0)

1/
4

m
ile

Ar
bo

re
tu

m
Ch

ild
re

n'
s

Ce
nt

er

Ho
ov

er
Pa

vil
io

n
(H

os
pi

ta
l)

S
T

A
N

F
O

R
D

U

N
I

V
E

R
S

I
T

Y
P

A
R

K
IN

G
 A

N
D

 C
IR

C
U

LA
T

IO
N

 M
A

P

M
ac

 P
ar

kEVERETT

LYTTON

HAMILTON
FOREST

CHANNIN
G

ADDIS
ON

HIG
H

EM
ERSO

N

RAM
O

NABRYANTW
AVERLE

YCO
W

PERW
EBSTE

R

D
O

W
N

T
O

W
N

P
A

L
O

 A
L

T
O

PALM DRIVE

E
L

 C
A

M
I N

O
 R

E
A

L

AVE.

UNIV
ERSIT

Marg
ue

rite

Shu
ttle

 Stop

PA
 T

ra
in

 S
ta

tio
n

&
Tr

an
sit

 C
en

te
r

ALM
A S

T.
P

P

P

P

P

P

P

P

P

P

P
P

PP

P

P

P

P

P

P
P

P

P

P P

P

P

P

P

P
P

P

P
P

P
P

P

P

Z
Z

Z

Z

Z

C
C

C

C

C

C
C

C

C

C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A
A

A

A
A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

W
EW

E

W
E

W
E

W
E

W
E

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

E
A

E
A

E
A

E
A

E
A

E
S

E
S

E
S

E
S

E
SE

S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

E
S

S
T

IE
IE

in
di

ca
te

s
ar

ea
s

un
de

r
co

ns
tr

uc
tio

n

S
H

S
H

S
H

S
H

S
H

S
H

S
H

S
H

S
H

R
O

T
H

 W
A

Y

S
E

R
R

A

M
A

L
L

GALVEZ ST

VIA CRESPI

SEQUOIA

MORRIS WY

DUEÑA

P A N A M A S T

P
A

N
A

M
A

 S
T

WELCH RD

BLAKE WILBUR DR

SANTA Y
NEZ S

T

S
A

N
 J

U
A

N

COOKSEY

CO
NSTA

NZO
 S

T

M
IR

AD
A

AV
E

G
E

R
O

N
A

R

D

E
S

T
U

D
IL

LO
 R

D

ALVARADO CT

SAN RAFAEL

LANE B

FRENCHMAN'S RD

To
 B

ay
sh

or
e

Fr
ee

w
ay

(U
S

 1
01

)

N
E

L
S

O
N

 R
D

PAMPAS LN

H
ul

m
e

C
t

A
br

am
s

C
t

Th
ob

ur
n

C
t

H
os

ki
ns

 C
t

M
cF

ar
la

nd
 C

t

Barnes Ct

Ang
el

l C
t

Q
ui

lle
n

B
la

ck
w

el
de

r C
t

Je
nk

in
s

C
t

C
A

M
P

U
S

 D
R

I V
E

 E
A

S
T

S
E

R
R

A

S
T

S
T

A
N

F
O

R
D

 A
V

E
N

U
E

C
O

L
L

E
G

E
 A

V
E

.

E
M

B
A

R
C

A
D

E
R

O
 R

D

H
W

Y
 8 2 E

L C
A

M
I N

O
 R

E
A

L

T
o

In
te

rs
ta

te
 2

80
vi

a
A

lp
in

e
R

d
or

 S
an

d
H

ill
 R

d

S
A

N
T

A
 T

E
R

E
S

A
 L

N

S
E

A
R

S
V

IL
LE

 R
D

S
E

A
R

S
V

IL
LE

 P
A

T
H

LOS ARBOLES AVE

GOVERNOR’S AVE

L
A

N
E

 L

M
A

Y
F

I E
L

D
 A

V
E

E
L

E
S

C
A

R
P

A
D

O

CAMPUS DRIVE WEST

EL
EC

TI
O

NE
ER

G
O

V
E

R
N

O
R

'S
 E

X
TE

N
S

IO
N

S
E

R
R

A

S
T

E
S

C
O

N
D

I D
O

 R
D

PALM DRIVE

A
R

B
O

R
E

T
U

M

R
D

LOMITA DR

J
U

N
I

P
E

R
O

S

E
R

R
A

B

L
V

D

P
A

S
T

E
U

R
 D

R
IV

E

M
E

D
IC

A
L

 L
A

N
E

JORDAN WY

S
A

N
D

H

I
L

L

R
D

S
A

N
T

A

T
E

R
E

S
A

 S
T

W
E

L
C

H

R
D

V
IA

 P
U

E
B

LO

N
. S

V
C

. R
D

.

M
U

S
E

U
M

 W
A

Y

QUARRY EXTENSION

LASUEN ST

LASUEN ST

M
E

M
O

R
IA

L
W

A
Y

ARGÜELLO WY

SAM
 M

ACDO
NALD

 M
ALL

BUCKEYE LN

ARGÜELLO WY

BO
NAIR

 S
ID

IN
G

AB
BO

TT
 W

Y

VIA PALOU

ROBLE DR

CHURCHILL
 S

T

B
ik

e
ro

ut
e

to
 M

en
lo

 P
ar

k

Bike
 ro

ut
e

to
 M

en
lo

Par
k B

ike
 B

rid
ge

Bike
 ro

ute
 to

Palo
 Alto/

Brya
nt

St.

F
r e e p

a r k i n
g

F
r e e p

a r k i n
g

Bi
ke

 ro
ut

e
to

H
an

ov
er

 S
t./

Bo
l P

ar
k

Pa
th

D
R

I
V

E

VALP
ARAIS

O
 S

SALVATIE
RRA S

T

E
S

P
LA

N
A

D
A

 W
Y

P
IN

E
 H

IL
L

R
D

SAN
F

R
A

N
C

IS
C

O
 C

T

S.F
. T

ERR

ALVARADO R
OW

COWELL

L O M I T A C T
LOMITA DR

M
A

Y
FI

E
LD

 A
V

QUARRY RD

C
A

M
P

U
S

VIA ORTEGA

C
AB

R
IL

LO
 A

VE

SANTA Y
N

E
Z

S

C
o

m
st

oc
k

 C
ir

S
TO

C
K F

A
R

C
A

M
P

U
S

D

R
I

V
E

E

A
S

T

L
A

G
U

N
IT

A
 D

R

PA
R

K
BL

VD

OLM

S
T

E
D

 R
D

C
O

L
U

M
B

I A
B

O
W

D
O

I N
A

M
H

E
R

S
T

D
A

R
T

M
O

U
T

H

H
A

N
O

V
E

R

H
A

R
V

A
R

D

O
B

E
R

L
I N

P
R

I N
C

E
T

O
N

C
O

R
N

E
L

L

W
E

L
L

E
S

L
E

Y

W
I L

L
I A

M
S

Y
A

L
E

D
ud

le
y

Ct

O
L

M
S

T
E

D
 R

D

80

70

75

65

60

55

45

50

4o

30

35

20
25

15

10
1

5

EV
 O

ffi
ce

s

Pe
pp

er
tre

e
Ct

r

Ho
us

ing
 M

tn
c

12
0

11
0

11
5

10
5

10
0

90

95

85

To
 F

oo
th

ill

Exp
ressway

T
o

In
te

rs
ta

te
 2

80
 v

ia
 P

ag
e M

ill R

CORONADO AVE

B
O

W
D

O
I N

 S
T

L A
N

E
 C

OAK RD

O
A

K
 R

D

FREMONT RD

M
AYFIE

LD A
VE

DOLO
RES

GALVEZ

S

T

S
. S

E
R

V
IC

E
 R

D
.

N/S MALL

C

A
MPUS DRIVE EAST

W
ilb

ur
Ha

ll

W
hi

te
Pl

az
a

O
ld

Un
io

n

Br
au

n
M

us
ic

Ct
r

Ca
re

er
Pl

an
ni

ng
 C

tr

Po
st

O
ffi

ce

Ho
ov

er
To

we
r

Ar
t G

al
le

ry

Lo
u

He
nr

y
Ho

ov
er

 B
ld

g

Cu
m

-
m

in
gs Ar
t

CERAS

TH
E

O
V

A
L

G
re

en
 L

ib
ra

ry

M
ey

er
Li

b.

Sw
ee

t
Ha

ll

St
er

n
Ha

llCrothers

Crothers Memorial

La
w

Sc
ho

ol

Tr
es

id
de

r
Un

io
n

Di
nk

el
-

sp
ie

l A
ud

.

Storke Bldg

Ha
rm

on
y

Ho
us

e

Bo
wm

an
Al

um
ni

Ke
nn

ed
y

G
ro

ve

Te
rm

an
En

gr
ng

M
itc

he
ll

Sk
illi

ng

M
cC

ul
lo

ug
h

Durand

Physics Lecture
Hall

Va
ria

n
La

bs

M
em

or
ia

l
Au

d.

Br
id

ge

Bi
ke

 S
ho

p
O

we
n

Se
rra

He
rri

n
Ha

ll
an

d
La

bsO
ld

Ch
em

Bl
dg

26
0

32
0

31
0

30
040

50
60

70

25
0

30

80
36

0
24

0
20

90
37

0

10
1

11
0

10
0

20
0

38
0

16
0

12
0

46
0

42
0

Ba
nd

Sh
ak

G
al

ve
z

Ho
us

e

Fr
os

t
Am

ph
ith

ea
te

r

Br
ow

n

Ro
bl

e
Po

ol

HEPL
HEPL

Sp
ru

ce
Fo

rs
yt

he
Ha

llPo
lya

G
in

zt
on

 L
ab

El
ec

t.
En

gr
ng

.
St

at
ist

ics
RT

F
Ce

da
r

Re
dw

d

Pine

Ap
pl

ie
d

Ph
ys

ics

Co
ge

n
Fa

cil
ity

Ve
nt

ur
a

Ha
ll

77
0

73
0

St
au

ffe
r I

II

70
3

St
au

ffe
r I

I

St
au

ffe
r I

M
ay

er
 C

an
ce

r
Bi

ol
og

y

He
al

th
 R

es
.

&
Po

lic
y

Bi
ol

og
y

G
re

en
ho

us
es

Bl
ee

ke
r/

Ba
rn

es
 L

ab
s

Pl
an

t S
er

vic
e

St
or

ag
e

Pu
ich

on

75
0

St
an

fo
rd

Ba
rn

70
0

Old Anatomy

80
0

78
0

77
7

Ea
r

In
st

.
90

0

10
00

HO
M

E
W

el
ch

 P
la

za

11
00

1215

M
au

so
le

um

Ca
ct

us
G

ar
de

n

An
ge

l o
f

G
rie

f

Ro
di

n
Sc

ul
pt

ur
e

G
ar

de
n

Stanford Museum

Ha
nn

a
Ho

us
e

Co
we

ll
St

ud
en

t
He

al
th

Ce
nt

er

Pe
ar

ce
M

itc
he

ll
Ho

us
es

Ra
in

s
Ho

us
esM
irr

ie
le

es
Ho

us
e

Bi
ng

Nu
rs

er
y

SC
RA

Es
co

nd
id

o
El

em
en

ta
ry

Sc
ho

ol

ES
CO

ND
ID

O
VI

LL
AG

E

Lo
u

He
nr

y
Ho

ov
er

 H
ou

se

AT
HL

ET
IC

S

Toyon Hall

Po
lic

e
Se

rv
ice

s

Fi
re

St
at

io
nFa

cil
itie

s
Cr

ed
it

Un
io

n

Re
cy

cli
ng

Ce
nt

er

Cen
tra

l S
tor

es

Fo
ot

ba
ll

Pr
ac

tic
e

Fi
el

d
M

ap
le

s
Pa

vil
io

n

34
1

33
332

7

31
5

Sp
or

ts
Pl

az
a

At
hl

et
ic

G
ro

un
ds

De
pt

Su
nk

en
Di

am
on

d
M

al
on

ey
Fi

el
d

M
as

te
rs

G
ro

ve

W
om

en
's

So
ftb

al
l

Ta
ylo

r
G

ro
ve

Ch
ild

re
n’

s
Ce

nt
er

St
an

fo
rd

Au
xil

ia
ry

Li
br

ar
y

De
G

ue
rre

Po
ol

s
&

Co
ur

ts
Club

ho
us

e

Ta
ub

e T
en

nis

Stad
ium

Tr
ac

k
Ho

us
e

El
lio

tt
Pr

og
ra

m
Ce

nt
er

Na
tio

na
l B

ur
ea

u
of

 E
co

no
m

ic
Re

se
ar

ch
Ar

tis
t's

 S
tu

di
o

Ce
nt

er
 fo

r
Ad

va
nc

ed
St

ud
y

in
 th

e
Be

ha
vio

ra
l S

cie
nc

es

O
bs

er
va

to
ry

G
ol

f
Dr

ivi
ng

Ra
ng

eG
ov

er
no

r’s
Co

rn
er

St
er

lin
g

Q
ua

d

Su
ite

s

Richard W. Lyman Graduate Res.

Ro
ble

 H
all

Fl
or

en
ce

M
oo

re
 H

al
l

Ro
w

Ho
us

in
g

O
ffi

ce

Th
e

Kn
ol

l

La
m

bd
a

Nu

En
ch

an
te

d
Br

oc
ol

li
Fo

re
st

66
4

Lo
m

ita

Ph
i

De
lt

Ph
i S

ig

G
ro

ve
La

su
en G

ro
ve

M
ay

fie
ld

Ka
iro

s

Al
on

dr
a

Ca
rd

en
al

M
irl

o
Pa

lo
m

a

Lo
ro

Fa
isa

n
G

av
ila

n

La
 M

ai
so

n
Fr

an
ca

ise

Hu
st

on
Ha

m
m

ar
sk

jö
ld

Al
ph

a
Si

g

Te
rra

ZA
PAT

O
W

hi
tm

an

Ch
i

Th
et

a
Ch

i

Du
ra

nd

Sl
av

ia
ns

kii
 D

om

Ro
th

QX

Sy
ne

rg
y

Ha
us

 M
itt

el
eu

ro
pa

DKS

QDC

Am
er

ica
n

St
ud

ie
s

EA
ST

Ad
am

s
Po

tte
r

G
ra

na
da

Uj
am

aa

Adelfa

Eucalypto

Naranja

Sc
hi

ff

Ro
bi

ns
on

Yo
st

An
de

rs
on

M
ar

x

Ri
ck

er
Di

ni
ng

Bo
lla

rd
/

Be
ef

ea
te

rs
Je

nk
in

s

G
rif

fe
n

Av
an

ti/
M

id
dl

e
Ea

rth

BO
B

Ca
sa

Ita
lia

na

Xa
na

du
55

7

55
3

Co
lu

m
ba

e

St
or

ey

Tr
an

co
s

O
te

ro

Ar
ro

yo

O
ka

da

Rinconada

Soto

Ca
sa

Za
pa

ta

Se
rra

Larkin

Donner

Twain

Burbank

Cedro
Junipero

M
uw

ek
m

a

35
3

Ca
m

pu
s

SAE

KS

SC

La
ke

La
gu

ni
ta

Re
d

Ba
rn

St
ab

le

Co
ve

re
d

Ri
di

ng
 R

in
g

Li
ttl

e
St

ab
le

EH
&S

Ca
rn

eg
ie

In
st

itu
tio

n

Cl
ub

ho
us

e

SH
C

An
ne

x

Kr
es

ge
Au

d

Bl
oo

d
Ce

nt
er

Fi
re

 T
ru

ck
Hs

e
59

0

54
0

57
0

50
0

55
0

53
0

56
0

51
0

61
0

Pr
es

s
Bl

dg

Ro
bl

e

G
ym

Galvez Module

Ro
bl

e
M

od
ul

es

Bu
rn

ha
m

Pa
vil

io
n

Se
rra

Co
m

pl
ex

Fo
rd

Ce
nt

er

Fo
rd

 P
la

za

Eating Clubs

Sc
ho

ol
 o

f
M

ed
ici

ne

Emergency
Science & Engrng Quad

Co
we

ll
Cl

us
te

r
Ho

us
es

M
ed

ic
al

Ce
nt

er

Lu
ca

s
Ce

nt
er

Ac
ac

ia

Ju
ni

-
pe

r

Birch

Po
pl

ar
La

ur
el

G
P-

B

Eu
ca

lyp
tu

s
G

ro
ve

G
al

ve
z

Fi
el

d

To
wn

 a
nd

 C
ou

nt
ry

Sh
op

pi
ng

 C
en

te
r

Pa
lo

 A
lto

Hi
gh

 S
ch

oo
l

Bo
ok

-
st

or
e

S
ta

n
fo

r
d

S
h

o
p

p
in

g
 C

e
n

te
r

Nordstrom

An
dr

on
ico

's

Br
an

ne
r

Ha
ll

Ki
m

ba
ll

Ha
ll

M
an

za
ni

ta
Pa

rk

JO
RD

AN
 Q

UA
D

O
rg

an
ic

Ch
em

Ke
ck

 S
cie

nc
e

M
ud

d
Ch

em
Bl

dg

Parking Structure 1

Parking Structure 3

Pa
rk

in
g

St
ru

ct
. 2

Fa
lk

Ce
nt

er

Cypress

RA
F

1
&

2

Fa
irc

hi
ld

Ce
nt

er

M
ed

 S
ch

oo
l

O
ffi

ce
 B

ld
g

Te
nn

is
Co

ur
ts

Be
ch

te
l

In
t’l

Ce
nt

er

Ki
ng

sc
ot

e

Bl
ac

k
Cm

ty
Sv

cs
 C

tr

Ne
w

G
ui

ne
a

G
rd

n

Cob
b T

rac
k &

Ang
ell

 Fi
eld

Tennis Cts

M
ar

ip
os

aRo
ge

rs

En
cin

a
Ha

ll

Co
rd

ur
a

Ha
ll

Bo
liv

ar
Ho

us
e

Fa
cu

lty
 C

lu
b

Lu
cil

e
Pa

ck
ar

d
Ch

ild
re

n's
Ho

sp
ita

l
at

 S
ta

nf
or

d

Heliport

St
an

fo
rd

Ho
sp

ita
l

Cl
in

ic

La
gu

ni
ta

Co
ur

t

Be
ck

m
an

Ce
nt

er

Di
ni

ng
Se

rv
ice

s

70
1

CastañoLantana

G
re

en
Ea

rth
Sc

ie
nc

e

Ps
yc

hi
at

ry

Bo
fA

Ja
n.

-O
ct

.
on

ly

No
 c

om
m

ut
er

 p
ar

kin
g

du
rin

g
m

aj
or

 a
th

le
tic

 e
ve

nt
s

90
0

Bl
ak

e
W

ilb
ur

Cl
in

ic

Ha
as

 C
tr

Ar
ril

la
ga

Sp
or

ts
Ct

r

85
1

85
7

Ba
ke

we
ll

La
nd

au
Ec

on
om

ics

Th
or

nt
on

W
ilb

ur
M

od
ul

es

85
5

G
at

es

In
fo

 S
cie

nc
es

Graduate School of Business

Li
ttl

ef
ie

ld
Ce

nt
er

Sc
ho

ol
 o

f
Ed

uc
at

io
n

Cl
oc

k
 T

ow
er

M
A

IN
 Q

U
A

D

520

Oak

Al
le

n
Ct

r.
fo

r
In

te
gr

at
ed

Sy
st

em
s

G
ilb

er
t

Bi
oS

ci

LASUEN MALL

LOMITA MALL

E
S

C
O

N
D

I D
O

 M
A

L
L

P
A

N
A

M
A

M

A
L

L

G
od

zil
la

Ba
m

bi
Th

um
pe

r

Ho
ov

er
M

em
. B

ld
g

GALVEZ MALLC
R

O
T

H
E

R
S

 W
A

Y

En
cin

a
Co

m
m

on
s

17
0

G
ol

f C
ou

rs
e

Cl
ub

Ho
us

e

Memor
ia

l C
hu

rc

h

GAS

STANFO
R

D
 S

TADIU

EV
 C

om
Ct

r

Ra
in

s
O

ffi
ce

Sc
hw

ab
 R

es
id

en
tia

l
Ce

nt
er

Pa
rk

in
g

an
d

Tr
an

sp
or

ta
tio

n
in

fo
:	

72
3-

93
62

M
ar

gu
er

ite
 S

hu
ttl

e
in

fo
:	

72
3-

93
62

Un
iv

er
si

ty
 T

el
ep

ho
ne

 O
pe

ra
to

r:	
72

3-
23

00
R

E
V

IS
E

D
 F

E
B

R
U

A
R

Y
, 1

99
7

C
O

P
Y

R
IG

H
T

 ©
 1

99
7

B
O

A
R

D
 O

F
 T

R
U

S
T

E
E

S
 O

F

LE
LA

N
D

 S
T

A
N

F
O

R
D

, J
R

. U
N

IV
E

R
S

IT
Y

.
R

E
P

R
O

D
U

C
T

IO
N

 P
E

R
M

IT
T

E
D

 O
N

LY
 W

IT
H

P

E
R

M
IS

S
IO

N
 O

F
 T

H
E

 O
F

F
IC

E
 O

F
 T

R
A

N
S

P
O

R
T

A
T

IO
N

Administrator
SERRA N. SVC. RD.StaufferGates Info SciencesGilbertBioSci

Administrator
MALLHerrin Halland Labs

Administrator
SERRA N/S MALLElect.Engrng.

Administrator
VIA PUEBLOAllen Ctr. forIntegratedSystems

Administrator
SERRA MALLMALLStatisticsRTF

Administrator
StaufferMudd ChemBldg

Administrator
TCSEQ CenterPlenary Sessionsand Tutorials

Administrator

Administrator

Administrator
BIO-T175Working Track 3(Services and Applications) on Monday

Administrator

Administrator
Gates 104Lunch Demo Sessions

Administrator

Administrator
Braun AuditoriumWorking Track 3(Services and Applications) on Tuesday

Administrator

Administrator
CIS-X101 Track 2(Interoperation)

Administrator

Administrator
Packard 101Track 1(Ontology)

Administrator

Administrator
ix

Administrator
SERRA MALLMALLStatisticsRTF

Administrator
Faculty ClubSocial Events

Administrator

Table of Contents
Foreword 1

Tutorial Descriptions 2

Working Track 1: Ontology and Ontology Maintenance

The Semantic Web As "Perfection Seeking": A View from Drug Terminology
Mark Tuttle, S. Brown, K. Campbell, J. Carter, K. Keck, M. Lincoln, S. Nelson, M. Stonebraker 5

Industrial Strength Ontology Management
Aseem Das, Wei Wu & Deborah McGuinness 17

OntoMap or How to Choose Upper-Model in One Day
Atanas Kirakov, Kiril Simov, Marin Dimitrov 39

The "Emergent" Semantic Web: An approach for derivation of semantic agreements on the Web
Clifford Behrens, Vipul Kashyap 55

Ontology versioning on the Semantic Web
Michel Klein 75

Ontology Library Systems: The key for successful Ontology Reuse
Ying Ding & Dieter Fensel 93

UML and the Semantic Web
Stephen Cranefield 113

Metamodeling Architecture of Web Ontology Languages
Jeff Pan, Ian Horrocks 131

DAML+OIL is not Enough
Sean Bechhofer, Carole Goble, Ian Horrocks 151

Semantic Web Modeling and Programming with XDD
Chutiporn Anutariya, Vilas Wuwongse, Kiyoshi Akama, Vichit Wattanapailin 161

Utilizing Host-Formalisms to Formally Extend RDF-Semantics
Wolfram Conen, Reinhold Klapsing 181

RDF model revisited - or: how to make the most out of Reifications and Containers
Wolfram Conen, Reinhold Klapsing 195

Development of a Simple Ontology Definition Language (SOntoDL) and Its Application
 to a Medical Information Service on the World Wide Web
Rolf Grütter, Claus Eikemeier 587

Working Track 2: Interoperability, Integration, Composition

Towards Semantic Interoperability in Agent-based Coalition Command Systems
David Allsopp, Patrick Beautement, John Carson, and Michael Kirton 209

Object Interoperability for Geo spatial Applications
Isabel F. Cruz and Paul Calnan 229

Semantic Brokerage of Intellectual Property Rights
Roberto Garcia and Jaime Delgado 245

Adding Multimedia to the Semantic Web: Building an MPEG-7 ontology
Jane Hunter 261

Administrator
x

Overcoming Ontology Mismatches in Transactions with Self-Describing Agents
Drew McDermott, Mark Burstein and Douglas Smith 285

A Framework for Ontology Integration
Diego Calvanese, Giuseppe De Giacomo and Maurizio Lenzerini 303

A Scalable Framework for Interoperation of Information Sources
Prasenjit Mitra, Gio Wiederhold and Stefan Decker 317

On the Integration of Topic Maps data with RDF data
Martin S. Lacher and Stefan Decker 331

A formal infrastructure for Interoperability on the Semantic Web
Jerome Euzenat 345

Describing Computation within RDF
Chris Goad 361

Design Rationale for RuleML: A Markup Language for Semantic Web Rules
Harold Boley, Said Tabet and Gerd Wagner 381

Enabling Semantic Web Programming by Integrating RDF and Common Lisp
Ora Lassila 403

Working Track 3: Web-Services and Applications

DAML-S: A Semantic Markup Language For Web Services
Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Sheila A. McIlraith,
Srini Narayanan, Massimo Paolucci, Terry Payne, Katia Sycara, Honglei Zeng 411

Serching for services on the semantic web using process ontologies
Mark Klein, Abraham Bernstein 431

Approach to Service Description for Matchmaking and Negotiation of Services
David Trastour, Claudio Bartolini 447

The Briefing Associate: A Role for COTS applications in the Semantic Web
Marcelo Tallis, Neil Goldman, Robert Balzer 463

ITTALKS: A Case Study in the Semantic Web and DAML
R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Harry Chen,
Lalana Kagal, Filip Perich, Youyong Zou, Sovrin Tolia 477

Open Learning Repositories and Metadata Modeling
Hadhami Dhraief, Wolfgang Nejdl, Boris Wolf, Martin Wolpers 495

CREAM: Creating relational metadata with a component-based, ontology-driven annotation framework
Siegfried Handschuh, Steffen Staab, Alexander Maedche 515

OntoWebber: Model-Driven Ontology-Based Web Site Management
Yuhui Jin, Stefan Decker, Gio Wiederhold 529

Indexing a web site with a terminology oriented ontology
E. Desmontils, C. Jacquin 549

A semantic model for specifying data-intensive Web applications using WebML
Sara Comai, Piero Fraternali 566

Administrator
xi

Foreword

The Semantic Web is a vision: the idea of having data on the Web defined and linked in a way that it can be
used by machines not just for display purposes, but for automation, integration and reuse of data across
various applications. In order to make this vision a reality for the Web, supporting standards, technologies
and policies must be designed to enable machines to make more sense of the Web, with the result of
making the Web more useful for humans. Facilities and technologies to put machine-understandable data
on the Web are rapidly becoming a high priority for many communities. For the Web to scale, programs
must be able to share and process data even when these programs have been designed totally
independently. The Web can reach its full potential only if it becomes a place where data can be shared and
processed by automated tools as well as by people.

The First International Semantic Web Working Symposium (SWWS) took place in Stanford California,
July 30 through August 1, 2001. The technical program of SWWS presented the state of the art in the
development of the principles and technology that will allow for the Semantic Web to become a reality.
There were two invited talks, one by Eric Miller and the other one by Michel Biezunski and Steven
Newcomb, and one panel chaired by Vipul Kashyap. Three parallel tracks consisted of 35 technical
presentations selected from 58 submissions, and a fourth track consisted of tutorials. The tutorials were
presented by Natalya Friedman-Noy (Ontology Engineering), Christoph Bussler (Semantic B2B Integration
), Fabio Casati and Ming-Chien Shan (Models and Languages for Describing and Discovering E-services).
Of the 58 submissions, 29 came from Europe, 21 from the USA, 3 from Australia and New Zealand, 2 from
China, Japan/Thailand, and 3 from unidentified countries. The rate of acceptance was approximately two
out of three for all the groups except for the last two mentioned (respectively 50% and 0%). The four t racks
were: “Ontology and Ontology Maintenance”, facilitated by Deborah McGuinness and Mark Tuttle,
“Interoperability, Integration, and Composition”, facilitated by Vipul Kashyap, and “Services and
Applications”, facilitated by Jim Hendler and Sheila McIlraith. Charles Petrie chaired the tutorial track. In
a joint session, the track facilitators presented a report on their respective tracks. In collaboration with DL
2001, birds of a feather working groups met during the last morning. The social program included a
banquet at the Stanford Faculty Club and a joint reception with ICCS 2001.

The organizers would like to thank everybody who made possible the unique discussion of ideas and
contributions during the two and half days of the Semantic Web Working Conference−the authors of the
papers, the invited speakers, facilitators, and panelists, and the members of the Program Committee: Dan

Brickley, Tiziana Catarci, Vassilis Christophides, Steve Demurjian, Max J. Egenhofer, Peter Eklund, Dieter
Fensel, Asunción Gómez-Pérez, Benjamin Grosof, Natasha Fridman Noy, Nicola Guarino, Pat Hayes, Jim

Hendler, Masahiro Hori, Ian Horrocks, Ora Lassila, Raphael Malyankar, Massimo Marchiori, Brian
McBride, Sheila McIlraith, Robert Meersman, Eric Miller, Enrico Motta, Amedeo Napoli, Dimitris

Plexousakis, Peter Patel-Schneider, Guus Scheiber, Amit Sheth, Steffen Staab, Heiner Stuckenschmidt, and
Frank van Harmelen. We especially would also like to thank the additional reviewer: Sofia Alexaki

Cecilia Bastarrica, Peter Becker, Olivier Brunet, Paul Calnan, Farid Cerbah, Ying Ding, Michael Klein,
Maurizio Lenzerini, Tarcisio Lima, Donald Needham, Borys Omelayenko, Charles E. Phillips, Jr., Jeff Z.
Pan, Margie Price, Mitchell Saba, and Feng Zhang The organization of this event in a very short time
would have not been possible without the help of Arturo Crespo, Jennifer Espinoza, Martin Lacher,
Annemarie Feely, Marianne Siroker, Bob Spillers, Prasenjit Mitra, Sarah Weden, and Seregey Melnik.
Last, but not least, we would like to thank the generous financial support of the National Science
Foundation, DARPA, the Ontoweb Network, INRIA, and of the following companies: VerticalNet,
NOKIA, SpiritSoft, ENIGMATEC, Empolis, Connotate, Mondeca, Language and Computing, SC4,
NetworkInference, Ontoprise, and LastMileServices.

Isabel F. Cruz Stefan Decker Jérôme Euzenat Deborah McGuinness
U. Illinois at Chicago
USA

Stanford U.
USA

INRIA
France

Stanford U.
USA

Administrator
1

Tutorials

Tutorial 1: Ontology Engineering

Natalya F. Noy
Stanford University

USA

Abstract
In recent years the development of ontologies - explicit formal specifications of
the terms in the domain and relations among them -has been moving from the
realm of Artificial-Intelligence laboratories to the desktops of domain experts.
Ontologies have also become common on the World-Wide Web. The ontologies
on the Web range from large taxonomies categorizing Web sites (such as on
Yahoo!) to categorizations of products for sale and their features (such as on
Amazon.com). On the Web and in many large applications ontologies serve a
variety of purposes: making the knowledge about a particular domain explicit,
sharing and reusing this knowledge, analyzing domain knowledge. A number of
languages for defining ontologies on the Web, such as RDF(S) and DAML+OIL,
are under development. In this tutorial we will discuss why one would build an
ontology and present a methodology for creating ontologies based on declarative
knowledge representation systems. We will present ontology examples, discuss
common problems and pitfalls in ontology development and approaches to
solving the problems. We will also give a brief overview of the current research
issues in ontology engineering and compare some Web-based ontology-
representation languages.

About The Speaker
Natalya F. Noy is a research scientist in the Stanford Medical Informatics
laboratory at Stanford University. Her research focuses on ontology development
and evaluation, semantic integration of ontologies, and making ontology-
development accessible to experts in noncomputer-science domains. She is a
member of the Protégé group at Stanford University, which develops a graphical
and extensible software environment for ontology editing. She has received a
PhD degree from Northeastern University concentrating on the challenges of
ontology development in experimental sciences.

Administrator
2

Tutorial 2: Semantic B2B Integration - Concepts, Architecture,
Implementation and Deployment

Dr. Christoph Bussler
Oracle Corporation

USA
Abstract
This tutorial will give an introduction to the field of business-to-business (B2B)
integration from a technical viewpoint with the focus on semantic integration
aspects. The set of B2B integration concepts is introduced as well as their
implementation in form of a technical semantic B2B integration architecture. A
mix of examples is taken illustrating the problems that need to be solved in
semantic B2B integration projects. The tutorial enables the audience to identify
semantic B2B integration problems as well as to determine the benefits and
deficiencies of various technical integration architecture approaches or B2B
integration technologies.

About The Speaker
Christoph Bussler is Member of Oracle's Integration Platform Architecture Group
based in Redwood Shores, CA. He is responsible for the architecture of Oracle's
next generation integration platform product. Prior to joining Oracle he was at
Jamcracker, Cupertino, CA, responsible for defining Jamcracker's ASP
aggregation architecture, Netfish Technologies, Santa Clara, CA, responsible for
Netfish's B2B integration server, The Boeing Company, Seattle, WA, leading
Boeing's workflow research and Digital Equipment, Mountain View, CA, defining
the policy resolution component of Digital's workflow product. He has a Ph.D. in
computer science from the University of Erlangen, Germany and a Master in
computer science from the University of Munich, Germany.

Administrator
3

Tutorial 3: Models and Languages for Describing and Discovering E-
services

Dr. Fabio Casati
Dr. Ming-Chien Shan

Hewlett Packard Laboratories
USA

Abstract
E-services are business functions made available via the Internet by service
providers, and accessible by clients that could be human users or software
applications. The main benefit of the e-services environment is that clients are
able to dynamically discover the available e-service that best meets their needs,
to examine its properties and capabilities, and to determine if and how to access
it. However, in order to deliver e-services to clients, service providers are faced
with several challenges. In particular, they need to describe e-services in a way
that is accessible and understandable by the clients and to advertise them in web
directories, so that they can be discovered by brokers as well as by end-users. In
this tutorial we discuss the main requirements for models and languages for
service description and discovery, and we present relevant approaches proposed
by standardization consortia.

About The Speakers
Fabio Casati is a researcher at HP Labs, Palo Alto. He got his PhD from
Politecnico di Milano (Italy) in 1999. His research interests include workflow
management, e -services, mobile environments, and business process
intelligence. He is author of more than 30 papers in international conferences
and journals, and has served as organizer and program committee member in
several conferences. He is also a lecturer of "Technologies for e -business" at
San Jose State University.

Ming-Chien Shan is a research program manager in the Hewlett Packard
Laboratories, Palo Alto, California. He joined IBM DB2 team in 1978 working on
query optimization, data definition manager and distributed DBMS. He then
joined HP in 1985 and managed various research projects, including object-
oriented DBMS, heterogeneous DBMS, workflow and telecom service
provisioning. Currently, he is the manager of e-business solutions program.
Ming-Chien received his PhD degree in computer science from University of
California, Berkeley in 1980. He has published more than 50 technical papers
and been granted 15 software patents.

Administrator
4

The Semantic Web As “Perfection Seeking:”
A View from Drug Terminology

Mark S. Tuttle, Apelon, Inc., mtuttle@apelon.com
Steven H. Brown, MD, Vanderbilt University / Veterans Administration

Keith E. Campbell, MD, PhD, Inoveon, Inc.
John S. Carter, University of Utah / Apelon, Inc.

Kevin D. Keck, Keck Labs
Michael Lincoln, MD, University of Utah / Veterans Administration

Stuart J. Nelson, MD, National Library of Medicine
Michael Stonebraker, PhD, Massachusetts Institute of Technology

Abstract. To date, the Semantic Web has viewed formal terminology, or
ontology, as either immutable, or something that can change but that has no past
and no future – only a present. Change, or process – such as “perfection seeking,”
is outside the scope of the proposed “semantics,” except in so far as it is
represented in attributes. In contrast, current U.S. Government efforts to
formalize drug (medication) terminology are being driven by the need to manage
changes in this terminology asynchronously and longitudinally. For example,
each year the FDA (Federal Drug Administration) approves about 150 new drugs
and thousands of changes to the “label” of existing drugs, the VHA (Veterans
Health Administration) must manage new drugs, label changes, and tens of
thousands of drug “packaging” changes, and the NLM (National Library of
Medicine) must maintain a current index of references to proposed or approved
medications in the world’s biomedical literature. We propose that an emerging
multi-federal-agency reference terminology model for medications, mRT, be used
to drive development of the necessary repertoire of “semantic” change
management mechanisms for the Semantic Web, and that these “process”
mechanisms be organized into an ontology of change.

1. Overview – Using mRT to drive the development of Semantic Web change
management

Creating standards, especially standards that create information industry infrastructure,
is difficult, time-consuming and at constant risk for irrelevance and failure. One way to
mitigate this risk, and secure the participation of the diverse interest groups required to
make such standards a success is to focus on process – as in the process that produces and
maintains a good standard. This is in contrast to an approach that says some existing
artifact selected from a list will be THE standard, and all the others will NOT be the
standard. An observation that we attribute to Betsy Humphreys from the National
Library of Medicine in the context of biomedical terminology standards is that it doesn’t
matter where you start, i.e., it doesn’t much matter which terminology or terminologies
one selects as a starting point; instead what does matter is the process by which the
proposed standard evolves to achieve and sustain the desired degree of quality,
comprehensiveness, and functionality. The process is what determines where the
standard ends up.

Valued Sony Customer
5

Seen in this light, change, even a large amount of change, will be a feature of
successful formal terminologies, or ontologies. We hope to demonstrate the feasibility
and utility of this approach. The challenge in the context of the Semantic Web is to
choose a representation for change that makes it explicit. Viewed this way the Semantic
Web would be “perfection seeking,”1 and the ongoing changes would be part of the
semantics. The challenge with this approach is the formulation of the units of change and
the creation of an ontology of these change units. This follows a Semantic Web notion
expressed by Tim Berners-Lee in a discussion of Metadata Architecture [1] “… metadata
itself may have attributes such as ownership and an expiry date, and so there is meta-
metadata but we don't distinguish many levels, we just say that metadata is data and that
from that it follows that it can have other data about itself. This gives the Web a certain
consistency.” Making change part of the Semantic Web would preserve that consistency.

One way to focus the development of the desired units, inter-relationships, and uses is
to solve real problems and gain experience from deployments of these solutions; we
propose to do this by formulating, deploying and evaluating what we now call “The New
Drug Transaction.” This transaction needs to supply diverse, operating healthcare and
biomedical information systems with the requisite formal definition of a new drug, given
a reference model, and do so at Web scale. The main challenge is how to do this in a way
that first avoids breaking working applications that use the drug terminology and second
preserves the longitudinal value of existing and future patient descriptions of medication
use.

More generally, healthcare and biomedicine undergo constant change – some of it
perfection seeking and some of it clerical – and the relevant terminology needs to change
in parallel. Again, the challenge is to the extent possible to accommodate change without
breaking what already works, and without losing the value of historical data.

A simple, large-scale model of longitudinal change management is that used by
MEDLINE, the National Library of Medicine’s citation database
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi). The formal “semantics” of MEDLINE
are supported by MeSH (Medical Subject Headings), a concept-based biomedical
terminology that is updated annually (http://www.nlm.nih.gov/mesh/meshhome.html).
Each year, rules are written that transform citations indexed using the previous year’s
MeSH into citations indexed using the new version of MeSH. In this way, by “re-writing
history,” old citations can be retrieved as appropriate using current terminology. As can
be appreciated, formulating the rules requires manual intervention and testing, but more
than 11 million citations, each tagged with about a dozen index terms selected from some
18,000 concepts, are maintained longitudinally in this way. While MEDLINE has always
been a pre-eminent and exemplar information retrieval system, the notion of “history re-
writing” implies a loss of information; the declining cost of secondary storage may
eliminate one of the reasons for such information loss, a theme that will be re-examined
below.

1 Peri Schuyler, then head of the MeSH (Medical Subject Headings) at the NLM, used this term in the
context of the UMLS (Unified Medical Language System) Project in 1988.

Valued Sony Customer
6

2. Background - The Semantic Web is a generalization of formalization efforts
already underway in healthcare and biomedicine

In his recent Scientific American article Berners-Lee argues that the Semantic Web is
infrastructure, and not an application [2]. We couldn’t agree more. To us, this view is a
top-down and horizontal approach to Semantic Web objectives, and it is this kind of
disciplined thinking that made the Web the success that it is today.

In parallel with this effort, progress toward related goals is occurring in healthcare and
biomedicine and we think of this progress as bottom-up and vertical. Thus, at present,
healthcare and biomedicine have a repertoire of standard terminologies and standard
messages and, in some instances, their use is or will be mandated by law.2 While current
deployments of these artifacts lack the formality required for the Semantic Web they
nevertheless represent a rehearsal of many of the processes that the Semantic Web will
require. Further, as will be described in a later section, the shortfalls of current healthcare
terminology and message standards are driving a new generation of healthcare
terminologies and messages that do have some of the desired formal properties. All this
is part of a gradual evolution in healthcare information technology that is changing its
focus from “systems” to “data,” [3] [4] a trend predicted in [5]. The authors believe that
the major forcing function for this evolution is the need to “scale” healthcare information
technology to ever larger enterprises and collections of individuals and enterprises; while
this trend began before the Web, the presence of the Web has accelerated the change.

What is missing in healthcare and biomedicine is a way to link its relevant progress
and experience with that occurring in the Semantic Web community. The Web
influences healthcare information technology, but the Web is little influenced by lessons
learned in healthcare IT. We believe that medications represent a domain in which these
two activities can be joined productively. The potential significance of such a joining
cannot be over-estimated. Healthcare now costs the U.S. more than $1 trillion/year, and
medications are the largest single category of cost and the fastest growing category of
cost.3 They are also involved in a significant number of life-threatening medical errors.
[6]

At a deeper level, we believe that the Semantic Web is an opportunity to shrink the
“formalization gap” described by Marsden S. Blois, PhD, MD (1918-88). Blois argued
that overcoming this gap was the fundamental challenge of medical informatics: ‘This
discontinuity in formalization between a manual (human) medical information process
and the machine code necessary to accomplish comparable ends begins at a very high
descriptive level and it is not itself a concern of computer science. If this concern is to be
given a name at all, it must be regarded as concerning medical applications, and it is
increasingly being referred to as "medical information science" in the United States, and
as "medical informatics" in Europe. It will be the task of this new discipline to better
understand and define the medical information processes we have considered here, in
order that appropriate activities will be chosen for computerization, and to improve the
man-machine system.’ [7] One rationale for a “perfection seeking” approach to the

2 HIPAA (Health Insurance Portability and Accountability Act).
3 Last year, VHA (Veterans Health Association) spent about $2.5 billion on medications, and MHS
(Military Health System – covering active duty personnel and their dependents) spent about $1.5 billion.
Personal conversation, Donald Lees, RPh, 6/01.

Valued Sony Customer

Valued Sony Customer
7

Semantic Web is the difficulty of getting the formalizations right, and of maintaining
them, and the patient descriptions based on them, in the face of change.

3. A model - semantic definitions for medication active ingredients

If change management were not such a critical issue, already complete approximations
of the medication reference model shown in Figure 1 could be used by Semantic Web
developers to test proposed representations. Carter, et al. [8] describe how about 1,000
active ingredients were given “Aristotelian” definitions represented in Description Logic
and “published” in XML. One result of this effort was a focus on the emerging
importance of “The New Drug Transaction” as a necessary conjunct to expansion of the
model to cover all important active ingredients, and to trial deployments.

Figure 1 – DRAFT formal model of medications for potential use by three Federal Agencies: Active
ingredients have “Aristotelian” definitions represented using Description Logic; these definitions will place

each Active Ingredient in an IS_A hierarchy of Chemical Structure Classes, and describe each Active
Ingredient using named relationships into reference taxonomies for, respectively, Mechanism of Action,
Therapeutic Use, and Pharmacokinetics. Each Active Ingredient (molecule) will also have a machine-

processible three-dimensional structural description (identifier). Not shown are inactive ingredients and
other necessary details.

Valued Sony Customer
8

This model, developed over the last few years, has proven remarkably robust in the
face of multi-disciplinary and multi-institutional inspection, and sample instantiations.
Its next test will be to represent portions of various order-entry formularies used by the
public and private sectors. A typical formulary covers about 10,000 – 100,000
“orderables” and the goal will be to produce “useful” definitions of the active ingredients
contained in these orderables using early versions of the reference taxonomies for
Chemical Structure, Mechanism of Action, Therapeutic Use, and Pharmacokinetics. This
test will also allow us to gain experience assembling and formalizing medication
information obtained from multiple authorities and disciplines that is used for related but
still different purposes. For example, there will be at least three different kinds of
“Therapeutic Use,” also called “indications” – “FDA approved”, “VA
approved”(generally a superset of FDA approved), and “Described in the Literature”.4
The whole notion of “orderables” will also force clarification of the boundary between
the so-called “terminology model” (categories and hierarchies) and the “instance” or
“database” model (the orderables themselves, along with all their attributes). Everyone
agrees that that the former is a good way to organize the latter, and that there should be a
boundary between the two models – that is, the two models are similar and related but not
the same, but few agree on where the implementation boundary should be, especially in
light of emerging interoperation requirements based on re-usable objects. This dilemma
should resonate with those working on the Semantic Web.

4. A process – embracing change and making it explicit

The model presented in Figure 1 is little more than an academic exercise without
accompanying productive change management. Currently, excepting MeSH and
MEDLINE (described above), change management in authoritative, deployed biomedical
terminologies is at best primitive. [9] [10] As a result, there are few “warehouses” of
patient descriptions that can be searched over time, that is across changes in the
terminologies used to formalize the descriptions. Of the few patient description
repositories that support such “time travel” no two do so in the same way, and none use
existing or proposed standards. An explicit goal of the mRT project is to begin to
overcome this shortfall at least in the context of medications.

The view of change management presented here is a synthesis of current and emerging
practices in healthcare terminology, e.g., the use of Description Logic, earlier and current
work on the handling of time-oriented data in database system models, e.g., POSTGRES
[11] and T-SQL [12] [13], and our current understanding of the Semantic Web. This
synthesis can be summed up by the conclusion that “Process is more important than
representation.”

4.1 A “new drug” transaction

The first step in making formal terminology changes into a terminology/ontology
“thing,” or unit, is to create a unit of change that has the same general properties as any

4 An important side-effect of this effort will be an authoritative collection of so-called “off-label” uses of
medications; such uses represent legal, but not FDA-approved, medication indications.

Valued Sony Customer
9

other “thing-ness” unit. For example, given the appropriate reference taxonomies, used
to (in the Description Logic sense) “classify” medications, one can create the desired
reference terminology – mRT – by “adding” the (Aristotelian) definitions of each drug,
one drug at a time. But, of course, this ignores, among many other things, the fact that
the reference taxonomies need to be changed, too. Frequently, new drugs come with new
mechanisms of action and new indications (therapeutic objectives), and thus the
corresponding “new drug transaction” may need to update the reference taxonomies
before adding the definition of the new drug. These latter cases will be covered in “Other
transactions” below.

To make the simple case more tangible, here is one potential near term future of the
kind of “New Drug Transaction” that does not require updating the reference
taxonomies:

1) The FDA will approve a new drug and “publish,” as XML, a newly “structured”
version of the traditional package insert, or “label,” designed to “explain” that
drug to both humans and computers. (One can think of this document as a
“contract” between the FDA and the drug manufacturer.) The data that will
appear in the new drug transaction is the result of processes now in place at the
FDA; regulations are pending that will increase the degree of machine-
processibility and formality of this data. [14]

2) The NLM will further process and enhance the parts of the label that can be
processed usefully by computers, and then “publish” it, once again in XML. The
“enhancements” may include connections to the biomedical literature, related
terminology and foreign language names.

3) Applications or servers electing to process the new drug transaction will see that
the XML indicates that it is an “add,” the simplest kind of transaction to process.
That is, the transaction will add a new concept – the new drug, the appropriate
relationships to other concepts in the various reference taxonomies, and attributes
of the new drug. (In every formulary or medication reference terminology known
to the authors this is done manually, at present.)

It is not hard to imagine that most applications, e.g., drug order-entry systems, would
be tolerant of such an insertion and subsequently “do the right thing.” However, the
problem with this simple form of the new drug transaction is that, as described by domain
experts, most new drugs represent “changes in understanding,” and it is not at all clear
how existing applications can deal with such changes in understanding automatically, or
know when they need help from humans. An extreme instance of such new
understanding would be a drug that triggered a reorganization of the Aristotelian
classification of existing drugs. (Changes in understanding due to pharmacogenetics may
cause these kinds of “re-organizing” updates.)

4.2 Other transactions

In this context, “changes in understanding” are represented by changes in the reference
taxonomies, e.g., for chemical structure, mechanism of action, pharmacokinetics, and
therapeutic use. That is, a typical “new drug transaction” will need to include one or
more changes to the reference taxonomies along with the (simple) “add” described above,

Valued Sony Customer
10

and these changes will represent “changes in understanding.” It can be assumed that
changes to the reference taxonomies will “break” existing applications, e.g., the decision
support that operates in conjunction with order entry. The authors claim that to the
degree that we can overcome this problem in the context of medication terminology
maintenance that we are solving a problem that will be faced by the Semantic Web.

As presently planned our solution will be built on two foundations: First, mRT will
not “overwrite” information; that is, per POSTGRES [15] any “garbage collection” or
“archiving” will be handled asynchronously with new drug transactions, the practical
effect being that an explicit, time-oriented, history of mRT is available to applications at
all times. Second, appropriate use of Description Logic permits consistency-preserving
updates; for example, if prior to execution of the new drug transaction an off-line, an
updated copy of mRT is “reclassified” successfully (in the DL sense), then, in principle,
mechanisms exist that can correctly update a run-time database (terminology server)
“incrementally” (and thus quickly). Thus, such updates represent one useful repertoire of
units of change.

Per earlier work of Stonebraker, et al. and more recent work of Snodgrass, et al., one
can view a “database” as a time-oriented accumulation of changes. Thus the current
“state” of the database is acquired through a computation, or “view,” on the transactions
accumulated over time. (See [13], for an enumeration of the many subtleties implicit
here.) Part of the desired functionality is implemented, currently, in the MEME
(Metathesaurus Enhancement and Maintenance Environment) deployed at the NLM. [16]
The Metathesaurus (http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html) is a
gigabyte+ synthesis of most authoritative biomedical terminologies, now released
multiple times per year. Increasingly, a “release” is becoming a report on a time-oriented
database.5 Gradually, the whole notion of a “release” will become less important, and,
instead, the Metathesaurus will be seen as a time-oriented record – a no-information-loss
history – of authoritative terminologies. Of interest to those trying to deploy solutions on
the Semantic Web, in run-time systems, use of incremental “write-once / read-many”
databases make locking and error recovery significantly simpler.

We expect that the simple new drug transaction will be the easiest formal unit of
change to specify. Quantitatively, the most important unit of change will be a transaction
that introduces a change to the definition of an existing medication. For practical reasons
the latter transactions are both the most important to accommodate in existing medication
order entry systems and the most difficult. Frequently, they affect how drugs are to be
used, e.g., the change may be a new contraindication.

Complicating this approach are the presence of larger changes-in-understanding – so-
called “lumps” and “splits” - that, seemingly, violate the “axioms” implicit or explicit in
DL tools. “Splits” occur when a concept is “split” into two or more concepts, typically
because of the emergence of new knowledge. The latter may be new concepts or existing
concepts. And the original concept that is split may be retired, or it may be retained as a
subsumer of the “split” concepts. Splits are most often prompted by new information
system needs, related to the emergence of new knowledge. Similarly, “lumps” – the
merging of two previously distinct concepts – is usually prompted by the detection of
clerical errors, or by the discovery that two things we thought were different proved not
to be. As will be appreciated by those who favor the use of Description Logic (DL) in

5 Brian Carlsen, personal conversation.

Valued Sony Customer
11

these contexts, a feature of DL, namely its support for formal definitions, helps to
decrease the number of inadvertent “missed synonyms”. Alternatively, some less mature
domains, e.g., Bioinformatics, avoid the problem by using terminologies in which terms
are freely lumped or split as needs dictate.

4.3 An ontology of change

If we view a formal terminology or ontology as a corpus of “facts,” or assertions,
collected over time, then one can contemplate an ontology of such facts, or changes. This
much is straightforward. The difficulty is defining and implementing the semantics to be
attached to each type of “change unit.” One step toward such semantics is the simple
expedient of tagging each terminologic unit – concept, term, relationship, and attribute -
with a “Start Date” and (any) “End Date”; then, in principle, an application can know the
state of the terminology at any point in time. More disciplined and complete forms of
such semantics are what are needed to preserve the longitudinal functionality of systems
that use the ontology, and what will be needed to transfer knowledge gained from a
successful test of the new drug transaction to the Semantic Web.

In the MEDLINE - “rewriting history” - example described above, semi-automated
methods accommodate the effects of new concepts, retired concepts, split concepts and
lumped concepts in MeSH, as best as can be done each year. Thus, one “blunt
instrument” approach to the analogous problem in the Semantic Web is for every
repository of historical information to have a companion “warehouse” that is consistent
with the current relevant ontologies. The semantics of change are then implemented in
the potentially frequent re-computation of this warehouse, as appropriate. The
companion argument here is that so-called Clinical Data Repositories (CDRs) and some
biomedical research databases are being implemented as “write-only” databases because
they represent the authoritative archive of record. Any so-called “data-healing” is done
outside the CDR in adjacent data warehouses that are built from queries that run against
the authoritative archive. Such pragmatics may evolve into functional requirements for
the Semantic Web.

Regardless, the challenge posed by “ontologizing” these units of change is to represent
what, for example, should be inherited or shared by other units. Thus, the new drug
transaction is a specialized version of the change transaction and thus should inherit any
properties of the former. At present, it is not clear how “split” and “lump” should be
handled, formally.

4.4 “Perfection Seeking”

While the notion of “perfection seeking” has been very helpful in that it helps those in
an inter-disciplinary project “satisfice” in particular domains so as to make progress
toward the over-all goal, it has not yet been formalized, e.g., in the form of a metric. At
present, terminology and terminology process are bereft of quality metrics. One
exception is some work by Campbell, et al., that measured the degree to which lexically
implied subsumption (one term appearing within, or sharing sub-strings with, another
term) had been represented logically, i.e., in DL, in a large healthcare terminology. [17]
While the metric was aimed at measuring the yield of “lexically suggested logical

Valued Sony Customer

Valued Sony Customer
12

closure” it also revealed the degree to which the lexical suggestions were not converted to
logical relationships, e.g., because of linguistic ambiguity.

A related hypothesis was that expressed by Blois, namely that conceptualization and
naming was more stable and predictable at “lower” biological levels, e.g., for molecules.
[18] Thus, we would expect fewer synonyms and fewer changes to the Chemical
Structure portion of the formal definitions of ingredients.

The fact remains, however, that we’ve yet to “formalize” (or even measure)
perfection-seeking to any useful degree. It is still an entirely human process. However,
there is some evidence that tools can aid formalization and while doing so improve
conceptualization. [19] [20] Specifically, when a user, in this case a physician, is given
the task of entering a formal term for a patient “problem,” an interface that displays
potentially related formal terms in response to the input of a casual term can help the user
better conceptualize the concept being entered. Thus, even when the user interface
returns an exact equivalent for the casual term, users may choose a “better” formal term
from the displayed semantic neighborhood. The simple explanation for this phenomenon
is that humans are better at recognition than recall. Those developing ontologies will be
familiar with the phenomenon; once domain experts can “see” a domain model they can
almost always make it better.

4.5 Architecture, tools and the local enhancement problem

Implicit in much that has been written here is the architectural notion of vocabulary
servers, or in this context, formal terminology or ontology servers. That is, such servers
“normalize” terminology functions for enterprises, some at Web scale. [See for example
the National Cancer Institute’s EVS (Enterprise Vocabulary Server)
http://ncievs.nci.nih.gov/NCI-Metaphrase.html] We believe that such servers will be
essential to the support of the Semantic Web, and as usual on the Web, the challenge will
be how to maintain them in loose synchrony as appropriate.

A clear result of experience to date shows that terminology development, especially
formal terminology development cannot be undertaken for long without non-trivial
supporting tools and software. Foremost among the required tools is a scalable
terminology editing workstation, one evolutionary sequence of which was begun by
Mays, et al. [21] The fact that formal terminologies will almost always be constructed
and maintained by geographically separated domain experts implies additional
requirements for “configuration management,” conflict resolution, and the like. One
approach to these problems is described in [22]. Further, experience in both the U.S. and
United Kingdom has shown that the rate-limiting factor for large-scale terminology
development is workflow management, rather than the editing work itself.

One short-term reality is the need for what we call “local enhancement.” In the
healthcare domain, enterprises will have some locally produced, i.e. “locally mixed and
prepared,” medications for the foreseeable future, and academic medical centers will
always have new terms and concepts in substantive use locally. For these and other
reasons, an authoritative reference terminology will need to be enhanced locally. The so-
called “update paradox” is that those who add the greatest quantity of local enhancements
incur the greatest maintenance burden as the external terminology authority evolves.
This tradeoff is made more complex by external reimbursement and reporting
requirements.

Valued Sony Customer
13

5. Additional exemplars - reference terminologies and semantic messages in
healthcare and biomedicine

In response to the shortfalls of current authoritative biomedical terminologies a
number of efforts are underway focused on the development of so-called “principled”
reference terminologies. For the purposes of this paper the “principles” in question are
those that are computer-empowering, indeed the whole point of a reference terminology
is to empower computers, particularly, as with the Semantic Web, to empower computer-
to-computer interoperation. Several examples are represented in Figure 2.

Figure 2 – Emerging Reference Terminologies in Biomedicine: The GCPRMedications reference
terminology defined some 1,000 medication active ingredients in terms of Chemical Structure Class,
Mechanism of Action, and Therapeutic Use. The NCI MMHCC (Mouse Models of Human Cancer

Consortium) is developing detailed diagnostic terminologies for eight organ sites in mice, as a prelude to
“certification” of the models as representative of human cancer behavior. NCI is also “modeling” about

250 genes known to be associated with cancer; in particular the association between these genes, the
proteins they produce (or do not produce), and diseases is being made explicit. SNOMED-RT is a large

(100K+ concept) effort by CAP (College of American Pathologists) and Kaiser Permanente Healthcare to
“formalize” SNOMED International (SNOMED = Systematic Nomenclature of Medicine). The AMA

(American Medical Association) is formalizing CPT-4 (Current Procedural Terminology). Each of these
efforts employs a Description-Logic-based representation. The modular approach implied by this

repertoire of reference terminologies in turn creates a need for a reference terminology for Biology that
would represent the considerable commonality in, for instance, mice and humans. Similarly, a formal

model of human anatomy being developed by Rosse, et al., at the University of Washington may evolve
into a reference terminology for vertebrate anatomy as a way to, again, capture inter-species commonality
for reuse in other models. A terminology model of Physiology, now being contemplated by some groups,
may represent another piece of the “normal” reference model. Not shown is a laboratory testing method

terminology being developed by the CDC (Centers for Disease Control and Prevention) .[23]

Valued Sony Customer
14

As recently as a few years ago such a (relative) “explosion” of formal terminology
efforts would have been inconceivable. Now such efforts are taking on, in specific
domains, the challenge implied by the Semantic Web, namely the development of
ontologies for specified domains. Early versions of some of these terminologies are
being deployed this year.

HL7, version 3 (http://www.hl7.org/page.cfm?p=524), is a proposed standard for
semantic messages in healthcare. It builds on the widely deployed HL7, version 2,
standard syntax by using “value sets” taken from external, authoritative, formal
terminologies.

6. Summary – healthcare and biomedicine are a rehearsal for the Semantic Web

We are building on our experience with the use of formalization processes for update
management in critical working systems. We believe that the challenges we face are
specialized equivalents of challenges to be faced by Semantic Web developers as more
and more sophisticated systems are deployed and become critical. Among other things
these experiences reveal the critical role of process, and that this process needs to be
made explicit and intrinsic. We are attempting to fulfill this requirement through the
development of an ontology of change, and a recognition that process is more important
than representation. If successful, the Semantic Web community may be able to
generalize this ontology sufficiently to allow it to be migrated into the “horizontal”
Semantic Web infrastructure, and support a “perfection-seeking” Semantic Web.

Acknowledgements

This work was partially supported by Contracts with NLM (National Library of Medicine), NCI
(National Cancer Institute), and GCPR (Government Computer-based Patient Record). The GCPR
(Government Computer-based Patient Record) medication Reference Terminology Model project team also
included Ha Nguyen and Joanne Wong, University of California Berkeley, Munn Maung, University of
California Davis, Maung Than, Tun Tun Naing, Apelon, Richard Dixon, MD, FACP and Joe Awad, MD,
Vanderbilt. Also contributing were Betsy Humphreys, MLS, William T. Hole, MD, Suresh Srinivasan,
PhD, Alexa McCray, PhD, Frank Hartel, PhD, Sherri De Coronado, Robert Cardiff, MD, PhD, Scott
Kogan, MD, Mark Erlbaum, MD, David Sperzel, MD, David Sherertz, Brian Carlsen, Cornelius Rosse,
MD, DrSc, and Randy Levin, MD, and several others at the FDA (Food and Drug Administration), though
as customary they should not be held responsible. Eric Mays, PhD and Bob Dionne from Apelon clarified
some of the utility of Description Logic. Important feedback regarding the utility of the model presented in
Figure 1 was received from the HL7 Vocabulary Committee and from NCVHS (National Committee on
Vital and Health Statistics), including assistance from Jeff Blair, Stan Huff, MD, Christopher Chute, MD,
DrPH, James Cimino, MD, Jeff Blair, Ed Hammond, PhD, Michael Fitzmaurice, PhD, Joan Kapusnick-
Uner, PharmD, and William Braithwaite, MD. Related material was presented at Pharmacology Grand
Rounds Vanderbilt University, Informatics Seminars at the University of Utah, the University of California
San Francisco, and the University of California Davis, and also at the Department of Defense, the FDA
(Federal Drug Administration), the HL7 (Health Level 7) Vocabulary Standards Committee, and TEPR
(Toward Electronic Patient Record) 2001.

Valued Sony Customer
15

References

[1] Berners-Lee, T., “Metadata Architecture,” W3C, January 6, 1997.
[2] Berners-Lee, T., Hendler, James, Lassila, Dra, “The Semantic Web,” Scientific American, May,

2001.
[3] Tuttle, MS, Information technology outside health care: what does it matter to us? J Am Med

Inform Assoc. 1999 Sep-Oct;6(5):354-60.
[4] Kuhn, KA, Guise, DA, “Review: From Hospital Information Systems to Health Information

Systems – Problems, Challenges, Perspectives,” Haux, R, Kulikowski, C., Editors, Yearbook of
Medical Informatics 2001, Schattuer, pp 63-76.

[5] Brodie, Michael L., M. Stonebraker, Migrating Legacy Systems: Gateways, Interfaces and the
Incremental Approach, Freeman, 1995.

[6] Kohn, L., J. Corrigan, and M. Donaldson, To Err is Human: Building a Safer Health System. 2000,
Institute of Medicine Report, Washington, DC: National Academy Press, 2000.

[7] Blois, M.S., Information and Medicine: The Nature of Medical Descriptions (University of
California Press, 1984), p. 284.

[8] Carter, J., et al., “The Creation and Use of a Reference Terminology for Inter-Agency Computer-
based Patient Records: The GCPR RTM Demonstration Project,” Fall AMIA Symposium, 2001 (to
be presented).

[9] Cimino, JJ, An approach to coping with the annual changes in ICD9-CM., Methods Inf Med. 1996
Sep;35(3):220.

[10] Tuttle, MS, Nelson, SJ, A poor precedent. Methods Inf Med. 1996 Sep;35(3):211-7. (A companion
article to [9] above.)

[11] Michael Stonebraker. ``The POSTGRES Next-Generation Database Management System'', CACM,
34(10)78-93, October 1991. (Available on-line at
http://www.acm.org/pubs/articles/journals/cacm/1991-34-10/p78-stonebraker/p78-stonebraker.pdf.)

[12] Snodgrass, RT, ed., The TSQL2 Temporal Query Language, Kluwer, Boston, 1995.
http://www.wkap.nl/kapis/CGI-BIN/WORLD/book.htm?0-7923-9614-6

[13] Snodgrass, RT, Developing Time-Oriented Database Applications in SQL, Morgan Kaufman, 1999.
[14] Randy Levin, MD, personal conversation.
[15] Michael Stonebraker, “The Design of the POSTGRES Storage System,” Proceedings of the 13th

VLDB Conference, Brighton 1987, pp. 289-300. (Available on-line at http://www.informatik.uni-
trier.de/~ley/db/conf/vldb/Stonebraker87.html.)

[16] Suarez-Munist, O, et al., “MEME-II supports the cooperative management of terminology. Proc
AMIA Annu Fall Symp. 1996;:84-8.

[17] Campbell, KE, Tuttle, MS, Spackman, KA, A "lexically-suggested logical closure" metric for
medical terminology maturity. Proc AMIA Symp 1998;:785-9.

[18] Blois, MS, Medicine and the nature of vertical reasoning. N Engl J Med. 1988 Mar 31;318(13):847-
51.

[19] Tuttle, MS, et al., “Metaphrase: an aid to the clinical conceptualization and formalization of patient
problems in healthcare enterprises” Methods Inf Med. 1998 Nov;37(4-5):373-83.

[20] Cimino, JJ, Patel, VL, Kushniruk, AW, Studying the human-computer-terminology interface. J Am
Med Inform Assoc. 2001 Mar-Apr;8(2):163-73.

[21] Mays, E, et al., Scalable and expressive medical terminologies. Proc AMIA Annu Fall Symp.
1996;:259-63.

 [22] Campbell, KE, Distributed Development of a Logic-Based Controlled Medical Terminology (CS-
TR-97-1596). Dissertation available from elib.Stanford.ledu, Stanford: Stanford University.

[23] Steindel, Steven, Granade, SE, “Monitoring Quality Requires Knowing Similarity: The NICLTS
Experience,” Fall AMIA Symposium, 2001 (to be presented).

Valued Sony Customer
16

Industrial Strength Ontology
Management

Aseem Das1, Wei Wu1 & Deborah L. McGuinness2

1VerticalNet Inc., {adas, wwu}@verticalnet.com
2Knowledge Systems Laboratory, Stanford University, dlm@ksl.stanford.edu

Abstract. Ontologies are becoming increasingly prevalent and
important in a wide range of e-commerce applications. E-commerce
applications are using ontologies to support parametric searches,
enhanced navigation and browsing, interoperable heterogeneous
information systems, supplier enablement, configuration management,
and transaction discovery. Applications such as information and
service discovery and autonomous agents that are built on top of the
emerging Semantic Web for the WWW also require extensive use of
ontologies. Ontology-enhanced commercial applications, such as these
and others require ontology management that is scalable (supporting
thousands of simultaneous distributed users), available (running
365x24x7), fast, and reliable. This level of ontology management is
necessary not only for the initial development and maintenance of
ontologies, but is essential during deployment, when scalability,
availability, reliability and performance are absolutely critical.
VerticalNet’s Ontology Builder and Ontology Server products are
specifically designed to provide the ontology management
infrastructure needed for e-commerce applications. These tools bring
the best ontology and knowledge representation practices together with
the best enterprise solutions architecture to provide a robust and
scalable ontology management solution.

1 Introduction

Ontology Builder and Ontology Server were developed in response to the business needs
for ontologies in VerticalNet’s e-commerce and B2B applications. They provide a
scalable and distributed ontology environment, which is a component critical to the
success of e-commerce applications. More broadly, however, this component is also
critical to the success of any architecture, which leverages background information, such
as the Semantic Web. The next generation web – commonly referred to as the Semantic
Web – obtains its power and “intelligence” from utilizing markup information on content
sources along with background information on terms and content. The success of such an
endeavor relies on environments that support creation and maintenance of background

Valued Sony Customer
17

information, while working in a broadly distributed environment like the web. Ontology
Builder/Server provide such an environment in an industrial strength implementation.
 Vertical Net currently hosts 59 industry-specific e-marketplaces that span diverse
industries such as manufacturing, communications, energy, and healthcare. Each e-
marketplace acts as an industry-specific comprehensive resource that provides businesses
and professionals with information on products, technology, industry regulations, and
news and allows buyers and sellers to exchange information, source, buy, and sell
products.
 The primary challenge in developing these e-marketplaces is integrating the disparate
sources of information in a way that presents buyers with a single, coherent browsing and
navigation experience that includes contextually relevant information from all of the
available sources. Suppliers have to be able to display their products on the e-marketplace
in a way that enables buyers to purchase electronically, even though the suppliers
maintain their product databases and availability and price information in their own
vocabulary. For example, different suppliers might use the terms memory device,
passives, and RAM to refer the same product and have very different internal
vocabularies.
 The use of ontologies was seen as the best solution not only to solve these particular
problems [18, 19], but also to provide a common knowledge infrastructure for other e-
commerce applications like service discovery, auctions, and request for proposal. Most
of VerticalNet’s e-commerce applications are now knowledge-enabled and use ontologies
to drive their services.

2 Requirements

An extensive requirement gathering process was undertaken to compile requirements for
VerticalNet’s ontology management solutions. We identified the following key
requirements for ontology management for VerticalNet:

1 Scalability, Availability, Reliability and Performance – These were considered
essential for any ontology management solution in the commercial industrial
space, both during the development and maintenance phase and the ontology
deployment phase. The ontology management solution needed to allow distributed
development of large-scale ontologies concurrently and collaboratively by multiple
users with a high level of reliability and performance. For the deployment phase,
this requirement was considered to be even more important. Applications
accessing ontological data need to be up 365x24x7, support thousands of
concurrent users, and be both reliable and fast.

2 Ease of Use – The ontology development and maintenance process had to be
simple, and the tools usable by ontologists as well as domain experts and business
analysts.

3 Extensible and Flexible Knowledge Representation – The knowledge model
needed to incorporate the best knowledge representation practices available in the
industry and be flexible and extensible enough to easily incorporate new
representational features and incorporate and interoperate with different knowledge
models such as RDF(S) [2, 15] or DAML [11]/DAML+OIL [8].

Valued Sony Customer

Valued Sony Customer
18

4 Distributed Multi-User Collaboration – Collaboration was seen as a key to
knowledge sharing and building. Ontologists, domain experts, and business
analysts need a tool that allows them to work collaboratively to create and
maintain ontologies even if they work in different geographic locations.

5 Security Management – The system needed to be secure to protect the integrity of
the data, prevent unauthorized access, and support multiple access levels.
Supporting different levels of access for different types of users would protect the
integrity of data while providing an effective means of partitioning tasks and
controlling changes.

6 Difference and Merging – Merging facilitates knowledge reuse and sharing by
enabling existing knowledge to be easily incorporated into an ontology. The
ability to merge ontologies is also needed during the ontology development
process to integrate versions created by different individuals into a single,
consistent ontology.

7 XML interfaces – Because XML is becoming widely-used for supporting
interoperability and sharing information between applications, the ontology
solution needed to provide XML interfaces to enable interaction and
interoperability with other applications.

8 Internationalization – The World Wide Web enables a global marketplace and e-
commerce applications using ontological data have to serve users around the
world. The ontology management solution needed to allow users to create
ontologies in different languages and support the display or retrieval of ontologies
using different locales based on the user’s geographical location. (For example, the
transportation ontology would be displayed in Japanese, French, German, or
English depending on the geographical locale of the user.)

9 Versioning – Since ontologies continue to change and evolve, a versioning system
for ontologies is critical. As an ontology changes over time, applications need to
know what version of the ontology they are accessing and how it has changed from
one version to another so that they can perform accordingly. (For example, if a
supplier’s database is mapped to a particular version of an ontology and the
ontology changes, the database needs to be remapped to the updated ontology,
either manually or using an automated tool.)

 The requirements of scalability, reliability, availability, security, internationalization
and versioning were considered to be the most important for an industrial strength
ontology management solution.

3 Existing Ontology Environments

Given the above requirements, several existing ontology management environments were
evaluated1:

1 The evaluation was done in Fall’99 and hence does not include ontology management environments such
as OntoEdit (http://www.ontoprise.de), WebODE (http://delicias.dia.fi.upm.es/webODE/), and OILEd
(http://img.cs.man.ac.uk/oil/), which were available for use after Fall’99.

Valued Sony Customer

Valued Sony Customer
19

• Ontolingua/Chimaera [6, 16]
• Protégé/PROMPT [10, 20]
• WebOnto/Tadzebao [4]
• OntoSaurus, a web browser for Loom [12] (http://www.isi.edu/isd/ontosaurus.html)

 Some of these environments have already been compared based on different criteria
than those formulated at VerticalNet [5]. Figure 1, shows a feature set matrix and our
evaluation2 of the tools based on VerticalNet’s requirements. To keep the evaluation
simple, a three level (+, 0, -) scale was used, where (+) indicates a requirement was
surpassed, (0) indicates the requirement was met and (-) indicates that the tool failed to
meet the requirement. Although, none of the existing ontology development
environments provide all of the required features, they are nevertheless strong in
particular features and have different but very expressive underlying knowledge
representation models.

 Scalable

Available
Reliable

Ease of
Use

Knowledge
Representation

Multi User
Collaboration

Security
Management

Diff
&
Merge

International
ization

Versioning

Ontolingua/
Chimaera

- - + 0 - + - -

Protégé/
PROMPT

- 0 + - - + - -

OntoWeb/
Tadzebao

- 0 + + - - - -

OntoSaurus/
Loom

- - + 0 - - - -

Figure 1: Comparison of Some Ontology Environments

 Ontolingua provides a very powerful and expressive representation with its frame
language and its support for KIF [9] – a first order logic representation. In combination
with its theorem prover (ATP), Ontolingua provides extensive reasoning capabilities and
with Chimaera [16], it supports ontology merging and diagnostics. Ontolingua also
provides expressive and operational power not found in other environments such as
support for generating and modifying disjoint covering partitions of classes.
 WebOnto/Tadzebao provides very rich collaborative support for browsing, creating
and editing ontologies, together with the ability to collaboratively annotate and hold
synchronous and asynchronous ontology related discussions using the Tadzebao tool.
 OntoSaurus provides a graphical hyperlinked interface to Loom knowledge bases.
Loom provides expressive knowledge representation, automatic consistency checking
and deductive support via its deductive engine – the classifier.
 Protégé is the easiest to use and supports the construction of knowledge-acquisition
interfaces based on ontological data. It also has a component framework for easily
integrating other components via plugins. Protégé already provides several plugins
including PAL, a first order logical language for expressing constraints, and
SMART/PROMPT [20], a tool for merging and alignment of ontologies

2 This was not a formal evaluation with published, unambiguous evaluation criteria. It was however a good
faith effort to evaluate VerticalNet requirements as understood in the various tools.

http://www.isi.edu/isd/ontosaurus.html
http://delicias.dia.fi.upm.es/webODE/
Valued Sony Customer
20

 However, despite their strengths, all of the ontology solutions fell short on the
scalability, reliability, and performance requirements, perhaps because industrial strength,
commercial scalability was not seen as a important aspect of ontology management since
most of the ontology usage until recently has been restricted to research and academia.
Also, none of the tools provided security, internationalization, or versioning support –
requirements considered critical for e-commerce applications.
 After evaluating these solutions against our requirements, we decided to build our own
ontology management solution with the goal of bringing the best ontology and
knowledge representation practices together with the best enterprise solutions
architecture to satisfy the requirements of ontology-driven e-commerce applications.

4 Ontology Builder

Ontology Builder is a multi-user collaborative ontology generation and maintenance tool
designed to incorporate the best features of existing ontology toolkits in order to provide
a simple, powerful and yet broadly usable tool. Ontology Builder uses a frame-based
representation based on the OKBC Knowledge Model [3]. OKBC was developed
recognizing the wide general acceptance of frame-based systems [13] and provides an
API (Applications Programming Interface) for frame-like systems. Written entirely in
Java, Ontology Builder can run on multiple platforms. It is based on the J2EE (Java 2
Enterprise Edition) platform (http://java.sun.com/j2ee), which is a standard for
implementing and deploying enterprise applications. Ontology Builder also provides:

• Import and export based on XOL (XML-based Ontology Exchange Language)
[14]3

• A verification engine designed to maintain consistency of terms stated in the
language

• A role-based security model for data security and ontology access
• An ontological difference and merging engine

3 At the time of design and development, a DAML option did not exist. Today there are plans to support
DAML+OIL and RDF as well.

http://java.sun.com/j2ee
Valued Sony Customer
21

Figure 2: Ontology Builder Main Screen

4.1 Architecture

Ontology Builder is based on the J2EE (Java 2 Enterprise Edition) platform, a standard
for implementing and deploying “enterprise” applications. The term “enterprise” implies
highly-scalable, highly-available, highly-reliable, highly-secure, transactional, distributed
applications. The J2EE technology is designed to support the rigorous demands of large-
scale, distributed, mission-critical application systems and provides support for multi-tier
application architecture. Multi-tier applications are typically configured to include:

• A client tier to provide the user interface
• One or more middle-tier modules that provide client services and business logic for

an application
• A backend enterprise information system data tier that provides data management

 The client tier is a very “thin” tier, that contains only presentation logic. The business
and data logic are usually partitioned into separate components and deployed on one or
more application servers. This partitioning of the application into multiple server
components allows components to be easily replicated and distributed across the system,
ensuring scalability, availability, reliability and performance.
 Central to the J2EE platform architecture are application servers, which encapsulate
the business and data logic and provide runtime support for responding to client requests,
automated support for transactions, security, persistence, resource allocation, life-cycle
management, and as well as lookup and other services.

Valued Sony Customer
22

 Ontology Builder uses a 4-tier architecture comprised of a presentation tier, web tier,
service tier, and data tier. This architecture, shown in Figure 3, can be deployed using a
single application server. The application server encapsulates the service tier, which
consists of the business and data logic. A single server can support many simultaneous
connections and multiple servers can be easily clustered as needed for scalability, load
balancing, and fault tolerance. Within the presentation tier, a client can be either a Java
applet or application. The clients have easy-to-use interfaces written using the Java
Swing APIs. Both applet and application-based clients communicate with the web tier
via the HTTP protocol. The web-tier communicates with the service tier using RMI
(Java Remote Method Invocation) (http://java.sun.com/products/rmi-iiop/index.html).
The service tier communicates with the data tier through the JDBC (Java Data Base
Connectivity) protocol (http://java.sun.com/products/jdbc). Collaboration is
implemented using a JSDT (Java Shared Data Toolkit) server
(http://java.sun.com/products/java-media/jsdt), which forwards all communication and
change events to the respective clients.

Figure 3: The Architecture of Ontology Builder

4.2 Knowledge Representation

Ontology Builder uses an object-oriented knowledge representation model based on and
compatible with the OKBC knowledge model and is designed to use the best practices
from other frame-based systems. Ontology Builder implementation supports the OKBC
operations on classes, slots, facets, and individuals. Currently, however, no external
interfaces are exposed to enable other knowledge systems to use Ontology Builder as an
OKBC compliant server. Interoperability, knowledge sharing, and reuse are important
goals and our future plans call for making Ontology Builder work as a fully compliant
OKBC server.
 Ontology Builder supports a metaclass architecture to allow the introduction of
flexible and customizable behaviors into an ontology. This could potentially be used for
incorporating other knowledge models or extending the existing knowledge model within
Ontology Builder. Ontology Builder predefines certain system constants, classes, and

http://java.sun.com/products/rmi-iiop/index.html
http://java.sun.com/products/jdbc
http://java.sun.com/products/java-media/jsdt
Valued Sony Customer
23

primitives in a default upper ontology, which can be extended or refined to change the
knowledge model and behaviors within the system. The main predefined concepts are:

• CLASS - the default metaclass for all classes, CLASS is an instance of itself
• SLOT – the default metaclass for all slots and an instance of CLASS
• T – the root in the default upper ontology (sometimes referred to as THING in

other ontologies)
• INDIVIDUAL – the class of ground objects. Operationally, every entity that is not

a class is an instance of INDIVIDUAL.4
• Predefined slots – slot-minimum-cardinality, slot-maximum-cardinality, slot-

value-type, slot-value-range and domain. These are template slots on the class
SLOT.

• Predefined facets– minimum-cardinality, maximum-cardinality, value-type, value-
range and documentation-in-frame. These define the specific values for the slot as
associated with either a class or a slot frame.

• Predefined primitive data types – boolean, string, integer, float, date, etc.

 An ontology is composed of classes, slots, individuals and facets, which are all
implemented as frames. Ontology itself is also defined as a frame and contains
information such as author, date created and documentation. Both classes and slots
support multiple-inheritance in an Ontology Builder ontology.
 Classes are all instances of the metaclass CLASS by default, which is changeable by
the user. Classes can be instances of multiple metaclasses and they may be subclasses of
multiple superclasses.
 Slots are defined independently of any class and are instances of the metaclass SLOT
by default, which is also changeable by the user. They can also be instances of multiple
metaclasses and parent classes. Like classes, slots also support a multiple-inheritance
hierarchy. Slot hierarchies can be used to model naturally hierarchical relationships
between terms. For example, you might need to model the notion of price along with the
subrelations of wholesale-price, retail-price, and discount-price.
 Slots can be attached to a class frame or a slot frame, as slots are themselves first-class
objects and when attached describe the properties of the frame. A slot can be attached
either as a template slot or as an own slot. Own slots cannot be directly attached to a
frame, but are acquired by the frame (class, slot or individual) being an instance of
another class. Template slots can be directly attached to either a class or a slot frame.
The domain own slot (acquired by a slot frame from being an instance of class SLOT) is
useful for limiting the applicability of the slot only to the specified domain class and its
subclasses. If a slot does not define a domain, it can be applied to all classes in an
ontology. This flexibility is often useful during the early stage of ontology development
when the slots used in an ontology are still being refined. Later however, it is often
useful to define a domain for slots so that they are only used in specific contexts.
 Facets specify the specific values for a slot-class or a slot-slot association. A facet is
considered associated with a frame-slot pair, if the facet has a value for that association.
The predefined facets (value-type, value-range, minimum-cardinality, maximum-

4 Note: Slots and facets are instances of CLASSES. Currently, all entities are either CLASSES or
INDIVIDUALS but for extensibility, we are not stating that INDIVIDUALS and CLASSES form a
covering partition for all things.

Valued Sony Customer
24

cardinality etc.) hold the values given to a slot’s own slots (slot-value-type, slot-value-
range, etc.) when the slot is associated with a frame. The facet values can only be a
specialization of the slot frame’s own slot values. For example, if slot color is defined to
have a slot-value-type of “color”, when it’s attached to a frame, the value can only be
changed to a specialization of “color”, “rgbcolor” or “hsvcolor”. If the value is changed,
then the “value-type” facet will hold the changed value. In addition to predefined facets,
Ontology Builder supports the creation and use of user-defined facets. A user-defined
facet can be created and attached to a slot when the slot is attached to a frame. For
example, a user-defined facet might be used to specify whether or not a slot is
“displayable”.

4.3 Ontology Inclusion (Uses Relationship)

Ontology construction is time consuming and expensive. To lower development and
maintenance cost, it is beneficial to build reusable and modular ontologies so that new
ontologies can be created and assembled quickly by mixing and matching existing
validated ontologies. Both Ontolingua and Protégé have the capability to include
ontologies for the purpose of reuse [7, 22]. Protégé allows projects to be included, but
the included projects cannot be easily removed and no duplicated names can exist across
projects used (included projects plus the current working project) due to the requirement
that names must be unique. This unique name requirement in Protégé is limiting because
duplicate names occur in practice. Ontolingua provides facilities that allow flexible
combination of axioms and definitions of multiple ontologies. Ontolingua eliminates
symbol conflicts among ontologies in its internal representation by providing a local
name space for symbols defined in each ontology.
 Ontology Builder supports concepts reuse and ontology inclusion through the “uses”
relationship. The “uses” relationship allows all classes, instances, slots, and facets from
the included ontology to be visible and used by an ontology. For example, if ontology A
“uses” ontology B, all of the concepts defined in ontology B (classes, instances, slots and
facets) can be referenced from ontology A. A class in ontology A can be a subclass of a
class in ontology B, and any class in A can use any slots defined in ontology B. The
“uses” relationship can be added or removed easily from an ontology. When a “uses”
relationship is removed, inconsistencies might exist in the current working ontology
because concepts defined in the removed “uses” ontology still are being referenced, even
though the ontology is not being used. Changes made to an ontology are propagated in
real-time to all ontologies that use that ontology. Although this ensures that the latest
concepts are available for use, it might also cause inconsistencies. Verification can be
performed to diagnose and identify frames that have inconsistencies
 The “uses” relationship is transitive. If ontology A “uses” ontology B, and ontology B
“uses” ontology C, then ontology A “uses” ontology C automatically. Ontology Builder
also allows cyclical “uses” relationship, that is ontologies A and B can both use each
other. Concepts are unambiguously identified by using a globally unique identifier that is
generated automatically when a concept is first created; or by using a fully qualified
name. A fully qualified name is the concept name concatenated together with the “@”
and the ontology name. For example, car@transportation. The fully qualified name is
guaranteed to be unique as a concept name is enforced to be to be unique within a

mailto:car@transportation
Valued Sony Customer
25

specific ontology and ontology names are unique across all ontologies in the knowledge
base. The fully qualified names are used automatically when working with concepts in
ontologies other than the ontology where they are initially defined.

4.4 Data Storage and Knowledge-Relational Mapping

Knowledge-base systems traditionally used the computer’s main memory for storing the
knowledge needed at run-time. The amount of information that can be stored is limited
by the available memory and there might be an initial delay in loading all of the entities
into memory from a flat file. Moreover, the storing of the knowledge model in flat files
is not secure, is error-prone, and quickly becomes unmanageable as the size of the
knowledge base increases. Object-Oriented Database Systems (OODS) can also be used
to store the knowledge model and provide superior modeling for representing the
relations and hierarchies within an ontology. However, when compared to relational
DBMS (RDBMS), OODS lack in performance, enterprise usage and acceptance,
internationalization support, and other features. RDBMS are still the storage mechanism
of choice in enterprise computing when it comes to storing large amounts of
performance-critical data. RDBMS can store gigabytes of data, search several million
rows of data extremely quickly, and also support data replication and redundancy.
 Ontology Builder uses an enterprise-class RDBMS so that very large-scale ontologies
and large numbers of ontologies can be stored and retrieved quickly and efficiently.
Several other knowledge based systems SOPHIA [1] and an environment for large
ontologies motivated by PARKA [23] have also used RDBMS for these and other similar
reasons. Ontology Builder currently supports the Oracle 8 and Microsoft SQL Server
RDBMSs for data storage.
 Ontology Builder employs a sophisticated database schema to represent the OKBC
based knowledge model and can support all OKBC-defined operations that could be
performed on classes, instances, slots and facets, as well as the operations specified by
the OKBC ask/tell interface. The multiple-table database schema also supports
internationalization, which permits ontologies to be developed in any language. Multiple
translations of the same ontology can coexist in the same database and can be used to
view the same ontology in different locales. The schema is normalized; each piece of
information is stored in only one location so that modifications to a concept are
automatically propagated to all entities that use that concept.
 Knowledge-relational mapping is accomplished via a high-performance persistence
layer that converts relational data to and from in-memory Java objects that represent the
different entities and relationships of the knowledge model. Information retrieval is
optimized to retrieve information about multiple concepts via one JDBC database call,
which dramatically improves performance. Moreover, a lazy-loading algorithm is used
to retrieve information on an as-need basis. For example, when an ontology is first
loaded, only the classes and the class hierarchy are loaded; attached slots, slot values, and
facet values are only loaded when a user decides to browse or edit a particular class.

Valued Sony Customer
26

4.5 Multi User Collaboration & Locking

Ontology construction is often a collaborative endeavor where the participants in the
ontology building process share their knowledge to come to a common understanding and
representation of the ontology. These participants might be geographically separated and
for collaboration require the ability to hold discussions and view the changes made to the
ontology by other collaborators. Ontology Builder provides this type of multi-user
collaborative environment. Collaborators can hold discussions individually or in a group
and see changes made to the ontology by other collaborators in real time.
 Collaboration is implemented via the Java Data Shared Toolkit (JSDT), which
provides the communication, messaging, and session management infrastructure for
collaboration within Ontology Builder. As they log into the system, each user is
registered with the JSDT server in a default “global” discussion room. Messages sent by
any user in this discussion room are received by all other current users of the system.
Each ontology also defines its own discussion room, which is created the first time any
user opens the ontology for browsing or editing. Users who open the same ontology are
added to that ontology’s discussion room automatically and can see the messages from
and collaborate with other users within that ontology’s discussion room. A user can also
open a private chat session with any other user who is logged on to the system.
 Edits to any ontology in the system are broadcasted to all users, regardless of their
interest. The change record indicates the type of edit operation, the affected concept and
ontology, and the user who performed the action. Figure 4 is a snapshot of the
collaboration window that shows the system log and a discussion between collaborators.
Any changes to the ontology are committed to the database immediately, so that the
changes are available to all other users in real time. An icon is displayed automatically
next to the concepts within an open ontology that have been modified by other users,
indicating to the user that the information currently displayed in the Ontology Builder
client is no longer accurate. The user might already know what has changed based on the
discussion with other collaborators or can look in the system messages to see exactly
what was changed in the affected concept. An ontology can be refreshed at any point to
retrieve the latest state.
 Since multiple collaborators can make changes to the same ontology, some kind of
locking scheme is necessary to prevent users from overwriting each other’s changes.
Ontology Builder uses a pessimistic locking strategy that requires an explicit lock to be
acquired by a collaborator before any edits are allowed to a concept. Explicitly locking a
concept implicitly locks all of the parents and children of the locked concept, preventing
other users from editing either the children or the parents of the locked node. Explicitly
locking a concept still allows other users to edit the siblings of the locked concept.
Locked concepts are shown with a locked icon in all of the clients, indicating which
concepts are currently being edited. This locking strategy enables multi-user
collaboration and reduces inconsistencies generated from multiple collaborators working
on the same ontology.

Valued Sony Customer
27

Figure 4: Collaboration Window in Ontology Builder

4.6 Verification

Ontology Builder provides a verification engine to resolve any inconsistencies that might
have been introduced during the ontology development and maintenance process.
Maintaining consistency is not only critical during the development process where a
particular ontology might “use” other ontologies, it is even more critical during the
deployment phase where the ontologies have to be valid and consistent so that they can
be used by applications without any errors. Real-time verification is a fairly complex
task and requires a truth maintenance system (TMS) of some sort in order to have
acceptable performance. If a TMS is not used, thorough checks of all of the elements of
the ontology need to be done, which is not acceptable from a performance perspective.
Ontology Builder does some real-time verification during the edit/creation process itself
(for example, it checks for value-type and cardinality violations), but for a full
consistency check, the verification engine needs to be explicitly invoked by the user. The
verification engine checks for:

• Cycles
• Domain of slots is valid for the classes to which they are attached

Valued Sony Customer
28

• Minimum cardinality <= maximum cardinality
• Minimum cardinality <= num of values <= maximum cardinality
• Values are of specified value-types
• Undefined symbols – symbols that are being used but not defined in the current

ontology or any of the ontologies it uses
• Attached slots are consistent with the slot definition (Specialization of value-types,

value-ranges and cardinalities is checked for consistency)

4.7 Difference & Merging

Merging ontologies becomes necessary when there is a need to consolidate concepts
defined in multiple ontologies, often developed by different teams or gathered from
various sources, into a consistent and unified ontology that can be deployed with e-
commerce applications. Because the general task of merging ontologies can become
arbitrarily difficult, extensive human intervention and negotiation are required. Chimaera
[17] and PROMPT [21] provide semi-automated tools to facilitate the merging process.
The merging tools in Chimaera and PROMPT suggest a list of merging candidates and
present available operations on the candidate frames. Once a user finishes a particular
merge operation, more suggestions could be generated and the tool guides the users to
finish the merging process. Chimaera also provides diagnostics on the results of merging
and other ontology modifications.
 Ontology Builder follows a different path in that the initial list of merging candidate
frames is not generated. Instead, Ontology Builder relies on the user to decide where to
start the merging process. Essentially the user determines when two concepts mean the
same thing semantically. The rationale behind the decision is that in practice a user often
knows the structures and contents of the ontologies to be merged, and thus has the
knowledge to determine where to start the merging process. The goal of the difference
and merge service in Ontology Builder is to speed up the merge process once the initial
merging candidate frames have been chosen, rather than being a general-purpose merging
tool like those provided by Chimaera and PROMPT.
 In Ontology Builder, the merge operation does not generate a third ontology that
contains the merged results from two input ontologies. Instead, Ontology Builder defines
a base ontology and merge ontology where the differences between the two ontologies
can be initially identified and then, if desired, the differences can be merged into the base
ontology.
 Ontology Builder currently has a simplistic algorithm for reporting the differences
between two ontologies. Differences are reported for the two concepts selected for
comparison as well as for their children that have matching names. If there are no
matching names, the differencing stops. Ontology Builder reports the following
differences:

• Missing children/parents
• Missing slots
• Value, value-type, value-range, domain, documentation, and cardinality

differences for matched concepts

If desired, the differences can be merged. The merge operation

Valued Sony Customer
29

• Copies missing children recursively to the base ontology
• Copies missing slots to the base ontology
• Merges documentation, slot values, value-types, value-ranges and cardinalities for

the matched concepts

 The difference and merge feature of Ontology Builder is simple compared to the
merging features available in other tools like PROMPT or Chimaera, but future plans call
for enhancing this functionality based on further requirements and proposed usage.

4.8 Role Based Security

Ontology Builder provides a flexible security model designed to allow client access to the
back-end services. Every user has an account on the system and is only allowed to access
the back-end services if properly authenticated. Each user is assigned a role, which
denotes the level of access for ontology management. Users assigned a particular role
can only perform the operations allowed by that role, however, users can be assigned
different roles for different ontologies. The security model also enables a much finer-
grained permissions system where individual edit operations in an ontology (such as
modify-documentation) can be enabled for particular users.
 By protecting ontology data and controlling access to back-end services, Ontology
Builder’s security model meets one of the critical requirements for enterprise class
applications.

4.9 Internationalization

Ontology Builder is fully internationalized and can support the browsing and editing of
ontologies in multiple locales. A single representation of the ontology is maintained for
all locales. Names from each of the locales are linked to this one representation so that
changes in ontology structure in one locale are propagated and available in all the other
locales. Concepts, which have not been translated in a particular locale, are shown in the
locale in which they were initially created. For example, if the ontology was initially
created in English and then partially translated into Japanese, browsing it in Japanese will
show the names in English for the concepts that have not yet been translated. Ontology
Builder also provides support for translating from one locale into another locale. Hooks
are provided to use a translation tool or service if desired to semi-automate the translation
process. The snapshot in Figure 5 shows a Japanese ontology with some untranslated
words in English and French.

Valued Sony Customer

Valued Sony Customer
30

Figure 5: Ontology creation in Japanese

4.10 Import & Export

Ontology Builder provides import and export functionality based on XOL (XML based
Ontology Exchange Language) [14]. XOL is based on OKBC-Lite, a simplified form of
the OKBC knowledge model, and is “designed to provide a mechanism for encoding
ontologies within a flat file that may be easily published on the WWW for exchange
among a set of application developers.” In Fall’ 99, when the decision to use XOL was
made, XOL was considered to be an emerging standard for exchange and publication of
ontologies. Since, then other ontology representation and exchange standards such as
RDF and DAML+OIL have emerged and we plan to support these standards in the near
future. The XOL DTD used by Ontology Builder has been modified to support
internationalization, metaclass, uses, and facet definitions, which are not part of the
original DTD.

5 Ontology Server

Ontology Server is a scalable, high-performance server and is a critical component for e-
commerce applications that require ontologies to drive their services. It provides a very
scalable, available, reliable, and high-performance solution. Ontology Server uses
exactly the same architecture and representation as Ontology Builder and provides XML
and Java RMI interfaces for access to the ontological data. It is optimized for read-only
access, which facilitates the use of data-caching mechanisms to enhance performance,

Valued Sony Customer
31

which is critical for e-commerce applications. Ontology Server defines its own
interfaces, which are simpler and more suitable for e-commerce applications than the
general OKBC interface.

6 Usage & Performance

Ontology Builder was released internally for use by VerticalNet ontologists and domain
experts in April 2000, following a beta release in February 2000. The server - a Sun
Ultra 1/60, 1 Gigabyte of RAM, with Oracle 8.0.4 - is hosted out of Palo Alto and
accessed mainly from Horsham, Pennsylvania but it is also accessed from several other
locations. Over the past year 84 different users have created 974 ontologies on the
server. Concurrent usage peaked at about 20 users using the system at one time. The
current database has over 5 million records, consisting of 650,000 classes, 480,000 slots,
680,000 frame-slot relations, 220,000 frame-slot-facet relations, 650,000 parent-child
relations and 1,100,000 meta-class relations.
 Ontology Builder and Ontology Server both use the same architecture and back-end
services. However, Ontology Server is optimized for read-only access to the ontological
data and gives better performance than Ontology Builder for read operations. Figure 6,
shows the performance graph for read operations for Ontology Server. 25 to 1000 clients
were simulated accessing 100 different frames, each frame being accessed by each client
100 times. The performance tests were done on a Windows 2000 Pentium III (800 mHz)
machine with 512 megabytes of RAM, using SQLServer 2000 default configuration
without any tuning. Multiple clients were simulated using multiple threads on a
Windows 2000 Pentium III (800 mHz) machine. The performance data is given for
average response time - the time experienced by a client to retrieve a frame, including
server processing time, networking delay, lookup and Java serialization/deserialization
and for overall requests per second – the number of frame accesses per second or the
server throughput.

Figure 6: Performance graph for Ontology Server

Ontology Server Performance

0

50

100

150

200

0 200 400 600 800 1000
Number of Clients

O
ve

ra
ll

R
eq

ue
st

s
Pe

r
Se

co
nd

0

2

4

6

8

10

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
)

Requests Per Second
Avg. Resp. Time (s)

Valued Sony Customer
32

 The graph shows that as the number of clients increases, the throughput remains
almost the same but the average response time increases, as now clients have to wait for
previous requests from other clients to complete. The average response time for 200
users is about 2 seconds, but as the number of users increases the response time gets
much longer, which may not be acceptable. To allow a more scalable solution multiple
servers can be clustered together to handle thousands of users concurrently with a
reasonable response time. The choice of application server can also significantly impact
the response time and the server throughput as some application servers provide better
performance and scalability than others. The choice of database and fine-tuning of the
database can also increase performance and scalability.
 Excluding the networking, serialization and lookup time, Ontology Server’s actual
processing time is only 1-3 milliseconds and does not vary significantly with the number
of clients, once the frame has been initially loaded from the database. The initial loading
time is about 20–250 milliseconds for each frame, depending on the number of slots,
facets, class, parents, children and metaclass relations to be retrieved. Once retrieved, the
application server caches the frame and subsequent requests to retrieve that frame take
only 1-3 milliseconds regardless of the client requesting the frame. The number of
frames to be cached can be specified as a parameter. Frames not being accessed for a
while are cached out and replaced with the newly requested frames as the caching limit is
reached. Since, all of our tables use primary keys, the size of the database and tables
does not significantly increase the initial loading time of the frame. Figure 7, shows the
access time in milliseconds for retrieving a bare frame (with no relational information)
from the frame table with different sizes.

Num. Of Rows Min. Time Max. Time Avg. Time Iterations

1000 3.12 14.45 7.2 200
10,000 3.84 17.12 7.75 200
100,000 3.23 15.78 9.35 200

1,000,000 4.52 19.35 11.85 200
Figure 7: Access time for retrieving from database table with different sizes

 Ontology Builder does not use caching for retrieving ontological data, but uses lazy
loading to retrieve information as needed. Each piece of information is retrieved from
the database every time it is requested. For the same machine configuration as described
above, the average response time to retrieve a simple frame with parents, children,
metaclasses and slots (without slot values and frame-slot-facets) is about 50 milliseconds,
which translates into 20 read transactions per second. The average time to create a
simple frame in Ontology Builder is about 35 milliseconds, which translates into 30 write
transactions per second. In practice this level of performance for Ontology Builder has
proved to be acceptable, as the ontology development and maintenance is not a
performance intensive process. Clustering multiple servers, choice of application server
and tuning the database can further improve Ontology Builder’s performance.

Valued Sony Customer
33

7 Discussion

Ontologies are becoming much more common as a core component of e-commerce
applications. Industrial strength solutions are needed and, in fact, critical for the success
and longevity of these applications. We have presented two Vertical Net products:
Ontology Builder and Ontology Server. We believe these products bring together the
best knowledge management and ontology practices and the best enterprise architectures
to provide industrial-strength solutions for ontology creation, maintenance, and
deployment.
 When evaluated against our initial product requirements, Ontology Builder and
Ontology Server meet or surpass most of the requirements. Figure 8, shows this
evaluation and compares Ontology Builder with the ontology environments compared in
Figure 1. Even though we have provided reasonable solutions to most requirements,
designated by a 0, we believe there is still considerable room for improvement and plan
to continue to enhance functionality in these particular areas.

 Scalable

Available
Reliable

Ease of
Use

Knowledge
Representation

Multi User
Collaboration

Security Diff
&
Merge

Internationaliza
tion

Versioning

Ontolingua/
Chimaera

- - + 0 - + - -

Protégé/
PROMPT

- 0 + - - + - -

OntoWeb
Tadzebao

- 0 + + - - - -

OntoSaurus/
Loom

- - + 0 - - - -

Ontology
Builder

+ 0 0 0 0 0 + -

Figure 8: Comparison of Ontology Builder with other Ontology Environments

 We believe we have delivered a robust solution for our most critical requirements –
scalability, availability, reliability and performance. By using an enterprise architecture
(J2EE) and an enterprise RDBMS as the back end storage, we have provided an
enterprise-class scalable, reliable, available, and high-performance ontology management
solution.
 The Ontology Builder client provides an easy-to-use interface for ontologists, domain
experts, and business analysts. Though, we have not done formal usability studies, many
domain experts and analysts have been able to use the tool productively, with a minimum
of training. However, we believe, there is always room for improvement in user-interface
design and usability and we plan additional work on usability in response to user studies
and needs analysis.
 Our knowledge model is based on the OKBC knowledge model and provides
flexibility and extensibility for incorporating new features and existing knowledge
models. However, Ontology Builder does not support axioms yet and does not include a
full reasoning component. While we do support internal consistency checking and
propagation of implicit information, we do not provide an OKBC interface and thus do
not support full OKBC compliance. We plan to extend our knowledge model to support
axiomatic reasoning and also plan to implement an OKBC interface. Our current

Valued Sony Customer
34

import/export format is XOL, future plans include support for other common formats
such as RDF and DAML+OIL.
 We have provided a multi-user collaborative environment to facilitate the ontology
building, sharing, and maintenance process. Collaborators can hold discussions and see
changes committed by other users. The collaborative environment could be further
improved by providing optimistic locking (where a frame is not allowed to be edited,
only when it is being updated) instead of pessimistic locking. We are also investigating a
more complete conferencing and whiteboarding solution, perhaps by integrating a third
party tool like Microsoft NetMeeting
(http://www.microsoft.com/windows/netmeeting/default.asp) or Netscape Conference
(http://home.netscape.com/communicator/conference/v4.0).
 Our role-based security model provides data security, data integrity, user
authentication and multiple levels of user access. A fine-grained model in which a set of
permissions could be assigned to a user of a particular ontology has also been designed.
 The difference and merging engine currently uses a simple algorithm. Future plans
call for a more sophisticated difference and merging algorithm
 Ontology Builder is fully internationalized and can be used in multiple languages and
ontologies can be created and displayed in multiple locales.
 Ontology Builder currently does not provide any versioning support. Versioning of
ontologies is needed so that changes from one version to another can be tracked and
managed and so that applications can determine what specific version of an ontology is
being accessed. We hope to provide fine-grain versioning control functionality in the
future.

8 Acknowledgements

We like to thank the many people who have contributed to these products - Mark Yang
for design, Howard Liu, Don McKay, Keith Thurston, Lisa Colvin, Patrick Cassidy, Mike
Malloy, Leo Orbst, Eric Elias, Craig Schlenoff, Eric Peterson for their use of the products
and feedback, Joel Nava, Faisal Aslam, Hammad Sophie, Doug Cheseney, Nigel McKay
for implementation and Hugo Daley,Adam Cheyer for their support.

9 References

[1] Neil F. Abernethy, Russ B. Altman, “SOPHIA: Providing basic knowledge services

with a common DBMS”, Proceedings of the 5th KRDB Workshop, Seattle, WA,
1998.

[2] Dan Brickley & R.V.Guha, "Resource Description Framework (RDF) Schema

Specification 1.0", World Wide Web Consortium, Cambridge, MA, 1999

[3] Vinay Chaudhri, Adam Farquhar, Richard Fikes, Peter Karp, James Rice, “Open

Knowledge Base Connectivity 2.0”, Knowledge Systems Laboratory, 1998.

http://www.microsoft.com/windows/netmeeting/default.asp
http://home.netscape.com/communicator/conference/v4.0
Valued Sony Customer
35

[4] J. Domingue, “Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on theWeb”, Proceedings of the Eleventh Workshop on Knowledge
Acquisition, Modeling and Management, Banff, Canada, 1998.

[5] J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa & V. R. Benjamins,

“WonderTools? A comparative study of ontological engineering tools”,
Proceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling and
Management, Banff, Canada, 1999.

[6] Adam Farquhar, Richard Fikes, James Rice, “The Ontolingua Server: a Tool for

Collaboartive Ontology Construction”, International Journal of Human-Computer
Studies, 46, 707-727, 1997.

[7] Adam Farquhar, Richard Fikes, James Rice, “Tools for assembling modular

ontologies in Ontolingua”, Knowledge Systems Laboratory, Stanford University,
April, 1997.

[8] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Deborah L. McGuinness, and

Peter F. Patel-Schneider. ``OIL: An Ontology Infrastructure for the Semantic Web
''. In IEEE Intelligent Systems, Vol. 16, No. 2, March/April 2001.

[9] Michael Genesereth and Richard Fikes, “Knowledge Interchange Format, Version

3.0 Reference Manual”, Knowledge System Laboratory, Stanford University, 1992.

[10] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, & M. A.

Musen, “Knowledge Modeling at the Millennium (The Design and Evolution of
Protege-2000)”. Twelfth Banff Workshop on Knowledge Acquisition, Modeling, and
Management. Banff, Alberta, 1999.

[11] James Hendler and Deborah L. McGuinness, ``The DARPA Agent Markup

Language''. IEEE Intelligent Systems, Vol. 15, No. 6, November/December 2000,
pages 67-73.

[12] ISX Corporation (1991). "LOOM Users Guide, Version 1.4".

[13] Peter D. Karp, "The design space of frame knowledge representation systems",

Technical Report 520, SRI International AI Center, 1992.

[14] Peter D. Karp, Vinay K. Chaudhri, and Jerome F. Thomere, "XOL: An XML-Based

Ontology Exchange Language," Technical Note 559, AI Center, SRI International,
1999.

[15] Ora Lassila & Ralph Swick, "Resource Description Framework (RDF) Model and

Syntax Specification", W3C Recommendation 22 February 1999, World Wide Web
Consortium, Cambridge (MA); available on-line as http://www.w3.org/TR/REC-
rdf-syntax/.

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
Valued Sony Customer
36

[16] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder, “An

Environment for Merging and Testing Large Ontologies. Proceedings of the
Seventh International Conference on Principles of Knowledge Representation and
Reasoning, Breckenridge, Colorado, April 2000.

[17] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder, “The

Chimaera Ontology Environment”, Proceedings of the The Seventeenth National
Conference on Artificial Intelligence, Austin, Texas, July 2000.

[18] Deborah L. McGuinness ``Ontologies and Online Commerce''. In IEEE Intelligent

Systems, Vol. 16, No. 1, January/February 2001, pages 8-14.

[19] Deborah L. McGuinness. “Ontologies Come of Age”. To appear in D. Fensel, J.

Hendler, H. Lieberman, and W. Wahlster (editors). Semantic Web Technology,
MIT Press, Boston, Mass., 2001.

[20] Natalya F. Noy & Mark A. Musen, “SMART: Automated Support for Ontology

Merging and Alignment”, Proceedings of the Twelfth Workshop on Knowledge
Acquisition, Modeling and Management, Banff, Canada, July 1999.

[21] Natalya F. Noy & Mark A. Musen, “PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment”, Seventeenth National Conference on Artificial
Intelligence, Austin, Texas, 2000.

[22] Protégé Users Guide,

http://www.smi.stanford.edu/projects/protege/doc/users_guide/index.html

[23] Kilian Stoffel, Merwyn Taylor, James Hendler, “Efficient Management of Very

Large Ontologies”, Proceedings of American Association for Artificial Intelligence
Conference, (AAAI-97), AAAI/MIT Press 1997.

http://www.smi.stanford.edu/projects/protege/doc/users_guide/index.html
Valued Sony Customer
37

Valued Sony Customer

Valued Sony Customer

Valued Sony Customer
38

OntoMap – the Guide to the Upper-Level
Atanas K. Kiryakov, Marin Dimitrov

OntoText Lab., Sirma AI EOOD
Chr. Botev 38A, 1000 Sofia, Bulgaria,{naso,marin}@sirma.bg

Kiril Iv. Simov
Linguistic Modelling Laboratory, Bulgarian Academy of Sciences

Akad. G. Bontchev Str. 25A, 1113 Sofia, Bulgaria, kivs@bgcict.acad.bg

Abstract. The upper-level ontologies are theories that capture the most common con-
cepts, which are relevant for many of the tasks involving knowledge extraction, repre-
sentation, and reasoning. These ontologies use to represent the skeleton of the human
common-sense in such a formal way that covers as much aspects (or ”dimensions”) of
the knowledge as possible. Often the result is relatively complex and abstract philo-
sophic theory.

Currently the evaluation of the feasibility of such ontologies is pretty expensive
mostly because of technical problems such as different representations and terminolo-
gies used. Additionally, there are no formal mappings between the upper-level ontolo-
gies that could make easier their understanding, study, and comparison. As a result,
the upper-level models are not widely used. We present OntoMap — a project with the
pragmatic goal to facilitate an easy access, understanding, and reuse of such resources
in order to make them useful for experts outside the ontology/knowledge engineering
community.

A semantic framework on the so called conceptual level that is small and easy
enough to be learned on-the-fly is designed and used for representation. Technically
OntoMap is a web-site (http://www.ontomap.org) that provides access to upper-level
ontologies and hand-crafted mappings between them. Currently it supports just on-
line browsing and DAML+OIL export. The next step will be to provide the resources
in various formats, including an application server giving an uniform access to the
resources via OKBC. This way OntoMap will become part of the semantic web, i.e.
machine-understandable rather than just human-readable.

1 Introduction

The structure of the paper is as follows: the next section makes an introduction to the Upper-
Level Ontologies, including a principal comparison to the domain-specific ones, discussion
on their relations with the lexical knowledge bases and some incompatibility issues. Sec-
tion 3 discusses the representation languages and primitives with subsections about the most
significant paradigms and a short overview of the approaches for their unification. Section
4 describes the primitives used in the OntoMap project – the OntoMapO ontology. Section
5 focuses on the OntoMapO methodology for mapping concepts between ontologies. More
technically section 6 enumerates the formats in which OntoMap will provide all the ontolo-
gies and mappings. The initial set of ontologies to be hosted and the mappings between them
are discussed in section 7. The next section 8 demonstrates the OntoMap usability with a

Valued Sony Customer
39

sample snapshot. Section 9 provides an idea about the services that could be provided on top
of the results of the project. The next section concludes the paper.

2 Upper-Level Ontologies

The upper-level ontologies capture mostly concepts that are basic for the human understand-
ing of the world. They are ”grounded” in (supported by, wired to) the common sense that
makes it hard to formalize a strict definition for them. They represent the so called prototypi-
cal knowledge.

For example, what should be a formal KL-ONE-style or Frame-style definition of a ”ta-
ble”. Most of the tables have 4 legs, however, there are pretty obvious exceptions for tables
with three legs, single leg or even without anything to be considered as a leg. There could be
also a ”serious” table with 6 legs. What should be the minimum and maximum cardinality for
the slot/role leg? And what should be the type restriction? This is the reason to have most of
the upper-level concepts being primitive in KL-ONE terms – they can only have partial def-
initions, some necessary conditions that involve other partially defined concepts. This is the
practical reason to have the upper-level ontologies (for example, Upper Cyc Ontology, SEN-
SUS, MikroKosmos) defined mainly in terms of taxonomic relations. An attempt to strongly
use attributes in their definitions could be hard, expensive, and usually leads to involvement
of default reasoning or other similar mechanisms that cause intractability.

2.1 Domain-Specific vs. Upper-Level Ontologies

This pseudo-dilemma seems to be mostly a question of goal and scope of the developers
of the ontology rather than a representational or management problem. Of course, there ex-
ists a significant real difference between the two types of ontologies. The domain-specific
ontologies that are trying to capture, for example, a market segment or certain scientific area
typically consist of well-defined concepts. For example, in the natural sciences (Mathematics,
Physics, Chemistry, Biology, Medicine) the knowledge is usually easy to formalize because
it is more or less systematic — it could be expressed using well-defined scientific terms. In
such cases, the objects in the universe of discourse are either purely abstract either they are
some idealized/simplified models of the real phenomena in the world. For instance, a triangle
is nothing more than a polygon with three angles.

2.2 Lexical Knowledge Bases

The so-called lexical knowledge bases (LKB, such as WordNet) are lexicons, thesauri, or dic-
tionaries that attempt to formalize the lexical semantics — the meanings of the words in one
or more natural languages. Similar to the upper-level concepts, the meanings of the words are
grounded in the common understanding of huge populations — there are no formal defini-
tions, the words can bear a number of different meanings often based on associations, typical
uses, collocations, and prototypical knowledge. Going further, the meanings of many words
are just primitive concepts. Historically the LKBs and the upper-level ontologies seriously
influenced each other. Some upper-level ontologies were developed on the basis of a LKB —
such example is the SENSUS ontology ([10]). Other upper-level ontologies were developed

Valued Sony Customer
40

in order to give formal semantics to a LKB — such an example is the EuroWordnet Top On-
tology, [15]. This is the reason to have a number of LKB semantic resources included in the
initial set of ontologies to be hosted in OntoMap.

2.3 Philosophical Diversity

The existence of several upper-level ontologies that disagree on the most basic concepts about
the entities in the world demonstrates a significant philosophical diversity. The practical goals
OntoMap project is after seem to require clarification of these basic discrepancies. Which
properties of the entities in the world are the most basic ones? What follows from different
choices on this level? On which level of generality the differences disappear if they disappear
at all? For example, the top of the MikroKosmos ontology (see [14]) demonstrates a typical
top-level:

ALL
PROPERTY

ATTRIBUTE
RELATION

OBJECT
SOCIAL-OBJECT
PHYSICAL-OBJECT
MENTAL-OBJECT
INTANGIBLE-OBJECT

EVENT
SOCIAL-EVENT
PHYSICAL-EVENT
MENTAL-EVENT

However, it ignores the stuff/object (countable) distinction that is very basic in Cyc (see
[2]) and other upper-level ontologies.

Our understanding is that OntoMap should not try to choose the best upper-model or to
produce a new one. The upper-level have to be chosen according to the specific application –
we just want to make the comparison easier.

2.4 Some Disadvantages of the Automatic Mapping

Automatic mapping or merging of ontologies is not involved in OntoMap — we start with
the assumption that there either exist some hand-crafted mappings, or such can be developed.
Even though it seems that automatic mapping could reduce the efforts, the typical heuristics
employed (see [11], [1]) can have a very limited role in the case of upper-level ontologies
because of a number of reasons:

• there is relatively small number of upper-level resources, because they are complex, ex-
pensive, and (potentially) more reusable than the domain-specific ones;

• they are more complex than the domain-specific ones, because they handle more abstract
and partially defined concepts. Much of the semantics is represented just as a free text
gloss, rather than as a formula in some knowledge representation formalism. So, in many

Valued Sony Customer
41

cases the equivalence (or mapping) between two concepts could be judged only by inter-
pretation of the glosses;

• the mappings between upper-level ontologies are more re-usable because the ontologies
are more reusable;

• the quality of the mapping is extremely important because a mistake in the upper-levels
of an ontology can have terrible effect on the lower levels.

3 Unified Representation Needed

In order to provide a uniform representation of the ontologies and the mappings between
them, a relatively simple meta-ontology (let us call it OntoMapO) of property types and
relation types should be defined. Before presenting OntoMapO we will make an overview of
the related problems and approaches.

3.1 Terminological Diversity

There are number of different notions (or terminologies) that are currently used in knowledge
management community. The differences (both phraseological and conceptual) are rooted in
the main paradigms in the knowledge representation. Here is a non-exhaustive overview of
the most popular ”languages” used by the ontologists:

• concepts, relations, properties— these are usually the terms inspired by the early se-
mantic networks (let us use the abbreviationSemNetbelow), mathematics and philoso-
phy.Conceptsare used to express any kind of static and cognitively autonomous semantic
phenomena. They classify the entities in the domain of discourse — each entity either
belongs to a certain concept’s interpretation, either not. In other words, the information
carried out by the concept is either true for the entity either not. The entities that belong to
the interpretation of the concept are calledinstancesof the concept. Typical concepts are
Person, Food, Meeting, Idea. Thepropertiescome to represent characteristics, aspects, or
attributes of the entities, as well, as relations between them. They are further separated
into attributesandrelations. Typical representatives are: color, gender (attributes); loves,
causes (relations).

• classes, slots, facets and frames— obviously, this is the frame-based terminology (to
be referred asFrames below). Hereclassescorrespond to the concepts while the no-
tion for the instances remains the same. Theslots(especially as they evolved in the last
years) correspond to the properties. Slots are further distinguished intotemplate-slots
(class- or concept-attributes in SemNet) andown-slots(instance-attributes in SemNet).
The template-slots are defined on a class level — for example, Color is a template-slot
for the class Car. In contrast, own-slots connect some values of the template-slots to cer-
tain instances of the class, say Colour(Ferarri, Red).Facetsare properties of the slots, for
example, Domain, Range, Min-Cardinality, Documentation. Formally speaking, they are
own-slots of the slots. There is no clear favorite for a single term corresponding to the
facet notion in the rest of the paradigms;

Valued Sony Customer
42

• concepts, roles, individuals— this is the terminology used in the so called description
logics (DL), the descendants of the KL-One knowledge representation language (CLAS-
SIC, LOOM, KRIS, SHIQ). This paradigm is pretty close to the one used in the semantic
networks. Strictly speaking, it is developed to make them more precise on the epistemo-
logical level. Theroles correspond to the properties, theindividualscorrespond to the
instances;

• classes, objects, attributes- this is the terminology used in theobject-orientedparadigm
(OO), mostly popular for the purposes of the software engineering. Theclassescor-
respond to the concepts while theattributes(also called data members) correspond to
properties. Equivalent of the class-attributes are thestatic data members. Theobjectsare
always instances of certain class;

• collections, individuals, predicates, constants- this is the terminology used by thecy-
clists, the people developing the Cyc knowledge base at Cyc Corp. Roughly, thecol-
lectionscorrespond to concepts,individualsto the instances, and binary predicates (that
are kind of collections themselves) correspond to properties. Theconstantsare names of
collections, individuals, or predicates.

3.2 The Conceptual Level

There are number of attempts to resolve the terminological diversity by managing ontologies
in a representation-independent fashion on the so called knowledge-level or conceptual level.
Two of the most popular approaches are reported in [4] (ODE) and [12] (OntoEdit). Even
sticking to the frame-based terminology the knowledge-model of Protéǵe-2000 (see [13]) is
also a good example for a self-contained and well designed conceptualization that provides
sufficient expressive power to capture ontologies encoded in different languages.

A comprehensive classification of the different kinds of properties is reported in [7] —
according to different combinations of the meta-propertiesidentity, rigidity anddependence
it introduces seven different notions corresponding to ”Concept” in ODE. The primitives used
in Cyc (see [2] and the previous sub-section) are interesting at least because the approach is
proven in a really large-scale knowledge base.

4 OntoMapO: The OntoMap Primitives

OntoMap is trying to use the minimal useful set of primitives. We were led by the understand-
ing that the oversimplification is not that fatal for the overall usability as a complex system of
primitives could be. We tried to design OntoMapO to capture most of the semantics usually
encoded in upper-level models. The guideline was to give access to 80% of the ”knowledge”
content of of the upper-level ontologies within 20% of the complexity of the representation
needed to capture all of it.

We developed a minimalistic meta-ontology that is also as self-describing as possible.
Thus, most of the primitives are defined just in terms of the rest of the OntoMapO primitives.

OntoMapO ontology could be also seen as a language. A simple language that provides
some expressive power via single kind of expressions – binary relations between concepts.
We are intentionally not providing specific syntax in order to keep it as representation in-
dependent as possible. Further in this paper we will use a LISP-like syntax to serialize the

Valued Sony Customer
43

relations, however, it is obvious that many other notations (say XML) could perform equally
well.

4.1 Comparison with Other Approaches

We will try first to give an impression about OntoMapO by quickly comparing it to two well
known approaches for ontology representation.

4.1.1 OntoMap vs. Ontolingua

Each concept is represented in Ontolingua with some twenty slots, many of which are not
obvious for people that do not understand frames. For example, if somebody wants to un-
derstand the definition ofCorporation in the Enterprise Ontology as it is represented
in Ontolingua (see [18] and [17]) s/he has to bother about the meaning of slots likeSet-
Cardinality andRelation-Universe .

We undertake an approach opposite to the one employed in Ontolingua, [5], following the
rationale that even though many distinctions could be clearly defined in Ontolingua the most
of the semantic-model developers cannot understand them. Our vision is that the database
designers, for example, should not be expected to learn complex frame-based theories.

4.1.2 OntoMap vs. RDFS and DAML+OIL

OntoMapO is much similar to the RDFS. The equivalent forrdfs:Class is Concept in
OntoMap and again there are two basic relations: instantiation and inheritance (see subsection
Instantiation in Addition to Inheritance). An equivalent ofrdf:Property in OntoMap is
BinaryRel .

We will try to outline just the major differences:

• in OntoMaprdfs:Resource is missing, actually there is no difference between classes
and resources – they are both considered as concepts (resp.rdfs:Class andConcept).

• as a consequence the property types (resp.rdf:Property or BinaryRel) are con-
sidered as a sub-class of the concepts.

• there is no special relation forrdfs:subPropertyOf – the sub-class relation (resp.
rdfs:subClassOf andChildOf) is used for this purpose.

Similarly to the RDF triples, the basic expressive primitive in OntoMap are directed bi-
nary relations between the concepts that are labeled with other concepts.

The DAML+OIL language (see [8]) can be seen as extension of RDFS. OntoMapO is
much similar and basically simpler than DAML+OIL. It is missing class expressions (no
enumeration, boolean expressions, and property restrictions), Unique and Ambiguous prop-
erties. However, it is not the case that OntoMapO is a sub-language of DAML+OIL, in ad-
dition it has number of primitives for mapping (TopInstance, ExactClass, ParentAsInstance,
and ChildAsClass) and meronymy (PartOf, MemberOf, and SubstanceOf).

Valued Sony Customer
44

4.2 Concepts, Relations, and Ontologies

Conceptis the most basic primitive, so, we are leaving it to the reader’s intuition. Just as a
reference point the concepts could be compared to the constants in Cyc. The concepts could
be related to each other bybinary relations. Each binary relation has a type that is a concept.
Each concept belongs to an ontology and, of course, there could be many different ontologies.

4.3 Instantiation in Addition to Inheritance

Our semantic framework got some inspiration from Cyc, Protéǵe-2000, and RDFS repre-
sentation models (see [2], [13], and [16]) — in addition to the inheritance relations we also
employ as a basic mechanism the instantiation. So, the concepts are not only described by
their parents and children in the subsumption hierarchy but also from the classes that they
belong to. The classes themselves are also concepts that could belong to other classes and so
on. This way an infinite number of meta-levels could be defined.

We will use a simple set-theoretical semantics to explain the distinction between the in-
heritance and instantiation. Suppose that each concept is interpreted as a set of its instances.
So, (InstanceOf I C) means thatI ∈ C. In the same fashion(ChildOf C1 C2)
means thatC1 ⊂ C2. This interpretation has some pretty reasonable consequences:

• the inheritance relations are transitive — if(ChildOf C1 C2) and(ChildOf C2
C3) it follows that(ChildOf C1 C3) . Really, fromC1 ⊂ C2 andC2 ⊂ C3 it follows
thatC1 ⊂ C3

• the instantiation is not-transitive — ifI ∈ C andC ∈ MetaC it does NOT follows that
I ∈ MetaC

• the instantiation is transitive with respect to inheritance — if(InstanceOf I C1)
and(ChildOf C1 C2) it follows that(InstanceOf I C2) . Really, fromI ∈ C1
andC1 ⊂ C2 it follows thatI ∈ C2

An obvious advantage of such extensive use of instantiation is that it makes the hierarchy
less tangled avoiding multiple-inheritance on many places. As a design principle, instantiation
should be used to express non-sortal properties of the concepts (see [7]). For example, in
OntoMapO (see below) we represent the transitivity of a relation type (say,ChildOf) via
instantiation. It is because the fact that certain relation is transitive does not determines its
identity — it is just a rigid property, namely a Category for relations.

4.4 Relations

Each relation between two concepts is an instance of the concept representing its type. Let
us extend the set-theoretical interpretation of our model — if(RelA B C) than the pair
< B, C > ∈ RelA. Suppose there are two conceptsRelA andRelB that represent relation
types and the first one inherits the second one(ChildOf RelA RelB) . Our interpretation
correctly predicts thatRelB holds between all concepts whereRelA holds. Let us show how
it works:

• let have conceptsA andB and there is a relation of typeRelA between them(RelA A
B)

Valued Sony Customer
45

• following our interpretation we can state that< A, B > ∈ RelA

• also(ChildOf RelA RelB) means thatRelA ⊂ RelB

• now it is obvious that< A, B > ∈ RelB, that means that

• there is a relation of typeRelB between the conceptsA andB.

In OntoMapO all the concepts representing relation types should be instances of theBi-
naryRel concept or at least one of its children. Further, OntoMap inference engine con-
siders a binary relation to be transitive iff it is an instance ofTransitiveRel that is a
child of BinaryRel . Examples for transitive relation areChildOf andEquivalent .
Analogously, a concept represents a symmetric relation type iff it is an instance ofSymmet-
ricRel — we can takeInverse relation (discussed below) as such example.

4.5 Each OntoMapO Relation Has an Inverse Relation

Another principle that we followed was to define an inverse relation for each of the On-
toMapO relations except the symmetric ones, of course. The rationale behind this was two-
fold:

• to emphasize that the OntoMap relations (in contrast to the slot notion, for example) does
not give any representational preference to the concept in the first place

• two make the relations easy to read and follow in both directions

So,ChildOf relation has its inverseParentOf relation; InstanceOf is inverse to
ClassOf . In order to keep some correspondence to the frame-based systems we defined
HasSlot relation as an inverse to theDomain relation that could be defined between a
relation type and the concept which instances could be first arguments of the relation. Anal-
ogously,Reifies is inverse to theRange relation that holds between a relation type and
a concept which instances could be second arguments of the relation. Here are some real
constraints that take place in OntoMapO:

• (Domain Inverse BinaryRel) and the equivalent statement that
(HasSlot BinaryRel Inverse)

• (Range Inverse BinaryRel)

• (Domain ChildOf Concept) , equivalently(HasSlot Concept ChildOf)

4.6 How Are the Predefined Relations Special

Let us callvariants of a relationR all its direct or indirect children (i.e. sub-relations or
sub-properties) as well as the relations that are equivalent to it or one of its children.

OntoMap considers as an equivalence relation each relation that is variant ofEquiva-
lent . In a similar fashion, all the variants ofChildOf andParentOf are treated as in-
heritance relations. Analogously, one relation is an instantiation relation iff it is a sub-relation
of InstanceOf or ClassOf relations. Obviously, all the sub-relations ofInverse are
properly interpreted as inversion by the OntoMap inference engine.

Valued Sony Customer
46

This approach makes the primitives that the OntoMap inference engine understands ex-
tensible. For example, when ”explaining” Cyc’s knowledge model to OntoMap it is easy to
define(Equivalent #$genls ChildOf) – this way OntoMap automatically starts to
understand this kind of Cyc inference relations without any need to translate them further.

There is an interesting implementation issue related to this extensibility. In order to infer
all the inheritance relations, the engine should know all the equivalence relations (to be able
to detect the variants ofChildOf andParentOf). However, the opposite is also true. The
appropriate algorithms were implemented.

4.7 The Hierarchy

The hierarchy below is basically an inheritance tree augmented with some instantiation infor-
mation – after each concept name in brackets we have the (most specific) classes it belongs
to.

Top (Concept)
Concept (Concept)

BinaryRel (Concept)
TransitiveRel (Concept)
SymmetricRel (Concept)

Ontology (Concept)
Context (Concept)

ChildOf (TransitiveRel)
MuchMoreSpecific (TransitiveRel)

ParentOf (TransitiveRel)
MuchMoreGeneral (TransitiveRel)

ClassOf (BinaryRel)
ExactClassOf (BynaryRel)

InstanceOf (BinaryRel)
TopInstanceOf (BinaryRel)

SimilarTo (TransitiveRel, SymmetricRel)
Equivalent(TransitiveRel,SymmetricRel)

Inverse (SymmetricRel)
ChildAsClass (BinaryRel)
ParentAsInstance (BynaryRel)
Domain (BinaryRel)
Range (BinaryRel)
HasSlot (BinaryRel)
Reifies (BinaryRel)
DisjointWith (BinaryRel)
IsPartOf (TransitiveRel)
HasPart (TransitiveRel)
MadeOf (BinaryRel)
SubstanceOf (BinaryRel)
MemberOf (BinaryRel)
GroupOf (BinaryRel)

Valued Sony Customer
47

The full definition of OntoMapO in DAML+OIL (version from March, 2001) together
with descriptions of each of the concepts is available at
http://www.ontomap.org/2001/07/ontomapo

5 Ontology-Mapping Primitives

There is no formal difference between the relations that can be used inside an ontology and
those to be used for mapping of concepts in different ontologies. However there are number
of relations that are not expected to be used inside well defined ontology — those should
be used for handling structural differences between different ontologies. For example, the
(TopInstance A B) should be used when a conceptA from one ontology exists as a
conceptB on the upper level of denotation in another ontology, i.e.(ChildOf X A) holds
iff (InstanceOf X B) holds. Such design patterns should not be tolerated inside a single
ontology. Here follow explanations for these relations:

• MuchMoreSpecific , MuchMoreGeneral – the first concept is much more specific
(resp. general) than the second one. Both are transitive and inverse to each other and have
to be used to ”constrain” the meaning of a concept that has not equivalent or even similar
concept in another ontology;

• TopInstance – the first concept is the most general instance of the second one. Inverse
to ExactClass ;

• ExactClass – the first concept is a kind of meta-concept, the second concept is the
most general instance of the first one. Inverse toTopInstance ;

• ParentAsInstance – the first concept is more general than all the instances of the
second one that is a meta-concept. Inverse toChildAsClass

• ChildAsClass – the first concept is a meta-concept (class), all its instances are more
specific than the second concept. Inverse toParentAsInstance

5.1 Representing Ontologies in OntoMap

When an ontology representation has a well defined conceptualization our approach is to map
its primitives to the OntoMapO primitives. For example, importing Upper-Cyc Model ([2])
we just defined that

(Equivalent #$genls ChildOf)
(Equivalent #$isa InstanceOf)

an so forth with the rest of the Cyc’s relations. While OntoMapO interprets each relation
that is equivalent or more specific thanChildOf as inheritance relation it starts perfectly
understand the inheritance in Cyc.

Analogously importing Protéǵe-2000 ([13]) meta ontology we can establish that:

Valued Sony Customer
48

(Equivalent :DIRECT-SUPERCLASSES ChildOf)
(Equivalent :DIRECT-SUBCLASSES ParentOf)
(ChildOf :DIRECT-INSTANCES InstanceOf)
(ChildOf :DIRECT-TYPE ClassOf)

First, let us answer why:DIRECT-TYPE is more specific thanClassOf — in Prot́eǵe
each concept could be instance just of a single class. This limitation makes:DIRECT-TYPE
more specific relation thanClassOf . Even with this complication, OntoMap will be able to
interpret the instantiation as it is defined Protéǵe because:DIRECT-TYPE is a specification
(sub-relation) ofClassOf , so:DIRECT-TYPE is an instantiation relation.

6 Formats and Representations

Publicly available ontologies (or parts of them) will be presented in a number of standard
forms:

• PROLOG and KIF;

• DAML-OIL (already available);

• HTML - an online ontology browser as well as static pages available for download;

• SQL scripts for ORACLE and MS SQL Server;

• Ready-to-use files for MS Access (MDB);

• Online application server accessible via CORBA, EJB, RMI, and SOAP (an RPC protocol
based on XML.)

At present, the only the online ontology browser is implemented.

7 The Initial Set of Ontologies

The following ontologies will be hosted initially:

• Upper Cyc Ontology [UCYC]

• EuroWordnet Top Ontology [EWNTOP]

• EuroWordnet Clusters [EWNCLUST] - the clusters of EWN base concepts classified by
top concepts. An extension of ETOP

• WordNet 1.5 unique beginners [WNUB5]

• WordNet 1.6 unique beginners [WNUB6]

• WordNet 1.7 unique beginners [WNUB7]

• CORELEX [CLEX] - made on top of WNUB5

• MikroKosmos top-level [MKOSTOP]

Valued Sony Customer
49

• SENSUS top-level [SENSTOP]

For each of the ontologies there will be available an ”executive summary” as well as the
most important documents about it (papers, reports, guides and so on), URLs. Of course,
the original ”distributives” provided by the creators will be also available. The following
ontologies are already hosted on OntoMap: UCYC, EWNTOP, WNUB7, and MKOSTOP.
Clear candidates for hosting are (or will be) also OpenCyc, any results of the SUO effort, and
the Simple Core Ontology.

Mappings between some of the ontologies will be provided in order to ensure an easier
understanding and comparison between them. So, the ontologies hosted will form an inter-
connected graph. Such mapping already exists between EWNTOP and UCYC (see [9]). The
mapping between WNUB7 and MKOSTOP and the later two ontologies was recently devel-
oped. Some of the relations in the graph exist because of the nature of the ontologies:

• EWNCLUST and ETOP - the concepts of the former one are just conjunctions of those
of the later one

• CLEX and WNUB5 - same as above

• WNUB5 and WNUB6 - there exist a mapping provided by the creators

• SENSTOP and UCYC - it is available as a part of the UCYC distributives as well as
separately by the SENSUS developers.

The following mappings will be developed as a part of the project:

• EWNCLUST to UCYC

• CLEX to EWNCLUST (both directions)

• WNUB7 to UCYC

• WNUB7 to EWNTOP

The mappings will be available in the same formats as the ontologies. Actually, each
mapping could be seen as an extension of the target ontology. For example, the mapping
between EWNTOP and UCYC can be considered as an extension of the UCYC with the
concepts of EWNTOP that are connected appropriately to the UCYC constants (see [9]).
No ontologies and upper-level models will be developed under the project instead of the
OntoMapO meta-ontology mentioned above.

8 One Usability Example

Here follows an example of how the OntoMap could help understanding a complex case in the
Upper Cyc Ontology - the#$MeetingTakingPlace constant. The comprehension comes
from the two sources: it is deeply positioned in the tangled subsumption hierarchy; and also
some important information is encoded via instantiation. The most readable representation in
[2] is:

Valued Sony Customer
50

The collection of human meeting events, in which #$Persons
gather intentionally at a location in order to com-
municate or share some experience; business is of-
ten transacted at such a meeting. Examples include:
a particular conference, a business lunch, etc.

isa: #$DefaultDisjointScriptType , #$ScriptType ,
#$TemporalObjectType
genls: #$SocialGathering
some subsets: (16 unpublished subsets)

The underlined text represents hyper-references to descriptions of the appropriate con-
stants. Below follows the standard view on the same concept provided by OntoMap:

Concept: #$MeetingTakingPlace [UpperCyc]

Gloss: The collection of human meeting events, in which
#$Persons gather intentionally at a location in or-
der to communicate or share some experience; busi-
ness is often transacted at such a meeting. Exam-
ples include: a particular conference, a business
lunch, etc.

Super-concepts (parents):#$SocialGathering ;
indirect: #$IntangibleIndividual ,
#$CompositePhysicalAndMentalEvent , #$TemporalThing ,
#$PhysicalEvent , #$MentalEvent , #$Intangible ,
#$Thing , #$SpatialThing ,#$MentalActivity ,
#$PurposefulAction , #$Situation , #$HumanActivity ,
#$AnimalActivity , #$Event , #$Action , #$Individual ,
#$SocialOccurrence

Indirect parents in other ontologies:
Physical [EWN Top], Top [EWN Top], Mental [EWN Top],
Social [EWN Top], 2ndOrderEntity [EWN Top]

Instance of: #$DefaultDisjointScriptType
#$TemporalObjectType
indirect: #$Collection , #$ObjectType , #$Thing ,
#$SituationType , #$SetOrCollection , #$Intangible ,
#$MathematicalOrComputationalThing , #$ScriptType

Sub-concepts (children): <none>

Direct instances: <none>

All direct relations:

Valued Sony Customer
51

#$genls : #$SocialGathering
#$isa : #$TemporalObjectType
#$isa : #$DefaultDisjointScriptType

This was a ”snap-shot” of the current on-line interface of OntoMap. Pay attention that
both indirect parents and classes are displayed that is extremely useful — it requires serious
efforts to reconstruct this indirect relations manually. Also, super-concepts in the EuroWord-
net (EWN) Top Ontology can be seen, that provides a good impression about a possible po-
sition of #$MeetingTakingPlace there. These way people that are familiar with EWN
top can get an idea about the meaning of the Cyc constant.

9 Ontology Unification Services

In parallel with the maintenance of the server and updates to the content we will be able to
provide the following services for both domain specific and upper-level ontologies:

• Loading the ontology in OntoMap and hosting it there. This way it will become accessi-
ble in all the formats supported. Also its conformance profile could be determined (see
[3] and Unified Representation section). A security subsystem will be developed, so the
proprietary ontologies will not be publicly available.

• Developing of mappings to ontologies that are already hosted in OntoMap. The mappings
themselves will be also available in all the supported formats.

10 Conclusion

OntoMap project is still in an early phase that makes it hard to evaluate it. The experience
gathered providing the Upper Cyc Ontology as MS Access database is encouraging – even
though the original resource is available for a long time more than two hundred people found
it useful and downloaded it in this shape just for one year. We got a very positive feedback for
another experiment of ours – developing a mapping between the Upper Cyc Ontology and the
EuroWordnet Top Ontology and then providing it as a database as well as an online service.
Even without significant theoretical innovation such facilitatory efforts seem to be important
for the development of the semantic modeling community.

The first interesting result of the project is a Java-written inference engine that already
supports the OntoMapO language – it is sound and complete with its support for inheritance,
instantiation, inverse, transitive, and symmetric relations. The biggest ontology that we ex-
perimented with (Upper Cyc Ontology, about 3000 concepts) can be loaded in few seconds
and than queried in real-time. The inference engine is used for support of an on-line ontology
browser that is publicly available athttp:\\www.ontomap.org . Apart from the engi-
neering work needed to make available the remaining functionality of OntoMap portal we are
constantly working on evaluation and development of the semantic framework – OntoMapO.

References

[1] Campbell, A.E. and Shapiro, S.C.,Algorithms for Ontological Mediation, Technical Report 98-03, Dep.
of CS and Engineering, State Univ. of New York at Buffalo, 1998.

Valued Sony Customer
52

[2] Cyc Ontology Guide: Introduction.
http://www.cyc.com/cyc-2-1/intro-public.html

[3] Genesereth, Michael R., and Fikes, Richard eds.Knowledge Interchange Format draft proposed American
National Standard (dpANS). NCITS.T2/98-004 http://logic.stanford.edu/kif/

[4] Gomez-Perez, A.; Fernandez, M.; Blazquez, M.; Garcia-Pinar, J. M.Building Ontologies at the Knowledge
Level using the Ontology Design Environment.http://delicias.dia.fi.upm.es/articulos/ode/ode.html

[5] Gruber, Thomas R.Ontolingua: A Mechanism to Support Portable Ontologies.Technical Report KSL
92-66, Knowledge System Laboratory, Stanford University, 1991.

[6] Gruber, Thomas R.Toward Principles for the Design of Ontologies Used for Knowledge Sharing.Techni-
cal Report KSL 93-04, Knowledge System Laboratory, Stanford University, 1993.

[7] Guarino, Nicola; Welty, ChristopherA Formal Ontology of Properties.In the Proceedings of the 12th
International Conference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-
les-Pins, France. R. Dieg and O. Corby (Eds.): EKAW 2000, LNAI 1937, pp. 97-112, Springer Verlag,
2000.

[8] Ian Horrocks, Frank van Harmelen, Peter Patel-Schneider (eds.)DAML+OIL (March 2001)
http://www.daml.org/2001/03/daml+oil-index.html

[9] Kiryakov, Atanas; Simov, Kiril Iv.Mapping of EuroWordnet Top Ontology to Upper Cyc Ontology.In:
Proceedings of ”Ontologies and Text” workshop, during EKAW 2000. Juan-les-Pins, French Riviera,
Oct. 2, 2000.http://www.ontotext.com/publications/ index.html# KiryakovSi-
mov2000b

[10] Knight, K. and Luk, S.Building a Large Knowledge Base for Machine Translation.Proceedings of the
American Association of Artificial Intelligence Conference AAAI-94. Seattle, WA, 1994.

[11] McGuinness, Deborah L., Richard Fikes, James Rice, and Steve Wilder,An Environment for Merging and
Testing Large Ontologies, Proceedings of the Seventh International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2000). Breckenridge, Colorado, USA. April 12-15, 2000.

[12] Maedche, A.; Schnurr, H.-P.; Staab, S.; and Studer, R.Representation Language-Neutral Modeling of On-
tologies.In: Frank (ed.), Proceedings of the German Workshop ”Modellierung” 2000. Koblenz, Germany,
April, 5-7, 2000.

[13] Noy, Natalya F.; Fergerson, Ray W.; Musen, Mark A.The Knowledge Model of Protege-2000: Combining
Interoperability and Flexibility.In the Proceedings of the 12th International Conference on Knowledge
Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins, France. R. Dieg and O. Corby
(Eds.): EKAW 2000, LNAI 1937, pp. 97-112, Springer Verlag, 2000.

[14] Ortiz, Antonio Moreno.Managing conceptual and terminological information in a user-friendly environ-
ment.In: Proceedings of ”OntoLex 2000: Ontologies and Lexical Knowledge Bases”, Sozopol, Sept. 8-10,
2000. (to appear)

[15] Vossen, Piek (ed.) EuroWordNet General Document Version 3, Final, July 19, 1999.
http://www.hum.uva.nl/ ewn/

[16] World Wide Web Consortium; Brickley, Dan; Guha, R.V. (eds.)Resource Description Framework (RDF)
Schema Specification, 1999.http://www.w3.org/TR/1998/WD-rdf-schema/

[17] Uschold, Mike; King, Martin; Moralee, Stuart; and Zorgios, YannisThe Enterprise Ontology, The Knowl-
edge Engineering Review, 1998, Vol. 13, Special Issue on Putting Ontologies to Use (eds. Mike Uschold
and Austin Tate).

[18] Uschold, MikeConverting an Informal Ontology into Ontolingua: Some Experiences, Univ. Edinburgh,
Artificial Intelligence Application Institute (AIAI), AIAI-TR-192, March 1996.

Valued Sony Customer
53

Valued Sony Customer

Valued Sony Customer
54

The “Emergent” Semantic Web: A
Consensus Approach for Deriving
Semantic Knowledge on the Web1

Clifford Behrens and Vipul Kashyap
Telcordia Technologies, Inc

445 South Street
Morristown, NJ 07960-6438, USA

{cliff, kashyap}@research.telcordia.com

Abstract. The recent and growing interest in the Semantic Web has given rise to a
flurry of activity in standardization bodies (such as the W3C) to specify semantics
using formal languages and inference mechanisms. The real challenge, however, is
to link formal semantics with deeper meaning as reflected by consensus discovered
among users on the Semantic Web. We believe the process of deriving and formally
describing ontologies for the Web (expressed using standardized languages) is
necessarily a social-cultural one; hence, new consensus-based tools are required to
derive shared semantic systems for different communities of interest. This paper
introduces Consensus Analysis as a means for deriving semantic knowledge from the
information provided by subject matter experts and describes the Schemer System
prototype for acquiring and processing this information. The results of a trial
application of this approach and prototype on technologists asked to identify current
mass market consumer trends in the domain of Internet privacy and security are
reported. These findings implicate Consensus Analysis as a powerful tool capable of
enabling the semantic Web by yielding core knowledge such as controlled
vocabularies and domain ontologies.

1. Introduction

Recently there has been a great interest in the Semantic Web and issues related to
specification and exploitation of semantics on the WWW. In particular, shared ontologies are
being proposed for representing the core knowledge that forms the foundation for semantic
information on the Web. Fensel [1] has identified two broad research thrusts related to
ontologies:

1) Approaches to standardize the formal semantics of information to enable machine
processing. Work being done as a part of the W3C RDF working group [2] and the
DAML+OIL initiative [3] falls within this category.

2) Approaches to define real world semantics linking machine processable content
with meaning for humans based on consensual terminologies.

1 © 2001, Telcordia Technologies, Inc. All Rights Reserved.

Valued Sony Customer
55

To realize the goals of the Semantic Web, there is a need to wed approaches centered on the
formal representation of semantics with approaches to systematically acquire terminologies
that best express shared systems of meaning among users. We believe the process of
deriving and describing domain ontologies necessarily involves the search for consensus
among domain experts and, therefore, is inherently a social-cultural one. As such, the proper
approach to deriving knowledge, like domain ontologies, ought to be sensitive to the
semantic context of information, and should be informed by the real-world bottom-up,
decentralized process in which knowledge typically evolves. After all, decentralized models
for consensus achievement better reflect the dynamic sociological characteristics of the Web
(which have been the cause for its rapid acceptance and success). In this manner more
meaningful ontologies (expressed in standardized formal languages) can emerge through
more natural interactions of Web users within their respective communities. We agree with
Fensel [1] who claims that the real challenge for making the semantic Web a reality is, "a
model for driving the network that maintains the process of evolving ontologies."

Consistent with this claim, similar interest in Knowledge Management processes has
motivated new research in automatic knowledge acquisition, classification, and
representation [4]. Much of the discussion on Knowledge Management has focused on
information technology, e.g., hardware, software and communications networks, but has not
laid out in clear terms what notions of "knowledge" need to be supported by this technology.
For example, there exists in the literature a recurring theme that knowledge is any
information stored in a Knowledge Repository, and that this knowledge can somehow be
acquired or "discovered" automatically from disparate, heterogeneous information sources,
e.g., Web pages and networked document collections. This approach seems at best naïve as
it ignores the context and intended purpose of source information. Without establishing this
context and purpose, it seems unlikely that much useful "knowledge" can be discovered as it
leaves matters pertaining to information's meaning and relationships with existing knowledge
open to broad interpretation.

Within the literature there is expressed the idea that not all information is knowledge;
information only becomes knowledge once it is mapped to a knowledge structure, i.e., it is
organized in a way that makes it accessible and comprehensible to users [4]. In fact, this
qualification suggests that there may exist many such structures for organizing the same
information, again supporting the idea that context and purpose are essential for transforming
information to knowledge. It also implicates the importance of knowing the "community of
interest" (COI) for both the producer and consumer of information to enable this
transformation since members of different COIs may set different contexts or use the
information with very different intentions. In the emergent Semantic Web, it is critical to
determine the “consensus” knowledge structures for a COI.

The term "community" is becoming ubiquitous, particularly in discussions related to
delivery of personalized services on the Internet, yet there exist distinct usages of the term.
For some, a community seems to consist of all who, because of a shared interest in certain
kinds of information, frequent the same place, real or virtual, regardless of any interaction
among them, e.g., all those who browse the same Web site [5]. A more social usage entails
information exchanges among a collection of individuals, e.g., all those who exchange useful
information about some topic of mutual interest through email or chat rooms [6]. A more
sophisticated "cultural" notion of community refers to all who, in addition to meeting the two
preceding conditions, share a vocabulary, semantics and theory for organizing information.

Valued Sony Customer
56

For members of this class of community there exists some common purpose and key
concepts for communicating ideas and sharing experiences. In this paper, this last notion of
community is adopted because, as it will be demonstrated, it provides an opportunity to
analyze knowledge, and its variations among individuals, with greater formal rigor. It also
helps to more clearly draw the lines operationally between information, individual
knowledge, and what will be referred to later as "cultural knowledge."

Much research has already been conducted in the social sciences, particularly cognitive
anthropology and cognitive psychology, on modeling knowledge domains, i.e., conceptual
categories that include other semantically-related categories, and eliciting the information
needed to build these models. However, most of these methods are extremely time-
consuming, taxing the attention of a few SMEs (Subject Matter Experts), those recognized as
experienced and possessing specialized domain knowledge. Consensus building is another
approach to building knowledge representations that is gaining increasing popularity in the
Information Processing standards community and elsewhere [7, 8]. New information
technology could be applied to eliminate much of the need (and enormous cost) of face-to-
face group decision-making meetings, e.g., read [9] and [10] for examples of IT approaches
to collaborative knowledge construction.

Previous methods for building knowledge from consensus have been tried, e.g., Delphi
approaches [11, 12], but these are typically iterative and require much human intervention.
While the importance of consensus to achieving views that best represent collective thinking
is often stressed, too often views are biased strongly by the force of individual personalities
and are not representative of any particular COI. Other problems arise from the
heterogeneous composition of decision-making groups whose members conceptualize the
same problem from widely different perspectives, i.e., those of different COIs. Moreover,
simple polling methods that only average expert opinion do not usually yield results with the
depth and logical properties of real domain knowledge, nor do they exploit the contributions
of the most competent SMEs. Thus, there is need for a different approach that derives, rather
than forces, consensus views, does so without the need for much human intervention and
many iterations, acquires useful information from SMEs (weighted by their competence) at
their convenience, and is capable of yielding shared knowledge for a demonstrable domain of
interest.

By combining new formal and more rigorous approaches to consensus-modeling,
specifically powerful methods of Consensus Analysis that already have been tested
successfully by Cognitive Anthropologists in numerous knowledge domains, the network
services approach taken in this research overcomes the limitations of previous computer-
assisted approaches. This is accomplished by (1) incrementally refining or "evolving"
knowledge, (2) providing metrics for evaluating the cultural saliency of a domain and the
knowledge-based competency of SMEs in a COI, (3) dynamically assigning SMEs to the
most “appropriate” COI and (4) not only spreading the task of knowledge acquisition among
many SMEs, rather than just a few, but also leveraging Web infrastructure to engage them at
their convenience.

Valued Sony Customer
57

2. Cultural Knowledge and Consensus Analysis

Consensus Analysis is based on a few simple, but powerful, ideas , i.e., knowledge is both
distributed and shared [13]. For any knowledge domain, and any group of subjects “expert”
in this domain, so-called “SMEs” possess different experiences; hence, they know different
things, and some of them know more than others (see Fig. 1). Information sharing, e.g.,
among individuals A-H in the figure, facilitates the availability of a much larger pool of
information with non-uniform distribution of knowledge across SMEs. For example, many
information standards groups are composed of data providers, data users, librarians and
software vendors. These groups tend to possess different experiences with data, and apply
their own unique views and semantics to describe these data. Yet, certain individuals (the hi-
tech “gurus”) are recognized as being more knowledgeable than others, i.e., there exist
recognized domain “experts.” Because of their widely regarded and highly-valued
knowledge, these experts are frequently requested to share what they know with others as
consultants or as leaders in standards-setting groups, or render opinions about how best to
describe or classify information in their domain of expertise. Hence, one typically finds
within any COI that there is differential expertise among its members, but also some
knowledge that is widely-shared and recognized as being “essential.” In fact, this knowledge
may be so fundamental and its use so widespread that, over time, it becomes logically well-
structured or canonical, e.g., even published as a metadata content standard. The process of
mapping information onto such a consensus standard is the essence of cultural knowledge
creation.

Cultural knowledge is not all that one knows (e.g., the set of knowledge for each
individual represented in the middle layer of Figure 1); nor is it the sum total of what

Figure 1. Knowledge distribution, knowledge sharing and consensus.

Valued Sony Customer
58

everybody knows (e.g., the union of individual knowledge sets in the middle layer). Rather,
it is an abstraction, knowledge shared in its “broad design and deeper principles” by
members of a society or community [14]. In other words, while its entire details are not
usually known (or can be always be articulated explicitly) by anyone, cultural knowledge
consists of those things that all members of a COI understand all others hold to be true.

Kroeber [15] referred to this highly-structured, rich form of knowledge as a “systemic
culture pattern,” a coherent subsystem of knowledge that tends to persist as a unit. This unit
features a semantic system, consisting of an appropriate vocabulary and grammar, for
classifying and talking about elements within a knowledge domain. Examples of cultural
knowledge are: a kinship terminology [16, 17], or perhaps a metadata content standard [18],
a consensus statement for screening cancer [19], or a set of software requirements [20]. It is
this shared pool of structured information, acquired primarily by learning, which constitutes
cultural knowledge [21].

2.1 Robustness of the Consensus Model

The significance of information sharing and distribution of cultural knowledge has
encouraged some researchers to exploit consensus, measured by intersubject agreement, as
an indicator of knowledge. The method of Consensus Analysis was first presented in several
seminal papers [13, 22, 23]. In addition to introducing the formal foundation for Consensus
Analysis (reviewed later in more detail), the initial papers cited above also provided
examples of its application to modeling knowledge of general information among US college
students, and the classification of illness concepts among urban Guatemalans. Other more
recent applications of Consensus Analysis have focussed on measuring cultural diversity
within organizations [24]. These successes, obtained for a wide variety of domains and
social-cultural contexts, indicate that the following three explicit assumptions, upon which
Consensus Analysis is based, are extremely robust [13]:

 i) Common Truth. There is core knowledge (expressed in a highly probable set of
answers to questions or "items") that is “applicable” to all SMEs or, put another way, all
SMEs are members of the same COI and generally share a common perspective or “cultural
reality.”

 ii) Local Independence. The information or responses provided by each SME are
acquired independently from those of other SMEs, i.e., SME item response random variables
satisfy conditional independence for all possible response profiles and the core answer set.

iii) Homogeneity of Items. Each SME has a fixed level of “competence” or “expertise”
across all items, i.e., items used to sample what SME's know are equally difficult and provide
representative coverage of a coherent domain. In practice, this assumption has been found to
be quite robust and requires only that those SMEs who are most knowledgeable in a domain
consistently outperform non-experts.

From these assumptions, it is possible to derive a method for estimating three properties of
interest: (1) a measure of the overall saliency of the knowledge domain represented by the
pool of items, (2) the level of domain expertise or “cultural competence” for each SME based
on the amount of consensus or agreement between his/her responses to items with those of all
other SMEs, and (3) the most probable set of “correct answers," inferred from the responses

Valued Sony Customer
59

of each SME and weighted by their respective competence measures, i.e., the consensus
view.

2.2 Statistical Methodology

As mentioned earlier, the Consensus Analysis Model can be derived formally from the three
assumptions given in section 2.1. This formal model consists of a data matrix X containing
the responses Xik of SMEs 1..i..N on items 1..k..M. From this matrix another matrix M* is
estimated and it holds the empirical point estimates M*

ij, the proportion of matching
responses on all items between SMEs i and j, corrected for guessing (if appropriate), on off-
diagonal elements (with M*

ij = M*
ji for all pairs of SMEs i and j). Alternatively, another

matrix C*, which contains the observed covariances C*
ij between the responses of SMEs i and

j, corrected for variance among SME answers, may be substituted for M* [25]. To obtain D*
i

, an estimate of the proportion of answers SME i “actually” knows and the main diagonal
entries of M* (or C*), a solution to the following system of equations is sought:

M* = D*D*’ or alternatively, (1)
C* = D*D*’ (2)

where D* is a column vector containing estimates of individual competencies D1..Di..DN and
D*’ is merely its transpose. Since equation 1 (or 2) represents an overspecified set of
equations and because of sampling variability, an exact solution is unlikely. However, an
approximate solution yielding estimates of the individual SME competencies (the D*

i) can be
obtained by applying Minimum Residual Factor Analysis [26], a least squares approach, to fit
equation 1 (or 2) and solve for the main diagonal values. The relative magnitude of
HLJHQYDOXHV� �WKH� ILUVW� HLJHQYDOXH� 1 at least three times greater than the second) is used to
determine whether a single factor solution was extracted. All values of the first eigenvector,
v1, should also range between 0 and 1. These results test the validity of the Common Truth
assumption.

If the criteria above are satisfied, then the individual SME competencies can be estimated
with:

D*
i = v1i √^ 1} (3)

The D*
i, then, are the loadings for all SMEs on the first factor. These estimates are required

to complete the analysis, i.e., to infer the “best” answers to the items. The estimated
competency values (D*

i) and the profile of responses for item k (Xik,l) are used to compute
the Bayesian a posteriori probabilities for each possible answer. The formula for the
probability that an answer is “correct” follows:

 N

 Pr(<Xik> i=1 | Zk=l) = ∏ [D*
i + (1-D*

i)/L]Xik,l [(1-D*
i)(L-1)/L]1-Xik,l (4)

 i = 1

Valued Sony Customer
60

where Zk is the “correct” answer to item k, l is the lth response to item k, and L is the total
number of possible responses (l1...lL) to item k. Again, it should be mentioned that the
"correctness" of an answer is relative to the perspective shared by members of a particular
COI, i.e., the one sampled. Equations 1-4 provide formal motivation for the approach taken
in this research, and indicate algorithms that need to be implemented in software as part of a
network-enabled consensus server.

3. System Architecture and Prototype

Telcordia researchers have begun to design a software prototype called the Schemer System,
shown in Fig. 2. Key software components in this design have already been implemented to
communicate better some of the objectives of the approach, stimulate greater interest in it,
and demonstrate the feasibility of automating Knowledge Acquisition and Consensus
Analysis modeling. Future work will include development of Publication Services and a
fuller integration of software components in a continuous Web-based service.

In our current design, the Schemer System consists of a Schemer Client and Schemer
Server; however the latter really involves the interaction of four services: a Subject Matter
Expert Classification Service, a Knowledge Acquisition Service, a Consensus Engine, and a
Knowledge Publication Service. These services read and write information to several data
bases, one storing information about SMEs, another storing pools of items used to acquire
information from SMEs, and another which stores the derived knowledge structures, i.e., the
controlled vocabularies, forecasts, ontologies, classification schemes, or productions systems.
Next, each of these services is examined in more detail.

SME
Classification

Service

SME
Classification

Service

Schemer
Client

Schemer
Client

Knowledge
Acquisition

Service

Knowledge
Acquisition

Service

Item
Pool

Objects

Item
Pool

Objects
Knowledge

Objects

Knowledge
Objects

SME
Profile
Objects

SME
Profile
Objects

Consensus
Engine

Consensus
Engine

Knowledge
Publication

Service

Knowledge
Publication

Service

Schemer
ConsensusServer

Figure 2. Schemer system architecture.

Valued Sony Customer
61

Client. The job of the Schemer Client is to provide a graphical/text interface through
which a user communicates with the Schemer Server. It presents information sent by the
Server such as item forms and knowledge visualizations, both textual and graphic.

SME Classification Service. This service determines a knowledge domain of interest for a
SME, and assigns a SME to his/her proper COI. Classification is necessary to present a SME
with meaningful items and knowledge derived from a consensus analysis of peer responses.
Knowledge domain identification may be determined either by asking a SME to select a
known knowledge domain from a list or, if unknown to Schemer, the SME is asked to input
the name of this knowledge domain. COI classification may be accomplished in two stages,
a priori and post hoc. If nothing is known about the SME, then preliminary COI
classification is made by asking the SME to choose a COI from a list of COIs already known
to Schemer. If, however, the SME cannot find an appropriate COI in this list (or if the
knowledge domain is unknown to Schemer), then he/she is prompted for a list of key terms
frequently used to describe objects in the knowledge domain of interest. These terms are
matched against key term lists (if they exist) for known COIs to determine the “best” COI
classification for this SME. But once an item form has been constructed for this SME and
used to acquire more information, post hoc analysis of results obtained from Consensus
Analysis may be used to reclassify this SME, if he/she so chooses. To compare new
information obtained from the SME with information known for SMEs already classified, the
Subject Matter Expert Classification Service reads the data it needs from a repository of SME
profile objects.

Knowledge Acquisition Service. Based on the knowledge domain and preliminary COI
classification obtained for a SME, this service selects an appropriate item pool object and
composes an instrument or form that is used to determine what the SME knows about the
domain. Items published on these forms are read from a repository of item pool objects, each
identified by knowledge domain and COI. This service sends the form to the Client where
the SME enters his/her responses to items on the form, then sends these back to the
Knowledge Acquisition Service. The SME's response pattern, along with his/her ID, is stored
in a repository of SME profile objects, also grouped by COI and knowledge domain.

Consensus Engine. This service performs a Consensus Analysis of data collected for a
knowledge domain/COI grouping each time new responses are added to a SME's profile, and
stores the updated result in a Knowledge Repository, along with ancillary statistics, e.g.,
Goodness-of-fit indices. Not only does the Consensus Engine analyze data read from SME
profiles, but it also adds information to these, e.g., a SME's competency score.

Knowledge Publication Service. On a user's request, this service constructs forms with
textual and graphical representations of derived knowledge, stored in the Knowledge
Repository, for presentation on the Schemer Client. Access to information stored in this
repository is also provided by this service so that a user can retrieve a knowledge object for
use with his/her own software application.

To date, a skeleton Knowledge Acquisition Service has been built, capable of taking as
input from a SME's Web browser a knowledge domain and COI value, then return a form
with an appropriate item set for this knowledge domain/COI combination. Currently, only
dichotomous (True/False) formats are supported. Once a SME completes this form and
submits his/her responses to the Knowledge Acquisition Service, it notifies the Consensus
Engine that a SME's profile has been updated. The Consensus Engine processes all of the
response vectors for SMEs in the same knowledge domain/COI data base, then stores the

Valued Sony Customer
62

results, e.g., eigenvalues, SME competency scores and the estimated answer key, in the
knowledge base. All of these services have been implemented in Java® and the R®
statistical programming environment, so can run under Unix® or Windows®.

4. Experiment

The remainder of this paper describes an experiment that was conducted among Telcordia
technologists to derive a consensus view of mass-market consumer trends related to Internet
security and privacy. While no attempt will be made to derive a domain ontology from this
experiment, our intent is to demonstrate how Consensus Analysis works and to further
suggest that it seems well-suited for this purpose.

A prototype of the Schemer system was built and used to deliver a questionnaire
consisting of sixty-seven items related to privacy and security of information on the Internet
(see Appendix A). These items were derived from Georgia Tech's 10th World Wide Web
User Survey, which includes a section entitled, “Online Privacy and Security”. A request
was mailed electronically to Research Scientists belonging to two labs within Telcordia
Technologies Applied Research. These sample SMEs were asked to answer items on the
questionnaire as if they were domain experts being asked for their opinions about mass
market consumer trends within the Web user community, not necessarily with their personal
opinion. Along with responses to the questionnaire, SMEs were asked for their employee ID
and a list of no more than twenty descriptors that they believed best represented their
professional area of expertise. The former was used as a pointer to other ancillary
information about the SME, e.g., lab, department, group, and office location, while the latter
was collected to help associate the domain expertise of a SME with that of others in the
sample. A total of thirty-six Research Scientists responded to the request above. This
sample was opportunistic, not random; moreover, a special request was made to members of
Telcordia's Computer Networking Research department, which specializes in Internet
security issues, so that the responses of these domain experts could be compared to others in
the sample.

Figure 3. Plot of MDS results showing similarities
in responses among SMEs. Similar SMEs are
plotted close to one another. Stress= 0.260 after 19
iterations.

Valued Sony Customer
63

The similarity or agreement among SME response patterns can be explored in Figure 3. This
two-dimensional plot was obtained from a Multidimensional Scaling of only the off-diagonal
entries of the consensus matrix (Mij* in Equation 1) calculated for the thirty-six Telcordia
SMEs [27]. In this visualization, the SMEs with similar responses are plotted closest to one
another. The absence of clustering in this plot suggests that the study sample was drawn
from a single COI whose members share core domain knowledge about "Online Privacy and
Security." This notion was tested more rigorously by estimating a consensus model for these
data.

4.1 Knowledge Domain Validation

As the review of Consensus Analysis pointed out, knowledge derivation rests on establishing
the validity of the domain to those SMEs in the sample. This is accomplished by inspecting
the relative magnitudes of the eigenvalues for the first factors extracted from the consensus
matrix using Minimal Residuals Factor Analysis. Again, the “rule-of-thumb” is that the
eigenvalue of the first factor must be at least three times greater than the second; moreover,
subsequent eigenvalues should all be small and roughly equivalent. Inspection of the
eigenvalues for the first three factors extracted from the response set collected from
Telcordia SMEs reveals that the first is over six times greater than the second, and the second
and third eigenvalues are almost equal (see Table 1). This lends strong support to the claim
that the items on the questionnaire are sampling a single, coherent knowledge domain, and
that this domain has salience for the sample of respondents. Moreover, the high Pseudo-
Reliability Coefficient (0.944) also obtained suggests that these results are stable and would
likely be the same ones obtained with repeated sampling [13].

Factor Eigenvalue Percent Cumulative
%

Ratio

1 11.902 77.8 77.8 6.500
2 1.831 12.0 89.8 1.175
3 1.559 10.2 100.0

15.292 100.0

4.2 Estimation of SME Competence

Having established the saliency of “Online Privacy and Security” as a knowledge domain for
SMEs in the sample, it is possible to estimate each one's competency in this domain. The
competencies for this sample of SMEs are listed in Table 2. This metric can be interpreted as
the probability that a SME would correctly answer an item. Competencies for this sample
range from 0.32-0.76 with a mean of 0.56± 0.11. With a sample size of thirty-six, and
average competency level of 0.56, it ought to be possible to correctly classify (as either

Table 1. Eigenvalues for testing saliency of "Online Privacy and Security"
knowledge domain.

Valued Sony Customer
64

“true” or “false”) at least 95% of the items on the "Online Privacy and Security"
questionnaire with a 0.999 confidence level [13].

SME Competency Organization Location
1 0.48 C2E M3B
2 0.60 C2E M3B
3 0.41 C2E M3B
4 0.56 C2E M3R
5 0.48 C8E M3B
6 0.75 ICI N3X
7 0.75 Missing Missing
8 0.67 I9B M2R
9 0.32 C7H M3B

10 0.58 C8I N1X
11 0.61 C1B M3B
12 0.47 C2I M3B
13 0.52 I0B M2R
14 0.50 C2I M3B
15 0.42 C2F M3R
16 0.52 C8E M3R
17 0.59 I5I M2B
18 0.45 C7E M3B
19 0.59 C8E M3B
20 0.67 C2I M3R
21 0.55 C2A M3B
22 0.67 I5I M2R
23 0.46 C8F M3B
24 0.76 C8B N3Z
25 0.35 I5B M3R
26 0.51 C8F M3B
27 0.67 C8F M3B
28 0.52 I5H M2R
29 0.72 C7H M3B
30 0.52 A4B M2R
31 0.63 Missing Missing
32 0.58 I9D M2B
33 0.64 C2A M3R
34 0.51 I9I M2B
35 0.69 C2A M3B
36 0.59 C2A M3B

Table 2. Estimates of competency for thirty-six SME’s questioned
about "Online Privacy and Security."

Valued Sony Customer
65

4.3 Knowledge Derivation

By using SME competencies as weights, the most probable set of answers can be estimated
from SME responses with Bayes’ formulation in Equation 4. In Table 3 the answers obtained
in this way are compared to the dominant responses given by the 1,482 respondents who
completed the GVU survey. Pearson’s Chi-square (with Yate’s continuity correction) was
calculated to test for independence between the two sets of answers [28]. A Chi-square value
of 11.852, with one degree of freedom, was obtained from the test, and with a p-value<0.001,
there is strong support to conclude that the answers estimated through Consensus Analysis
are not different from those obtained for the GVU sample. A Yule’s Q= 0.78 also indicates
that this association is a reasonably strong one.

Telcordia SMEs
GVU Survey False True

Marginal
Totals

 False 20 14 34
True 5 28 33

Marginal Totals 25 42 67

4.4 SME Classification

With estimates of SME competencies in hand, the spatial arrangement of points plotted in
Figure 3 can be given a particularly nice intuitive interpretation. Those SMEs who knew the
most about “Online Privacy and Security” are plotted in the center of this figure; in fact,
those ten SMEs with the highest competency scores fall within the shaded area; while those
with the lowest scores are located at the periphery of this plot. However, there also exists
idiosyncratic variation among these SMEs in what they know about this domain, and so
domain expertise seems to cross organizational boundaries. This idea was tested in several
ways.

The terms that SMEs provided to describe their technical areas of expertise were carefully
enumerated. Surprisingly, while the frequent use of “hot buzz words” was anticipated, it
seems that SMEs exploited free-listing as an opportunity to create very specialized identities.
In fact this sample of SMEs applied 189 unique descriptors (each consisting of one or more
terms) to characterize their expertise. The number of descriptors listed by SMEs ranged from
0-16 with an average list size of 5.25 descriptors. Four SMEs listed no terms. Only nineteen
of the 189 descriptors were listed by more than one SME and all but two of these nineteen
were listed only twice, further suggesting a reason for the absence of any discernable
clustering of points in Figure 3. However, the five most competent SMEs (24, 6, 7, 29, and
35) identified themselves as knowing more about business and marketing aspects of
telecommunications, e.g., “Business planning”, “economics”, “market-oriented
programming”; and used terms such as “system administration” and operations “hand-offs”,

Table 3. Cross tabulation comparing majority
responses on GVU survey to those estimated from
responses of Telcordia SMEs with Consensus
Analysis.

Valued Sony Customer
66

implying greater familiarity with consumer or user-oriented perspectives. The only shared
concepts expressed in the free lists of those SMEs (9, 25, 3, 15, and 18) with the lowest
competency scores were “distributed computing”, “Internet”, “Internet Protocols”, and to
some degree more abstract interests, e.g., “mathematics”, “formal methods”, and “theory of
distributed systems”. It seems that this group is focused more on privacy and security from a
network engineering or design perspective, rather than from a consumer's point-of-view.

More rigorous statistical tests of the organizational and locational basis for knowledge
distribution among these SMEs were also made. For these tests, two other symmetrical
distance matrices were constructed: the first from SME organization numbers and the second
from their office locations (both listed in Table 2). The Organization Code consists of three
characters that identify a SME's lab, department and group, respectively. A matrix, whose
cells express the organizational distance between SMEs, was constructed from this
information in the following manner: a “0” was assigned to all cells along the superdiagonal,
a “1” was entered into a cell for SMEs belonging to the same lab, department and group, a
“2” for SMEs belonging only to the same lab and department, a “3” to those SME's
belonging only to the same lab, and a “4” to those SMEs in different labs. The Office
Address also consists of three characters identifying a SME's office site (two possible sites
separated by about 50 miles), floor and wing. A locational distance matrix for SMEs was
calculated in the following manner: a “0” was assigned to all entries along the superdiagonal,
a “1” was entered in a cell for two SMEs located at the same site, on the same floor, and in
the same office wing, a “2” for SMEs occupying only the same site and floor, a “3” for those
SMEs only located at the same site, and a “4” to those SMEs located at different sites.

The strength of association between these two distance matrices and each of the two
distance matrices and the consensus matrix was tested using Quadratic Assignment [29].
With Quadratic Assignment a correlation statistic γ is computed between the corresponding
cells in two matrices of observed data. Then one of these matrices is repeatedly permuted
randomly, each time computing a new γ. A p-value for this randomization test is determined
by counting the proportion of times the value of γ computed for the data permutations
equaled or exceeded the value calculated for the observed data. The results obtained from
Quadratic Assignment testing with the Consensus matrix, and the Organizational and
Locational distance matrices, after 1,000 permutations, are given in Table 4.

Association γ
(observed)

Proportion
As Large

Organization/Location 0.586 0.000
Organization/Consensus -0.388 0.810
Location/Consensus -0.187 0.160

Several conclusions can be drawn from these tests. As one might expect, there does
seem to be some association between a SME's organizational affiliation and the location of
his/her office. However, there exists little evidence to support the claim that either their

Table 4. Results from significance testing of relationships
between organizational distance, inter-office distance and amount
of consensus among SME responses. (Quadratic Assignment with
1,000 permutations used for tests.)

Valued Sony Customer
67

organizational affiliation or the location of their office has much to do with what they know
about "Online Privacy and Security," though location does seem to influence more what one
knows than organizational affiliation, i.e., a possible "water cooler" effect. Another way of
putting this is that cross-organizational forums and informal sharing of information among
those who experience greater face-to-face contact may contribute more to learning and
knowledge formation than hiring practices and interactions structured more strictly along
organizational boundaries.

5. Conclusions

The experimental results obtained for the Schemer prototype are promising, especially
considering that the “correct” answers obtained for the GVU sample were in many cases
tentative due to a large, heterogeneous sample. Moreover, some of these answers were
derived statistically, with no prior analysis to weed-out items with near equal frequencies of
“true” and “false” responses. This finding implies that meaningful answers to difficult and
“fuzzy” problems might be obtained more quickly, and with less effort and cost, from the
information provided by a few competent SME's, rather than from a very much larger survey
sample [13].

So, what does this experiment have to do with the Semantic Web? We believe that it
demonstrates a potentially powerful use of consensus for deriving semantically-relevant
ontologies from domain experts. While this experiment asked SMEs to evaluate items
pertaining to Internet security and privacy, they might instead have been requested to rate
terms in a list on the basis of their salience to a knowledge domain, or to rate the relative
strength of semantic relationships between terms on this list. The protocol adopted for the
present experiment could be applied to analyze SME responses to these items to determine
(1) those terms that should be part of a controlled vocabulary, and (2) a standard set of
semantic relationships between terms in this vocabulary. Based on these consensus views
other items could be developed and evaluated by SMEs to derive defining attributes for terms
in the ontology. At each step in this process, Consensus Analysis provides important
"reality" checks. The metrics it yields, as computed in this study, more clearly indicate the
saliency of the targeted domain to SMEs and provide an opportunity to assess how much
domain knowledge is possessed by each SME in the sample. We conclude with the
conjecture that, by interviewing even a small number of competent SMEs, ontologies for
Web catalog and directory services can be similarly constructed in a manner that best
represents the collective wisdom of semantically-specialized communities-of-interest.

6. Future Work

This study provides motivation for future research in four key areas: Information acquisition,
knowledge derivation, knowledge representation and knowledge reuse.

Information acquisition. The ubiquity of the Web is encouraging some in the Knowledge
Management community to consider the automation of tried-and-tested information
gathering techniques, e.g., repertory grids [30]. Many such techniques exist, and it isn't
always clear when application of any particular one is appropriate, e.g., see [31, 32, 33].
Thus, there is a need to consider which of the many available information acquisition

Valued Sony Customer
68

techniques are appropriate for gathering the information needed to derive different types of
knowledge, e.g., controlled vocabularies, ontologies or production systems, and how best to
deploy them electronically. In fact, a taxonomy of knowledge types, with a mapping of
acquisition methods to each, is needed.

Fortunately, this study was able to reuse items developed for the GVU Survey. But this
was only a proof-of-concept. Any meaningful implementation of the Schemer System (or
another like it) will require support for item development, preferably by incrementally
building pools from items submitted by SMEs. As in test development, items will have to be
classified by their author’s COI, then carefully pretested and analyzed for their
discriminability before being added to an item pool. There is also an opportunity for
evaluating alternative protocols for presenting items to subjects based on their background
and the knowledge domain being tested, and more flexible highly-interactive formats for
presenting items to subjects electronically.

Knowledge derivation. Consensus Analysis provides a rigorous framework for deriving
knowledge from information acquired from a group of SMEs. However, further refinements
of the method are required to accommodate missing information and guessing, different
difficulty levels of problems, and to enable appropriate classification of decision-makers into
their respective communities-of-interest. These features are particularly important for
supporting the idea of acquiring information from SME’s incrementally and at their
convenience. With regards to this last point, we envision the use of wireless communication
devices, e.g., PDAs, as a useful means to acquire information from SMEs in less-intensive,
asynchronous sessions.

Knowledge representation. For derived knowledge to be useful, it needs to be represented
in a way supported by other tools, but without sacrificing information about the details of its
structure and semantics. Hence, the expressiveness and adequacy of existing knowledge
representation standards, e.g., KIF [34], KRSL [35], RDF Core [2] and DAML+OIL [3] need
to be reviewed and evaluated.

Knowledge reuse. A minimal use of derived knowledge would be to publish it
electronically. However, in the case of some knowledge, e.g., controlled vocabularies or
ontologies, new services will be required to support rapid integration of this knowledge with
other technology. Thus, there is need to further explore new technologies for making
knowledge more accessible to end-users and software applications.

7. Summary

This paper described the Schemer prototype, a Web-based infrastructure to acquire
information from domain experts and process this information with a quantitative technique
known as Consensus Analysis. This approach yields metrics that determine (1) whether a
particular problem domain has salience for a group of subject matter experts, (2) the level of
competency for each of the subject matter experts, (3) the consensus view of this group
weighted by the competency of its members, and (4) a classification of subject matter experts
by their appropriate community-of-interest.

There is an opportunity to harness the same social-cultural processes that fostered the
creation, growth and success of the current Web to evolve rich ontologies. These will be the
focal point of the “emergent” Semantic Web and will be constructed dynamically based on

Valued Sony Customer
69

consensus processes. Distributed and semantically-rich information spaces, supported by the
infrastructure needed to easily navigate them, promise to be the transforming technology of
the 21st century. New knowledge derivation techniques, such as consensus analysis,
embedded in tools that enable dynamic evolution of ontologies are a critical component of
the semantic Web. We see the Schemer prototype as an important step in the long march
towards realizing a semantic Web infrastructure.

Acknowledgements

We want to thank Mark Rosenstein, Jon Kettenring, Sid Dalal and anonymous reviewers for commenting on
earlier drafts of this paper, and Kim Romney, Sue Weller and Steve Borgatti for many fruitful exchanges on
Consensus Analysis and its formal foundations. We are also grateful to Tracy Mullen, Marek Fiuk and Chumki
Basu for their assistance with implementing the Schemer prototype, and to other colleagues in Telcordia
Technologies’ Information and Computer Sciences Research and Internet Architectures Research labs for
participating in the experiment described in this paper. Both Insightful S-Plus® version 5.0 and Analytic
Technologies AnthroPac® version 4.1 were used to benchmark data analysis.

References

[1] Fensel, D., 2001. Understanding is based on Consensus. Panel on Semantics on the Web. 10th International
WWW Conference, Hong Kong, 2001.

[2] The RDF Core Working Group. http://www.w3.org/2001/sw/RDFCore/

[3] D. Broekstra et al., 2001. Enabling Knowledge Representation on the Web by extending the RDF Schema.
10th International WWW Conference, Hong Kong 2001.

[4] T. H. Davenport and L. Prusak. 1998. Working Knowledge: How Organizations Manage What They
Know. Boston: Harvard Business School Press.

[5] D. Gibson, J. Kleinberg, and P. Raghavan. 1998. Inferring web communities from link topology.
Proceedings of the 9th ACM Conference on Hypertext and Hypermedia.

[6] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. 1995. Recommending and evaluating choices in a virtual
community of use. Proceedings of the CHI-95 Conference, Denver, CO.

[7] C. F. Cargill, 1989. Information Technology Standardization: Theory, Process, and Organizations.
Bedford, MA: Digital Press.

[8] C. Cargill, 1994. Prologue and Introduction. Standard View 2(3): (1994) 129.

[9] A. Farquhar, R. Fikes, and J. Rice. 1996. The Ontolingua Server: A Tool for Collaborative Ontology
Construction. Knowledge Systems Laboratory, KSL-96-26 (September).

[10] M. M. Turoff and S. R. Hiltz. 1996. Computer-based Delphi processes. In M. Adler and E. Ziglio (eds.),
Gazing into the Oracle: The Delphi Method and its Application to Social Policy and Public Health. pp. 56-
85. London: Jessica Kingsley Publishers.

[11] R. M. Cooke, 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. New York:
Oxford University Press.

[12] H. A. Linstone and M. Turoff (eds.). 1975. The Delphi Method: Technique and Applications. Reading,
MA: Addison-Wesley.

Valued Sony Customer
70

[13] A. K. Romney, S. C. Weller, and W. H. Batchelder. 1986. Culture as consensus: A theory of culture and
informant accuracy. American Anthropologist 88(2):313-338.

[14] R. M. Keesing, 1974. Theories of culture. Annual Review of Anthropology 3:73-97.

[15] A. L. Kroeber, 1948. Anthropology. New York: Harcourt, Brace.

[16] D. W. Read and C. A. Behrens. 1989. Modeling folk knowledge as expert systems. Anthropological
Quarterly 62(3):107-120.

[17] D. W. Read and C. A. Behrens. 1991. Computer representation of cultural constructs: New research tools
for the study of kinship systems. In M. S. Boone and J. J. Wood (eds.), Computer Applications for
Anthropologists. Pp. 228-250. Belmont, CA: Wadsworth Publishing Co.

[18] FGDC. 1994. Content Standards for Digital Geospatial Metadata (June 8). Washington, D. C.: Federal
Geographic Data Committee.

[19] B. J. Hillman, R. G. Swensson, S. J. Hessel, D. E. Gerson, and P. G. Herman. 1997. Improving diagnostic
accuracy: A comparison of interactive and Delphi consultations. Investigative Radiology 12:112-115.

[20] B. W. Boehm, P. Bose, E. Horowitz and M. J. Lee. 1994. Software requirements as negotiated win
conditions. Proceedings of Information CommunityRE (April) Pp. 74-83.

[21] R. G. D’Andrade, 1981. The cultural part of cognition. Cognitive Science 5:179-195.

[22] W. H. Batchelder and A. K. Romney. 1986. The statistical analysis of a general Condorcet model for
dichotomous choice situations. In G. Grofman and G. Owen (eds.), Information Pooling and Group
Decision Making. Pp. 103-112. Greenwich, CT: JAI Press.

[23] W. H. Batchelder and A. K. Romney. 1988. Test theory without an answer key. Psychometrika 53:71-92.

[24] D. Caulkins and S. Hyatt. 1999. Using consensus analysis to measure cultural diversity in organizations and
social movements. Field Methods 11(1): 5-26.

[25] S. C. Weller and N. C. Mann. 1997. Assessing rater performance without a standard using consensus
theory. Medical Decision Making 17:71-79.

[26] A. L. Comrey, 1962. The minimum residual method of factor analysis. Psychological Reports 11:15-18.

[27] S. S. Schiffman, M. L. Reynolds, and F. W. Young. 1981. Introduction to Multidimensional Scaling:
Theory, Methods and Applications. New York: Academic Press.

[28] H. M. Blalock, Jr. 1972. Social Statistics. New York: McGraw-Hill.

[29] L. J. Hubert, 1987. Assignment Methods in Combinatorial Data Analysis. Statistics, textbooks and
monographs, (73) New York: Marcel Dekker, Inc.

[30] J. H. Boose, 1989. A survey of knowledge acquisition techniques and tools. Knowledge Acquisition 1(1):
3-37.

[31] H. R. Bernard, 1988. Research Methods in Cultural Anthropology. Newbury Park, CA: Sage.

[32] J. P. Spradley, 1979. The Ethnographic Interview. New York: Holt, Rinehart and Winston.

[33] O. Werner and G. M. Schoepfle. 1987. Systematic Fieldwork (2 vols). Newbury Park, CA. Sage.

Valued Sony Customer
71

[34] M. R. Genesereth and R. E. Fikes (eds.). 1992. Knowledge Interchange Format, Version 3.0 Reference
Manual. Computer Science Department, Stanford University, Technical report Logic-92-1.

[35] J. Allen and N. Lehrer. 1992. Knowledge Representation Specification Language (KRSL), Version 2.0.1
Reference Manual. Draft of the DARPA/Rome Laboratory Planning and Scheduling Initiative. ISX
Corporation.

Appendix A

Items derived from Georgia Tech’s Graphics, Visualization and Usability Center’s 10th World Wide Web User
Survey on "Online Privacy and Security." Answers in parentheses based on simple "majority view" obtained
from survey of 1,482 respondents. (See http://www.gvu.gatech.edu/gvu/user_surveys/survey-1998-10/.)

In general, how concerned are most WWW users about security on the Internet (e.g., others reading their email,
finding out what websites they visit, etc.)? Keep in mind that in this context "security" can mean privacy,
confidentiality, and/or proof of identity for a WWW user or for someone else.

1. Older (50+ years old) WWW users tend to be more concerned than younger users. (F)

2. Experienced (> 4 years experience) WWW users tend to be less concerned than inexperienced
users. (T)

In general, how concerned are most WWW users about security in relation to making purchases or banking over
the Internet? Keep in mind that "security" can mean privacy, confidentiality, and/or proof of identity for a
WWW user or for someone else.

3. Older (50+ years old) WWW users tend to be more concerned than younger users. (F)

4. Experienced (> 4 years experience) WWW users tend to be less concerned than inexperienced
users. (T)

One thing that makes it difficult to study Internet security is people’s and business’ reluctance to report security
problems for fear of causing more problems for themselves. In addition, it is not always clear where they should
be reported. One idea is to have a "clearinghouse" where security problems can be studied and tracked. Please
provide you opinions about how such an idea might be received.

5. Most WWW users would be willing to report a security break-in of their personal machine or
network to a clearinghouse that maintained their anonymity? (T)

6. Most WWW users would be willing to report a security break-in of their business machine or
network to a clearinghouse that maintained their anonymity? (T)

7. Less than 10% of WWW users have ever had their credit card number stolen (either online or offline)? (F)

8. More than 50% of WWW users are willing to use their credit card on the web? (T)

9. Less than 20% of WWW users have an unlisted phone number? (F)

10. Most WWW users are unwilling to put their name and address in a directory for public access on the Web
(e.g. the online equivalent of a phone company’s "White Pages")? (F)

11. Most WWW users are willing to conduct banking on the Web without a statement from the bank of the
security procedures used? (F)

Valued Sony Customer

Valued Sony Customer
72

12. WWW users within the United States are more concerned than those in Europe or elsewhere about
conducting business online outside of their own country without a statement of the security procedures
used? (T)

13. In general, PRIVACY is more important than CONVENIENCE to most WWW users? (T)

14. WWW users will more likely participate in an "online auction" for something they are interested in
purchasing? (F)

15. Most WWW users think using the Internet for shopping and banking would make their life easier? (T)

16. For most WWW users security features are the deciding factor in choosing whether or not to do business
with an Internet-based company? (F)

17. Most WWW users believe that metrics to measure "how secure" a specific site is rated would not be of any
help or value to them? (F)

When one views a Web page, they issue a request to a machine that returns the page to them. Which of the
following information do most WWW users believe is technically possible to record/log about their page
request?

18. Their email address (T)
19. Time of the request (T)
20. Their machine address (T)
21. The requested page (T)
22. An identifier that persists across visits to that site (T)
23. The type of browser they are using (T)
24. Their machine’s operating system (T)
25. Their geographical location (F)
26. Their screen size (F)

What information would most WWW users agree ought to be collected for each Web page they request?

27. Their email address (F)
28. Time of the request (T)
29. Their machine address (F)
30. The requested page (T)
31. An identifier that persists across visits to that site (F)
32. The type of browser they are using (F)
33. Their machine’s operating system (F)
34. Their geographical location (F)
35. Their screen size (F)

Most WWW users would give demographic information to a Web site ...

36. if a statement was provided regarding what information was being collected (T)
37. if a statement was provided regarding how the information was going to be used (T)
38. in exchange for access to the pages on the Web site (F)
39. in exchange for a small discount at the Web site’s store or on their products (F)
40. in exchange for some value-added service (e.g., notification of events, etc.) (F)
41. if the data would only be used in aggregate form (i.e., not on an individual basis) (T)

What conditions would cause most WWW users to refrain from filling out online registration forms at sites?

42. Takes too much time (T)

Valued Sony Customer
73

43. Required to give their name (F)
44. Required to give an email address (F)
45. Required to give their mailing address (F)
46. Information is not provided on how the data is going to be used (T)
47. Accessing the site is not worth revealing the requested information (T)
48. The entity collecting the data is not trusted (T)

Recent attention has been given to mass electronic mailings (a.k.a. spammings) which often contain
advertisements, political statements, get-rich-quick schemes, etc. Among most WWW users, which of the
following policies would most likely find support?

49. The Government ought to pass a law making it illegal. (F)
50. Mass mailing agencies ought to have to pay an ’impact’ fee. (F)
51. A blacklist of spammers should be built to allow message filtering. (F)
52. A registry ought to be created which contains a list of those not wishing to receive mass mailings.

(F)

53. Most of the time upon receiving a mass mailing, WWW users will read the message, then either send a
message back asking not to be included in future mailings, retaliate in some manner (e.g., mailing
bombings, denial of service, etc.), or perform some other action. (F)

Most WWW users would support which of the following?

54. New laws to protect privacy on the Internet. (T)
55. The establishment of key escrow encryption (where a trusted party keeps a key that can read

encrypted messages). (T)
56. Web sites need information about their users to market their site to advertisers. (T)
57. Content providers have the right to resell information about its users to other companies. (F)
58. A user ought to have complete control over which sites get what demographic information. (T)
59. Magazines to which a WWW user subscribes have the right to sell their name and address to

companies they feel will interest that user. (F)
60. WWW users like receiving mass postal mailings that were specifically targeted to their

demographics. (F)
61. WWW users like receiving mass electronic mailings. (F)
62. WWW users ought to be able to take on different aliases/roles at different times on the Internet.

(T)
63. WWW users value being able to visit sites on the Internet in an anonymous manner. (T)
64. WWW users ought to be able to communicate over the Internet without people being able to read

the content. (T)
65. WWW users would prefer Internet payment systems that are anonymous to those that are user

identified. (T)
66. Third party advertising agencies should be able to compile usage behavior across different web

sites for direct marketing purposes. (F)
67. There ought to be stricter laws to protect children’s privacy than adult’s privacy on the Internet.

(T)

Valued Sony Customer
74

Ontology versioning on the Semantic Web
Michel Klein and Dieter Fensel
Vrije Universiteit Amsterdam

De Boelelaan 1081a
1081 HV Amsterdam, the Netherlands

michel.klein/dieter@cs.vu.nl

Abstract Ontologies are often seen as basic building blocks for the Semantic Web,
as they provide a reusable piece of knowledge about a specific domain. However, those
pieces of knowledge are not static, but evolve over time. Domain changes, adaptations
to different tasks, or changes in the conceptualization require modifications of the on-
tology. The evolution of ontologies causes operability problems, which will hamper
their effective reuse. A versioning mechanism might help to reduce those problems,
as it will make the relations between different revisions of an ontology explicit. This
paper will discuss the problem of ontology versioning. Inspired by the work done
in database schema versioning and program interface versioning, it will also propose
building blocks for the most important aspects of a versioning mechanism, i.e., ontol-
ogy identification and change specification.

1 Introduction

Ontologies are often seen as basic building blocks for the Semantic Web, as they provide a
reusable piece of knowledge about a specific domain. However, those pieces of knowledge
are often not static, but evolve over time. Domain changes, adaptations to different tasks,
or changes in the conceptualization require modifications of the ontology. The evolution of
ontologies causes operability problems, which will hamper the effective reuse.

Support to handle those changes is needed. This is especially important in a decentral-
ized and uncontrolled environment like the web, where changes occur without attunement.
Much more than in an controlled environment, this may have unexpected and unknown re-
sults. With the rise of the Semantic Web, those uncontrolled changes will have even more
impact, becausecomputerswill use the data. There are no longer humans in the chain that —
using a vast amount of background knowledge and implicit heuristics — can spot erroneous
combinations due to unexpected changes.

The problem is even worse, because there are a lot of dependencies between data sources,
applications and the ontologies. Changes to the latter will thus have far-reaching side effects.
It is often not practically possible to synchronism the changes to an ontology with modifica-
tions to the applications and data sources that use them. Therefore, a versioning methodology
is needed to handle revisions of ontologies and the impact on existing sources.

In this paper, we will explore the problem of ontology versioning and we will propose
some elements of a versioning framework. We will first discuss the nature of ontology ver-
sioning in Section 2. Because compatibility is a key issue in versioning, Section 3 contains an

michel.klein/dieter@cs.vu.nl
Valued Sony Customer
75

Michel Klein and Dieter Fensel

analysis of the compatibility between schema’s and conforming data. To come up with con-
crete requirements for a versioning framework, we will look at current practices for handling
ontology change in Section 4, in which we will also formulate those requirements. Section 5
will eventually present the proposed baseline for an ontology versioning framework on the
web. It will mainly concentrate on identification and referring issues. Section 6 concludes the
paper and sketches the directions for further research. Finally, the appendix shows how this
ideas may be implemented in RDF Schema and / or DAML+OIL.

2 The problem: versioning of ontologies

Before we can investigate the solutions for ontology versioning, we first have to take a closer
look at what it actually is. In a general sense, ontology versioning just means that there are
multiple variants of an ontology around. In practice, those variants often originates from
changes to an existing variant of the ontology and thus form a derivation tree. It is also pos-
sible that different “versions” of ontologies of the same domain are independently developed
and donot have a derivation relation. In this case, however, we will not use the word “ver-
sion”, but we will see the variants as separate ontologies that describe the domain from a spe-
cific viewpointor perspective. In our view, ontology versioning is closely related to changes
in ontologies.

We define ontology versioning asthe ability to handle changes in ontologies by creating
and managing different variants of it. To achieve this ability, we need a methodology with
methods to distinguish and recognize versions, and with procedures for updates and changes
in ontologies. This also implies that we should keep track of the relationships between ver-
sions.

Focused on ontologies, we can say that aversioning methodologyprovides mechanism
to disambiguate the interpretation of concepts for users of the ontology variants, and that it
makes the compatibility of the variants explicit. The extend of the changes determines the
compatibility between the versions. This implies that the semantic impact of changes should
be examined. The central question that a versioning methodology answers is: how to reuse
existing ontologies in new situations, without invalidating the current usage.

2.1 Causes of ontology changes

A versioning methodology for ontologies copes with changes inontologies. To examine the
causes of changes, we will have to look at the nature of ontologies. According to Gruber
(1993), an ontologies is aspecification of a shared conceptualization of a domain. Hence,
changes in ontologies are caused by either:

1. changes in the domain;

2. changes in the shared conceptualization;

3. changes in the specification.

The first type of change is often occurring. This problem is very well known from the area of
database schema versioning. Ventrone and Heiler (1991) sketches seven different situations
in which changes in a domain (domain evolution) require changes to a database model. An

Valued Sony Customer
76

Ontology versioning on the Semantic Web

example of this type of change is the merge of two university departments: this is a change in
the real world, which requires that an ontology that describes this domain is modified, too.

Changes in the shared conceptualization are also frequently happening. It is important to
realize that asharedconceptualization of a domain is not a static specification that is pro-
duced once in the history, but has to be reached over time. Fensel (2001) describes ontologies
as dynamic networks of meaning, in which consensus is achieved in a social process of ex-
changing information and meaning. This view attributes a dual role to ontologies in informa-
tion exchange: they provide consensus that is both apre-requisitefor information exchange
and aresultof this exchange process.

An conceptualization can also change because of the usage perspective. Different tasks
may imply different views on the domain and consequently a different conceptualization.
When an ontology is adapted for a new task or a new domain, the modifications represent
changes to the conceptualization. For example, consider an ontology about traffic connec-
tions in Amsterdam, with concepts like roads, cycle-tracks, canals, bridges and so on. When
the ontology is adapted from a bicycle perspective to a water transport perspective, the con-
ceptualization of a bridge changes from a remedy for crossing a canal to a time consuming
obstacle1.

Finally, a specification change is a kind of translation, i.e., a change in the way in which
a conceptualization is formally recorded. Although ontology translation is an important and
non-trivial issue in many practical applications, it is less interestingfrom a versioning per-
spective, for two reasons. First, an important goal of a translation is to retain the semantics,
i.e., specification variants should be equivalent2 and they thus only cause syntactic inter-
operability problems. Second, a translation is often created to use the ontology in an other
context (i.e., an other application or system), which heavily reduces the importance of inter-
operability questions. Therefore, we will leave specification changes alone and concentrate
on support for changes in the semantics of an ontology, caused by either domain changes or
conceptualization changes.

2.2 Consequences of the change

Versioning support is necessary because changes to ontologies may cause incompatibilities,
which means that the changed ontology can not simply be used instead of the unchanged
version. There are several type of things that may depend on an ontology. Each of these
dependencies may cause a different type of incompatibility.

• In the first place, there is the data that conforms to the ontology. In a semantic web, this
can be web pages of which the content is annotated with terms from an ontology. When
an ontology is changed, this data may get an different interpretation or may use unknown
terms.

• Second, there are other ontologies that use the changed ontology. This may be ontologies
that are built from the source ontology, or that import the ontology. Changes to the source
ontology may affect the resulting ontology.

1Actually, for many people this meaning is also an element of the bicycle perspective.
2Although in practice a translation often implies a change in semantics, possibly caused by differences in

the representation languages. See for a exploration of ontology language differences and mismatches (Corcho
and Ǵomez-Ṕerez, 2000) and (Klein, 2001).

Valued Sony Customer

Valued Sony Customer
77

Michel Klein and Dieter Fensel

• Third, applications that use the ontology may also be hampered by changes to the on-
tology. In the ideal case, the conceptual knowledge that is necessary for an application
should be merely specified in the ontology; however, in practice applications also use an
internal model. This internal model may become incompatible with the ontology.

All things considered, we see that a versioning methodology is necessary to take care of
the following relations:

• between succeeding revisions of one ontology;
• between the ontology and:

– instance data;
– related ontologies;
– related applications.

In the rest of the paper, we will mainly concentrate on the relation betweendata sourcesand
related ontologies. This has two reasons. First, this specific dependency is occurring very
frequently at the Semantic Web and therefore forms an urgent problem. Second, because the
other dependencies can be considered as more complex cases of the first dependency, we will
have to start with the first case to come to the more complex situations in future work.

3 Analysis of compatibility

In Section 2, we discussed the relations between ontologies and depending data sources in
general. In this section, we will take a closer look at the compatibility of changed ontologies
and data sources.

We can imagine that — when the Semantic Web evolves — there will be various versions
of many ontologies around. There will also be a lot of web pages and applications that use
(or are intended to use) a specific version of the ontology. Consequently, there are a number
of (possible incompatibility) ways of combining versions of ontologies with versions of data
sources. Basically, there are three ways to relate ontology versions with data sources: (1)
using the intended version of the ontology for a data source, (2) using a newer version of the
ontology, and (3) using an older version of the ontology. As the first type of of combination
is naturally compatible, we thus have to explore the incompatibility of ontologies and data
sources in two directions, which are illustrated in Figure 1. The terms that we use are known
from the database schema versioning literature Roddick (1995).

• prospective use: the use of data sources that conform to a previous version of the ontology
via a newer version of the ontology (i.e. view the data from a newer perspective).

• retrospective use: the use of data sources that conform to a newer version of the ontology
via a previous version of the ontology (view the data from an older perspective).

Based on these directions of use, we can now categorize the compatibility of ontology re-
visions into different types. In this categorization, we examine whether it is valid to use a
revision of an ontology on theset of all possible instancesof an other revision of the ontol-
ogy. In other words, we assume that the data source that conforms to a specific version of
the ontology uses the whole ontology, i.e., all concepts and relations. From a compatibility
perspective, this is a worst case scenario. Table 1 shows the types of compatibility.
We can describe the types of revisions as follows:

Valued Sony Customer
78

Ontology versioning on the Semantic Web

Ontology
version 1

Ontology
version 2

Ontology
version 3

Ontology
version 4

datasource datasource datasource datasource

conforms to conforms to conforms to conforms to

prospective use

Ontology
version 1

Ontology
version 2

Ontology
version 3

Ontology
version 4

datasource datasource datasource datasource

conforms to conforms to conforms to conforms to

retrospective use

Figure 1: Two examples of prospective and retrospective use of ontologies.

prospective use valid
yes no

retrospective
use valid

yes full compatible upward compatible
no backward compatible incompatible

Table 1: Categorization of compatibility

• full compatible revisions (upward and backward): the semantics of the ontology is not
changed, e.g. syntactic changes or updates of natural language descriptions; this type of
change is compatible in bothprospectiveuse andretrospectiveuse.

• backward compatible revisions: the semantics of the ontology are changed in such a
way that the interpretation of data via the new ontology is the same as when using the
previous version of the ontology, e.g. the addition of an independent class; this type of
change is compatible inprospectiveuse;

• upward compatible revisions: the semantics of the ontology is changed is such a way
that an older version can be used to interpret newer data sources correctly, e.g. the removal
of an independent class; this revision is compatible inretrospectiveuse.

• incompatible revisions: the semantics of the ontology is changed in such a way that the
interpretation of old data sources is invalid, e.g. changing the place in the hierarchy of a
class; this type of change is incompatible in bothprospectiveuse andretrospectiveuse.

Notice that both backward compatibility and upward compatibility are transitive: when
the changes fromv1 to v2 as well as the changes fromv2 to v3 are backward compatible,
then the changes fromv1 to v3 are also backward compatible.

Consequently, if we know that all subsequentrevisionsto an ontology up to a certain
version are backward compatible, it is also possible to name the resulting version of the
ontology itselfbackward compatible. However, it is never allowed to call a version of an
ontologyupward or full compatible, because the semantics of future versions are not known
beforehand! It is always possible that new versions of ontologies will introduce new things
that cannot correctly be interpreted via older ontology versions. Thus,backward compatibility
can be a characteristic of an ontology, butupward or full compatibilitycan not.

In the characterization above, we looked at compatibility from a theoretic perspective,
considering data sources that consist of all possible instances of the ontology to which they

Valued Sony Customer
79

Michel Klein and Dieter Fensel

conform. As we already said, this is a worst case scenario. In practice, much more combina-
tions of ontology versions and data sources yield a valid interpretation of the data than can be
assumed from the schema in Table 1.

For example, although the table depicts that an incompatible revision can not be used for
prospective interpretation (to interpret data sources that conforms to an older version), it is
very well possible that a specific prospective use is valid, i.e., that the ontology can be used
to correctly interpret some data that is committed to a previous version. This occurs when the
ontological commitmentof a data source, i.e., that part of the ontology that is actually “used”
by a data source3, is a subset of the complete “ontology” that is not affected by the revisions.

It is very much required that versioning methodologies and techniques for the Semantic
Web exploit this “practical” compatibility where possible. That is, the techniques should not
only determine whether a specific combination an ontology version and a data source version
provides a valid interpretationin general, but — even when the combination is not gener-
ally valid — try to use as much knowledge as possible. We think that such techniques for
“maximal exploitation” are essential for the development of the Semantic Web.

4 Current practices and requirements

To come up with concrete requirements for an ontology versioning mechanism on the web,
we will now look at the current practices for managing changes in web-ontologies. We will
describe a few typical scenarios for ontology change and explore the effects of those scenarios
on two examples.

Currently, there is no agreed versioning methodology for ontologies on the web. However,
in an decentralized and uncontrolled environment like the web, changes are certainly needed
and do occur! When we look at the current practices, we can sketch several scenarios for
ontology changes.

1. The ontology is silently changed; the previous version is replaced by the new version
without any (formal) notification.

2. The ontology is visibly changed, but only the new version is accessible; the previous
version is replaced by the new version.

3. The ontology is visibly changed, and both the new version and the previous version are
accessible.

4. The ontology is visibly changed, both the new version and the previous version are ac-
cessible, and there is an explicit specification of the relation between concepts of the new
version and the previous version.

4.1 Simple example

To come to concrete requirements for a versioning methodology, we will now look at the
effects of these scenarios on the compatibility when an ontology changes. As an example we
use an ontology of the education system in the Netherlands and web pages that are annotated
with this ontology.

3This definition and the use of the term “ontology” is quite sloppy.

Valued Sony Customer
80

Ontology versioning on the Semantic Web

In the distant past, there was only one type of higher education, which was called an
“University”. A small part of an ontology that describes this looks as follows:4

class-defEducation
class-defAcadamicEducation

subclass-ofEducation
class-defHigher-Education-Institute
class-defUniversity

subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-valueAcadamicEducation

Many years later, a new type of higher-education was introduced, which provides profes-
sional education. This type was called “HBO”. The above ontology has to be extended with
the following three definitions. This addition is a monotonic extension to the ontology and
the new version can be considered as being backward compatible with the first version.

class-defProfessionalEducation
subclass-ofEducation

disjoint AcadamicEducation ProfessionalEducation
class-defHBO

subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-valueProfessionalEducation

Let us suppose that there are a lot of web pages about education in the Netherlands around,
which are annotated using the first version of the ontology. We will now try to interpret
this information using the second version of the ontology (prospective use). We describe the
effects of the change for each of the scenarios that are listed above.

Ex. 1, ad 1 When we have completely no clue that the ontology is changed, we encounter —
in this backward compatible case — no problems at all. The terms that are used
in the data source are the same as those in the ontology, and they also have the
same meaning. A “University” on a web page is correctly interpreted.

Ex. 1, ad 2 When we know that the ontology is changed, but we don’t know anything about
the previous version of the ontology, nothing is sure anymore! Definitions could
be changed and we can not derive that the term “University” on a web page (using
ontology version 1) is the same as our definition.

Ex. 1, ad 3 In case the previous ontology can be accessed, we can compare and relate the
ontologies, and see whether the changes interferes with the semantics of existing
terms. In this case, we could have derived that the concept of ”University” is not
changed, and that the data sources can still correctly be interpreted.

4We use the “presentation syntax” of OIL (Fensel et al., 2000a) to represent the ontology; the interpretation
is more or less straightforward. We could also have used DAML+OIL, but this would have required much more
space.

Valued Sony Customer
81

Michel Klein and Dieter Fensel

Ex. 1, ad 4 If the relation between the concepts is explicitly specified, it would be clear that
the the new version is backward compatible with the previous version, because
the new version only adds a concepts. We could then safely conclude that the
interpretation of previous data is still valid.

Notice that in the last three scenarios it is important to know which version of the ontology is
used to annotate the data sources. This should me made explicit in some way.

4.2 More complicated example

In the year 2000, the Dutch government decided that both professional and academic insti-
tutes for higher-education are allowed to call themselves “University”. This implies a new
change to our ontology, resulting in a third version. This version is in general incompatible
with the previous version. In the new version, the definition of “University” is changed to:

class-defUniversity
subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-value(ProfessionalEducation or AcadamicEducation)

Let us again look at the consequences of this change with current versioning practices:

Ex. 2, ad 1 When we do not know that the ontology is changed, we use an other interpretation
of a “University” than intended. Because in this case, a University-v1 is a subclass
of University-v2, the interpretation of data is not incorrect, but also not complete.
We cannot interpret that every “University” in the data sources actually provide
academic education.

Ex. 2, ad 2 Same problem as with the change in the previous example.

Ex. 2, ad 3 If we have both version of the ontologies, we could compare them and see that
only the definition of “University” is changed. We can see that both versions are
subclasses of “Higher-Education-Institute”, and interpret all instances of the old
“University” as instance of “Higher-Education-Institute”. This is again correct
but incomplete. It ignores some knowledge that is available. Notice that, in this
case, smart agents (agents capable of performing OIL classification) can derive
that both Universities and HBOs are subclasses of new universities. Figure 2
shows5 the classes in our example before and after classification.

Ex. 2, ad 4 In the case in which the relations between the concepts in the two ontologies
are explicitly specified, it would tell us that “University” in the new ontology
subsumes both “HBO” and “University” in the previous version.

It is also worth to notice that, in the last two scenarios, it is necessary to be able to distinguish
between the different version of a concept. As the definition of “University” is changed, we
need a separate identifier for each version of the definition. Otherwise, it is not possible to
relate the previous and new definition to each other. In Figure 2, this is temporarily solved by
appending “-v2” to the concept name.

5Modeled with the OILed tool,http://img.cs.man.ac.uk/oil/ .

http://img.cs.man.ac.uk/oil/
Valued Sony Customer
82

Ontology versioning on the Semantic Web

Figure 2: The hierarchy of the example ontology before and after classification with FaCT.

4.3 Observations

Based on the examples above, we can make a few observations. First, changing an ontology
without any notificationmayresult in a correct interpretation of the data. This is the case when
the modification in the ontology does not affect the existing definitions, i.e., when the change
is a monotonic extension. Heflin and Hendler (2000) show that the addition of concepts or
relations are such extensions. When used on a data source, ontologies that are extended in
this way yield the same perspective as when the original ontology is used. The interpretation
is also valid when the revised concepts subsumes the original concepts. However, although
the interpretation is correct in this case, it is only partial: not all the knowledge is exploited.

Because many changes in ontologies consist just of additions of concepts, it is under-
standable that the first scenario of ontology change is sometimes used. It is, however, not
difficult to think of an change that — in this scenario — will result in aninvalid interpreta-
tion, e.g., every change that restricts the extension of a class. This scenario should therefore
be prevented.

Second, we see that it can be beneficial to have access to older versions of the ontology.
This allows to compare the definitions and judge the validness of definitions used with other
versions the data. In case of a cleanly modeled ontology,6 it is even possible to have some
automate support for this, e.g. by using the FaCT classifier7.

As a third observation, we see knowledge about the relation concepts of different ver-
sions may yield in a partial but correct interpretation of the data. This relation can either be

6That is, the definitions of concepts should state whether they are necessary or necessary and suffi-
cient; in Description Logic parlance: primitive or defined. This way of modeling is more naturally in OIL
than in DAML+OIL, as the second requires that a defined concept is modeled as an equivalence to a cou-
ple of restrictions. It is therefore questionable whether in practice DAML+OIL ontologies can benefit much
from the classification support. See also the discussion on this topic on the RDF-Logic mailing-list:http:
//lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html .

7http://www.cs.man.ac.uk/˜horrocks/FaCT/

http://lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html
http://www.cs.man.ac.uk/~horrocks/FaCT/
Valued Sony Customer
83

Michel Klein and Dieter Fensel

manually specified, or can partly be derived, as described in the previous paragraph. For the
specification of the relation between concepts of different versions, we need a identification
mechanism for individual concepts of an ontology version. If we cannot refer to a specific
version of a concept, this specification is not possible.

4.4 Requirements for versioning framework

Now we have explored the problems around ontology versioning, we can formulate require-
ments and wishes for a versioning methodology. We will first define the general goal for a
versioning framework.

A versioning methodology should provide mechanisms and techniques to manage
changes to ontologies, while achieving maximal interoperability with existing data
and applications. This means that it should retain as much information and knowledge
as possible, without deriving incorrect information.

Notice that this is much stricter than just specifying whether it is valid to use a certain version
of an ontology with a data source.

The general goal can be detailed in a number of more specific requirements. We impose
the following requirements on a versioning framework, in increasing level of difficulty:

• for every use of a concept or a relation, a versioning framework should provide an unam-
biguous reference to the intended definition; (identification)

• a versioning framework should make the relation of one version of a concept or relation
to other versions of that construct explicit; (change specification)

• a versioning framework should — as far as possible — automatically translate and relate
the versions and data sources, to enable transparent access. (transparent evolution)

5 Building blocks for a versioning methodology

After we have stated the problems and requirements, we will now provide elements of a
versioning methodology. We will concentrate our discussion on ontology identification and
change specification.

5.1 Ontology identification on the web

Identity of ontologies The first question that has to be answered when we want to identify
versions of an ontology on the web is: what is the identity of an ontology? This is not as trivial
as it seems. In Section 3, we already anticipated this question by stating that syntactic changes
and updates of natural language descriptions are fully compatible revisions. However, this is
very debatable! If an ontology is seen as a specification of a conceptualization, then every
modification to that specification can be considered a new conceptualization of the domain.
In that case, the descriptions specify different concepts, which areper definitionnot equal.

Looking at this from another perspective, one might regard an ontology primarily as a
conceptualization, which is represented as complete as possible in a specification. In this

Valued Sony Customer
84

Ontology versioning on the Semantic Web

case one could argue that an update to a natural language description of a concept is not a
semantic change, but just a refined description of the same conceptualization.

In this philosophical debate, we take the following (practical) position. We assume that an
ontology is represented in a file on the web. Every change that results in a different character
representation of the ontology constitutes a revision. In case the logical definitions are not
changed, it is the responsibility of the author of the revision to decide whether this revision
is semantic change and thus forms an new conceptualization with its own identity, or just an
change in the representation of the same conceptualization.

Identification on the web The second question is: how does this relate to web resources
and there identity? This is brings us into the very slippery debate on the meaning of URIs,
URNs and resources (see Champin et al., 2001, and the discussion on the RDF Interest
mailing-list that followed its publication). The main questions in this discussion are: what
is a resource and how should it be identified. However, we will circumvent these questions
and approach the problem from another direction: are the “entities” in our domain (i.e., the
entities in the domain of ontology versions, e.g. a conceptualization, a revision, a specifica-
tion) resources and can we give them an identifier?

These questions are relatively easy to solve! According to the definition of Uniform Re-
source Identifiers (URI’s) (defined in Berners-Lee et al., 1998), “a resource can be anything
that has identity”. In (Berners-Lee, 1996) is stated: a “resource” is a conceptual entity (a little
like a Platonic ideal). Both definitions comprise our idea of an ontology. Hence, an ontology
can harmlessly be regarded as a resource. An URI, which “is a compact string of characters
for identifying an abstract or physical resource” (Berners-Lee et al., 1998) can be used to
identify the resources. Notice that URI’s provide a general identification mechanisms, as op-
posed to Uniform Resource Locators (URL’s), which are bound to thelocationof a resource.

The important step in our proposed method is to separate the identity of ontologies com-
pletely from the identity of files on the web that specify the ontology. In other words, the
class of ontology resources should be distinguished from the class of file resources. As we
have seen above, a revision — which is normally specified in a new file —mayconstitute a
new ontology, but this is no automatism. Every revision is a new file resource and gets a new
file identifier, but does not automatically get a new ontology identifier.

Notice that we are at this point not compliant with the RDF Schema specification (Brick-
ley and Guha, 2000), which states:8

this specification recommends that a new namespace URI should be declared when-
ever an RDF schema is changed.

This is recommendation seems too strong, because it also advises to use new URI’s when only
small corrections are made that do not affect the meaning, i.e., when the conceptualization is
not changed. This has already caused problems. For example, the Dublin Core working group
changed the URI of their meta-data term definitions when they published a new version with
more precisely stated definitions. This has caused a lot of annoyance in the library community,
who had to work with several URI’s for equivalent concepts. Eventually, the DC steering
committee decided to use one URI for all the versions of their definitions.

8Although we might beintentionallycompliant, because the RDFS specification argues that changing the
logical structure might break depending models. This recommendation could thus be interpreted as only valid
for logical changes.

Valued Sony Customer
85

Michel Klein and Dieter Fensel

Baseline of an identification method When we take into account all these considerations,
we propose an identification method that is based on the following points:

• a distinction between three classes of resources:

1. files;

2. ontologies;

3. lines of backward compatible ontologies.

• a change in a file results in a new file identifier;
• the use of a URL for the file identification;
• only a change in the conceptualization results in a new ontology identifier;
• a new type of URI for ontology identification with a two level numbering scheme:

– minor numbers for backward compatible modifications (an ontology-URI ending
with a minor number identifies a specific ontology);

– major numbers for incompatible changes (an ontology-URI ending with a major
number identifies a line of backward compatible ontologies);

• individual concepts or relations, whose identifier only differs in minor number, are as-
sumed to be equivalent;
• ontologies are referred to by an ontology URI with the according major revision number

and theminimal extra commitment, i.e., the lowest necessary minor revision number.

The ideas behind these points are the following. As already pointed out in the beginning of
this section, the distinction between ontology identity and file identity has the advantage that
file changes and location changes (e.g., copy of an ontology) can be isolated from ontological
changes. By using a new type of URI, it is possible to encode all the information in it that is
necessary for our usage, and it also prevents confusion with URL’s that specify a location.

The distinction between individual ontologies on the one hand and lines of backward com-
patible ontologies on the other hand, provides a simple way to indicate a very general type
of compatibility, likewise the “BACKWARD-COMPATIBLE-WITH” field in SHOE (Heflin
and Hendler, 2000). The distinction we make is also in line with the idea of “levels of gen-
erality”, which is discussed in (Berners-Lee, 1996). Applications can conclude directly —
without formal analyses or deduction steps — that a version can be validly used on data
sources with the same major number and a equal or lower minor number. To achieve a max-
imal backward compatibility, we also propose that not the minor number of the newest re-
vision is specified in a data source, but the minimal addition to the base version that is used
by this data source. For example, suppose an ontology with conceptsA, B andC. Version
1.1 added a conceptD and version 1.2 added conceptE. Then a data source data only re-
lies on conceptsA, C andD, would specify its commitment only to version 1.1, although
there is already a version 1.2 available. We adopted this idea from software-program library
versioning, as described in (Brown and Runge, 2000).

An interesting point for discussion is whether it would be possible to specify thereal
ontological commitment, instead of only the necessary extra commitment. This could lead to
even more detailed decisions on compatibility. In our example, this would mean that the data
sources specifies that it relies on exactlyA, C andD. This would require a different type of
identification.

Valued Sony Customer

Valued Sony Customer
86

Ontology versioning on the Semantic Web

The point that states that individual concepts with a identifier that only differs in minor
number are considered to be equivalent, is necessary to actually enable the backward com-
patibility. By default, all resources on the web with a different identifier are considered to
different. This statement allows the creation of a stand-alone ontology revision, which has
concepts that are equal to a previous version.

5.2 Change specification and transparent evolution

For change specification and transparent evolution, there are two important requirements.
First, because of the suggested practice of referring to the minimal extra addition, the changes
in a line of backward compatible ontologies should be easily recognizable and identifiable.
Actually, the additions from one version to another together form aclassof descriptions.
Our suggestion is to make this explicit by adding a classAdditions<Major>.<Minor> , e.g.,
Additions1.2 , of which the new descriptions are an instance. This makes that class a unique
identifier for the set of additions in a certain revision. The additions can be retrieved by asking
for all instances of a specific “Addition” class.

Second, the relation to a previous version should explicitly be specified. One aspect of
this specification is a pointer to the ontology from which it is derived. These pointers to-
gether form a lattice of versions that can be used to deduce the derivation relation from one
version to an arbitrary other version of theontology. A second aspect of this specification is
the relation betweenconcepts and relationsin the previous and current version of the ontol-
ogy. As concepts and relations that do not have the same major number in their identifier are
assumed to be different, this specification should both specify equivalence relations as sub-
sumption relations. However, although a lot of relations between revisions of concepts can be
specified with “subclass-of” and “equivalence” relations, a more extensive (rule-)language is
necessary to enable the efficient specification of the relations, e.g. a language with quantifiers.

We have seen that an explicit specification of the relation between concepts allows to
retain as much information as possible. The relation between two revisions of an ontology
can be specified in a separate translation ontology. Both the previous version of the ontology
and the translation ontology should be linked from the new version, to allow the automatic
collection of all the statements that specify the relation.

6 Conclusions and further work

In this paper, we have explored the problem of ontology versioning in a web based con-
text. We discussed the nature of ontology changes and looked at the consequences. Ontology
versioning shares some characteristics with database schema versioning and program library
versioning, but also as some peculiarities which are specific for the web based context, mainly
introduced by the decentralized nature of the web.

After examining the effects on compatibility of a few example scenarios for ontology
versioning, we have sketched some elements for a versioning framework for ontologies. This
elements are mainly focused on identification and referring. Our main goal in the design of
a framework is to achieve “maximal use” of the available knowledge. This implies that is is
not sufficient to find out whether a specific interpretation of a ontology on data is invalid, but
that we try to derive as much valid information as possible.

The ideas that are presented in this paper will be implemented in the On-To-Knowledge

Valued Sony Customer
87

Michel Klein and Dieter Fensel

project (Fensel et al., 2000b), which builds an ontology-based tool environment to perform
knowledge management, dealing with large numbers of heterogeneous, distributed, and semi-
structured documents typically found in large company intranets and the World-Wide Web.

The work described in this paper is still ongoing. There are a lot of things that are not yet
done. We think that the most important flaw is the lack of a detailed analysis of the effect of
specific changes on the interpretation of data. This could be done in the same line as (Banerjee
et al., 1987), where effects of schema changes on OO databases are analyses. This analyses
should also cover the problem of data that becomes inconsistent. Further, the role of time is
also not taken into account. Finally, a clear example is needed to illustrate the proposals.

Eventually, this work will result in a versioning framework that gives very detailed pro-
cedures to allow evolving ontologies, while achieving maximal compatibility.

References

Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987). Semantics and Implementation
of Schema Evolution in Object-Oriented Databases.SIGMOD Record (Proc. Conf. on
Management of Data), 16(3):311–322.

Berners-Lee, T. (1996). Generic resources. Design Issues.

Berners-Lee, T., Fielding, R., and Masinter, L. (1998). RFC 2396: Uniform Resource Identi-
fiers (URI): Generic syntax. Status: DRAFT STANDARD.

Bray, T., Hollander, D., and Layman, A. (1999). Namespaces in xml.http://www.w3.org/

TR/REC-xml-names/ .

Brickley, D. and Guha, R. V. (2000). Resource Description Framework (RDF) Schema Spec-
ification 1.0. Candidate recommendation, World Wide Web Consortium.

Brown, D. J. and Runge, K. (2000). Library interface versioning in solaris and linux. In
Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, Georgia.

Champin, P.-A., Euzenat, J., and Mille, A. (2001). Why urls are good uris, and why they are
not. http://www710.univ-lyon1.fr/˜champin/urls.pdf .

Clark, P. and Porter, B. (1997). Building concept representations from reusable components.
In Proceedings of the AAAI’97, pages 369–376.

Corcho, O. and Ǵomez-Ṕerez, A. (2000). A roadmap to ontology specification languages. In
Dieng, R. and Corby, O., editors,Knowledge Engineering and Knowledge Management;
Methods, Models and Tools, Proceedings of the 12th International Conference EKAW
2000, number LNCS 1937 in Lecture Notes in Artificial Intelligence, pages 80–96, Juan-
les-Pins, France. Springer-Verlag.

Fensel, D. (2001). Ontologies: Dynamic networks of formally represented meaning. Rejected
for SWWS.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein, M. (2000a).
OIL in a nutshell. In Dieng, R. and Corby, O., editors,Knowledge Engineering and Knowl-
edge Management; Methods, Models and Tools, Proceedings of the 12th International

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www710.univ-lyon1.fr/~champin/urls.pdf
Valued Sony Customer
88

Ontology versioning on the Semantic Web

Conference EKAW 2000, number LNCS 1937 in Lecture Notes in Artificial Intelligence,
pages 1–16, Juan-les-Pins, France. Springer-Verlag.

Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., van der Meer,
J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal, B.,
Ygge, F., Lau, T., Novotny, B., Reimer, U., and Horrocks, I. (2000b). On-to-knowledge:
Ontology-based tools for knowledge management. InProceedings of the eBusiness and
eWork 2000 (EMMSEC 2000) Conference, Madrid, Spain.

Foo, N. (1995). Ontology revision. In Ellis, G., Levinson, R., Rich, W., and Sowa, J. F., edi-
tors,Proceedings of the 3rd International Conference on Conceptual Structures (ICCS’95):
Applications, Implementation and Theory, volume 954 ofLNAI, pages 16–31, Berlin, GER.
Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.Knowledge
Acquisition, 5(2).

Heflin, J. and Hendler, J. (2000). Dynamic ontologies on the web. InProceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 443–449.
AAAI/MIT Press, Menlo Park, CA.

Klein, M. (2001). Combining and relating ontologies: an analysis of problems and solu-
tions. In Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., and Uschold, M., editors,
Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA.

Oliver, D. E., Shahar, Y., Musen, M. A., and Shortliffe, E. H. (1999). Representation of
change in controlled medical terminologies.Artificial Intelligence in Medicine, 15(1):53–
76.

Pinto, H. S., Ǵomez-Ṕerez, A., and Martins, J. P. (1999). Some issues on ontology integra-
tion. In Proceedings of the Workshop on Ontologies and Problem Solving Methods during
IJCAI-99, Stockholm, Sweden.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems.Informa-
tion and Software Technology, 37(7):383–393.

Roddick, J. F., Craske, N. G., and Richards, T. J. (1994). A taxonomy for schema versioning
based on the relational and entity relationship models.Lecture Notes in Computer Science,
823:137–??

Sheth, A. P. and Larson, J. A. (1990). Federated database systems for managing distributed,
heterogeneous, and autonomous databases.ACM Computing Surveys, 22(3):183–236. Also
published in/as: Bellcore, TM-STS-016302, Jun.1990.

Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a result of domain evolution.
SIGMOD Record (ACM Special Interest Group on Management of Data), 20(4):16–20.

Valued Sony Customer
89

Michel Klein and Dieter Fensel

A Implementation in DAML+OIL

This appendix gives a rough sketch how the ideas about identification and change tracking
might be used in RDF Schema or DAML+OIL. In both languages it is a common practice
to use the URL (location) of the ontology as its identifier. This URL is then defined as a
namespace, which makes the terms in the ontology identifiable. However, it is not required
for the namespace mechanism thatURL’s are used. A namespace is defined as follows (Bray
et al., 1999):

[Definition:] An XML namespace is a collection of names, identified by a URI refer-
ence [RFC2396], which are used in XML documents as element types and attribute
names.

...

[Definition:] URI references which identify namespaces are considered identical when
they are exactly the same character-for-character. Note that URI references which are
not identical in this sense may in fact be functionally equivalent.

This means that actuallyURI’s function as identification mechanism.9 It is therefore easy to
adapt this mechanism for our ontology identification mechanism, which uses a separate URI
for ontology identity. We should then first design a URI for ontologies.

According to the URI definition, a “generic URI” has the following format:<scheme>:

//<authority><path>?<query> . Champin et al. (2001) pointed out that the use of a URL
as identification guarantees that the publisher has the authorization to use that specific part
of the URL namespace. This advantage can be retained when the<authority> and<path>

component in the new URI scheme also use the server name and path to the part of the
namespace that is owned by the publisher.

Our suggestion would be to useontology as a name for the scheme, constitute the
<authority> and <path> from the server name and path of a URL, and use the major
(and probably a minor number) as last two elements of the path. A typical identifier for
an ontology would look as follows:ontology://www.cs.vu.nl/˜{}mcaklein/ontology/

example/2/1/ , while an line of backward compatible ontologies is identified byontol-

ogy://www.cs.vu.nl/˜mcaklein/ontology/example/2/ .
There is still one important open question. Using URL’s as ontology identifiers have the

advantage that localization of the file that specifies the ontology is trivial. With separate URI
scheme, we cannot use the URI of the ontology to locate the file that specifies it. There are
several solutions for this problem. One would be to have some kind of lookup system, like a
DNS for host names and IP-numbers. A practical solution would be to provide a direct map-
ping from ontology URI’s to file URL’s. For example, one could agree that when “ontology ”
is replaced by “http ” in a ontology URI, one acquire a URL of a directory with specifications

9Remember that URL’s are a subset of URI’s. The URI definition Berners-Lee et al. (1998) says:

A URI can be further classified as a locator, a name, or both. The term ”Uniform Resource Locator”
(URL) refers to the subset of URI that identify resources via a representation of their primary access
mechanism (e.g., their network ”location”), rather than identifying the resource by name or by some
other attribute(s) of that resource. The term ”Uniform Resource Name” (URN) refers to the subset of
URI that are required to remain globally unique and persistent even when the resource ceases to exist
or becomes unavailable.

<scheme>://<authority><path>?<query>
<scheme>://<authority><path>?<query>
ontology://www.cs.vu.nl/~{}mcaklein/ontology/example/2/1/
ontology://www.cs.vu.nl/~{}mcaklein/ontology/example/2/1/
Valued Sony Customer
90

Ontology versioning on the Semantic Web

of the ontology (conceptualization), and that appendingnewest.rdfs to the directory URL
yields the URL of the most recent specification. Although we now show that there are several
implementation possible, the versioning framework should specify exactly how people and
applications should behave with this respect.

Our suggestion is to extend the meta-information in a DAML+OIL ontology also with the
location of the ontology specification. Together with an identifier, a pointer to the previous
version and the the “translation” ontology, a piece of an DAML+OIL ontology might look as
follows:

<Ontology rdf:about="">
<identifier>ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/</identifier>
<derivation>

<from rdf:resource="ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/" />
<relation rdf:resource="ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/delta/" />

</derivation>
<location>http://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/base.rdfs</location>
<info>${Id}: base.rdfs,v 1.15 2001/05/22 10:26:46 mcaklein Exp $</info>

</Ontology>

...

<rdfs:Class rdf:ID="Additions2.1">
</rdfs:Class>

<rdfs:Class rdf:ID="HBO">
<rdf:type rdf:resource="#Additions2.1"/>

</rdfs:Class>

Valued Sony Customer
91

Valued Sony Customer
92

Ontology Library Systems:
The key to successful Ontology Re-use

Ying Ding & Dieter Fensel
Division of Mathematics and Computer Science
Vrije Universiteit, Amsterdam, the Netherlands

www.cs.vu.nl/~ying,~dieter

Abstract

Increasingly, effort has been devoted to surveying ontology-related research studies from various aspects.
However, no survey is available for the ontology library system. For this reason, we decided to examine
existing library systems in this paper. First, we identified the main criteria (management, adaptation, and
standardization) for evaluating the functionality of the library systems. Then, based on the further enriched
criteria, we surveyed most existing ontology library systems. Finally, we summarized the comparison and
proposed various important requirements for structuring ontology library systems. The ontology library
systems surveyed include: WebOnto, Ontolingua, DAML Ontology Library System, SHOE, Ontology
Server, IEEE Standard Upper Ontology, OntoServer and ONIONS.

1. Introduction

With the rapid development of the World Wide Web, the amount of available information online has increased
exponentially. A lack of standardization and common vocabulary has continued to generate heterogeneity, which
strongly hinders information exchange and communication. Ontologies, which capture the semantics of information
from various sources and giving them a concise, uniform and declarative description, have gained significance due to
the demands in academia and industry [1]. As the number of different ontologies is on the increase, the task of
maintaining and re-organizing them in order to facilitate the re-use of knowledge is challenging. A breakthrough in
ontology technology would require methodological aids and tools that enable effective and efficient development. A
key aspect in achieving this is successful re-use of ontologies. Being developed for supporting knowledge sharing
and reuse, it is the lack of proper support of ontology re-use that hampers a broader dissemination of the ontology.
Ontology library systems are an important tool in grouping and re-organizing ontologies for further re-use,
integration, maintenance, mapping and versioning.

An Ontology library system is a library system that offers various functions for managing, adapting and
standardizing groups of ontologies. It should fulfill the needs for re-use of ontologies. In this sense, an ontology
library system should be easily accessible and offer efficient support for re-using existing relevant ontologies and
standardizing them based on upper-level ontologies and ontology representation languages. For this reason, an
ontology library system will, at the very least, feature a functional infrastructure to store and maintain ontologies, an
uncomplicated adapting environment for editing, searching and reasoning ontologies, and strong standardization
support by providing upper-level ontologies and standard ontology representation languages.

Recently, increasing effort has been devoted to surveying ontology-related research studies from various aspects,
including that of ontology representation languages [2], ontology development [3], and ontology learning approaches
[4]. However, no survey has been made of ontology library systems. This prompted us to examine the existing
library systems in this paper. We will identify the main criteria for evaluating their functionality. We will also

Valued Sony Customer
93

carefully evaluate existing proposals according to these requirements. In order to facilitate ontology re-use, a library
system must, at the very least, support the following: (see Figure 1):
• ontology re-use by open storage, identification and versioning.
• ontology re-use by providing smooth access to existing ontologies and by providing advanced support in

adapting ontologies to certain domain and task-specific circumstances (instead of requiring such ontologies to be
developed from scratch).

• ontology re-use by fully employing the power of standardization. Providing access to upper-layer ontologies and
standard representation languages is one of the keys to developing knowledge sharing and re-use to its full
potential.

Figure 1. General overview of the structure of the survey

The aspects above can be further specified as the follows:

Management. The most important function of an ontology library system is that of facilitating the re-use of
knowledge (ontologies). After all, the main purpose of ontologies is to enable knowledge sharing and re-use [5].
Important aspects of the re-use functionality of an ontology library system are open storage, identification, and
versioning support.
• Storage (how to store the ontology): (a) Is the ontology easily accessible (via a client/server architecture, Peer-

to-Peer, etc.) in supporting remote access and editing?; (b) Are ontologies classified according to some existing
or homemade categories? (Classifying ontologies is an important step in reorganizing them such that users can
easily search and identify relevant ontologies. It emphasizes the library system function of reorganizing
ontologies); and (c) Are ontologies stored in modules? (The modularity structure of an ontology library system
can facilitate the process of re-use, mapping and integration; it guarantees proficient ontology re-use).

• Identification (how to uniquely identify an ontology): Each ontology must have a unique identifier in the
ontology library system.

• Versioning (how to maintain the changes of ontologies in an ontology library system): Versioning is very
critical in ensuring the consistency among different versions of ontologies.

Adaptation. Ontology library systems should make facilitate the task of extending and updating ontologies. They
should provide user-friendly environments for searching, editing and reasoning ontologies. Important aspects in an
ontology library system include support in finding and modifying existing ontologies.
• Searching (how to search ontology from the ontology library system): Does a library system provide certain

searching facilities, such as keyword-based searching or other advanced searching? Does it feature an adequate
browsing function?

… …

Ontology
A

Ontology
N

Ontology
C

Ontology
B

Ontology Library System

Management
- Storage
- Identification
- Versioning

Adaptation
- Searching
- Editing
- Reasoning

Standardization
- Language
- Upper-level ontology

Valued Sony Customer
94

• Editing (how to add, delete and edit specific ontologies in the ontology library system. One of the most
important features that an ontology library system should have is one that modifies stored ontologies or adds new
ontologies): How does the system support the editing function? Does it support remote and cooperative editing?

• Reasoning (how to derive consequences from an ontology): How does the system support ontology evaluation
and verification? Does it make it possible to derive any query-answering behavior?

Standardization. Ontology library systems should follow existing or available standards, such as standardized
ontology representation languages and standardized taxonomies or structures of ontologies.
• Language (the kind of standard ontology language used in the ontology library system, for instance, RDFs1,

XMLs2 or DAML+OIL3): Does the system only support one standard language or other different languages?
• Upper-level ontologies (Is the ontology library system ‘grounded’ in any existing upper-level ontologies, such

as Upper Cyc Ontology, SENSUS, MikroKosmos, the PENNMAN Upper Model, and IEEE upper-layer
ontology?): The upper-level ontology captures and models the basic concepts and knowledge that could be re-
used in creating new ontologies and in organizing ontology libraries.
This survey report is structured as the follows. We will begin by examining current ontology library systems in

light of the aspects outlined above. Next, we will provide a summary of our comparison of these systems. Finally, we
will discuss various important requirements for structuring ontology library systems.

2. State-of-the-art Survey

This section surveys current important ontology library systems. These include: WebOnto4 (Knowledge Media
Institute, Open University, UK), Ontolingua 5 (Knowledge Systems Laboratory, Stanford University, USA), DAML
Ontology library system6 (DAML, DAPAR, USA), SHOE7 (University of Maryland, USA), Ontology Server8 (Vrije
Universiteit, Brussels, Belgium), IEEE Standard Upper Ontology9 (IEEE), OntoServer10 (AIFB, University of
Karlshruhe, Germany) and ONIONS11 (Biomedical Technologies Institute (ITBM) of the Italian National Research
Council (CNR), Italy). ONIONS is a methodology for ontology integration and was successfully implemented in
several medical ontology library systems. Strictly speaking, it is not an ontology library system. However, since it
defines various criteria for developing such a system, we will examine it briefly here. There are many more ontology
library systems than we included in our comparison. We have only included approaches that are publicly available as
those offer enough detailed information to enable us to evaluate their actual functionalities.

2. 1 WebOnto

WebOnto is an ontology library system developed by the Knowledge Media Institute of the Open University (UK)
[6]. It is designed to support the collaborative creating, browsing and editing of ontologies. It provides a direct
manipulation interface displaying ontological expressions and also an ontology discussion tool called Tadzebao,
which could support both asynchronous and synchronous discussions on ontologies ([7], see Figure 2).

1 http://www.w3.org/RDF/
2 http://www.w3.org/XML/
3 http://www.ontoknowledge.org/oil/oilhome.shtml
4 http://eldora.open.ac.uk:3000/webonto
5 http://www-ksl-svc.stanford.edu:5915/
6 http://www.daml.org/ontologies/
7 http://www.cs.umd.edu/projects/plus/SHOE/
8 http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm
9 http://suo.ieee.org/refs.html
10 http://ontoserver.aifb.uni-karlsruhe.de/
11 http://saussure.irmkant.rm.cnr.it/onto/

Valued Sony Customer
95

Figure 2. The architecture of the Tadzebao and WebOnto Server [6].

2.1.1 Management

Storage. WebOnto relies on a client/server-based architecture. The servers are responsible for storing and
maintaining ontologies and user dialogues, the clients are the interfaces to access the stored ontologies. Ontologies
stored in the WebOnto are not classified according to some existing categories. Ontologies are divided into small
units (for instance, ontology is the tree-structural of classes, and the small unit is the class and its parents). They are
then stored in a specific Module containing name, type, and the names of class parents. This system can draw
graphical representations of ontologies based on the modularity storage.
Identification . Ontologies stored in the WebOnto library system are identified by their unique names. Even though
an ontology is divided into small units, each unit contains the name, type, and the names of the class parents.
Versioning. WebOnto only mentioned that ontologies can be inherited from ancestor ontologies. No actual
versioning support is provided.

2.1.2 Adaptation

Searching. Ontologies are graphically displayed. They can only be browsed by using browsing commands, such as
viewing a new ontology or inspecting its structure. No direct query interface is provided.
Editing . TaDzeBao is designed for discussing and editing ontologies (see Figure 2). It supports both asynchronous
and synchronous discussions and editing on ontologies. The Tadzebao server is responsible for maintaining the
ontologies, and delivering ontologies to requesting Tadzebao clients. The client is responsible for presenting a
consistent view of the selected ontologies.
Reasoning. Ontologies in WebOnto are represented in OCML, which supports rule-based reasoning.

2.1.3 Standardization

Language. Ontologies (classes, instances, functions, procedures, or rules) are represented in OCML only [6]. In
other words, no standard representation languages for ontologies are supported.
Upper-level ontologies. WebOnto does not include a 'giant' standard upper-level ontology but has a more fine-
grained structure ([8] and [9]). At the top there is the base ontology describing the meta-model of OCML (things
such as relations, functions, procedures, classes, instances, slots, etc., similar to SHOE). Below are the imported
(with a few modifications) 'simple time' ontology from the Ontolingua library and ontologies describing

Valued Sony Customer
96

organizations, technologies, events and basic common concepts. Figure 3 shows the typical ontology inclusion
hierarchy in the WebOnto ontology library system.

Figure 3. Structure of upper-level ontology in WebOnto

2.1.4 Summary

The WebOnto’s ontology library system is client/server and graphically based. It stores an ontology as a module with
a unique name for identification. It supports asynchronous and synchronous ontology editing. Ontology searching is
limited to ontology navigating or browsing (but graphical-based). The ontology is represented by OCML, which can
support rule-based reasoning. It does not have any ontology versioning function or strong support in respect to
ontology standardization issues.

2.2 Ontolingua

Ontolingua was developed in the early nineties at the Knowledge Systems Laboratory of Stanford University (see
Figure 4, [10]). It consists of a server and a representation language. The server provides a repository of ontologies
(ontology library system) to assist users in generating new ontologies and amending the existing ontologies
collaboratively. The ontology stored at the server can be converted into different formats [11].

Valued Sony Customer
97

Figure 4. Screenshot of part of Ontolingua system (how to create an ontology)

2.2.1 Management

Storage. Ontolingua is client/server-based. It provides a distributed server architecture for ontology construction,
use and re-use. Access to the contents of ontologies is provided via a network API and access to information derived
from the contents by a general-purpose reasoner. The ontology server works like a database server and can enable
distributed ontology repositories for editing, browsing, etc. The ontology server of Ontolingua supports a suite of
other services, including configuration management for ontologies, support for ontologies that have components
resident on remote servers, and support for an Ontology-URL that enables ontologies to be linked to the World Wide
Web [12]. Ontologies stored in Ontolingua are not classified according to some existing categories. Ontology re-use
in Ontolingua is supported by a modular structured library based on the following functions: inclusion, polymorphic,
refinement, and restriction. Ontologies in this ontology library system are organized based on the lattice theory. Each
ontology defines a set of formal terms. Ontologies can include (import from) other ontologies. Terms contained in an
ontology are in the namespace of the ontologies that include it. In the lattice, an ontology includes the ontologies
under which it is indented (see Figure 5). It applies the minimization and amortization principles enabling ontology
writers to re-use existing ontologies in a flexible, powerful way [10].

Valued Sony Customer
98

Figure 5. Part of the lattice of ontologies in the ontology library system of Ontolingua

The naming policy for Ontolingua is a good example of how the re-use of knowledge can be facilitated. The
ontology in which a symbol is defined is called the symbol's home ontology. For example, if the symbol S is defined
in ontology A as well as in ontology B, then from the perspective of ontology A, the input text "S" is interpreted as
"the symbol named S defined in ontology A". From the perspective of ontology B, however, the input text "S" is
interpreted as "the symbol named S defined in ontology B". The Ontolingua server input/output system includes a
symbol-renaming feature that allows users to assign a name to a symbol, which is local to the perspective of a given
ontology. This feature enables ontology developers to refer to symbols from other ontologies using names that are
appropriate to a given ontology. It also enables them to determine how to resolve naming conflicts among symbols
from multiple ontologies.
Identification. Each ontology has a name that uniquely distinguishes itself from any other ontology.
Versioning. The Ontolingua server does not feature any versioning functions.

2.2.2 Adaptation

Searching. Ontolingua features graphical ontology browsing and supports swift jumps from one term in the ontology
to others term using hyperlinks. Ontolingua’s class/subclass browsers can display an entire hierarchy in compact
fashion, offering users a swift overview of an ontology. One particularly difficult task for ontology library systems is
that of supporting efficient query answering from ontologies represented in a highly expressive language. Ontolingua
develops an idiom-based retrieval feature that returns instances of a sentence containing diagrammatic variables
from a given ontology. The retrieval feature employs a general purpose reasoner (i.e., theorem prover) and classifier
that can be run as a background process to infer and cache sentences that match idioms used by the API and by
translators. The general purpose reasoner developed for the Ontolingua representation language can provide basic
reasoning support for ontology services including classification, deriving and catching instances of sentence
diagrams to support idiom-based ontology access, ontology testing, and client-side execution [12]. Ontolingua also
provides several tools that allow users to search for terms within ontologies in the library. A user may choose to use
wild cards in searching the entire library for terms whose name matches the specified pattern. Context-sensitive
searching is also available when the user needs to fill in the name of a term, by for instance, adding a value to a slot.
Constraints are used to limit searches in context-sensitive searching. Finally, Ontilingua provides a Reference
ontology that serves as an index of the ontology repository for class-based retrieval. Users can browse the reference
ontology looking for classes of interest in the repository.
Editing. Ontolingua features four basic types of pages for the simple interface: the table of contents for the ontology
library system, ontology summary pages, frame pages (for classes, relations or instances), and the class browser.
Remote distributed groups can use their web browsers to build, and maintain ontologies stored at the server.
However, this work cannot be carried out at the same time. Ontolingua supports vocabulary translation, which
enables ontology builders to specify translation rules declaratively between the vocabulary used in a source ontology
and the vocabulary used in a target ontology [12]. Ontolingua allows users to undo or redo any number of
modifications made to the ontology since it was last saved.

Kif-Sets
 Kif-Extensions
 Frame-Ontology
 Jat-Generic
 Job-Assignment-Task
 Basic-Matrix-Algebra
 Tensor-Quantities
 3d-Tensor-Quantities
 Simple-Geometry
 Mechanical-Components
 Mace-Domain
 Abstract-Algebra
 Physical-Quantities
 Standard-Dimensions
 Vt-Design
 Vt-Domain
 Vt-Example

Valued Sony Customer
99

Reasoning. Ontolingua enables developers to use an ontology to describe familiar situations and to query those situations
to determine whether those situations have expected properties. It also includes a feature for specifying a test suite for an
ontology, in which each test consists of a situation specification, a set of queries about the situation, and the answers
expected to the queries.

2.2.3 Standardization

Language. The ontologies are stored primarily in KIF. KIF is a monotonic first order logic with a simple syntax and some
minor extensions to support reasoning about relations. This language provides explicit support for building ontological
modules that can be assembled, extended, and refined in a new ontology [1]. KIF is widely used among researchers in the
United States .
Upper-level ontology. The public version of CYC upper-level ontology, called HPKB-UPPER-LEVEL with extended
material drawn from Pangloss, WordNet, and Penma, is available on the Ontolingua server [13]. It contains approximately
3000 concepts, English definitions, and a few basic relationships between them. This upper-level ontology aims to
maximize re-usability, enabling a greater degree of interoperation among knowledge-based systems by trying to account
for all features associated with one event.

2.2.4 Summary

Ontolingua’s ontology library system is client/server-based. It offers several options for re-using ontology: modular
structure storage, lattice of ontology, naming policy, and a reference ontology (upper-level taxonomy). It supports
collaborative ontology editing. Users can access the ontology library system via the Web. It also includes some relatively
advanced searching features (wild-card and context intensive searching). In addition, Ontolingua supports ontological
language translating, ontology testing and ontology integrating. HPKB-UPPER-LEVEL on the Ontolingua server
maximizes re-usability and enables a greater degree of interoperation among knowledge-based systems.

2.3 DAML Ontology library system

The DAML ontology library system is part of the DARPA Agent Markup Language (DAML) Program, which officially
started in August 2000. The goal of the DAML effort is to develop a language and tools to facilitate the concept of the
Semantic Web. The ontology library system contains a catalogue of ontologies developed using DAML (Figure 6)12. This
catalogue of DAML ontologies is available in XML, HTML, and DAML formats. People can submit new ontologies via
the public DAML ontology library system.

Figure 6. Example of an ontology in the DAML ontology library

12 http://www.cs.man.ac.uk/~Ehorrocks/DAML-OIL/

<ontology uri="http://www.davincinetbook.com:8080/daml/rdf/personal-info.daml" id="2">
 <description>DAML ontology for homework 1</description>
 <poc name="Mark Neighbors" organization="Booz-Allen & Hamilton" email="neighbors_mark@bah.com"/>
 <submitter name="Mark Neighbors" organization="Booz-Allen & Hamilton" email="neighbors_mark@bah.com"
 date="2000-10-31"/>
 <keyword>personal information</keyword>
 <dmoz>http://dmoz.org/dmoz5</dmoz>
 <dmoz>http://dmoz.org/dmoz6</dmoz>
 <funder>DARPA DAML Program</funder>
 <class>AnnotatedBulletList</class>
 <class>Bullet</class>
 <class>BulletList</class>
 <class>Company</class> ……
……….
 <property>bulletList</property>
 <property>companies</property>
 <property>currentEmployerIDs</property>
 <property>currentProjectIDs</property>
 <property>description</property>
……….
<namespace>http://156.80.108.115/2000/10/daml-ont.daml</namespace>
 <namespace>http://www.w3.org/1999/02/22-rdf-syntax-ns</namespace>
 <namespace>http://www.w3.org/2000/01/rdf-schema</namespace>
 </ontology>

Valued Sony Customer
100

2.3.1 Management

Storage. The DAML ontology library system is client/server-based. The structure of the stored ontology in this
library system includes: ontology uri: ontology id; description; keyword; poc (point of contract): name, organization,
email; submitter: name, organization, email; dmoz (open directory category); funder; classes (class names);
properties (properties names); and namespaces (for example, Figure 6). Ontologies are classified according to Open
Directory Category (www.dmoz.org), which includes arts, business, computers, games, health, home, kids and teens,
news, recreation, reference, regional, science, shopping, society, sports, and world. This library also provides a
summary of submitted ontologies, sorted by URI, Submission Date, Keyword, Open Directory Category, Class,
Property, Funding Source, and Submitting Organization. The DAML ontology library system is still at its early age.
It only provides a simple environment for people to submit and browse ontologies in the library. No module storage
is considered at this moment.
Identification. Ontologies are identified by the URIs and identifiers.
Versioning. No versioning functions are provided.

2.3.2 Adaptation

Searching. This ontology library system offers no specific searching features. It contains only a catalogue of
ontologies in three formats: XML, HTML and DAML. The HTML version can help users search by generated
indexing of ontologies on URI, submission date, keyword, open directory category, class, property, namespace used,
funding source, and submitting organization. The other two formats support simple browsing only.
Editing. No specific editing functions are available.
Reasoning. At present, this ontology library system does not support any reasoning functions13.

2.3.3 Standardization

Language: The DAML ontology library is very preliminary at this moment. It aims to push and popularize the
standard ontology language. It is, therefore, not surprising that the library system supports language standards for the
semantic web, i.e. RDF, RDF Schema and DAML-ONT (now is DAML+OIL).
Upper-level ontology. At present, there is no upper-level ontology for the DAML ontology library system.

2.3.4 Summary

The DAML ontology library system is just in its beginning stages. Naturally, the objective is to offer various
functions for ontology library system management. So far, however, we have not been able to find any publicly
available literature with detailed information on the technology. Even at this early stage, this system is very strong in
its support for web-based ontology languages.

2.4 SHOE (University of Maryland, USA)

SHOE (Simple HTML Ontology Extensions) was developed by the University of Maryland (USA) ([14], see Figure
7). SHOE is also the first web-semantics language developed as a markup, and has been used for various
applications, including for food safety for the US Food and Drug Administration and a military logistics planning
system.

2.4.1 Management

Storage. SHOE’s ontology library system contains lists of ontologies. These ontologies are indexed alphabetically.
They are also classified based on the ontology dependency with clear tree structure. The upper-level ontology (Base

13 Developed by University of Manchester (UK), the FaCT (Fast Classification of Terminologies,
http://www.cs.man.ac.uk/~horrocks/FaCT/) reasoner can be integrated into the DAML ontology library system and will give it
some reasoning supports.

Valued Sony Customer
101

Ontology), for instance, forms the root of the tree. The generic ontologies (e.g. Dubline Core Ontology, General
Ontology, Measurement Ontology) form the first branch of the tree. And the specific ontologies (e.g. Beer Ontology,
Commerce Ontology, Personal Ontology) make up the leaves of the tree. Except for the upper-level ontology, each
ontology is stored in the standard format, including ontology ID, version, description, contact, revision date,
extended ontologies, renames, categories, relationships, constants, inferences, definitions, notes and change history.
Identification. The unique name becomes of the identifier of ontology.
Versioning. SHOE’s versioning scheme is very essential in handling different types of revisions. It maintains each
version of ontology as a separate web page and each instance must state the version to which it adheres. Data sources
can, therefore, upgrade to the new ontology. To enter a revision in SHOE, the ontology designer copies the original
ontology file, assigns it a new version number, then adds or removes elements accordingly. If the revision merely
adds ontology elements, then it can be used to form perspectives that semantically subsume the original perspective.
Therefore, it can specify that it is compatible with previous versions using the optional BACKWARD-
COMPATBLE-WITH field in the <ONTOLOGY> tag. Agents and query systems that discover this ontology can
also use it instead of any of the ontologies with which it is backwardly compatible to form an alternate perspective
for any data source.

SHOE is currently the ONLY project focusing on the problem of maintaining consistency as the ontology
evolves. It separates instances from ontologies so that ontologies can provide different perspectives on the same data.
It identifies different types of ontology revisions that could significantly affect the reasoning with existing data
sources. For instance, revisions that add categories or relations have no effect, revisions that modify rules can change
the answers to queries, and revisions that remove categories or relations may eliminate certain answers [14].

Figure 7. Screenshot of SHOE ontology library system

Valued Sony Customer
102

2.4.2 Adaptation

SHOE features no Searching and Editing environment. Users have to edit their ontology somewhere else and submit
it to SHOE. The alphabetical indexing of ontologies enables users to browse and search SHOE ontologies.
Reasoning. Reasoning supports are provided to handle revision problems. For instance, a revision that adds or
removes rules can provide an alternative perspective (p’) for a legacy data source. This makes it possible to reason
the subsumption relations of the alternative perspective (p’) with the original perspective (p) ([14] and [15]).

2.4.3 Standardization

Language: Ontology is written in SHOE. SHOE is an HTML-based knowledge representation language. It is a
superset of HTML, which adds the tags to semantic data. There are two categories for SHOE tags: tags for
constructing ontologies and tags for annotating web documents. There is also an XML-based version of SHOE [15].
Upper-level ontology. Base ontology is the upper-level ontology for SHOE. It becomes the parent ontology for all
SHOE ontologies on the web. All other SHOE ontologies extend the base ontology directly or indirectly. Base
ontology declares the global data types (string, number, date and truth), ISA hierarchy (entity, SHOEEntity), and
relationships (description and name). There is a one-to-one correspondence between a version of SHOE and a
version of the base ontology. Thus, the version of the Base ontology reflects the version of SHOE.

2.4.4 Summary

The SHOE ontology library system contains various ontologies (written in SHOE) with direct or indirect extensions
of the upper-level ontology (Base ontology). SHOE flags itself with its versioning functions to solve inconsistencies
caused by ontology evolution. SHOE itself is an extended HTML language with adding tags to represent ontologies
and semantic data.

2.5 Ontology Server (Vrije Universiteit Brussels, Belgium)

Ontology Server, which was developed by the Vrije Universiteit in Brussels, links ontology engineering to database
semantics. It deploys database techniques to manage and understand ontologies. The database management system
(DBMS), equipped with various syntactical constructs, enables database diagrams to present objects, sub-type
taxonomies, integrity constraints, derivation rules, etc. (see Figure 8).

2.5.1 Management

Storage. The ontology model consists of 5 basic elements: context, terms, concepts, roles and lexons. The ontology
contains a set of contexts, which form the ontology itself. The ontology has a name (mandatory and unique in the
ontology server), a contributor, an owner, a status ("under development", "finished") and documentation (an
arbitrary string in which the contributor or owner can specify relevant information). The context is a grouping entity
to group terms and lexons in the ontology. Every context within an ontology has its own unique name. A concept is
an entity representing some “thing” and is identified by a unique ID. A term is an entity representing a lexical
representation of a concept. Lexon is a grouping element with a triple structure containing a starting term, a role and
a second term. Lexon always appears in a context and describes certain relations that are valid within that context. In
this case, the lexons can be considered relations between concepts. The Database Management System is used to
implement storage.
Identification. The unique name is the identifier for each ontology in this ontology server.
Versioning. The first prototype currently under construction does not take account of the version control. However,
this will become a crucial issue in the next step.

Valued Sony Customer
103

Figure 8. Ontology server architecture

2.5.2 Adaptation

Searching & Editing. Database API provides unified access to the basic structures of the ontology server. As the
data in the ontology server, ontologies are managed by the DBMS (Database Management System). The API itself is
specified as four different java interfaces. One of these is an interface to establish and close the connection to the
database. The second interface features all of the basic functions required to add information to the ontology server
(specific methods for adding ontology, context, terms, concept, lexons, users and versions are included). The third,
the retrieval interface, features all of the basic functions to retrieve information from the ontology server. (The
specific methods for this can be divided in two groups: (a) retrieving methods for detailed information about
ontologies, contexts, terms, concepts, lexons, users and versions; and (b) retrieving methods for grouped information,
such as those that retrieve all ontologies from the ontology server, all contexts from an ontology, all terms from a
context, all lexons from a context and all users from the ontology server). And finally, the modification interface
features all of the basic functions needed to modify information already present in the ontology server (it includes
specific methods for modifying ontologies, contexts, terms, concepts, lexons, users and versions). In the future, an
ontology manager will be developed to provide support for storing ontologies expressed in XML. WordNet will be
added to the ontology server using the ontology manager. The ontology browser (currently under development) will
assist users in accessing and browsing ontologies, contexts, terms, concepts, lexons, users and versions.

Reasoning. According to the documents available, no reasoning functions are specified.

2.5.3 Standardization

Language. The ontology object is expressed in XML.
Upper-level ontology. No upper-level ontology is adopted in this Ontology Server.

2.5.4 Summary

Ontology Server manages ontologies by using DBMS (Database Management System). It separates semantics from
ontologies; thus, each ontology model contains 5 basic elements (context, terms, concepts, roles and lexons).

Valued Sony Customer
104

Ontology can be accessed and searched through database API, including via the modification interface, the retrieval
interface, and in the future, ontology manager, and ontology browser.

2.6 Others

This section discusses systems that are either not very standard in ontology library systems or are still in the very
preliminary stages of development.

2.6.1 IEEE Standard Upper Ontology (IEEE)

The IEEE Standard Upper Ontology (SUO) Working Group has invested tremendous effort, working with a large
number of ontologists, to create a standard top-level ontology to enable various applications, such as data
interoperability, information search and retrieval, automated inferencing, and natural language processing. Their
ontology library system is very simple and is accessible in its preliminary form on their website. It contains a group
of classified ontologies, such as, ontologies in SUO-KIF, formal ontologies and linguistic ontologies/lexicons. Only
the very basic hyperlinks of the ontologies are provided to help users jump to the home pages hosted by the
ontologies (see Figure 9). There are no clear management, adaptation and standardization functions, such as those
discussed in Section 1.

One special effort worth mentioning here is the first-ever merger of certain SUO sources into a single and
coherent ontology, an ontology accessible via the website. This merger was achieved by combining David Whitten's
structural ontology, John Sowa's upper ontology, Allen's temporal logic, Russell and Norvig's upper ontology, Casati
and Varzi's formal theory of holes, Barry Smith's formal theory of boundaries, Borgo, Guarino, and Masolo's formal
theory of physical objects, the Core Plan Representation, and the Agents and Numbers ontologies from the
Ontolingua server.

Figure 9. Screenshot of IEEE SUO
2.6.2 OntoServer (AIFB)

OntoServer, which is currently under construction, is an ontology server to support building, maintaining and using
ontologies. It has a client/server-based architecture, which integrates various types of software or tools to form tool-
based support for an ontology environment (see Figure 10).

Valued Sony Customer
105

Figure 10. OntoServer infrastructure

OntoServer will integrate tools from ontology engineering (such as OntoEdit, Text-To-Onto, Ontology

Merger/Mapper, Ontology Visualization and Translator) and ontology applications (such as OntoBroker,
OntoWrapper, Ontology Visualization (Hyperbolic View), DTD-Maker, Intranet Management System and Semantic
Community Web Portals). OntoServer is still in its very early stages; no detailed information is available from its
homepage. Consequently, we can only sketch the infrastructure.

2.6.3 ONIONS

ONIONS (ONtological Integration Of Naive Sources) is a methodology for ontology integration (ontology
mediation, alignment and unification). It was developed in the early 1990s to account for the problem of conceptual
heterogeneity. ONIONS creates a stratified design of an ontology library system. It contains richly documented and
formalized generic ontologies and a cognitively transparent top level. Moreover, intermediate modules contain the
most general concepts of a domain, based on the generic ontologies and the top level. Domain ontologies are
designed based on intermediate ontology ([16], see Figure 10).

Figure 10. The stratified design of an ontology library system (ONIONS)

Generic
ontologies

Intermediate
Ontologies

Domain ontologies

Valued Sony Customer
 106

ONIONS is committed to developing a large-scale ontology library system for medical terminology. This
methodology employs a design based on logic description for the modules in the library and makes extended use of
generic theories, thus creating a stratification of the modules. The current implementation of the methodology
employs LOOM, a knowledge representation system that supports classification services based on the description
logic. Ontologies are classified based on description logic. The ontology library system covers all local definitions
and the paradigms used in building multi-local, integrated definitions. Further classification in this library is based on
steps pertaining to the diffusion, use, classification, and validation of the models.

ONIONS is mainly an ontology integration methodology, which is implemented by many projects. It creates
a stratified ontology library system including generic ontology, intermediate ontology and domain ontology.

3. Summary of the Survey

Research on ontology library systems is still a very new field. The following summary is based on our survey of
the ontology library systems described above (see also Table 1).

 3.1 Management

Storage. The ontology library systems in this survey fall into one of two categories: (a) those with a
client/server-based architecture aimed at enabling remote accessing and collaborative editing (WebOnto,
Ontolingua, DAML Ontology Library); and (b) those that feature web-accessible architecture (SHOE, IEEE
SUO). Ontology Server features a database-structured architecture. Most ontologies in this survey of ontology
library systems are classified or indexed. They are stored in a modular structured library (or lattice of
ontologies). WebOnto, Ontolingua and ONIONS all highlight the importance of a modular structure in an
ontology library system as that structure facilitates the task of reorganizing ontology library systems and re-
using and managing ontologies.
 Identification. The standard way to identify an ontology is by its Unique name or Identifier.
Versioning. Only SHOE supports versioning for handling the dynamic changes of ontologies. Versioning is an
important aspect of the ontology library system. Although many of the systems surveyed do not currently have
this function, they clearly show that it is needed for future improvements.

3.2 Adaptation

Searching. Most of these ontology library systems can be accessed through the Internet or World Wide Web.
They offer simple browsing only. Ontolingua is the only one that offers some functional searching features,
such as keyword searching (wide-card searching), simple query answering, context sensitive searching, etc. As
it is embedded in the database management system, Ontology Server could also provide SQL-based searching.
Editing. Most ontology library systems only provide simple editing functions. WebOnto and Ontolingua
support collaborative ontology editing (asynchronous and synchronous).
Reasoning. Very simple reasoning functions are provided by WebOnto (rule-based reasoning), Ontolingua
(ontology testing) and SHOE (ontology revision).

Valued Sony Customer
107

Table 1. The summary of the ontology library system survey

 WebOnto Ontolingua DAML library SHOE Ontology Server Others
(IEEE SUO, OntoServer,

ONIONS)

Storage

- client/server-based
- no classification
- modularity storage

- client/server-based
- no classification
- modular structured library (
lattice of ontologies, naming
policy)

- client/server-based
- classification of
ontology
- no modularity storage

- web accessible
- classification of
ontology
- tree structure of
ontology dependency

- database access
- no classification
- modularity storage

- web access (IEEE SUO),
client/server-based
(OntoServer),
- classification of ontology
(IEEE SUO, ONIONS)
- stratified design (ONIONS)

Identification - unique name
- unique unit name

- unique name - unique URI and
Identifier

- unique name - unique name

M
anagem

ent

Versioning - indirect: inherited
from ancestor
ontology

No versioning No versioning - versioning support
for ontology revision

- no versioning - no versioning

Searching - graphical display
- simple browsing

- simple browsing
- idiom-based retrieval facility
for simple query answering
- wild-card searching
- context sensitive searching
- reference ontology as the index

- simple browsing - simple browsing - database API
- DBMS
- add, modify, retrieve
- ontology manager
- ontology browser

- simple browsing (IEEE
SUO,

Editing TaDzeBao:
- asynchronous and
synchronous
discussions and
editing on ontologies,

- simple interfaces
- collaborative ontology
construction
- vocabulary translation
- undo/redo
- hyperlinked environment

No specific editing
functions

- no editing - add, modify, retrieve - no editing

A
daptation

Reasoning - rule-based
reasoning

- use situation to determine the
expected properties.
- ontology testing

- no reasoning - limited reasoning
support for ontology
revision

- no reasoning - no reasoning

Language OCML KIF
- ontology language translation

RDF, RDFs,
DAML+OIL

SHOE XML S
tandardization

Upper-level
Ontology

- no standard upper-
level ontology
- a more fine-grained
structure: based
ontology, simple-
time, common
concepts

- public version of CYC upper-
level ontology (HPKB-UPPER-
LEVEL)

No standard upper-level
ontology

- Base Ontology - no standard upper-
level ontology

- IEEE SUO (upper-level
ontology integration)

Valued Sony Customer
108

3.3 Standardization

Language. These ontology library systems use different languages to store their ontologies.
In this case, the important function for the future ontology library system should support
inter-language translating (like Ontolingua) or some standard language should be accepted or
proposed within the ontology community (such as DAML+OIL).
Upper-level Ontology. Ontolingua has a public version of CYC upper-level ontology called
HPKB-UPPER-LEVEL with some modification drawn from Pangloss, WordNet, and Penma.
WebOnto and SHOE doesn’t have the standard upper-level ontology but has its own fine-
grained structure (e.g., Base Ontology). IEEE SUO tries to set up a public standard upper-
level ontology.

4. Conclusions: Ontology library system requirement

Now that we have surveyed the ontology library systems above, we will summarize
important requirements for structuring an ontology library system to enhance ontology
management, adaptation and standardization:

4.1 Management

Storage. A client/server-based architecture is critical to an ontology library system’s
capacity to support collaborative ontology editing. An ontology library system should also be
web accessible.
It is necessary to classify ontology in an ontology library system in order to facilitate
searching, managing and re-using ontology. Some of the ontology classification mechanisms
available are based on distinguishable features of ontologies. Examples include the
following:

• the subject of ontologies (The DAML ontology library system classifies ontologies
according to the Open Directory Category (www.dmoz.org));

• the structure of the ontology (The Ontolingua ontology library system has an
inclusion lattice showing the inclusion relations between different ontologies);

• inter and intra ontology features ([17] indexed ontologies based on the intra and inter
ontology features. Examples include general, design process, taxonomy, axioms,
inference mechanism, application, contributions, etc.);

• the lattice structure ([18] built a lattice of ontologies showing the relevance of
ontologies);

• the dimensions of the ontology ([19] indexed ontologies using dimensions
(task/method dependency and domain dependency) to partition the library into a core
library and a peripheral library);

• stratified upper-level ontology (ONIONS used generic, intermediate and domain
layer to index ontologies),

• the relations of ontology ([17] indexed ontology based on defined relations, such as
the subset/superset relation, extension relation, restriction, and mapping relation),

• the components of ontology ([17] also mentioned the indexing of ontology based on
the component of ontologies, such as domain partitioning (partition domain in logical
units), alternative domain views (polymorphic refinement), abstraction (abstract and
detailed ontologies), primary ontologies versus secondary ontologies, terminological,
information and knowledge modeling ontologies).

Valued Sony Customer
109

Modular organization in the ontology library system organizes units into modules. This
serves to maximize cohesion within modules and minimize interaction between modules
[20]. Most of the ontology library systems that aim to facilitate ontology re-use, ontology
mapping and integration have adopted this structure. ONIONS also highlights the stratified
design of an ontology library system. Different naming policies assist the ontology library
system to achieve the modular organization or stratified storage of ontologies [21]. The
disjointed partitioning of classes can facilitate modularity, assembling, integrating and
consisting checking of ontologies. If, for instance, a certain class, such as ‘people,’ were
disjointed from another class, say ‘countries’, then consistency checks could be carried out
much sooner and faster. Thus, the partition modification has proven to be extremely valuable
for editing purposes. Linking class names with their own contexts or using name space for
differentiating them can serve to prevent violation within individual ontologies. As
ontologies continue to grow, so too does the importance of systematic and consistent naming
and organizational rules.
Identification. Unique ontology URL, Identifier and name are used as the identifier for
ontologies in the ontology library systems.
Versioning. A version control mechanism is very important to an ontology library system.
Unfortunately, most existing ontology library systems cannot support it, except for SHOE.

4.2 Adaptation

Searching & Editing. An ontology library system should feature a visualized browsing
environment, using hyperlinks or cross-references to closely related information. It should
support collaborative editing and offer advanced searching features by adopting various
existing information retrieval techniques, database searching features, or AI heuristic
techniques. Ontology library systems could also monitor user profiles based on access
patterns in order to personalize the view of ontologies [22].
Reasoning. A simple reasoning function should be included in order to facilitate ontology
creation, ontology mapping and integration.

4.3 Standardization

Language. Syntactically, an ontology representation language should be standardized or
inter- or intra- ontology language translation should be supported. Semantically, an ontology
library system should feature the common vocabulary (or faceted taxonomy). At any rate, it
should eliminate the implicitness and misunderstanding of terms in different ontologies (due
to synonyms, homonyms, etc.) for most generic classes. Preferably, an ontology library
system should also support compatibility with or mapping between multiple controlled
vocabularies from different domains. This would not only serve to guarantee flexibility in
expressing an ontology semantically, but also to liquidate implicitness. The structures of
these common vocabularies or multiple controlled vocabularies must be faceted, or
modulated so as to facilitate the re-use, mapping and integration of ontologies [23]. These
vocabularies can help in simple synonym matching, sibling analysis, and disjoint partition
checking.
Upper-level Ontology. Standard upper-level ontology is important for better organization of
ontology library systems (Ontolingua, IEEE SUO).

Valued Sony Customer
110

4.4 Others

Ontology scalability. Ontology library systems should also consider increasing the scale of
ontologies.
Maintaining facility . Ontology library systems should also provide some maintenance
features, such as consistency checking, diagnostic testing, support for changes, and
adaptation of ontologies for different applications.
Explicit documentation. Each ontology in an ontology library system should be extensively
documented. The documentation should include such information as how the ontology was
constructed, how to make extensions and what the ontology’s naming policy, organizational
principles and functions are. Such explicit documents about the ontologies themselves will
pave the way for efficient ontology management and re-use.

Acknowledgement:
This research effort was supported by OnToKnowledge, a project funded by the European Union
(www.ontoknowledge.org). We would like to thank Enrico Motta, Asun Gomez-Perez, Alexander
Maedche, York Sure for providing useful information. We would also like to thank Michel Klein and Borys
Omeliango for their helpful comments on drafts of this paper.

References
[1] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, 2001.
[2] O. Corcho, & A. Gomez-Perez, A road map on ontology specification languages. In Workshop on Applications of

Ontologies and Problem solving methods, 14th European Conference on Artificial Intelligence (ECAI’00), Berlin,
Germany, August 20-25, 2000.

 [3] D.Jones, T. Bench-Capon & P. Visser, Methodology for ontology development. In Proceedings of IT&KNOWS
Conference of the 15th IFIP World Computer Congress (Chapman-Hall), pp, 20-35. 1998.

[4] A. Maedche, & S. Staab, Ontology Learning for the Semantic Web. To appear in: IEEE Intelligent Systems. 16(2),
March/April 2001.

[5] P.R.S. Visser, R.W. van Kralingen, & T.J.M. Bench-Capon, A method for the development of legal knowledge
systems. Proceedings of the Sixth International Conference on Artificial Intelligence and Law (ICAIL’97),
Melbourne, Australia. 1997.

[6] J. Domingue, Tadzebao and WebOnto: Discussing, Browsing, and Editing on the Web. In B. Gaines and M.
Musen (editors), Proceedings of the 11th Knowledge Acquisition for Knowledge-Based Systems Workshop, April
18th-23th, Banff, Canada, 1998. Available online at http://kmi.open.ac.uk/people/domingue/banff98-
paper/domingue.html

 [7] E. Motta, Reusable Components for Knowledge Models. PhD Thesis. Knowledge Media Institute. The Open
University, UK, 1998.

[8] E Motta., S.Buckingham-Shum and J. Domingue, Ontology-Driven Document Enrichment: Principles, Tools and
Applications. International Journal of Human-Computer Studies 52, (2000) 1071-1109.

[9] J. B. Domingue and E. Motta, Planet-Onto: From News Publishing to Integrated Knowledge Management
Support. IEEE Intelligent Systems 15, (2000) 26-32.

[10] A.Farquhar, R. Fikes, & J. Rice, The Ontolingua server: Tools for collaborative ontology construction.
International Journal of Human Computer Studies 46, (1997) 707-728.

[11] A.J.Duineveld, R. Stoter, M.R. Weiden, B.Kenepa, V.R. Benjamins, WonderTools? A comparative study of
ontological engineering tools. In Proceedings of the 12th International Workshop on Knowledge Acquisition,
Modeling and Management (KAW’99), Banff, Canada, October, 1999.

[12] R. Fikes,& A. Farquhar, Large-scale repositories of highly expressive reusable knowledge. IEEE Intelligent
Systems 14, (1999).

[13] S.Aitken, Extending the HPKB-Upper-Level Ontology experiences and observations. In Proceedings of the
Workshop on Applications of Ontologies and Problem Solving Methods(ECAI'98), Brighton, England, August
1998.

[14] J. Heflin & J. Hendler, Dynmaic ontologies on the Web. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000). AAAI/MIT Press, Menlo Park, CA, 2000. pp. 443-449.

[15] J. Heflin, J. Hendler, and S. Luke, SHOE: A Knowledge Representation Language for Internet Applications.
Technical Report CS-TR-4078 (UMIACS TR-99-71), Dept. of Computer Science, University of Maryland at
College Park. 1999.

Valued Sony Customer
111

[16] D.M. Pisanelli, A. Gangemi, & G. Steve, An Ontological Analysis of the UMLS Metathesaurus, Journal of
American Medical Informatics Association 5 (1998) 810-814.

[17] P.R.S. Visser, and T.J.M. Bench-Capon, A Comparison of Four Ontologies for the Design of Legal Knowledge
Systems. Artificial Intelligence and Law 6 (1998) 27-57.

[18] F. N. Noy, & C.D. Hafner, The state of the art in ontology design: A survey and comparative review. AI Magazine
4 (1997) 53-74.

[19] G. van Heijst, A.T. Schreiber, and B. J. Wielinga, Using explicit ontologies in KBS development. Int. Journal of
Human-Computer Studies 45 (1997) 183-292.

[20] G. van Heijst, et al. A Case Study in Ontology Library Construction. Artificial Intelligence in Medicine 7 (1995)
227-255.

[21] D.L McGuinness,. R. Fikes, J. Rice, & S. Wilder, An environment for merging and testing large ontologies.
Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning
(KR2000). Breckenridge, Colorado, April 12-15, 2000.

[22] J. Domingue, & E. Motta, A knowledge-based news server supporting ontology-driven story enrichment and
knowledge retrieval. In D. Fensel and R. Studer (editors), Proceedings of the 11th European Workshop on
Knowledge Acquisition, Modeling, and Management (EKAW '99), LNAI 1621, Springer-Verlag, 1999.

[23] D.L. McGuinness, Conceptual modelling for distributed ontology environment. In Proceedings of the Eighth
International Conference on Conceptual Structures Logical, Linguistic, and Computational Issues (ICCS2000),
Darmstadt, Germany, August 14-18, 2000.

Valued Sony Customer
112

UML and the Semantic Web
Stephen Cranefield

Department of Information Science, University of Otago
PO Box 56, Dunedin, New Zealand

E-mail: scranefield@infoscience.otago.ac.nz

Abstract. This paper discusses technology to support the use of UML for representing
ontologies and domain knowledge in the Semantic Web. Two mappings have been
defined and implemented using XSLT to produce Java classes and an RDF schema
from an ontology represented as a UML class diagram and encoded using XMI. A
Java application can encode domain knowledge as an object diagram realised as a
network of instances of the generated classes. Support is provided for marshalling and
unmarshalling this object-oriented knowledge to and from an RDF/XML serialisation.
The paper also proposes an extension to RDF allowing the identification of property–
resource pairs in a model for which ‘closed world’ reasoning cannot be used due to
incomplete knowledge.

1 Introduction

The vision of the Semantic Web is to let computer software relieve us of much of the burden
of locating resources on the Web that are relevant to our needs and extracting, integrating
and indexing the information contained within. To enable this, resources on the Web need to
be encoded in, or annotated with, structured machine-readable descriptions of their contents
that are expressed using terms or structures that have been explicitly defined in a domain
ontology.

Currently, there is a lot of research effort underway to develop ontology representation
languages compatible with World Wide Web standards, particularly in the Ontology Inference
Layer (OIL [1]) and DARPA Agent Markup Language (DAML [2]) projects. Derived from
frame-based representation languages from the artificial intelligence knowledge representa-
tion community, OIL and DAML schema build on top of RDF Schema by adding modelling
constructs from description logic [3]. This style of language has a well understood semantic
basis but lacks both a wide user community outside AI research laboratories and a standard
graphical presentation—an important consideration for aiding the human comprehension of
ontologies.

This paper discusses Semantic Web technology based on an alternative paradigm that
also supports the modelling of concepts in a domain (an ontology) and the expression of in-
formation in terms of those concepts. This is the paradigm of object-oriented modelling from
the software engineering community. In particular, there is an expressive and standardised
modelling language, the Unified Modeling Language (UML [4]), which has graphical and
XML-based formats, a huge user community, a high level of commercial tool support and
an associated highly expressive constraint language. Although developed to support analysis

Valued Sony Customer
113

and design in software engineering, UML is beginning to be used for other modelling prob-
lems, one notable example being its adoption by the Meta Data Coalition1 [5] for representing
metadata schemas for enterprise data.

The proposed application of UML to the Semantic Web is based on the following three
claims:

� UML class diagrams provide a static modelling capability that is well suited for repre-
senting ontologies [6].

� UML object diagrams can be interpreted as declarative representations of knowledge [7].

� If a Semantic Web application is being constructing using object-oriented technology, it
may be advantageous to use the same paradigm for modelling ontologies and knowledge.

However, there is one significant current shortcoming of UML: it lacks a formal defini-
tion. The semantics of UML are defined by a metamodel, some additional constraints ex-
pressed in a semi-formal language (the Object Constraint Language, OCL), and descriptions
of the various elements of the language in English. The development of formal semantics for
UML is an active area of research as evidenced by a number of recent workshops [8, 9, 10]
and the formation of an open-membership international research group to facilitate work in
this area [11]. In particular, as UML is a very large language with some redundancy, research
is underway to identify a core of UML modelling constructs from which the other language
elements can be derived [12, 13]. A formal definition of this core will then indirectly provide
semantics for the complete language.

The present author believes that future developments in this area will provide at least a
subset of UML with the formal underpinnings required for the unambiguous interpretation of
ontologies. For the present, the use of the more basic features of class and object diagrams
for representing ontologies and knowledge seems no more prone to misinterpretation than the
use of the Resource Description Framework—a language which underlies the Semantic Web
but also lacks official formal semantics (although some have been proposed [14]). It is also
worth noting that many of the difficulties in providing precise semantics for UML lie with its
features for dynamic modelling of systems, rather than the static models used in the present
work.

Further discussion of the benefits and limitations of UML for ontology modelling is be-
yond the scope of this paper which focuses on technology to support the use of object-oriented
modelling for the Semantic Web. An overview of this technology is given in Section 2. Sec-
tion 3 presents an example ontology in UML and gives a brief description of the features of
UML used in this example (for a good introduction to a much larger subset of the language
see Muller [15]). Section 4 describes the techniques used to generate an RDF schema and a
set of Java classes (complete with RDF-based object marshalling support) from a UML on-
tology. Section 5 proposes an extension to RDF that allows the inclusion in an RDF model of
information on how complete that model is for particular property–resource pairs. Some pre-
liminary thoughts on the possibility of performing reasoning with ontologies and knowledge
expressed in UML are presented in Section 6. Finally, Section 7 gives an overview of related
work.

1the MDC has since merged with the Object Management Group to work jointly on the OMG’s Common
Warehouse Metamodel for data warehousing, business intelligence, knowledge management and portal technol-
ogy metadata.

Valued Sony Customer
114

UML-based
design tool

<....>
 <....>
 <...>
 <.>
<..>

XMI document

.. {
 ...(.) {

 }
}

100110
101001
011011
000110
101101

RDF schema
(in XML)

Knowledge
(in RDF/XML)

XSLT

XSLT

references

javac

references

Applications
loads

references

Java
source files

Java
class files

.. {
 ...(.) {

 }
}

.. {
 ...(.) {

 }
}

Marshalling
package RDF API

uses

uses

javac

Figure 1: Overview of the implemented technology for object-oriented knowledge representation

2 Required technology for UML and the Semantic Web

To enable the use of UML representations of ontologies and knowledge, standard formats are
needed to allow both ontologies and knowledge about domain objects to be published on the
Web and transmitted between agents. In addition, there is a need for code libraries to help
application writers parse and internalise this serialised information.

This technology already exists for UML class diagrams. The XML Model Interchange
language (XMI) defines a standard way to serialise UML models. There are also a number
of Java class libraries existing or under development to provide a convenient interface for
applications to access this information. However, there is currently no similar technology
available to help Java applications construct, serialise and read object-oriented encodings of
knowledge that are conceptualised as UML object diagrams. XMI documents can encode the
structure of object diagrams, but this is necessarily done in a domain-independent way using
separate but cross-referenced XML elements for each object, link, link end and attribute–
value binding. What is required is a way to generate from an ontology a domain-specific
encoding format for knowledge about objects in that domain, and an application programmer
interface (API) to allow convenient creation, import and export of that knowledge.

Figure 1 shows an approach to object-oriented ontological and object-level knowledge
representation that has been implemented and is described in this paper. First, a domain ex-
pert designs an ontology graphically using a CASE tool supporting the Unified Modeling
Language, and then saves it using the standard XML-based format XMI (XML Model Inter-
change). A pair of XSLT (Extensible Stylesheet Language Transformations) stylesheets then

Valued Sony Customer
115

take the XMI representation of the ontology as input and produce (i) a set of Java classes
and interfaces corresponding to those in the ontology, and (ii) a representation of the ontol-
ogy using RDF (Resource Description Framework) using the modelling concepts defined in
RDF Schema. The generated Java classes allow an application to represent knowledge about
objects in the domain as in-memory data structures. The generated schema in RDF defines
domain-specific concepts that an application can reference when serialising this knowledge
using RDF (in its XML encoding). The marshalling and unmarshalling of object networks to
and from RDF/XML documents is performed by a pair of Java classes: MarshalHelper
and UnmarshalHelper. These delegate to the generated Java classes decisions about the
names and types of fields to be serialised and unserialised, but are then called back to perform
the translation to and from RDF, making use of an existing Java RDF application program-
mer’s interface [16].

Note that the generated RDF schema does not contain all the information from the orig-
inal UML model. If an application needs access to full ontological information, it can use
the original XMI document with the help of one of the currently available or forthcoming
Java APIs supporting the processing of UML models. The purpose of the RDF schema is
to define RDF resources corresponding to all the classes, interfaces, attributes and associa-
tions in the ontology in order to support RDF serialisation of instance information. For the
sake of human readers, the schema records additional information such as subclass relation-
ships and the domains and ranges of properties corresponding to attributes and associations.
However, this information is not required for processing RDF-encoded instance informa-
tion because each generated Java class contains specialised methods marshalFields and
unmarshalFields containing hard-coded knowledge about the names and types of the
class’s fields. This is a design decision intended to avoid potentially expensive analysis of the
schema during marshalling and unmarshalling. This it should be possible to use this serial-
isation mechanism in situations where optimised serialisation is important, such as in agent
messaging systems.

3 An example domain

This section presents an example ontology modelled as a UML class diagram and some know-
ledge encoded as an object diagram. The ontology defines a subset of the concepts included
in the CIA World Factbook and is adapted from an OIL representation of a similar subset
[17].

3.1 An ontology in UML

Figure 2 presents the CIA World Factbook ontology represented as a UML class diagram.
The version shown here is not a direct translation from OIL: there is an additional class
AdministrativeDivision, UML association classes are used where appropriate, and
instead of defining the classes City and Country as specialised types of Region (Geo-
graphicalLocation in the OIL original), the ontology represents these as optional roles that a
region may have.

The boxes in the diagram represent classes, and contain their names and (where appli-
cable) their attributes. The lines between classes depict association relationships between

Valued Sony Customer
116

AreaComparison

proportion : String

LandBoundary

AdministrativeDivision

type : String
City

Region
name : String

0..1

1

as_city

0..1

1

0..1

1

as_admin_division

0..1

1

Real
<<datatype>>

1

length_in_km

1

Country

1 1
capital

1 1

0..*0..*
neighbour

0..*0..*

0..1

1

as_country

0..1

1

0..*1 0..*1

11..* 11..*

0..*

0..*

0..*

0..*

0..1coastline_in_km 0..1
{ self.capital.country = self
 and
 self.landBoundary.neighbour->forAll(
 x | x.landBoundary.neighbour->
 includes(self)) }

Figure 2: A UML ontology for a subset of the CIA World Factbook

classes. A class A has an association with another class B if an object of class A needs to
maintain a reference to an object of class B. An association may be bidirectional, or (if a
single arrowhead is present) unidirectional. A ‘multiplicity’ expression at the end of an as-
sociation specifies how many objects of that class may take part in that relationship with a
single object of the class at the other end of the association. This may be expressed as a range
of values, with ‘*’ indicating no upper limit. Association ends may be optionally named. In
the absence of a name, the name of the adjacent class, with the initial letter in lower case,
is used as a default name. Associations can be explicitly represented as classes by attaching
a class box to an association (see LandBoundary and AreaComparison in the figure).
This is necessary when additional attributes or further associations are required to clarify the
relationship between two classes.

The dog-eared rectangle in the lower left corner of the figure contains a constraint in the
Object Constraint Language (OCL). This language provides a way to constrain the possible
instances of a model in ways that cannot be expressed using UML’s structural modelling
elements alone. The constraint shown here states that i) a country’s capital is a city in that
country, and ii) if a country c has another as a neighbour, then that neighbouring country has c
as a neighbour. Finally, the keyword “datatype” appearing in guillemets above the class Real
indicates that this is a pre-existing built-in datatype. OCL defines a minimal set of primitive
datatypes and it is currently assumed that the ontology designer has used these primitive
types.

Note that UML includes notation for class generalisation/specialisation relationships, al-
though this is not required for the example presented in this paper.

Valued Sony Customer
117

:Country

name = "Colorado"

 : Region

proportion = "About the size of"

 : AreaComparison

name = "New Zealand"

 : Region

as_country

name = "Wellington"

 : Region

 : City

as_city

 : City

name = "Dunedin"

 : Region

as_city

capital

15134

coastline_in_km

name = "Otago"

 : Region

type = "region"

 : AdministrativeDivision

as_admin_division

Figure 3: Information about New Zealand as a UML object diagram

3.2 Knowledge as an object diagram

Figure 3 presents some knowledge about New Zealand from the CIA World Factbook, ex-
pressed as an object diagram. For brevity, this diagram omits most of New Zealand’s cities
and administrative divisions, and provides no information about the region named Colorado,
to which New Zealand is compared in terms of area.

In object diagrams, rectangles denote objects, specifying their class (after an optional
name and a colon) and the object’s attribute values. The lines between objects show ‘links’:
instances of associations between classes.

4 From UML to RDF and Java

The previous section presented some knowledge expressed as a UML object diagram. This is
an abstract representation of that knowledge. To enable this style of knowledge representation
to be used for Semantic Web applications it is necessary to define an API to allow creation
of the knowledge in this form and a serialisation format to allow Web publication and trans-
mission of the knowledge. These can be generated automatically from an XML encoding of
the Word Factbook using the XSLT stylesheets that have been developed. One stylesheet pro-
duces an RDF schema corresponding to the ontology and the other produces a corresponding
set of Java classes and interfaces.

XSLT is a language for transforming XML documents into other documents. An XSLT
stylesheet is comprised of a set of templates that match nodes in the input document (rep-
resented internally as a tree) and transform them (possibly via the application of other tem-
plates) to produce an output tree. The output tree can then be output as text or as an HTML
or XML document.

The main issue common to both mappings is the problem of translating from UML

Valued Sony Customer
118

classes, which may have different types of features such as attributes, associations and as-
sociation classes, to a model where classes only have fields or (in RDF) properties. It was
also necessary to generate default names for fields where association ends are not named in
the UML model. The OCL conventions for writing navigation paths through object structures
were used to resolve these issues. Also, attributes and association ends with a multiplicity
upper limit greater than one are represented as set-valued fields (bags in RDF Schema) or, in
the case of association ends with a UML “ordered” constraint, list-valued fields (sequences
in RDF Schema). Further details about the mappings have been discussed elsewhere [18] and
are beyond the scope of this paper.

4.1 The generated RDF schema

The Resource Description Framework (RDF) is a simple resource–property–value model de-
signed for expressing metadata about resources on the Web. RDF has a graphical syntax as
well as an XML-based serialisation syntax. For readability, examples in this paper are pre-
sented in the graphical syntax, although in practice they are generated in the XML format.

RDF Schema is a set of predefined resources (entities with uniform resource identi-
fiers) and relationships between them that define a simple meta-model including concepts
of classes, properties, subclass and subproperty relationships, a primitive type Literal,
bag and sequence types, and domain and range constraints on properties. Domain schemas
(i.e. ontologies) can then be expressed as sets of RDF triples using the (meta)classes and prop-
erties defined in RDF Schema. Schemas defined using RDF Schema are commonly called
RDF schemas (small ‘s’).

The main issue in generating an RDF schema that corresponds to an object-oriented model
is that RDF properties are first-class objects and are not defined within the context of a partic-
ular class. This can lead to conflicting range declarations if the same property (e.g. head) is
used to represent a field in two different classes (e.g. Brew and Department). The solution
chosen was to prefix each property name representing a field with the name of the class. This
has the disadvantage that in the presence of inheritance a class’s fields may be represented
by properties with different prefixes: some specifying the class itself and some naming a par-
ent class. This might be confusing for a human reader but is not a problem for the current
purpose: to specify a machine-readable format for object-oriented knowledge interchange.

Figure 4 presents a subset of the generated RDF schema corresponding to the UML model
presented in Figure 2. Only the classes Country and Region and the relationships between
them are included here.

In the standard RDF graphical notation used in the figure, an ellipse represents a resource
with its qualified name shown inside as a namespace prefix followed by a local name. A
namespace prefix abbreviates a Uniform Resource Identifier (URI) associated with a particu-
lar namespace, and the URI for the resource can be constructed by appending the local name
to the namespace URI. A property is represented by an arc, with the qualified name for the
property written beside the arc (in this case the arcs are given labels with the corresponding
URIs shown in the table).

Figure 4 includes one property that is not part of RDF Schema. There is no mechanism in
RDF Schema to parameterise a collection type (such as rdf:Bag) by the class of elements it
may contain. Therefore, the non-standard property rdfsx:collectionElementType
was introduced to represent this information (this is abbreviated in the figure by the arc label

Valued Sony Customer
119

wfb:Region.as_country

rdfs:Class wfb:AreaComparison

wfb:Country

wfb:Region
d

wfb:AreaComparison.country

wfb:AreaComparison.proportion

wfb:AreaComparison.region

wfb:Country.areaComparison

wfb:Country.region

t

t

t

t

t
t

t

t
t

t

d

d

d

r

d

d

r

d

et

r

rdf:Property

r

r

r

r

rdfs:Literal

rdf:Bag

wfb:Region.name

Property labels Name space abbreviations
t = rdf:type rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#
d = rdfs:domain rdfs = http://www.w3.org/2000/01/rdf-schema#
r = rdfs:range rdfsx = http://nzdis.otago.ac.nz/0_1/rdf-schema-x#
et = rdfsx:collectionElementType wfb = any new namespace chosen for this schema

Figure 4: Part of the World Factbook schema in RDF

et). The definition of this property is shown in Figure 5. The object serialisation mechanism
described in this paper does not require this information but it is useful to people reading the
schema.

The schema in Figure 4 completely defines the encoding of instance data in RDF. Fig-
ure 6 shows how an object diagram is encoded in RDF with reference to the schema. This
corresponds to the central Region and Country objects from Figure 3 together with the
AreaComparison link to the Colorado Region object. The five resources outlined in
bold are the ones being defined. There are two resources of type wfb:Region, one of type
wfb:Country, one of type rdf:Bag (representing the set of the country’s area compar-
isons) and one element in the bag, an instance of the area comparison association class (which
is represented in RDF as the type wfb:AreaComparison). Depending on the needs of the

rdfs:Class

rdfsx:collectionElementType

rdfs:ConstraintProperty

rdfs:Container

t

d

r

Property labels Name space abbreviations
t = rdf:type rdfs = http://www.w3.org/2000/01/rdf-schema#
d = rdfs:domain rdfsx = http://nzdis.otago.ac.nz/0_1/rdf-schema-x#
r = rdfs:range

Figure 5: An extension to RDF Schema

Valued Sony Customer
120

wfb:AreaComparison

wfb:Region y Colorado

New Zealand About the size of

t

t

n acr

nt

x

rdf:Bagwfb:Country

rac acc

1
tt

pr

ac

Property labels Name space abbreviations
t = rdf:type rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#
1 = rdf: 1 wfb = namespace chosen for the World Factbook schema
n = wfb:Region.name
rac = wfb:Region.as country
r = wfb:Country.region
ac = wfb:Country.areaComparison
p = wfb:AreaComparison.proportion
acr = wfb:AreaComparison.region
acc = wfb:AreaComparison.country

Figure 6: Information about New Zealand encoded in RDF

application, defined objects might be assigned URIs or represented as anonymous resources.
In this case, they are anonymous—the labels x and y are included to allow reference to these
resources later in this paper. The rectangles represent RDF literals.

Note that while this graphical notation for RDF looks complicated, its encoding in XML
only requires five XML elements to represent the information, as shown in the appendix.

4.2 The generated Java classes and marshalling framework

The generated RDF schema described in the previous section defines a domain-specific serial-
isation format for object-oriented representation of knowledge about the domain. To facilitate
the processing of knowledge communicated in this form, a set of Java classes can also be gen-
erated from the ontology using XSLT. These allow Java applications to instantiate instances
of the domain concepts. In addition, the generated classes, along with some additional utility
classes, allow these in-memory structures to be marshalled and unmarshalled to and from the
RDF serialisation format defined by the generated RDF schema. The aim of the marshalling
code is to allow a Java application to maintain an internal representation of object-oriented
knowledge and to easily read and write parts of this knowledge to and from a format suitable
for transmission or publication on the Web.

Figure 7 presents a class diagram outlining the structure of the generated Java classes
and the marshalling framework. The class MarshalHelper is part of a support package
used by the generated classes. A static method marshalObjects provides the entry point
for an application to marshal a network of objects. A similar class UnmarshalHelper is

Valued Sony Customer

Valued Sony Customer
121

hashcode() : int
equals(o : Object) : boolean
compareTo(o : Object) : int
marshal(h : MarshalHelper)
«abstract» marshalInheritedFields(h : MarshalHelper)
marshalFields(h : MarshalHelper)

OID : int

DomainObject

marshalString(fieldName : String, value : String, known : Boolean)
marshalObjects(objects : Collection, root : DomainObject, namespace : String, os : OutputStream) : QName

MarshalHelper

...
marshalInheritedFields(h);
marshalFields(h);
...

Has empty default definition

name() : String
setName(name : String)
nameKnown() : boolean
setNameKnown(known : Boolean)
Region()
Region(name : String)
marshalInheritedFields(h : MarshalHelper)
marshalFields(h : MarshalHelper)
main(args[] : String)

name : String
nameKnown : boolean = false
...

Region

Defined in all generated classes as:
 super.marshalFields(h);

...
h.marshalString("name", name, nameKnown);
...

Registers class in a properties file, indexed by URI

Adds triple to RDF model, either property value
or statement that property value isn't known

Creates MarshalHelper object h and
for each o in objects calls:
 o.marshal(h)

Figure 7: The structure of the generated classes and the marshalling methods

also provided, but is not discussed here. The class DomainObject is an abstract base class
that all generated classes specialise (the specialisation relationship is represented by a closed
arrow pointing to the more general class). The class Region is shown as an example of a
generated class.

This diagram does not show all the fields and methods. In particular, the class Region
also contains fields and methods related to the association ends as_city, as_country
and as_admin_division from the ontology shown in Figure 2. There are some fields
and methods depicted that are related to whether or not a field value is “known”. This is
discussed in Section 5.

There is a significant difference between knowledge represented propositionally and know-
ledge represented in the form of an object diagram. Propositions are self-contained statements
of knowledge whereas object diagrams are networks of objects. When serialising knowledge,
an application may only wish to include some of the information it knows about a domain.

Valued Sony Customer

Valued Sony Customer

Valued Sony Customer
122

// Build object diagram
Region rNZ = new Region("New Zealand");
Country cNZ = new Country();
AreaComparison ac = new AreaComparison();
ac.setCountry(cNZ);
ac.setRegion(rNZ);
ac.setProportion("About the size of");
Set comparisons = new HashSet();
comparisons.add(ac);
Region rColorado = new Region("Colorado");
rNZ.setAs_country(cNZ);
cNZ.setRegion(rNZ);
cNZ.setAreaComparisonSet(comparisons);
// Now marshal it
Set toMarshal = new HashSet();
toMarshal.add(rNZ); toMarshal.add(cNZ);
toMarshal.add(ac); toMarshal.add(rColorado);
try {
QName rootQName =
MarshalHelper.marshalObjects(
toMarshal, rNZ, "http://nzdis.otago.ac.nz/nzdata1#",
new FileOutputStream("nz.xml"));

}
catch (MarshallingException e) { ... }

Figure 8: Sample Java code to create and marshal an object diagram

For example, Figure 6 compares New Zealand’s area to that of Colorado, but doesn’t provide
the information that Colorado is an administrative division of the United States. To allow
this selectivity, the marshalObjectsmethod takes a collection of objects as an argument.
Links to any objects outside this collection will not be serialised. To allow a particular entry
point into the knowledge structure to be identified, a root object is specified and the method
returns the qualified name of the RDF resource in the serialised model that represents that
object. A namespace for the serialised information is also provided.

Figure 8 shows the Java code that would produce the RDF serialisation in Figure 6.

5 Modelling incomplete knowledge

Because object diagrams are inter-linked networks of objects rather than sets of discrete facts,
and because classes may have attributes or associations that are optional (i.e. have a multi-
plicity lower bound of zero), it is important to be able to distinguish between a statement that
there are no values for a given property and the omission or lack or knowledge about a given
property. In other words, the recipient of object-oriented information needs a way of knowing
for which objects and which properties a closed world assumption can safely be made. This
is achieved by including extra boolean fields in the generated Java classes that record for each
regular field whether or not its value is ‘known’ or, for set- or list-valued fields, ‘closed’—
meaning that the contents of the set or list provide complete knowledge of that field. Setting
the value of a single-valued field sets its ‘known’ field to true and all fields also have a method

Valued Sony Customer
123

rrdfx:notClosedOn

rdfs:Resource

rdf:Property
t

d

Property labels Name space abbreviations
t = rdf:type rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#
d = rdfs:domain rdfs = http://www.w3.org/2000/01/rdf-schema#
r = rdfs:range rdfx = http://nzdis.otago.ac.nz/0_1/rdf-x#

Figure 9: Schema for the notClosedOn property

wfb:Region.as_admin_division

wfb:Country.capital

x

wfb:Country.administrativeDivision

y

wfb:Country.city

nco

nco
nco

nco

Property labels Name space abbreviations
nco = rdfx:notClosedOn rdfx = http://nzdis.otago.ac.nz/0_1/rdf-x#

wfb = namespace chosen for the World Factbook schema

Figure 10: Meta-knowledge about incomplete information

allowing the programmer to explicitly specify the status of the field.
When unmarshalling an object diagram from the RDF encoding it is assumed that com-

plete information about all properties is included unless otherwise specified (although the
opposite could equally well be implemented as the default assumption). Incomplete infor-
mation is indicated using a non-standard RDF property notClosedFor that associates a
property with a resource, meaning that complete information is not provided for that property
applied to that resource. Figure 9 shows the declaration of the notClosedOn property.

Figure 10 presents an example of this property applied to the encoding of knowledge
about New Zealand that was shown in Figure 6. When combined with the RDF-encoded
information in Figure 6, this specifies that the RDF model does not contain complete (or
possibly any) information about the capital, cities and administrative divisions of the country
represented by the resource labelled x. Also, there is possibly missing information about the
administrative division property of the region represented by the resource labelled y.

In order to have this meta-level information added to the RDF serialisation, the Java code
shown in Figure 8 must have the following lines added before the call to marshalObjects:

Valued Sony Customer
124

cNZ.setCapitalKnown(false);
cNZ.setCitySetClosed(false);
cNZ.setAdministrativeDivisionSetKnown(false);
rNZ.setAs_admin_divisionKnown(false);

Similar mechanisms for handling incomplete knowledge have been used in knowledge
representation systems LOOM [19] (which includes :closed-world and :open-world
relation properties) and CLASSIC [20] (which allows roles to be declared to be ‘closed’).
This notion has also been formalised in description logic by the use of epistemic operators
that modify roles, and in AI planning by the use of “local closed world” formulae [21]. The
notClosedOn property used in this work should also include a reference to the current
RDF model, but this is not currently possible as RDF does not provide a way to declare that
a set of statements collectively constitute a model with a given URI.

6 Reasoning with OCL

The Semantic Web, as envisioned by Tim Berners-Lee [22], includes a logical layer which
allows “the deduction of one type of document from a document of another type; the check-
ing of a document against a set of rules of self-consistency; and the resolution of a query by
conversion from terms unknown into terms known”. One of the biggest challenges for the
Semantic Web community is to find interoperable ways of incorporating inference rules into
ontologies. There is much research to be done in this area. For example, although the XML
DTD for OIL 1.0 defines a rule-base element, its content is unconstrained text and no
semantic connection is made between this rule base and the rest of the language. The RDF
schemas defining later versions of OIL and DAML do not currently contain any way of rep-
resenting rules, although it is a goal of the DAML project to produce an enhanced language,
DAML-L, with support for rules.

It is therefore an important question to evaluate how well UML fares in this regard. In
fact, UML includes a powerful mechanism for expressing inference rules: the Object Con-
straint Language. OCL has been claimed to be “essentially a variant of [first order predicate
logic] tuned for writing constraints on object structures” [23]. This claim is true from a syn-
tactic viewpoint: OCL is sufficiently expressive to represent any first-order inference rules
that an ontology designer may wish to specify (although this expressiveness also means that
reasoning about unconstrained OCL expressions is likely to be undecidable in general). From
a semantic viewpoint, the above claim cannot be verified as OCL currently lacks a formal
specification. However, this shortcoming has been recognised in the UML 2.0 OCL RFP [24]
and at least one proposal for formal semantics for OCL has already been made [25].

The object-oriented syntax of OCL is also unlike any commonly used logical language,
and attempting to write rules in OCL can be frustrating for the inexperienced. A constraint
can often be expressed in several different ways and the resulting expression can look quite
unlike its counterpart in first-order logic. Consider the constraint in Figure 2. The second
conjunct specifies that the neighbourhood relationship between countries is reflexive. The
form of this constraint might be immediately recognised as a standard pattern by an OCL
expert but it is not obvious to the uninitiated.

To enable tractable reasoning about ontologies in UML, and to avoid the awkward syntax
of OCL, it would be useful to define a macro language on top of OCL comprising predicates
such as reflexive(path-expression) which are defined in terms of OCL. The set

Valued Sony Customer
125

name = "Kim"

 : Man

Man

name : String

Person

name = "Kim"

 : Person

name = "Bob"

 : Personchild parent+

+

parent

2
child*

2

/son

*

{ son = child->select(oclIsTypeOf(Man))

 Person.allInstances->forAll(
 p | self.name = p.name implies self = p) }

name = "Kim"

 : Man
child parent

name = "Bob"

 : Person

son

Figure 11: An example of inference over knowledge in UML

of macros could be chosen to ensure that reasoning over these expressions is tractable. This
would also help to allow the translation of rules between UML-based and other representa-
tions of an ontology. This is a subject for future research.

Recent research has also shown how inference rules in UML can be expressed as graph
transformations on the UML metamodel [26, 13]. To give a taste of what inference with UML
might look like, Figure 11 shows how new knowledge in the form of an object diagram can
be generated by combining existing knowledge and information about the ontology. In this
example, one agent has communicated to another that there is an object of class Man with
“Kim” as the value of its name attribute. The other agent knows that there is a Person
object with name Kim and that this object is the child of a Person object with name Bob.
The ontology for this domain states that Man is a specialisation of Person, and includes
two OCL constraints: one defining the derived role (indicated by ‘/’) son (a son is a child
that is a man), and the other stating (rather unrealistically) that the name attribute uniquely
identifies objects of class Person. Over several steps of inference the agent can conclude
that the two objects with name Kim are the same and therefore Kim is a male child, i.e. a son.
Implementing this style of deduction in UML is a subject for future research.

7 Related Work

A number of other projects have investigated the serialisation of instances of ontological
models.

Skogan [27] defined a mechanism for generating an XML document type definition (DTD)
from a UML class diagram and implemented this as a script for the UML-based modelling

Valued Sony Customer
126

tool Rational Rose. This is being used for the interchange of geographical information. The
mapping is only defined on a subset of UML and many useful features of class diagrams,
including generalisation relationships, are not supported.

Work has also been done on producing DTDs [28] and XML schemas [17] from models
expressed in ontology modelling languages (Frame Logic and OIL respectively). The latter
work reported that the XML Schema notion of type inheritance does not correspond well to
inheritance in object-oriented models, which was a factor in the choice of RDF as a serialisa-
tion format in the research described here.

Since its initial proposal, OIL has been redesigned as an extension of RDFS [29]. This
means that an ontology in OIL is also an RDF schema and therefore knowledge about re-
sources in a domain modelled by an OIL ontology can easily be expressed using RDF.

The UML-based Ontology Toolset (UBOT) project at Lockheed Martin is working on
tools to map between UML and DAML representations of ontologies [30]. This project has
a different focus from the work described in this paper. Rather than using the existing fea-
tures of UML to describe ontologies, the language is being extended with a set of UML
‘stereotypes’ (specialisations of UML modelling constructs) that correspond to classes and
properties in the RDF schema for DAML. A proposal has also been made for an extension to
the UML metamodel that would allow global properties in DAML ontologies to be modelled
as aggregations of UML association ends (which are local to classes) [31].

The Web site http://www.interdataworking.com provides a number of ‘gateways’ that can
be used to convert between different data formats. One particular ‘gateway stack’ can be used
to produce an RDF schema from an XMI document, although no information is given about
the mapping and how much of UML is supported. The resulting schema is defined using a
mixture of properties and (meta)classes from RDF Schema (such as rdfs:subClassOf)
and from Sergey Melnik’s RDF representation of the UML metamodel [32]. The schema de-
fines properties and classes that can be referenced when encoding object information in RDF,
and could itself be used as an alternative to an XMI encoding for publishing and serialising an
ontology modelled using UML. However, as XMI is an Object Management Group standard
for model interchange, it is being supported by an increasing number of tools and APIs and
there seem to be few advantages in using a different format for encoding UML models. If it
is required to annotate an ontology with additional information that is not part of the XMI
format (one of Melnik’s desiderata) this could be achieved using external annotations and
XLink [33].

Xpetal [34] is a tool that converts models in the ‘petal’ output format of the UML-based
modelling tool Rational Rose to an RDF representation. No details are provided about the
mapping from UML to RDFS and which UML features are supported.

8 Conclusion

This paper has described technology that facilitates the application of object-oriented mod-
elling, and the Unified Modeling Language in particular, to the Semantic Web. From an on-
tology specified in UML, a corresponding RDF schema and a set of Java classes can be
automatically generated to facilitate the use of object diagrams as internal knowledge repre-
sentation structures and the import and export of these as RDF documents. A mechanism was
also introduced for indicating when an object diagram has missing or incomplete knowledge.

Important areas for future work are the identification of tractable subsets of OCL for

Valued Sony Customer
127

encoding inference rules and the definition of mappings between object-oriented representa-
tions of ontologies and knowledge and more traditional description logic-based formalisms.
This would allow applications to choose the style of modelling most suitable for their needs
while retaining interoperability with other subsets of the Semantic Web.

The software described in this paper is publicly available at http://nzdis.otago.ac.nz/projects
under the name “uml-data-binding”.

Acknowledgements

This work was done while visiting the Network Computing Group at the Institute for Infor-
mation Technology, National Research Council of Canada, Ottawa, Canada. Thanks are due
to Larry Korba and the NRC for hosting me and to the University of Otago for approving my
research and study leave.

References

[1] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a nutshell. In R. Di-
eng and O. Corby, editors, Proceedings of the 12th International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2000), volume 1937 of Lecture Notes in Artificial Intelligence, pages
1–16. Springer, 2000.

[2] DAML project home page. http://www.daml.org, 2000.

[3] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka, editor,
Principles of Knowledge Representation and Reasoning, Studies in Logic, Language and Information,
pages 193–238. CLSI Publications, 1996.

[4] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Addison-
Wesley, 1999.

[5] Meta Data Coalition home page. http://www.mdcinfo.com/, 2000.

[6] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proceedings of the Work-
shop on Intelligent Information Integration, 16th International Joint Conference on Artificial Intelligence
(IJCAI-99), 1999. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-23/cranefield-
ijcai99-iii.pdf.

[7] S. Cranefield and M. Purvis. Extending agent messaging to enable OO information exchange. In R. Trappl,
editor, Proceedings of the 2nd International Symposium “From Agent Theory to Agent Implementation”
(AT2AI-2) at the 5th European Meeting on Cybernetics and Systems Research (EMCSR 2000), pages
573–578, Vienna, 2000. Austrian Society for Cybernetic Studies. Published under the title “Cybernetics
and Systems 2000”. An earlier version is available at http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2000-07.pdf.gz.

[8] Ana Moreira, L. F. Andrade, A. R. Deshpande, and S. Kent. Formalizing UML. Why? How? In Ad-
dendum to the Proceedings of the Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA’98). ACM/SIGPLAN, 1998.

[9] S. Kent, A. Evans, and B. Rumpe. UML semantics FAQ. In A. Moreira and S. Demeyer, editors, Object-
Oriented Technology: ECOOP’99 Workshop Reader, volume 1743 of Lecture Notes in Computer Science.
Springer, 1999. http://www4.informatik.tu-muenchen.de/papers/KER99.html.

[10] J.-M. Bruel, J. Lilius, A. Moreira, and R.B. France. Defining precise semantics for UML. In J. Malenfant,
S. Moisan, and A. Moreira, editors, Object-Oriented Technology: ECOOP 2000 Workshop Reader, volume
1964 of Lecture Notes in Computer Science. Springer, 2000.

[11] pUML. Precise UML Group Web site. http://www.puml.org, 2001.

Valued Sony Customer
128

[12] A. S. Evans and S. Kent. Meta-modelling semantics of UML: the pUML approach. In B. Rumpe and R. B.
France, editors, Proceedings of the 2nd International Conference on the Unified Modeling Language,
volume 1723 of Lecture Notes in Computer Science. Springer, 1999. http://www.cs.york.ac.uk/puml/
papers/pumluml99.pdf.

[13] M. Gogolla. Graph transformations on the UML metamodel. In Proceedings of the ICALP Workshop on
Graph Transformations and Visual Modeling Techniques (GVMT’2000), pages 359–371. Carleton Scien-
tific, 2000. ftp://ftp.informatik.uni-bremen.de/%2Flocal/db/papers/Gogolla 2000 GraGra.ps.

[14] W. Conen and R. Klapsing. A logical interpretation of rdf. Link öping Electronic Articles in Computer and
Information Science, 5(13), 2000. http://www.ep.liu.se/ea/cis/2000/013/.

[15] P.-A. Muller. Instant UML. Wrox Press, 1997.

[16] S. Melnik. RDF API homepage. http://www-db-stanford.edu/˜melnik/rdf/api.html, 2000.

[17] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The relation between ontologies and schema-
languages: translating OIL-specifications in XML-Schema. In Proceedings of the Workshop on Applica-
tions of Ontologies and Problem solving Methods, 14th European Conference on Artificial Intelligence
(ECAI 2000), 2000. http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/7.pdf.

[18] S. Cranefield. Networked knowledge representation and exchange using UML and RDF. Journal of
Digital Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/.

[19] D. Brill. LOOM Reference Manual version 1.4. USC-ISI, 4353 Park Terrace Drive, Westlake Village, CA
91361, 1991.

[20] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, and A. Borgida. “Reducing” CLASSIC to
practice: Knowledge representation theory meets reality. Artificial Intelligence, 114(1–2):203–237, 1999.

[21] O. Etzioni, K. Golden, and D. Weld. Tractable closed world reasoning with updates. In L. Doyle, E. Sande-
wall, and P. Torasso, editors, KR’94: Principles of Knowledge Representation and Reasoning, pages 178–
189. Morgan Kaufmann, San Francisco, California, 1994.

[22] T. Berners-Lee. Semantic Web road map. http://www.w3.org/DesignIssues/Semantic.html, 1998.

[23] T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A feasibility study in rearchitecting UML as a
family of languages using a precise OO meta-modeling approach. http://www.cs.york.ac.uk/puml/mml/
mmf.pdf, 2000.

[24] UML 2.0 OCL request for proposal. OMG Document ad/2000-09-03, Object Management Group, 2000.
http://www.omg.org/techprocess/meetings/schedule/UML 2.0 OCL RFP.html.

[25] M. V. Cengarle and A. Knapp. A formal semantics for OCL 1.4. In Proceedings of the 4th International
Conference on the Unified Modeling Language, Lecture Notes in Computer Science. Springer, 2001. (To
appear).

[26] A. S. Evans. Reasoning with UML class diagrams. In Proceedings of the Workshop on Industrial Strength
Formal Methods (WIFT’98). IEEE Press, 1998. http://www.cs.york.ac.uk/puml/papers/evanswift.pdf.

[27] D. Skogan. UML as a schema language for XML based data interchange. In Proceed-
ings of the 2nd International Conference on The Unified Modeling Language (UML’99), 1999.
http://www.ifi.uio.no/˜davids/papers/Uml2Xml.pdf.

[28] M. Erdmann and R. Studer. Ontologies as conceptual models for XML documents. In Proceedings of the
12th Workshop on Knowledge Acquisition, Modeling and Management (KAW’99). Knowledge Science
Institute, University of Calgary, 1999. http://sern.ucalgary.ca/KSI/KAW/KAW99/papers.html.

[29] J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks. Adding formal semantics to the Web: build-
ing on top of RDF schema. In Proceedings of the Workshop on the Semantic Web: Models, Architectures
and Management, Fourth European Conference on Research and Advanced Technology for Digital Li-
braries (ECDL’2000), 2000. http://www.ics.forth.gr/proj/isst/SemWeb/proceedings/session2-2/paper.pdf.

[30] UBOT project home page. http://ubot.lockheedmartin.com/, 2001.

Valued Sony Customer
129

[31] K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, W. S. Holmes III, J. Letkowski, and M. L.
Aronson. Extending UML to support ontology engineering for the Semantic Web. In Proceedings of the
4th International Conference on the Unified Modeling Language, Lecture Notes in Computer Science.
Springer, 2001. (To appear. Draft version available at http://www.coe.neu.edu/˜jsmith/semweb.pdf).

[32] S. Melnik. UML in RDF. http://www-db.stanford.edu/˜melnik/rdf/uml/, 2000.

[33] XLink project home page. http://www.w3.org/XML/Linking, 2001.

[34] XPetal sourceforge Web page. http://sourceforge.net/projects/xmodel, 2001.

Appendix

The following is an XML serialisation of the RDF model representing information about New
Zealand that was shown in Figure 6.

<rdf:RDF
xmlns:wfb="http://nzdis.otago.ac.nz/0_1/world-fact-book#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<wfb:Region rdf:ID="region1">
<wfb:Region.name>New Zealand</wfb:Region.name>
<wfb:Region.as_country rdf:resource="#country1"/>

</wfb:Region>

<wfb:Country rdf:ID="country1">
<wfb:Country.region rdf:resource="#region1"/>
<wfb:Country.areaComparison rdf:resource="#bag1"/>

</wfb:Country>

<rdf:Bag rdf:ID="bag1">
<rdf:li rdf:resource="#comparison1"/>

</rdf:Bag>

<wfb:AreaComparison rdf:ID="comparison1">
<wfb:AreaComparison.country rdf:resource="#country1"/>
<wfb:AreaComparison.region rdf:resource="#region2"/>
<wfb:AreaComparison.proportion>About the size of
</wfb:AreaComparison.proportion>

</wfb:AreaComparison>

<wfb:Region rdf:ID="region2">
<wfb:Region.name>Colorado</wfb:Region.name>

</wfb:Region>

</rdf:RDF>

Valued Sony Customer
130

MetamodelingAr chitectureof WebOntology
Languages

Jeff Z. PanandIanHorrocks

InformationManagementGroup
Departmentof ComputerScience

Universityof Manchester
OxfordRoadManchesterM13 9PL,UK�

pan,horrocks� @cs.man.ac.uk

Abstract. Recentresearchhasshown thatRDF Schema,asa schemalayerSemanticWeb language,
hasa non-standardmetamodelingarchitecture.As a result,it is difficult to understandandlacksclear
semantics.Thispaperproposesafixedlayermetamodelingarchitecturefor RDFSchema(RDFS(FA))
anddemonstrateshow the problemsof RDF Schemacanbe solved underRDFS(FA). Basedon this
metamodelingarchitecture,a clear model-theoreticsemanticsof RDFS(FA) is given. Interestingly,
RDFS(FA) also benefitsDAML+OIL by offering a firm semanticbasisand by solving the “layer
mistake” problem.

1 Intr oduction

TheSemanticWeb,with its visionstatedby Berners-lee[1], aimsatdevelopinglanguagesfor express-
ing informationin amachineunderstandableform. Therecentexplosionof interestin theWorld Wide
Webhasalsofuelledinterestin ontologies.It hasbeenpredicted(Broekstraet al. [3]) thatontologies
will playapivotalrolein theSemanticWebsinceontologiescanprovideshareddomainmodels,which
areunderstandableto bothhumanbeingandmachines.

Ontology(UscholdandGruninger[20]) is, in general,a representationof a sharedconceptualiza-
tion of a specificdomain.It providesa sharedandcommonunderstandingof a domainthat canbe
communicatedbetweenpeopleandheterogeneousanddistributedapplicationsystems.An ontology
necessarilyentailsor embodiessomesort of world view with respectto a given domain.The world
view is usuallyconceivedasa hierarchicaldescriptionof importantconcepts(is-ahierarchy), a setof
crucialproperties,andtheir inter-relationships.

Berners-lee[1] outlinedthe architectureof SemanticWeb. We would like to call it a functional
architecture becausethe expressive primitives are incrementallyintroducedfrom languagesin the
lowestlayer(i.e. matadatalayer)to thosein thehigherlayer(e.g.logical layer),sothatthelanguages
in eachlayercansatisfytherequirementsof differentkinds(or levels)of applications:

1. In themetadatalayer, asimpleandgeneralmodelof semanticassertionsof theWebis introduced.
Thesimplemodelcontainsjusttheconceptsof resourceandproperty, whichareusedto expressthe
metainformationandwill beneededby languagesin theupperlayers.TheResourceDescription
Framework (RDF) (Lassilaand R.Swick [13]) is believed to be the generalmodel in metadata
layer.

2. In theschemalayer, simpleWebontology languagesareintroduced,whichwill defineahierarchi-
cal descriptionof concepts(is-ahierarchy) andproperties.Theselanguagesusethegeneralmodel
in metadatalayerto definethebasicmetamodelingarchitectureof Webontologylanguages.RDF
Schema(RDFS)(Brickley andGuha[2]) is acandidateschemalayerlanguage.

Valued Sony Customer
131

3. In the logical layer, morepowerful Webontology languagesareintroduced.Theselanguagesare
basedonthebasicmetamodelingarchitecturedefinedin schemalayer, anddefinesamuchricherset
of modellingprimitivesthatcane.g.bemappedto very expressive DescriptionLogics(Horrocks
et al. [11], Horrocks[10]) to supplyreasoningservicesfor theSemanticWeb. OIL (Horockset al.
[9]) andDAML+OIL (vanHarmelenetal. [22]) arewell known logical layerlanguages.

This paperwill focuson themetamodelingarchitecture otherthanthefunctionalarchitecture.We
shouldpointoutthat“metamodeling”andthe“metadatalayer” in thefunctionalarchitecturearenotthe
same.Metadatameansdataaboutdata.Metamodelingconcernsthedefinitionof themodellingprim-
itives(vocabulary) usedin a modelling language.Many softwareengineeringmodelling languages,
including UML, arebasedon metamodels.Among the SemanticWeb languages,the schemalayer
languagesareresponsibleto build themetamodelingarchitecture.

In this paper, we arguethatRDFS,asa schemalayer language,hasa non-standardandnon-fixed
layer metamodelingarchitecture,which makes someelementsin the model have dual roles in the
RDFSspecification.Therefore,it makestheRDFSspecificationitself quitedifficult to understandby
themodellers.Theevenworsething is thatsincethelogical layer languages(e.g.OIL, DAML+OIL)
are all basedon the metamodelingarchitecturedefinedby schemalayer languages(RDFS), these
languagesthereforehave thesimilar problems,e.g.the“layer mistake” discussedin Section2.3.

We proposea fixed layer metamodelingarchitecturefor RDFS(we call it RDFS(FA)) which is
similar to the metamodelingarchitectureof UML. We analysethe problemsof the non-fixed meta-
modelingarchitectureof RDFSanddemonstratehow theseproblemscanbesolvedunderRDFS(FA).
Furthermore,Wegive aclearsemanticsto RDFS(FA).

Therestof thearticleis organizedasfollows.In Section2 weexplainthedatamodelof RDF, RDFS
andDAML+OIL, thelanguagesbelongingto thematadatalevel, schemalevel andlogical level of the
SemanticWeb Architecturerespectively. We will focuson the metamodelingarchitectureof RDFS
andlocatewhat theproblemsareandwherethey comefrom. In Section3 we discusstheadvantages
anddisadvantagesof fixedandnon-fixedlayermetamodelingarchitectureandthenbriefly explain the
metamodelingarchitectureof UML. In Section4 we proposeRDFS(FA), andgive a clearsemantics
to RDFS(FA). We alsodemonstratehow the “layer mistake” problemwith DAML+OIL is solved in
RDFS(FA). Section5 briefly discusstheadvantagesof RDFS(FA) andour attitudeson how to make
useof UML in theWebontologylanguages.

2 Curr ent Data Modelsof SemanticWebLanguages

2.1 RDF DataModel

As a SemanticWeb languagein the metadatalayer of the functionalarchitecture,RDF is a founda-
tion for processingmetadata.It providesinteroperabilitybetweenapplicationsthatexchangemachine-
understandableinformationon the Web. The foundationof RDF is a model for representingnamed
propertiesandpropertyvalues.TheRDF datamodelprovidesanabstract,conceptualframework for
definingandusingmetadata.Thebasicdatamodelconsistsof threeobjecttypes:

Resources: All thingsbeingdescribedby RDF expressionsarecalledresources. A resourcemaybe
anentireWebpage,apartof aWebpage,awholecollectionof pages(Website);or anobjectthat
is notdirectlyaccessiblevia theWeb,e.g.aprintedbook.Resourcesarealwaysnamedby URIs.

Properties: A property is a specificaspect,characteristic,attribute, or relation usedto describea
resource.

Statements: A specificresourcetogetherwith a namedpropertyplus the valueof that propertyfor
thatresourceis anRDF statement.

Valued Sony Customer
132

http://img.cs.man.ac.uk/jpan/Zhilin

Home Page of Jeff Z. Pan

Creator

Homepage

Title

http://img.cs.man.ac.uk/memberlist#jpan

Figure1: An Exampleof RDF in aDirectedLabeledGraph

In a nutshell,the RDF datamodel is an object-property-valuemechanism.The metadatainfor-
mation is introducedby a set of statementsin RDF. Thereare several ways to expressRDF state-
ments.First,we canusethebinarypredicateform Property(object,value),e.g.Title(‘http://img.
cs.man.ac.uk/jpan/Zhilin ’, “Home Pageof Jeff Z. Pan”). Secondly, we can diagraman
RDF statementpictorially usingdirectedlabeledgraphs:‘[object]-Property-� [value]’ (seeFigure1).
Thirdly, RDF usesanExtensibleMarkupLanguage(XML) encodingasits interchangesyntax:
�

rdf:Description rdf:ID ="http://img.cs.man.ac.uk/jpan/Zhilin" ��
Title � Home Page of Jeff Z. Pan

�
/Title ��

/rdf:Description �
The RDF datamodel is so called“property-centric”.We canusethe “about” attribute to addmore
propertiesto the existing resource.Generallyspeaking,with the object-property-value mechanism,
RDF canbeusedto express:

� attributesof resources:in this case,the‘value’ is a literal (e.gthe“Title” propertyabove);

� relationshipsbetweenany two resources:in this case,the ‘value’ is a resource,andthe involved
propertiesrepresentdifferentrolesof thetwo resourceswith this relationship;in thefollowing ex-
ample,thereexistsa“creator-homepage”relationshipbetween“http://img.cs.man.ac.uk/jpan/Zhilin”
and“http://img.cs.man.ac.uk/memberlist#jpan”(seealsoFigure1):
�

rdf:Description rdf:ID ="http://img.cs.man.ac.uk/memberlist#jpan" ��
Homepage rdf:resource ="http://img.cs.man.ac.uk/jpan/Zhilin"/ ��

/rdf:Description ��
rdf:Description about ="http://img.cs.man.ac.uk/jpan/Zhilin" ��

Creator rdf:resource ="http://img.cs.man.ac.uk/memberlist#jpan"/ ��
/rdf:Description �

� weaktypeof resources:the ‘type’ is weakbecauseRDF itself hasno standardway to definea
Class,sothetypehereis regardedonly asaspecialattribute;for example,
�

rdf:Description about ="http://img.cs.man.ac.uk/memberlist#jpan" ��
rdf:type rdf:resource ="#Person"/ ��

/rdf:Description �
� statementaboutstatement: RDF canbeusedfor makingstatementsaboutotherRDF statements,

whicharereferredto ashigher-orderstatements. This featureof RDFhasyet to beclearlydefined
andis beyondthescopeof thispaper.

2.2 RDF SchemaDataModel

As wehaveseen,on theonehand,RDFdatamodelis enoughfor definingandusingmetadata.On the
otherhand,themodellingprimitivesofferedby RDF arevery basic.Althoughyou candefine“Class”
and“subClassOf” asresourcesin RDF (no onecanstopyou doing that),RDF providesno standard
mechanismsfor declaringclassesand (global) properties,nor doesit provide any mechanismsfor

Valued Sony Customer
133

 d r s s s d r

 r d
r

 d

t

rdfs:Literal

t s

s
rdf:type

t

r

tt

rdfs:Resource

rdfs:Class

rdfs:subClassOf

rdfs:ConstraintResource rdfsfa:Property

rdfs:subPropertyOf

rdfs:ConstraintProperty

rdfs:rangerdfs:domain
t t

d=rdfs:domain
t=rdf:type

r=rdfs:range
s=rdfs:subClassOf

t

Figure2: DirectedLabeledGraphof RDF Schema

definingtherelationshipsbetweenpropertiesor betweenclasses.Thatis theroleof RDFS–aSemantic
Weblanguagein theschemalayer.

RDFSis expressedby usingRDF datamodel.It extendsRDF by giving an externally specified
semanticsto specificresources.In RDFS,rdfs:Classis usedto defineconcepts,i.e. every classmust
be an instanceof rdfs:Class.Resourcesthat aredescribedby RDF expressionsareviewed to be in-
stancesof the classrdfs:Resource.The classrdf:Propertyis the classof all propertiesusedto char-
acterizeinstancesrdfs:Resource.Therdfs:ConstraintResourcedefinestheclassof all constraints.The
rdfs:ConstraintPropertyis a subsetof rdfs:ConstraintResourceand rdf:Property, all of its instances
arepropertiesusedto specifyconstraints,e.g.rdfs:domainandrdfs:range.For example,thefollowing
RDFSexpressions
�

rdfs:Class rdf:ID ="Animal" ��
rdfs:comment � This class of animals is illustrative of a number of

ontological idioms.
�

/rdfs:comment ��
/rdfs:Class ��
rdfs:Class rdf:ID ="Person" ��

rdfs:subClassOf rdf:resource ="#Animal"/ ��
/rdfs:Class ��
rdf:Description rdf:ID ="John" ��

rdf:type rdf:resource ="#Person"/ ��
rdfs:comment � John is a person.

�
/rdfs:comment ��

/rdf:Description ��
rdf:Description rdf:ID ="Mary" ��

rdf:type rdf:resource ="#Person"/ ��
rdfs:comment � Mary is a person.

�
/rdfs:comment ��

/rdf:Description �
definethe classes“Animal” and“Person”,with the latter beingthe subclassof the former, andtwo
individuals“John” and“Mary”, which areinstancesof theclass“Person”.Individual “John” canalso
bedefinedin thisway,
�

Person rdf:ID ="John" ��
rdfs:comment � John is a person.

�
/rdfs:comment ��

/Person �
which is animplicit way to definerdf:typeproperty. Notethathere“Person”is aclass.

Valued Sony Customer
134

rdfs:Resource

rdfs:Class

s
t t

s

s

s=rdfs:subClassOf
t=rdf:type
r=rdfs:range
d=rdfs:domain

rdf:Property
Animal

Person

John Mary

d

 r
hasFriend

 tt

t

t t

s

hasFriend

Figure3: A “Person–hasFriend”Exampleof RDF Schema

Figure2 picturesthe subclass-ofand instance-ofhierarchy of RDFS: rdfs:Resource,rdfs:Class,
rdf:Property, rdfs:ConstraintResourceandrdfs:ConstraintPropertyareall instancesof rdfs:Class,while
rdfs:Class,rdf:Propertyandrdfs:ConstraintResourcearesubclassof rdfs:Resource.It is confusingthat
rdfs:Classis a sub-classof rdfs:Resource,while rdfs:Resourceitself is aninstanceof rdfs:Classat the
sametime. It is alsostrangethatrdfs:Classis aninstanceof itself.

In RDFS,all propertiesare instancesof rdf:Property. The rdf:type propertymodelsinstance-of
relationshipsbetweenresourcesandclasses.The rdfs:subClassOfpropertymodelsthe subsumption
hierarchy betweenclasses,andis transitive.Therdfs:subPropertyOfpropertymodelsthesubsumption
hierarchy betweenproperties,andis alsotransitive.Therdfs:domainandrdfs:rangepropertiesareused
to restrictdomainandrangeproperties.For example,thefollowing RDFSexpressions
�

rdf:Property rdf:ID ="hasFriend" ��
rdfs:domain rdf:resource ="#Person"/ ��
rdfs:range rdf:resource ="#Person"/ ��

/rdf:Property ��
rdf:Description about ="#John" ��

hasFriend rdf:resource ="#Mary"/ ��
/rdf:Description �

definea property“hasFriend”betweentwo “Person”sand � ‘John’, ‘Mary’ � is an instanceof “has-
Friend” (seeFigure3).

In RDFS,propertiesareregardedassetsof binaryrelationshipsbetweeninstancesof classes,e.g.
a property“hasFriend”is a set of binary tuplesbetweentwo instancesof the class“Person”.One
exceptionis therdf:type,sinceit is just the instance-ofrelationship.In this sense,rdf:typeis regarded
asaspecialpredefinedproperty.

Figure2 alsoshows the rangeanddomainconstraintsin RDFS–rdfs:domainandrdfs:rangecan
be usedto specify the two classesthat a certainpropertycanassociatewith. So the rdfs:domainof
rdfs:domainandrdfs:rangeis the classrdf:Property, the rdfs:rangeof rdfs:domainandrdfs:rangeis
theclassrdfs:Class.Therdfs:domainandrdfs:rangeof rdfs:subClassOfis rdfs:Class.Therdfs:domain
andrdfs:rangeof rdfs:subPropertyOfis rdf:Property. Therdfs:rangeof rdf:typeis theclassrdfs:Class.
Therdf:typepropertyis regardedasa setof binarylinks betweeninstancesandclasses(asmentioned
above),while thevalueof therdfs:domainpropertyshouldbeaclass, thereforerdf:typedoesnothave
therdfs:domainproperty(cf. Brickley andGuha[2]).

As we have seen,RDFSusesomeprimitive modellingprimitivesto defineothermodellingprim-
itives(e.g. rdf:type, rdfs:domain,rdfs:range,rdf:type andrdfs:subClassOf).At the sametime, these
primitivescanbeusedto defineontologiesaswell, which makesit ratheruniquewhencomparedto
conventionalmodelandmetamodelingapproaches,andmakestheRDFSspecificationverydifficult to
readandto formalize(Nejdl et al. [16], Broekstraet al. [3]). For example,in Figure3, it is confusing
thatalthoughrdfs:Classis therdf:typeof “Animal”, both“Animal” andrdfs:Classarerdfs:subClassOf

Valued Sony Customer
135

rdfs:Resource,whererdfs:Classis a modellingprimitive and “Animal” is an user-definedontology
class.

2.3 DAML+OIL DataModel

DAML+OIL is an expressive Web ontology languagein the logical layer. It builds on earlierW3C
standardssuchasRDFandRDFS,andextendstheselanguageswith muchrichermodellingprimitives.
DAML+OIL inheritsmany aspectsfrom OIL, andprovidesmodellingprimitivescommonlyfoundin
frame-basedlanguages.It hasacleanandwell definedsemanticsbasedondescriptionlogics.

A completedescriptionof the data model of DAML+OIL is beyond the scopeof this paper.
However, we will illustrate how DAML+OIL extendsRDFS by introducingsomenew subclasses
of rdfs:Classand rdf:Property. One of the most important classesthat DAML+OIL introducesis
daml:Datatype.DAML+OIL dividesthe universeinto two disjoint parts,the objectdomainandthe
datatypedomain.The object domain consistof objectsthat are membersof classesdescribedin
DAML+OIL. Thedatatypedomainconsistsof thevaluesthatbelongto XML Schemadatatypes.Both
daml:Class(objectclass)anddaml:Datatypearerdfs:subClassOfrdfs:Class.Accordingly, properties
in DAML+OIL shouldbeeitherobjectproperties,which relateobjectsto objectsandareinstancesof
daml:ObjectProperty;or datatypeproperty, whichrelateobjectsto datatypevaluesandareinstancesof
daml:Datatype-Property. Both daml:ObjectPropertyanddaml:DatatypePropertyarerdfs:subClassOf
rdf:Pro-perty. For example,wecandefineadatatypepropertycalled“birthday”:
�

daml:DatatypeProperty rdf:ID ="birthday" ��
rdf:type rdf:resource ="http://www.daml.org/2001/03/daml+oil#UniqueProp-

erty"/ ��
rdfs:domain rdf:resource ="#Animal"/ ��
rdfs:range rdf:resource ="http://www.w3.org/2000/10/XMLSchema#date"/ ��

/daml:DatatypeProperty �
Besidesbeinganinstanceof daml:datatypeProperty, the“birthday” propertyis alsoaninstanceof

daml:UniqueProperty, whichmeansthat“birthday” canonly haveone(unique)valuefor eachinstance
of the“Animal” class.In fact,daml:UniquePropertyis sousefulthatsomepeopleevenwant to useit
to refineDAML+OIL predefinedproperties,e.g.daml:maxCardinality:
�

rdf:Property rdf:about ="#maxCardinality" ��
rdf:type rdf:resource ="http://www.daml.org/2001/03/daml+oil#UniqueProp-

erty"/ ��
/rdf:Property �

This statementseemsobviously right, however, it is wrongbecausethesemanticsof daml:Uniq-ue-
Propertyrequiresthatonly theontologypropertiescanberegardedasits instances(cf. vanHarmelen
et al. [21]). This is the so called“layer mistake”. The reasonthat peoplecaneasilymake the above
“layer mistake” lies in thefactthattheschemalayerlanguageRDFSdoesn’t distinguishthemodelling
informationin theontologylevel andthatin thelanguagelevel. Anotherexampleis whatwehadmen-
tionedbeforein Figure3, it is not appropriatethatbothrdfs:Classand“Animal” arerdfs:subClassOf
rdfs:Resource.

It is theexistenceof thedual rolesof someRDFSmodellingelements,e.g.rdfs:subClassOf,that
makesRDFShaveunclearsemantics.Thispartiallyexplainswhy Brickley andGuha[2] didn’t define
thesemanticsof RDFS.We shouldstressthatDAML+OIL is built on top of thesyntaxof RDFS,but
not the semanticsof RDFS.On the contrary, RDFS relieson DAML+OIL to give semanticsto its
modellingprimitives.In otherwords,DAML+OIL not only definesthesemanticsof its newly intro-
ducedmodellingprimitives,e.g.daml:UniqueProperty, daml:maxCardinalityetc.,but alsothe mod-
elling primitivesof RDFS,e.g.rdfs:subClassOf,rdfs:subPropertyOf,rdfs:domain,rdfs:rangeetc(van
Harmelenet al. [see21]). This breaksthe dependency betweenlogical layer languagesandschema

Valued Sony Customer
136

layer languagesandindicatesthatRDFSis not yet a fully qualifiedschemalayerSemanticWeblan-
guage.

3 Fixed or Non-fixedMetamodelingAr chitecture?

3.1 TheAdvantagesandDisadvantagesof Non-fixedMetamodelingArchitecture

The dual rolesof someRDFSmodellingelementsindicatethat somethingmight be wrong with the
metamodelingarchitectureof RDFS.The RDFShasa non-fixed metamodelingarchitecture,which
meansthatit canhavepossiblyinfinite layersof classes.Theadvantageis thatit makesitself compact.
However, it hasat leastthefollowing threedisadvantagesor problems:

1. Theclassrdfs:Classis aninstanceof itself. Usually, aclassis regardedasaset,andaninstanceof
theclassis amemberof theset.A Classof classescanbeinterpretedasasetof sets,whichmeans
its membersaresets.In RDFS,all classes(includingrdfs:Class)areinstancesof rdfs:Class,which
is suspiciousby closeto Russellparadox.Theparadoxariseswhenconsideringthesetof all sets
thatarenot membersof themselves.Sucha setappearsto bea memberof itself if andonly if it is
notamemberof itself, hencetheparadox.

2. Theclassrdfs:Resourceis a superclassandinstanceof rdfs:Classat thesametime, which means
thatthesuperset(rdfs:Resource)is amemberof thesubset(rdfs:Class).

3. The propertiesrdfs:subClassOf,rdf:type, rdfs:rangeandrdfs:domainareusedto defineboth the
other RDFS modelling primitives and the ontology, which makes their semanticsunclearand
makesit very difficult to formalizeRDFS.E.g. it is not clearthatthesemanticof rdfs:subClassOf
is asetof binaryrelationshipsbetweentwo setsof objectsor asetof binaryrelationshipsbetween
two setsof setsof objects,or else.

As a result,RDFShasno clearsemantics,it even rely on DAML+OIL to give itself semantics,
whichmakesRDFSanotsosatisfactoryschemalayersemanticWeblanguage.

3.2 TheAdvantagesandDisadvantagesof FixedMetamodelingArchitecture

Wecandemonstratetheadvantagesof fixedmetamodelingarchitectureby showing how theproblems
of RDF Schemamentionedin Section3.1aresolvedunderthefixedmetamodelingarchitecture.

The reasonthat problem1 exists is that RDFS usesa single primitive rdfs:Classto implicitly
representpossiblyinfinite layersof classes.Butdowereallyneedinfinitelayersof classes?In practice,
rdfs:Classusuallyactsasamodellingprimitivein theontologylanguageandis usedto defineontology
classes(e.g.“Person”).Onereasonablesolutionis to explicitly specifya certainnumberof layersof
classprimitives,with onebeinganinstanceof another, andtheclassprimitivesin thetop layerhaving
no typeat all, which meansthat it is not an instanceof anything. It isn’t becauseit can’t have a type,
but becauseit doesn’t haveto haveatype,from thepragmaticpointof view. This is themaindifference
betweenthefixedandnon-fixedmetamodelingarchitecture.

But how many classprimitivesdo we really need?Problem2 indicatesthatwe needat leasttwo
classprimitives in different metamodelinglayers–oneas the type of rdfs:Resource,the other as a
subclassof rdfs:Resource.In fact,in thefour-layermetamodelingarchitectureof UML, thereexist two
classprimitivesin differentmetamodelinglayers,which areClassin metamodellayerandMetaClass
in meta-metamodellayer(seeSection3.3).In practice,it hasnotbeenfoundusefulto have morethan
two classprimitivesin themetamodelingarchitecture(technologyInc. [19, pg.298]).Therefore,it is
reasonableto explicitly definetwo classprimitivesin differentmetamodelinglayersof RDF Schema,

Valued Sony Customer
137

one is MClassin MetalanguageLayer and the other is LClassin Ontology LanguageLayer1 (see
Section4.1). This makesRDFShave a similar metamodelingarchitectureto that of the well known
UML, sothatit is easyfor themodellersto understand.

Problem3 is mainly aboutpredefinedproperties.It canbe solved by specifyingwhich level of
classwe intendto referto whenweusethesepredefinedproperties.(seeSection4.1).

Fromthediscussionabove,we believe thatalthoughtheschemalayer languagewon’t beascom-
pactasit is, therewill beseveraladvantagesif it hasafixedmetamodelingarchitecture:

1. Wedon’t have to worry aboutRussell’sParadox.

2. It hasclearformalizedsemantics.

3. DAML+OIL andotherlogical layerSemanticWeblanguagescanbebuilt ontopof boththesyntax
andsemanticsof theRDFSwith fixedmetamodelingarchitecture.

4. It is similar to themetamodelingarchitectureof UML, easyto understandanduse.

3.3 UML MetamodelingArchitecture

The Unified Modelling Language(OMG [17]) is a general-purposevisual modelling languagethat
is designedto specify, visualise,constructand documentthe artifactsof a software system.It is a
standardobject-orienteddesignlanguagethathasgainedvirtually globalacceptance.UML hasafour-
layermetamodelingarchitecture.

1) TheMeta-metamodelLayer formsthefoundationfor themetamodelingarchitecture.Theprimary
responsibilityof thislayeris to definethelanguagefor specifyingametamodel.A meta-metamodel
candefinemultiplemetamodels,andtherecanbemultiplemeta-metamodelsassociatedwith each
metamodel.Examplesof meta-objectsin themetamodelinglayerare:MetaClass,MetaAttribute.

2) A Metamodelis an instanceof a Meta-metamodel.Theprimary responsibilityof theMetamodel
layeris to definealanguagefor specifyingmodels.Examplesof meta-objectsin themetamodeling
layerare:Class,Attribute.

3) A Modelis aninstanceof aMetamodel.Theprimaryresponsibilityof theModelLayeris to define
a languagethatdescribesaninformationdomain.Examplesin Model layerareclass“Person”and
property“hasFriend”.

4) UserObjectsareaninstanceof a Model.Theprimaryresponsibilityof theUserObjectsLayer is
to describea specificinformationdomain.Examplesin UserObjectsLayer are“John”, “Mary”
and � ‘John’� ’Mary’ � .
Thefour-layermetamodelarchitectureis a provenmethodologyfor definingthestructureof com-

plex modelsthatneedto bereliably stored,shared,manipulatedandexchanged(Kobryn[12]). In the
next section,we will usethe metamodelingmethodsof UML to build a fixed layer metamodeling
architecturefor RDFS.

4 WebOntology LanguageData Model with Fixed MetamodelingAr chitecture

We will now illustratewhat the datamodelof an RDF-basedWeb ontologylanguagewill look like
underthefixedmetamodelingarchitecture.

1In this sense,therearethreekinds of classes:metaclassesin theMetalanguageLayer, languageclassesin theLanguage
Layerandontologyclasses,whichareinstanceof LClass,in OntologyLayer.

Valued Sony Customer
138

rdfs:ConstraintResource

rdfsfa:MResource
rdfsfa:lsubClassOf

rdfsfa:MClass

rdfsfa:osubClassOf

rdfsfa:LClass

rdfsfa:orange

M

rdfsfa:ldomain rdfsfa:lrange

rdfsfa:LResource

rdfsfa:MProperty

rdfsfa:LProperty

rdfs:Literal

mrmd mrmd

mr md
mr

md
ms

ms

lr lrldld

lr

ld

ld

lr

mt mt
mt

lt

ms ms

ls ls

ms

mt mt

mt=rdfsfa:mtype
lt=rdfsfa:ltype
md=rdfsfa:mdomain
ld=rdfsfa:ldomain

ls=rdfsfa:lsubClassOf
ms=rdfsfa:msubClassOf

mr=rdfsfa:mrange
lr=rdfsfa:lrange

O

L rdfsfa:odomain

rdfs:ConstraintProperty

rdfsfa:lsubPropertyOf

rdfsfa:osubPropertyOf

Figure4: DirectedLabeledGraphof RDFS(FA)

4.1 RDF SchemaDataModelwith FixedMetamodelingArchitecture

Firstly, we will map the original RDFSinto RDFSunderthe Fixed metamodelingArchitecture(or
RDFS(FA) for short).Oneprinciple during this mappingis that we try to minimisethe changeswe
make to RDFS.

As we discussedin Section3.2, we believe it is reasonableto definea four-layer metamodeling
architecturefor RDFS(FA). Thesefour metamodelinglayersare:

1. TheMetalanguage Layer (M Layer, correspondingto theMeta-metamodelLayerin UML) forms
the foundationfor the metamodelingarchitecture.Its primary responsibilityis to definethe lan-
guagelayer. All themodellingprimitivesin this layerhave no types(seeSection3.2).Examples
of modellingprimitivesin this layerarerdfsfa:MClassandrdfsfa:MProperty.

2. TheLanguageLayer(L Layer, correspondingto theMetamodelLayerin UML), or OntologyLan-
guageLayer, is aninstanceof theMetalanguageLayer. Its primaryresponsibilityis to definealan-
guagefor specifyingontologies.Examplesof modellingprimitivesin this layerarerdfsfa:LClass,
rdfsfa:LProperty. Bothof themareinstancesof rdfsfa:MClass.

3. TheOntology Layer (O Layer, correspondingto theModel Layer in UML) is aninstanceof Lan-
guageLayer. Its primary responsibilityis to definea languagethat describesa specificdomain,
i.e.anontology. Examplesof modellingprimitivesin this layerare“Person”and“Car”, whichare
instancesof rdfsfa:LClass,and“hasFriend”,which is aninstanceof rdfsfa:LProperty.

4. The InstanceLayer (I Layer, correspondingto the User ObjectsLayer in UML) is an instance
of Ontology Layer. Its primary responsibilityis to describea specificdomain,in termsof the
ontologydefinedin theOntologyLayer. Examplesin this layerare“Mary”, “John” andhasFriend�
‘John’,‘Mary’ � .
RDFS(FA) is illustratedin Figure4. We mapthemodellingprimitivesof RDFSto theprimitives

in correspondingmetamodelinglayersof RDFS(FA), so that no modellingprimitiveswill have dual

Valued Sony Customer
139

rolesin themetamodelingarchitectureof RDFS(FA).
First, we maprdfs:Classandits instanceprimitivesin RDFSto themetamodelingarchitectureof

RDFS(FA) asfollows:

1. rdfs:Classis mappedto rdfsfa:MClassin MetalanguageLayer and rdfsfa:LClassin Language
Layer, sothatrdfsfa:LClassis aninstanceof rdfsfa:MClass.
�

rdf:Description rdf:ID ="MClass" ��
rdfs:comment � The concept of class in the Metalanguage Layer.�
/rdfs:comment ��
rdfsfa:msubClassOf rdf:resource ="#MResource"/ ��

/rdf:Description ��
rdfsfa:MClass rdf:ID ="LClass" ��

rdfs:comment � The concept of class in the Language Layer.
�

/rdfs:comment ��
rdfsfa:lsubClassOf rdf:resource ="#LResource"/ ��

/rdfsfa:MClass �
2. rdfs:Resourceis mappedto rdfsfa:MResourcein theMetalanguageLayerandrdfsfa:LResourcein

LanguageLayer, sothatrdfsfa:MResourceis thesuperclassof all themodellingprimitivesin the
MetalanguageLayer, while rdfsfa:LResourceis aninstanceof rdfsfa:MClassandthesuperclassof
rdfsfa:LClass.
�

rdf:Description rdf:ID ="MResource" ��
rdfs:comment � The most general resource in the Metalanguage Layer.�
/rdfs:comment ��

/rdf:Description ��
rdfsfa:MClass rdf:ID ="LResource" ��

rdfs:comment � The most general resource in the Language Layer.�
/rdfs:comment ��

/rdfsfa:MClass �
3. Therdfs:Propertyis mappedto rdfsfa:MPropertyin theMetalanguageLayerandrdfsfa:LProperty

in theLanguageLayer.
�

rdf:Description rdf:ID ="MProperty" ��
rdfs:comment � The concept of property in the Metalanguage Layer.�
/rdfs:comment ��
rdfsfa:msubClassOf rdf:resource ="#MResource"/ ��

/rdf:Description ��
rdfsfa:MClass rdf:ID ="LProperty" ��

rdfs:comment � The concept of property in the Language Layer.�
/rdfs:comment ��
rdfsfa:lsubClassOf rdf:resource ="#LResource"/ ��

/rdfsfa:MClass �
4. Therdfs:ConstraintResourceis in theMetalanguageLayer, whereit is rdfsfa:msubClassOfrdfsfa:

MResource.
�

rdf:Description rdf:ID ="ConstraintResource" ��
rdfsfa:msubClassOf rdf:resource ="#MResource"/ ��

/rdf:Description �
5. Therdfs:ConstraintPropertyis in theMetalanguageLayer, whereit is rdfsfa:msubClassOfrdfsfa:

MPropertyandrdfs:ConstraintResource.

Valued Sony Customer
140

�
rdf:Description rdf:ID ="ConstraintProperty" ��

rdfsfa:msubClassOf rdf:resource ="#MProperty"/ ��
rdfsfa:msubClassOf rdf:resource ="#ConstraintResource"/ ��

/rdf:Description �
As shown in Figure 4, modelling primitives are divided into threegroupsin the Metalanguage

Layer, LanguageLayerandOntologyLayer. rdfsfa:LClassis not aninstanceof itself, but aninstance
of rdfsfa:MClass.rdfsfa:LResourceis aninstanceof rdfsfa:MClassandasuperclassof rdfsfa:LClass.
In general,therearethreekinds of “classes”in the metamodelingarchitectureof RDFS(FA)2: meta
classesin the MetalanguageLayer (e.g. rdfsfa:MClass,rdfsfa:MProperty),language classesin the
LanguageLayer(instancesof rdfsfa:MClass,e.g.rdfsfa:LClass,rdfsfa:LProperty)andontology class
in theOntologyLayer(instanceof rdfsfa:LClass,e.g.“Person”,“Car”).

In orderto solve problem3 mentionedin Section3.1,we needto beableto specifywhich kind of
class(out of thethreekindsof “classes”mentionedabove) we wantto referto. In RDFS(FA), we add
the layerprefix (e.g.m- for MetalanguageLayer, l- for LanguageLayeretc.)on thepropertieswhen
we usethe predefinedpropertyprimitives.Basedon the above principle, we canmap the property
primitivesin RDFSto themetamodelingarchitectureof RDFS(FA) asfollows:

1. rdfs:domainis a setof binary relationshipsbetweeninstancesof rdf:Propertyandrdfs:Class.As
classesandpropertiesoccurin threedifferentlayersof RDFS(FA), rdfs:domainis mappedto three
differentpropertiesin RDFS(FA): rdfsfa:odomain,rdfsfa:ldomainandrdfsfa:mdomain.As shown
in Figure4, the rdfsfa:ldomainis definedin the MetalanguageLayer andusedin the Language
Layer, while rdfsfa:odomainis definedin theLanguageLayerandusedin theOntologyLayer(see
Figure5).
�

rdfs:ConstraintProperty rdf:ID ="odomain" ��
rdfs:comment � This is how we specify that all instances of a particular

ontology property describes instances of a particular ontology class.�
/rdfs:comment ��

/rdfs:ConstraintProperty ��
rdf:Description rdf:ID ="ldomain" ��

rdfs:comment � This is how we specify that all instances of a particular

language property describes instances of a particular language class.�
/rdfs:comment ��

/rdf:Description ��
rdf:Description rdf:ID ="mdomain" ��

rdfs:comment � This is how we specify that all instances of a particular

meta property describes instances of a particular meta class.�
/rdfs:comment ��

/rdf:Description �
2. Similarly, rdfs:rangeis mappedto rdfsfa:orange,rdfsfa:lrangeandrdfsfa:mrange.
�

rdfs:ConstraintProperty rdf:ID ="orange" ��
rdfs:comment � This is how we specify that all instances of a particular

ontology property have values that are instances of a particular ontolo-

gy class.
�

/rdfs:comment ��
/rdfs:ConstraintProperty ��
rdf:Description rdf:ID ="lrange" ��

rdfs:comment � This is how we specify the values of an instance of a

particular language property have values that are instances of a

particular language class.
�

/rdfs:comment �
2Accordingly, therearethreekindsof “properties”aswell.

Valued Sony Customer
141

�
/rdf:Description ��
rdfsfa:MProperty rdf:ID ="mrange" ��

rdfs:comment � This is how we specify the values of an instance of a

particular meta property should be instances of a particular meta class.�
/rdfs:comment ��

/rdf:Description �
3. rdf:type is a setof binary relationshipbetweenresourceandrdfs:Class.As RDFS(FA) hasmeta

classes,languageclassesand ontology classes,rdf:type is mappedto rdfsfa:otype,rdfsfa:ltype
and rdfsfa:mtype.E.g. in Figure 4, rdfsfa:MClassis the rdfsfa:mtypeof rdfsfa:LResourceand
rdfsfa:LClass.
�

rdfsfa:MProperty rdf:ID ="otype" ��
rdfs:comment � Indicates membership of an instance of rdfsfa:LClass�
/rdfs:comment ��
rdfsfa:lrange rdf:resource ="#LClass"/ ��

/rdfsfa:MProperty ��
rdf:Description rdf:ID ="ltype" ��

rdfs:comment � Indicates membership of rdfsfa:LClass or rdfsfa:LProperty�
/rdfs:comment ��
rdfsfa:mrange rdf:resource ="#MClass"/ ��

/rdf:Description ��
rdf:Description rdf:ID ="mtype" ��

rdfs:comment � Indicates membership of rdfsfa:MClass or rdfsfa:MProperty.�
/rdfs:comment ��

/rdf:Description �
4. rdfs:subClassOfisasetof binaryrelationshipbetweentwo instancesof rdfs:Class,sordfs:subClassOf

is mappedto rdfsfa:osubClassOfand rdfsfa:lsubClassOf. E.g. in Figure 4, rdfsfa:LClassis an
rdfsfa:lsubClassOfrdfsfa:LResourceandrdfsfa:MClassis anrdfsfa:msubClassOfrdfs:MResource.
�

rdfsfa:MProperty rdf:ID ="osubClassOf" ��
rdfs:comment � Binary relationship between two ontology classes.�
/rdfs:comment ��
rdfsfa:ldomain rdf:resource ="#LClass"/ ��
rdfsfa:lrange rdf:resource ="#LClass"/ ��

/rdfsfa:MProperty ��
rdf:Description rdf:ID ="lsubClassOf" ��

rdfs:comment � Binary relationship between two language classes.�
/rdfs:comment ��
rdfsfa:mdomain rdf:resource ="#MClass"/ ��
rdfsfa:mrange rdf:resource ="#MClass"/ ��

/rdf:Description ��
rdf:Description rdf:ID ="msubClassOf" ��

rdfs:comment � Binary relationship between two meta classes.�
/rdfs:comment ��

/rdf:Description �
5. Similarly, rdfs:subPropertyOfis a setof binaryrelationshipsbetweeninstancesof rdf:Property, so

it is mappedto rdfsfa:osubPropertyOf,rdfsfa:lsubPropertyOfandrdfsfa:msubPropertyOf.
�

rdfsfa:MProperty rdf:ID ="osubPropertyOf" ��
rdfs:comment � Binary relationship between two ontology properties.

Valued Sony Customer
142

�
/rdfs:comment ��
rdfsfa:ldomain rdf:resource ="#LProperty"/ ��
rdfsfa:lrange rdf:resource ="#LProperty"/ ��

/rdfsfa:MProperty ��
rdf:Description rdf:ID ="lsubPropertyOf" ��

rdfs:comment � Binary relationship between two language properties.�
/rdfs:comment ��
rdfsfa:mdomain rdf:resource ="#MProperty"/ ��
rdfsfa:mrange rdf:resource ="#MProperty"/ ��

/rdf:Description ��
rdf:Description rdf:ID ="msubPropertyOf" ��

rdfs:comment � Binary relationship between two meta properties.�
/rdfs:comment ��

/rdf:Description �
6. The rdfs:comment,rdfs:label,rdfs:seeAlsoandrdfs:isDefinedByaretreatedasdocumentationin

RDFS,andarenot relatedto thesemanticsof RDFS(FA), sowe arenot goingto discussthemin
thispaper.

Below is anRDFS(FA) versionof the“Person–hasFriend”example.As with otherWebontology
languages,thesestatementsdescriberesourcesin theOntologyLayerandtheInstanceLayer.
�

rdfsfa:LClass rdf:ID ="Animal" ��
rdfs:comment � This class of animals is illustrative of a number of

ontological idioms.
�

/rdfs:comment ��
/rdfsfa:LClass ��
rdfsfa:LClass rdf:ID ="Person" ��

rdfs:osubClassOf rdf:resource ="#Animal"/ ��
/rdfsfa:LClass ��
rdf:Property rdf:ID ="hasFriend" ��

rdfsfa:odomain rdf:resource ="#Person"/ ��
rdfsfa:orange rdf:resource ="#Person"/ ��

/rdf:Property ��
rdf:Description rdf:ID ="John" ��

rdfsfa:otype rdf:resource ="#Person"/ ��
rdfs:comment � John is a person.

�
/rdfs:comment ��

/rdf:Description ��
rdf:Description rdf:ID ="Mary" ��

rdfsfa:otype rdf:resource ="#Person"/ ��
rdfs:comment � Mary is a person.

�
/rdfs:comment ��

/rdf:Description ��
rdf:Description about ="#John" ��

hasFriend rdf:resource ="#Mary"/ ��
/rdf:Description �

In theOntologyLayer, “Animal” and“Person”areontologyclasses,sothey areinstancesof rdfsfa:L-
Class.The ontology class“Person” is the rdfsfa:odomainand rdfsfa:orangeof the property “has-
Friend”, so both the valuesof and resourcedescribedby instancesof “hasFriend”are instancesof
“Person”.In theInstanceLayer, therdfsfa:otypeof individualssuchas“John” and“Mary” is theon-
tology class“Person”.Figure5 is a directedlabeledgraphof theabove RDFS(FA) statements.Here
the rdfsfa:mtypeof rdfsfa:LClassis the metaclassrdfsfa:MClass,the rdfsfa:ltypeof “Person”is the
languageclassrdfsfa:LClassandthe rdfsfa:otypeof “John” is the ontologyclass“Person”.The lan-
guageclassrdf:Propertyis rdfsfa:lsubClassOfthe languageclassrdfs:Resourcewhile the ontology

Valued Sony Customer

Valued Sony Customer
143

rdfsfa:LClass

mtmt
mt

Animal

lt

hasFriend

lt

lsls

rdfsfa:MClass

Person

lt

os od

or

John
hasFriend ls=rdfsfa:lsubClassOf

os=rdfsfa:osubClassOf
or=rdfsfa:orange
od=rdfsfa:odomain

ot otI

M

L

O

mt=rdfsfa:mtype
lt=rdfsfa:ltype
ot=rdfsfa:otype

rdfsfa:LProperty
rdfsfa:LResource

Mary

Figure5: A “Person–hasFriend”examplein RDFS(FA)

class“Person”is rdfsfa:osubClassOftheontologyclass“Animal”. Thisexampleclearlyshowsthatthe
modellingprimitivesin RDFS(FA) no longerhave dual roles.Thusa clearsemanticscanbegivento
them.

Note that,asin RDFS(seeSection2.2),we candefinerdfsfa:otype,rdfsfa:ltypeandrdfsfa:mtype
propertieswithin RDFS(FA) in animplicit wayaswell. E.g.,individual “John” canalsobedefinedas
�

Person rdf:ID ="John" ��
rdfs:comment � John is a person.

�
/rdfs:comment ��

/Person �
Here“Person”is anontologyclass,sotheaboveexpressionsuseanimplicit wayto definerdfsfa:otype
property.

4.2 DataModelSemanticsof RDFS(FA)

In this section,we usea Tarski style ([18]) modeltheoreticsemanticsto interpretthe datamodelof
RDFS(FA). Classesandpropertiesaretaken to refer to setsof objectsin thedomainof interestsand
setsof binaryrelationships(or tuples)betweentheseobjects.

In RDFS(FA), themeaningof individuals,pairsof individuals,ontologyclassesandpropertiesis
given by an interpretation	 , which is a pair
������� �� , where �� is the domain(a set)and � is an
interpretationfunction,whichmapsevery individualnamex to anobjectin thedomain�� :

� �� �
every pair of individualnamesx, y to apair of objectsin ������� :

� � ��� � � � ���
every ontologyclassnameOCto asubsetof �� :

��� ! �
every ontologypropertynameOPto asubsetof ������� :

�#" ! � ��� %$
In theLanguageLayer, theinterpretationfunction � mapsrdfsfa:LClass(LC) to &('*) :

+ � �, & '*)

Valued Sony Customer
144

rdfsfa:LProperty(LP) to &('-)/./'-) : + " �, & ') ./')
rdfsfa:LResource(LR) to

+ � �0 + " :

+-1 �, + � 0 + "
sothattheinterpretationof every possibleontologyclass(OC) is anelementof theinterpretationof
rdfsfa:LClass(LC), theinterpretationof everypossibleontologyproperty(OP) is anelementof the
interpretationof rdf:Property(LP). NotethatLR is interpretedastheunionof LC andLP , andnot
as &('-)/2/3 '-)/./'-)54 , so instancesof rdfsfa:LResourcemustbeeitherontologyclasses(setsof objects),
or ontologyproperties(setsof tuples),andcan’t be interpretedasa “mixture” of setsof objectsand
tuples.

In theMetalanguageLayer, interpretationfunction � mapsrdfsfa:MClass(MC) to &7698�) :

: � , & 698�)
rdfsfa:MProperty(MP) to &;69<�)=.>69<�)?0@&;69<�)=.>69AB)?0C&769AB)/.>69<�)�0C&;6/A�)=.D6/A�) :

: " �, & 6/<�)/.>69<�) 0C& 6/<�)/.>69AB) 0@& 69AB)=.D6/<�) 0@& 69AB)/.>69AB)
rdfsfa:MResource(MR) to

: � �0 : " :

:E1 �, : � 0 : "
rdfs:ConstraintResource(CR) to subsetof

:E1 :

� 1 � :E1
PredefinedProperty Interpretation SemanticConstraint

osubClassOf(OSC) F?GBHJICK�LMHNI�OPLQHJI R�HJIS9TUHJIVDWBX�F?GBHJI if f. HJIS>TUHJIV�X�LQHJI and HNIS@KYHNIV
lsubClassOf(LSC) LMGBHJICK�Z[HNI�OPZEHJI R�HJIS9TUHJIVDWBX�LMGBHJI if f. HJIS>TUHJIV�X�ZEHJI and HNIS@KYHNIV
msubClassOf(MSC) Z[GBHJICKY\^]P_) O�\^]P_) R�HJIS9TUHJIVDWBX�Z[GBHJI if f. HJIS>TUHJIV�X`\^]P_) and HNIS@KYHNIV
osubPropertyOf(OSP) F?G/abI�K!L�abI`OPL�abI RcadISBTeabIV�WBX�F?G/abI if f. adISBTeabIV�X�LBadI andadISfK�abIV
lsubPropertyOf(LSP) LMG/abI�K!ZgadI�OPZgabI RcadISBTeabIV�WBX�LMG/abI if f. adISBTeabIV�X�ZgabI andadIShK!adIV
msubPropertyOf(MSP) Z[G/abI�KjijO�i RcadISBTeabIV�WBX�LMG/abI if f. adISBTeabIV�X`i andabIShK!adIV
odomain(OD) Flk I K�LBa I OmLMH I Rca I TUH I W�X�Fbk I if f. a I X�L�a I T>H I X�LMH I andn7o%p R o IDTeq7IDW�X�adICr o I�XfHJI
ldomain(LD) LBk@ICK�ZsadI�OmZ[HJI RcadIDTUHJIDW�X�L�k?I if f. adICX�ZgadIDT>HJI�X�Z[HNI andn7o%p R o IDTeq7IDW�X�adICr o I�XfHJI
mdomain(MD) Zsk@ICKYijO�\^]P_) RcadIDTUHJIDW�X�Zgk?I if f. adICX`i-T>HJI�X`\^]P_) andn7o%p R o IDTeq7IDW�X�adICr o I�XfHJI
orange(ORG) Flt�uJICK�LBadI�OmLMHJI RcadIDTUHJIDW�X�Fbt#uJI if f. adICX�L�adI>TDHJICX?LMHJI andn7o%p R o I Teq I W�X�a I r o I XfH I
lrange(LRG) LBt�uJICK�ZsadI�OmZ[HJI RcadIDTUHJIDW�X�L�t#uJI if f. adICX�ZgadIDT>HJI�X�Z[HNI andn7o%p R o IDTeq7IDW�X�adICr o I�XfHJI
mrange(MRG) Zst�uJICKYijO�\^]P_) RcadIDTUHJIDW�X�Zgt#uJI if f. adICX`i-T>HJI�X`\^]P_) andn7o%p R o IDTeq7IDW�X�adICr o I�XfHJI
otype(OT) Flv*ICKYwQI`OPLQHJI R o IDTUHJIDWBX�Flv*I if f.

o ICX`wlIDTUHJI�X�LQHJI and
o I�XfHJI

ltype (LT) LBv*ICK�LBtbI�OPZEHJI RctlIDTUHJIDWBX�L�v-I if f. tlI�X�LBtbIDTUHJICX�ZEHJI and
o ICXfHNI

mtype(MT) Zsv*ICK�ZstbI�O�\^]P_) RctlIDTUHJIDWBX�Zgv-I if f. tlI�X�ZstbIDTUHJICX`\^]P_) and
o ICXfHJI

Figure6: Semanticsof PredefinedPropertiesin RDFS(FA)

Valued Sony Customer
145

rdfs:ConstraintProperty(CP)to subsetof both
� 1 and

: " :

�#" � � 1 �x : "
sothattheinterpretationsof rdfsfa:LClass(LC), rdfsfa:LProperty(LP) andrdfsfa:LResource(LR)
areall elementsof the interpretationof rdfsfa:MClass(MC), andall thepossiblepairsof subsetsof
LC andsubsetsof LP areelementsof MP .

Unlike rdfs:Classin RDFS,classesin RDFS(FA) have clearsemantics.Cleansemanticscanalso
begivento thepredefinedpropertiesof RDFS(FA) asshown in Figure6, where

y , &;z <�)=. z <�) 0@&;z <�)/. z AB) 0@&;z A�)=. z <�) 0@&;z A�)=. z AB)
As mentionedabove, in order to specifywhich kind of classwe want to refer to whenwe usethe
predefinedproperties,weaddthelayerprefixesto theseproperties.Subclass-ofandsubproperty-ofare
thesubsetrelationshipbetweentheclassesor propertieswithin thesamelayer. Domainandrangeare
foundationmodellingprimitivesof RDFS(FA) properties,which canbe usedto specify two classes
thata certainpropertycandescribe/usein descriptionsin a certainlayer. Typeis a specialcross-layer
property, which is usedto link instancesto classes.

4.3 DAML+OIL DataModelwith FixedMetamodelingArchitecture

With afixedmetamodelingarchitecture,RDFS(FA) hasits own semanticsandmakesitself afully qual-
ified schemalayer SemanticWeb language.Thus,DAML+OIL (or any otherlogical layer Semantic
Weblanguage)canbebuilt onbothits syntaxandsemantics.

Fromthepoint of view of metamodelingarchitecture,themodellingprimitivesthatDAML+ OIL
introducesare mainly locatedin the LanguageLayer (a completedescriptionof the DAML+OIL
datamodelwith fixed metamodelingarchitecturewill be given in a forthcomingpaper).daml:Class
is rdfsfa:lsubClassOfrdfsfa:LClassanddaml:ObjectPropertyis rdfsfa:lsubClassOfrdfsfa:LProperty;
bothdaml:Datatypeanddaml:DatatypePropertyarerdfsfa:lsubClassOfrdfsfa:LResource.Theabove
four aredisjointwith eachother. The“birthday” propertyliesin theOntologyLayerandcanbedefined
in thefollowing way:
�

daml:DatatypeProperty rdf:ID ="birthday" ��
rdfsfa:ltype rdf:resource ="http://www.daml.org/2001/03/daml+oil#Unique-

Property"/ ��
damlfa:odatadomain rdf:resource ="#Animal"/ ��
damlfa:odatarange rdf:resource ="http://www.w3.org/2000/10/XMLSchema#da-

te"/ ��
/daml:DatatypeProperty �

wheredamlfa:odatadomainis asetof binaryrelationshipsbetweeninstancesof daml:DatatypeProperty
anddaml:Class,anddamlfa:odatarangeis asetof binaryrelationshipsbetweeninstancesof daml:Data-
typePropertyanddaml:Datatype.

On theotherhand,it is clearthatLanguageLayerprimitivescan’t beusedto define/modifyother
LanguageLayerprimitives,e.g.Uniquepropertycannot beusedto restrictthenumbersof valuesof
themaxCardinalityasfollows:
�

rdfsfa:MProperty rdf:about ="#maxCardinality" ��
rdfsfa:ltype rdf:resource ="http://www.daml.org/2001/03/daml+oil#Unique-

Property"/ ��
/rdfsfa:MProperty �

In RDFS(FA), LanguageLayerpropertiescanonly bedefinedusingMetalanguageLayerprimitives,
for which DAML+OIL doesn’t provide any semantics.This is not clear in RDFS,wheremodellers

Valued Sony Customer
146

might be temptedto think that they can modify DAML+OIL in the above manner, exploiting the
semanticsof DAML+OIL itself. To solve theabove problem,onecandefineMUniquePropertyin the
MetalanguageLayerandthensetdaml:maxCardinalityasits instance.

In short,RDFS(FA) notonly providesafirm semanticbasisfor DAML+OIL, it alsoeradicatesthe
possibilityof the“layer mistake” mentionedabove.

5 Discussion

A fixedlayermetamodelingarchitecturefor RDFSis proposedin this paper. We demonstratehow to
mapthe original RDFSto RDFSunderthe Fixed metamodelingArchitecture(RDFS(FA)) andgive
a clear model-theoreticsemanticsto RDFS(FA). We believe that althoughRDFS(FA) won’t be as
compactasRDFS,therewill beseveraladvantagesif RDFShasafixedmetamodelingarchitecture:

1. We don’t have to worry aboutRussell’s Paradox.(Otherwaysof thinking may includenonwell-
foundedsets.)

2. RDFS(FA) hasaclearformalizedsemantics.

3. DAML+OIL andotherlogical layerSemanticWeblanguagescanbebuilt ontopof boththesyntax
andsemanticsof RDFS(FA).

4. Themetamodelingarchitectureof RDFS(FA) is similar to thatof UML, so it is easierfor people
to understandanduse.

Someotherpapershave alsotalkedaboutUML andtheWebontologylanguage.Chang[4] sum-
marizedthe relationshipbetweenRDF-SchemaandUML. Melnik [14] tried to make UML “RDF-
compatible”,which allows mixing andextendingUML modelsandthe languageelementsof UML
itself on theWebin anopenmanner. CranefieldandPurvis[5] investigatedtheuseof UML andOCL
(ObjectConstraintLanguage)for therepresentationof informationsystemontologies.Cranefield[6]
proposedUML asa Web ontologylanguage.Cranefield[7] describedtechnologythat facilitatesthe
applicationof object-orientedmodelling,andUML in particular, to theSemanticWeb. However, none
of theseworksaddresstheproblemof themetamodelingarchitectureof RDFSitself.

It is well known thatUML hasa well-definedmetamodelingarchitecture(Kobryn[12]). It refines
the semanticconstructsat eachlayer, providesan infrastructurefor definingmetamodelextensions,
andalignstheUML metamodelwith otherstandardsbasedonafour-layermetamodelingarchitecture,
suchasthe CaseDataInterchangeFormat(EIA [8]), Meta ObjectFacility (MOF-Parners[15]) and
XMI Facility for modelinterchange(XMI-Parners[23]).

However, We believe SemanticWeb languagesandUML have differentmotivation andapplica-
tion domain.Besidesthemetamodelingarchitecture,SemanticWeblanguagesalsohave a functional
architecture. Within this functionalarchitecture,RDF is a goodcandidatefor themetadatalayer lan-
guage,while UML is obviously not designedasa metadatalanguage.The schemalayer languages
mustsupportglobal properties(anyonecansayanything aboutanything) ratherthanthe local ones,
while the considerationsof UML mainly focuson the local properties.The modellingprimitivesof
logical layer languages,e.g.OIL andDAML+OIL, arecarefullyselectedsothat they canbemapped
ontoveryexpressivedescriptionlogics(DLs), soasto facilitatetheprovisionof reasoningsupport;on
theUML side,reasoningoverOCL is still underresearch.

Therefore,we prefer to enhanceWeb ontology languagesby using the methodologiesin UML,
ratherthanmakingUML a componentin Web ontology languages.Accordingly, we have usedthe
metamodelingmethodsof UML to build a fixed layer metamodelingarchitecturefor RDFS in this
paper. Further researchwill include a detailedstudy of the datamodel of DAML+OIL basedon
RDFS(FA) andthereasoningsupportprovidedby correspondingDescriptionLogics.

Valued Sony Customer
147

References

[1] Tim Berners-lee.SemanticWeb RoadMap. W3C DesignIssues.URL http://www.w3.
org/DesignIssues/Semantic.html , Oct.1998.

[2] Dan Brickley andR.V. Guha. ResourceDescriptionFramework (RDF) SchemaSpecification
1.0. W3C Recommentdation,URL http://www.w3.org/TR/rdf- schema , Mar. 2000.

[3] J.Broekstra,M. Klein, S.Decker, D. Fensel,F. canHarmelen,andI. Horrocks.Enablingknowl-
edgerepresentationon theWebby extendingRDF Schema,Nov. 2000.

[4] Walter W. Chang. A Discussionof the RelationshipBetweenRDF-SchemaandUML. W3C
Note,URL http://www.w3.org/TR/NOTE- rdf- uml/ , Aug. 1998.

[5] S. CranefieldandM. Purvis. UML asanontologymodellinglanguage.In IJCAI-99Workshop
on IntelligentInformationIntegration, 1999.

[6] StephenCranefield.NetworkedKnowledgeRepresentationandExchangeusingUML andRDF.
In Journalof Digital Information, volume1 issue8. Journalof Digital Information,Feb. 2001.

[7] StephenCranefield.UML andtheSemanticWeb,Feb. 2001.ISSN1172-6024.DiscussionPaper.

[8] EIA. CDIF Framework for ModelingandExtensibility, EIA/IS-107. Nov. 1993.

[9] I. Horocks,D.Fensel,J.Broestra,S.Decker, M.Erdmann,C.Goble,F.van Harmelen,M.Klein,
S.Staab,R.Studer, andE.Motta.TheOntologyInferenceLayerOIL. Aug. 2000.

[10] I. Horrocks.BenchmarkAnalysiswith FaCT.In TABLEAUX-2000, number1847in LNAI, pages
62–66.Springer-Verlag,2000.

[11] I. Horrocks,U. Sattler, andS. Tobies. PracticalReasoningfor Expressive DescriptionLogics.
In H. Ganzinger, D. McAllester, andA. Voronkov, editors,Proceedingsof the6th International
Conferenceon Logic for Programmingand AutomatedReasoning(LPAR’99), number1705in
LectureNotesin Artificial Intelligence,pages161–180.Springer-Verlag,1999.

[12] Cris Kobryn. UML 2001:A StandardizationOdyssey. In Communicationsof theACM, Vol.42,
No. 10,Oct.1999.

[13] Ora LassilaandRalphR.Swick. ResourceDescriptionFramework (RDF) Model andSyntax
Specification.Feb. 1999.

[14] S. Melnik. RepresentingUML in RDF. URL http://www- db.stanford.edu/
˜melnik/rdf/uml/ , 2000.

[15] MOF-Parners.MetaObjectFacility Revision 1.1b1.Jan.1997.

[16] W. Nejdl, M. Wolpers,andC. Capella. The RDF SchemaSpecificationRevisited. In Modelle
und Modellierungssprachen in Informatik und Wirtschaftsinformatik,Modellierung2000, Apr.
2000.

[17] OMG. OMG UnifiedModelingLanguageSpecificationvertion1.3. Jun.1999.

[18] A. Tarski. Logic, Semantics,Mathemetics:Papers from1923to 1938. Oxford UniversityPress,
1956.

[19] PLATINUM technologyInc. ObjectAnalysisandDesignFacility, Responseto OMG/OA&D
RFP-1,Version1.0,Jan.1997.

Valued Sony Customer
148

[20] M. UscholdandM. Gruninger. Ontologies:Principles,MethodsandApplications. TheKnowl-
edge EngineeringReview, 1996.

[21] FrankvanHarmelen,PeterF. Patel-Schneider, andIan Horrocks. A Model-TheortisSemantics
of DAML+OIL(March 2001).Mar. 2001.

[22] FrankvanHarmelen,PeterF. Patel-Schneider, andIan Horrocks. ReferenceDescriptionof the
DAML+OIL(March 2001)OntologyMarkuk Language.DAML+OIL Document,URL http:
//www.daml.org/2000/12/reference.html , Mar. 2001.

[23] XMI-Parners.XML MetadataInterchange(XMI) v. 1.0. Oct.1998.

Valued Sony Customer
149

Valued Sony Customer
150

DAML+OIL is not Enough

SeanBechhofer CaroleGoble IanHorrocks
Information Management Group
ComputerScienceDepartment

KilburnBuilding
Universityof Manchester

OxfordRoad
ManchesterM13 9PL

http://img.cs.man.ac.uk

seanb@cs.man.ac.uk

1 Introduction

As is well recognisedwithin the SemanticWeb community, ontologieswill play a crucial
part in the delivery of the SemanticWeb, facilitating the sharingof information between
communities,bothof peopleandsoftwareagents.

In orderto supportthisuseof ontologies,anumberof representationalformatshavebeenpro-
posed,includingRDF Schema(RDF(S))[RDF], theOntologyInterchangeLanguage(OIL)
[OIL] andthe DarpaAgent Markup Language(DAML) [DAM]. Theselast two have been
broughttogetherto form DAML+OIL, a languagenow beingproposedasa W3C standard
for ontologicalandmetadatarepresentation.

DAML+OIL draws heavily on theoriginal OIL specification,but hassomekey differences.
In this paper, we highlight someof thosedifferences,in particularthecontrastin modelling
primitivesavailablein OIL andDAML+OIL, anddiscussthe impactthat this mayhave on
theuseof DAML+OIL asa formatfor exchange,modellinganddeliveryof ontologies.

Theoriginal purposeof OIL wasto enablethesharing– theexchange– of ontologies.This
sharingandexchangecanbeseento have(at least)two dimensions:

� the unequivocal sharingof semanticsso that when the ontology is deployed it can be
interpretedin aconsistentmanner;

� ensuringthatwhentheontologyis viewedby anagent(in particularherea person)other
thantheauthor, theintentionof theauthoris clear.

Valued Sony Customer
151

Thelatteris essentialfor caseswherea) theontologywill bereusedby anotherontologist;or
b) theontologywill beexposedthroughsomekind of browser, editoror queryinterface.

Theseissueshavebeenraisedin [Euz00], whichconsidersthreelevelsof understandingwhen
consideringexchangelanguages:syntactic, semantic andsemiotic. Thefirst two levelsare
requiredin orderto supportour first requirement,andarenot underdebatein this particular
context as languagessuchasDAML+OIL andOIL provide a well definedsyntaxandse-
manticsfor theconstructionsin thelanguage.Thethird level is of moreinterest,asit is this
semioticlevel that impactson the clarity of an ontologywhenpresentedto someoneother
thantheauthor.

The motivationbehindOIL’s adoptionof frame’s modelingconstructswasto facilitate the
faithful captureof theepistemologyof themodellingprocess.Otherinformationsuchasar-
gumentation canbeseenasanimportantpartof theacquisitionanddevelopmentof reusable
or shareableontologies[UG96]. We shouldalsobearin mind Gruber’s principlesfor ontol-
ogy design[Gru93] which includethedesirefor propertiessuchasclarity, extendability and
a minimal encoding bias.

The drift of DAML+OIL away from constructsthat areepistemologicallysupportive only
servesthedeployment purposeandfails somewhatin supportingauthoring.In this paperwe
arguewhy this is relevant,andshow how thisdrift damagestheeaseof constructionof tools
suchasOilEd (seeSection4).

2 OIL

It is of useat thispoint to revisit themotivationfor OIL andlook at thefactorswhich hadan
influenceon the language.TheOntologyInferenceLayer (OIL) is a languagedevelopedby
theOIL consortium.It hasbeendiscussedin a numberof papers[FHvH

�

00, BKD
�

00] and
we do not intendto presentit in detail here.In our discussionof OIL here,pleasenotethat
we referto thelanguageasdefinedby [OIL00]. For goodreasons,OIL draws on threeroots
asdepictedin Figure1:

� Frame-basedRepresentations;

� DescriptionLogics;

� Webbasedlanguages;

2.1 Frame-based Representations

Frame-basedandobject-orientedapproachestomodellingemploy modellingprimitivesbased
onclasses(or frames)with certainpropertiesknown asattributes.Theseattributeshavelocal,
ratherthanglobal,scope,andareapplicableto theclassesthey aredefinedfor. OIL embraces
thisapproachandallows thedefinitionof a classin termsof a collectionof superclassesand
acollectionof attributeor slot constraints.

Valued Sony Customer
152

Figure 1: The Roots of OIL

Framesthussupplywhat is arguablya “natural” style and“friendly” faceto the modeller.
Frame-basedrepresentationscansuffer, however, from a lack of a well-definedsemantics.
for exampleit is sometimesnot clearwhethera slot constraintrepresentsa universalquan-
tification – all fillers must take a particularvalue– or an existentialquantification– there
is a filler with a particularvalue.This makesreasoningor computationover a frame-based
representationtroublesome.

OIL itself wasinfluencedby XOL, anearlyproposedontologystandardfrom theBioOntol-
ogy CoreGroup1 basedon OKBC-Lite. Framebasedrepresentationshave successfullybeen
usedwithin the Bioinformaticscommunityfor sometime [SGB00], for exampleEcoCyc
[Eco] andRiboWeb[Rib].

2.2 Description Logics

DescriptionLogics(DLs) describeknowledgein termsof conceptsandrole restrictionsthat
canthenbeusedto automaticallyderive classificationhierarchies.DLs allow thedefinition
of classesin termsof descriptionsthat specifythepropertiessatisfiedby objectsbelonging
to theconcept.DLs will, in general,supplya rangeof conceptformingoperatorsthatcanbe
usedin thesedescriptions,includingconjunction,disjunction,negation,andvariousformsof
rolequantification.A key aspectof DLs is their formalsemanticsandreasoningsupport.DLs
definefragmentsof first-orderlogic which in generalhave high expressive power but which
still allow for decidableandefficient inferenceprocedures.

Descriptionlogics are hard to interactwith directly, however. In the past,DLs have been
deliveredaslarge,monolithicsystemsrequiringusersto modelin theunderlyingsyntax.

1http://smi-web.stanford.edu/projects/bio-ontoloogy

Valued Sony Customer
153

UK-Animal-lover
superclass Person
has-pet � 3 Animal
lives-in UK

Figure 2: Example Frame

OIL drawsfrom DL languagesandprovidesarangeof expressiveconceptformingoperators.
In addition,OIL inheritsa formalsemanticsandreasoningproceduresfrom theDL world but
without compromisingusability. OIL addsextra mechanismssuchasrecursive classdefini-
tions andmoregeneralaxiomsto the basicframe-basedmodellingprimitives,producinga
powerful hybrid.This relationshipwith DL languagesis madeexplicit throughtheprovision
of amappingfrom OIL to theDescripionLogic ������� . Of course,onecouldarguethatvia
this mappingfrom OIL to ������� , OIL itself is simply analternative syntaxfor a DL. This
is truein somerespects,but thethesisof thispaperis thatthealternativepresentationof OIL
is importantandoffersa differentmodellingexperienceto theuserthanthatobtainedwhen
usingtheunderlyingraw logic.

2.3 Web based languages

In additionto thedefinitionof modellingprimitivesandtheir semantics,anontologyrepre-
sentationandexchangelanguagerequiresa delivery format andconcretesyntax.Schemas
have beendefinedfor OIL in termsof bothXML-SchemaandRDF schema,allowing OIL
to sit happily alongsideexisting standards.In particular, asOIL extendsRDF Schema,an
RDFS-awareapplicationmaybeableto readOIL ontologiesandextractbasicclasshierar-
chieswithout necessarilybeingOIL-aware.

Figure 2 shows an informal exampleof a frame. This describesa UK animal lover as a
personwith at least3 petswho livesin theUK. Notethatwithin sucha descriptionit is not
alwaysclearwhethertheintendedinterpretationof aslotfillers is asauniversalor existential
quantification.

3 DAML+OIL

DAML+OIL is a more recentproposalfor an ontology representationlanguagethat has
emergedfrom work underDARPA’s AgentMarkupLanguage(DAML) initiativealongwith
input from leadingmembersof theOIL consortium.DAML+OIL draws heavily on theorig-
inal OIL language,but differs in a numberof ways.In particular, DAML+OIL hasmoved
away from theoriginal frame-like idealsof OIL andis, in a muchstrongersensethanOIL,
analternativesyntaxfor aDescriptionLogic.

Assertionsin a DAML+OIL ontology(suchasthesuperclassesor slot constraintsapplying
to a class)arecouchedin termsof generalaxioms.The ideaof a “frame”, a singleplacein

Valued Sony Customer
154

Figure 3: OilEd

which factsaboutaclassaregatheredis lost,or is at leastnot inherentin thelanguage.

4 The OilEd Experience

OilEd is asimpleontologyeditor2. It wasdevelopedinitially asademonstrationof thepossi-
bilites andbenefitsof usingasreasonerto classifyontologies,but hasenjoyedsomesuccess
asan ontologyeditor in its own right. A major factorin this successwastheadoptionof a
“frame-based”paradigm,closely tied to the underlyingOIL languagedescription.As dis-
cussedin [SHGB01], theuseof OIL andits frame-like approachprovedvital in supporting
biologistsinvolvedin amodellingexercise.

Although framescan have their associatedproblems(for examplethe problemsof inter-
pretationasintroducedearlier),OIL’s well definedsemanticshashelpedto alleviate these,
allowing the useof DL-basedsemanticsanda reasoner. OilEd cancommunicatewith the
FaCT reasonerusing its CORBA interface[BHPST99]. This allows OilEd to classifyand
organiseconcepthierarchies,spotinconsistencies,andmeansthatthemodellercanconstruct
themodelthroughtheuseof descriptionsratherthanexplicitly building hierarchies.

Figure3 shows an exampleclassdescriptionpanelfrom OilEd. It shows the descriptionof
a classin termsof its explicit superclasses,alongwith a collectionof slot constraints.Tools

2Sometimes described as the “NotePad” of ontology editors.

Valued Sony Customer
155

class-def defined White-van-man
subclass-of Man
slot-constraint drives

has-value White-van

covered White-van-man by Aggressive-driver

Figure 4: Definition of White Van Man

suchasProtege 2000[GEF
�

99] (from which OilEd draws much influence)andOntoEdit
[SM00] alsousetheframe-basedparadigm.Notethatin contrastto Figure2, thedrives slot
hereis explicitly typedashas-value, theOIL primitive for anexistentialquantification.

Theoriginal implementationof OilEd predatesthedefinitionof DAML+OIL, andtheinter-
nalrepresentationsusedfor ontologiesfollow verycloselythosein theoriginalOIL language.
OilEd cannow readandwrite DAML+OIL (usingtheRDFSformat),but duringthedevelop-
mentof thetool,anumberof issuescameup,in particularamismatchbetweentheunderlying
modelsof OIL andDAML+OIL.

5 DAML+OIL vs. OIL

As introducedabove,assertionsin DAML+OIL arecouchedin termsof axioms.Thishasthe
effect thatall descriptionsof conceptsarecollapsedinto acollectionof axioms,possiblylos-
ing informationabouttheway in which themodelwasconstructed.Returningto ouroriginal
motivations,if we aresimply consideringthedeliveryof ontologiesto applicationsthatthen
needto usethatinformationfor reasoningor queries,this is unlikely to beanissue.

However, if we considertheactivity of modellingandexchangeof ontologiesbetween,for
example,ontologists,this is of importance.OIL allows themodellerto statethingsin more
thanoneway. For example,wecandefineWhite-van-man3 asamanwhodrivesawhitevan.
In addition,wecanaddanaxiomthatstatesthatWhite-van-man is anaggressivedriver. The
correspondingOIL (in termsof OIL’s textual representation)appearsin Figure4.

Alternatively, wecouldsimply introducetheclassWhite-van-man, andthenmakeanumber
of assertions(throughequivalenceandcoveringaxioms)abouttheclass,asshown in Figure5.

Thesemanticsof bothof thesesetsof definitions(in termsof theirmappingto theunderlying
DL) areidentical.However, wecanarguethatthealternativeorganisationof thefactscarries
someextra informationabouttheway thattheontologisthaschosento producethemodel.

Thisis not,in itself,aproblem.Whenmodellerschooseto usetoolssuchasOilEd or Protege
to constructontologies,however, it becomesmoreimportant.In orderto readin anontology
from a DAML+OIL description,we needto be ableto reconstructframe-styledescriptions

3The term White Van Man was first coined in 1997, and has come to represent a particular class of driver in
the UK. For more information, see http://www.sirc.org/publik/white_van_man.html.

Valued Sony Customer
156

class-def primitive White-van-man

equivalent
White-van-man

(man and
(slot-constraint drives

has-value White-van))

covered White-van-man by Aggressive-driver

Figure 5: Alternative definition of White Van Man through axioms

of concepts.This is not alwayspossibleto do in a consistentmanner. In our example,when
facedwith thealternativepresentation,we cannottell thattheoriginal intentionwasthatthe
first axiomshouldbetakenasthedefinition,while thesecondis some“extra” information.

Both of thesedescriptionswould mapto the samesetof DAML+OIL axiomsasshown in
a DAML+OIL form in Figure6, andaneditor(or ontologist)would beunableto determine
which wasthe original construction.The issuehereis concernedwith the levels of under-
standingasdiscussedin [Euz00].Thereis no debateover the lexical or semanticlevels of
understandingasthesearewell cateredfor in the language.Here,asdiscussedin Section1
we areconcernedwith thesemiotic level which is particularlyimportantwhendealingwith
exchangeof modelsbetweenpeopleandthefaithful reproductionof theserepresentations.

This hasramificationsnot just for the processof exchange,but impactson tool developers
wishing to useDAML+OIL as a representationalformat. The prevalenceof frame-based
ontologyeditorsandtheir popularityamonguserssuggeststhattheframe-basedparadigmis
appropriatefor suchtools.DescriptionLogic languagescertainlyhaveaplacein thetoolkit of
theconceptualmodellerbut they havenotgainedmuchpopularityasraw toolsfor conceptual
modellingin thepast.This is unlikely to change.

If thedeveloperof tool X wishesto preserve informationaboutthewayin whichthemodelis
constructed,theninformation(representingfor examplewhetherclassdefinitionsor axioms
wereused)will needto bekept in additionto theDAML+OIL encodingof theontology. If
ontologiesarethensharedbetweenusersof tool X, thisextra informationmustbesharedtoo.
Theextensiblenatureof RDFmakesthis feasible(if weuseanRDFSchemabasedexchange
format),andDAML+OIL ontologieswith this extra informationcould thenbe used.If the
usersof tool Y alsowish to usethis information,though,thedevelopersof tool Y will also
needtobeawareof X’s(non-standard)extensionsto theDAML+OIL format.In effect,weare
introducinga new standardthatextendstheoriginal.Caremustbetakenif theseextensions
areto bemaintainedconsistently– this canplacebarrierson theeasewith which exchange
canbesupportedbetweenandwithin communities.

Valued Sony Customer
157

<rdfs:Class rdf:ID="White-van-man">
<rdfs:subClassOf>
<rdfs:Class rdf:about="Aggressive-driver"/>

</rdfs:subClassOf>
</rdfs:Class>

<rdfs:Class rdf:about="White-van-man">
<daml:sameClassAs>
<rdfs:Class>
<daml:intersectionOf>
<rdfs:Class rdf:about="man"/>
<daml:Restriction>
<daml:onProperty rdf:resource="drives"/>
<daml:hasClass rdf:resource="White-van"/>

</daml:Restriction>
</daml:intersectionOf>

</rdfs:Class>
</daml:sameClassAs>

</rdfs:Class>

Figure 6: DAML+OIL description of White Van Man

6 Conclusions

It mustbestressedthatthispaperis not intendedasageneralcriticismof DAML+OIL. Lan-
guageslike OIL andDAML+OIL arecrucial to thesuccessof theSemanticWeb– without
well-definedsemanticsandinferenceprocedures,agentswill not beableto consistentlypro-
cessinformation.As adeliveryplatformfor ontologies,DAML+OIL is quitesatisfactoryand
indeed,in the opinionsof the authors,is a greatimprovementover alternative representa-
tionssuchassimpleRDF Schemaor Topic Maps.However, asanexchangeandmodelling
format,DAML+OIL is lacking in the areasoutlinedabove. To quotefrom [Euz00],“good
understanding cannot be ensured by meaning preservation”.

Theauthorswould bethefirst to admitthatthis is neithera radicaldiscoverynor a shocking
conclusion.We must,however, be carefulthat in adoptingDAML+OIL we do not losethe
featuresthat madeOIL suchan attractive propositionasa languagenot only for Ontology
representationanddelivery, but alsofor sharingandexchange.

7 Acknowledgements

Thiswork wassupportedby EPSRCGrantGR/M75426.

Valued Sony Customer
158

References

[BHPST99] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A proposal for a description logic
interface. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider, editors,
Proceedingsof theInternationalWorkshoponDescriptionLogics(DL’99), pages 33–36, 1999.

[BKD � 00] J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks. Adding formal semantics to the
web: building on top of rdf schema. In Proc.SemWeb2000, 2000.

[DAM] DAML Project. http://www.daml.org.

[Eco] EcoCyc Web site. http://ecocyc.PangeaSystems.com/ecocyc/ecocyc.html.

[Euz00] Jrme Euzenat. Towards formal knowledge intelligibility at the semiotic level. In ECAI 2000
WorkshopAppliedSemiotics:Control Problems,Berlin (DE), pages 59–61, 2000.

[FHvH � 00] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a
nutshell. In Proceedingsof the EuropeanKnowledge Acquisition Conference(EKAW-2000).
Springer-Verlag, 2000.

[GEF � 99] William E. Grosso, Henrik Eriksson, Ray W. Fergerson, John H. Gennari, Samson W. Tu, and
Mark A. Musen. Knowledge modeling at the millennium (the design and evolution of protégé-
2000). In Proc.of KAW99, 1999.

[Gru93] T.R. Gruber. Towards principles for the design of ontologies used for knowledge sharing. In
R. Guarino, N. Poli, editor, InternationalWorkshoponFormalOntology, Padova, Italy, 1993.

[OIL] Ontology Inference Layer. http://www.ontoknowledge.org/oil/.

[OIL00] OIL RDF Schema. http://www.ontoknowledge.org/oil/rdf-schema/2000/11/
10-oil-standard, 2000.

[RDF] Resource Description Format. http://www.w3.org/RDF/.

[Rib] RiboWeb Web site. http://smi-web.stanford.edu/projects/helix/riboweb.
html.

[SGB00] Robert Stevens, Carole A. Goble, and Sean Bechhofer. Ontology-based knowledge representation
for bioinformatics. Briefingsin Bioinformatics, 1(4):398–414, nov 2000.

[SHGB01] Robert Stevens, Ian Horrocks, Carole Goble, and Sean Bechhofer. Building a Reason-able Bioin-
formatics Ontology Using OIL. In SomeIJCAI Workshop, 2001.

[SM00] S. Staab and A Maedche. Ontology Engineering beyond the Modeling of Concepts and Relations.
In ECAI’2000 Workshopon Applicationsof Ontologiesand Problem-SolvingMethods,Berlin,
2000., 2000.

[UG96] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
EngineeringReview, 11(2), 1996.

Valued Sony Customer
159

Valued Sony Customer
160

Semantic Web Modeling and
Programming with XDD

Chutiporn Anutariya1, Vilas Wuwongse1, Kiyoshi Akama2 and Vichit Wattanapailin1
1 Computer Science & Information Management Program,

School of Advanced Technologies, Asian Institute of Technology
Pathumtani 12120, Thailand

2 Center for Information and Multimedia Studies,
Hokkaido University, Sapporo 060, Japan

Abstract. XML Declarative Description (XDD) is a unified modeling language with
well-defined declarative semantics. It employs XML as its bare syntax and enhances
XML expressive power by provision of mechanisms for succinct and uniform
expression of Semantic Web contents, rules, conditional relationships, integrity
constraints and ontological axioms. Semantic Web applications, offering certain Web
services and comprising the three basic modeling components: application data,
application rules and logic, and users’ queries and service requests, are represented in
XDD language as XDD descriptions. By integration of XDD language, Equivalent
Transformation computational paradigm and XML syntax, XML Equivalent
Transformation (XET)—a declarative programming language for computation of
XDD descriptions in Equivalent Transformation computational paradigm—is
developed. By means of XDD and XET languages, a new declarative approach to the
development and the execution of Semantic Web applications is constructed.

Keywords. Semantic Web, Semantic Web applications, Semantic Web services,
XML Declarative Description, XML Equivalent Transformation.

1 Introduction

The Semantic Web [7] is a vision of the next-generation Web which enables Web
applications to automatically collect Web contents from diverse sources, integrate and
process information, and interoperate with other applications in order to execute
sophisticated tasks for humans. For the current Web to evolve from a global repository of
information primarily designed for human consumption into the Semantic Web,
tremendous effort has been devoted to definition and development of various supporting
standards and technologies. Prominent markup languages with an aim to define a syntax
convention for descriptions of the semantics of Web contents in a standardized
interoperable manner include XML, RDF, RDF Schema, OIL [6,8,12] and DAML+OIL
[13]. Moreover, for Web applications to effectively communicate and interoperate in the
heterogeneous environment, a standard Agent Communication Language (ACL) [15]
becomes a necessity. Two major current ACLs are Knowledge Query and Manipulation

Valued Sony Customer
161

Language (KQML) [9] and Foundation for Intelligent Physical Agents ACL (FIPA-ACL)
[10,15].

With an emphasis on the modeling and the development of Semantic Web applications
offering certain Web services, there arises a need for a tool which is capable of modeling
their three major components: application data, application rules and logic, and queries
and requests. XML Declarative Description (XDD) [5,17]—a unified, XML-based
Semantic Web modeling language with well-defined semantics and a support for general
inference mechanisms—aims to fulfill such a requirement. XDD does not only allow direct
representation and manipulation of machine-comprehensible Web contents (such as
documents, data, metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL
syntax), but also provides simple, yet expressive means for modeling their conditional
relationships, integrity constraints and ontological axioms as well as Semantic Web
applications. XDD serves the three important roles: content language, application-rule
language and query or service-request language, in modeling such three main components
of Semantic Web applications.

Based on XDD language, a declarative programming language, i.e., XML Equivalent
Transformation (XET) is constructed. Given an application’s model specification,
represented in terms of an XDD description, an XET program capable of executing and
handling the application’s queries as well as service requests can be obtained directly.

Thus, the developed technologies—XDD and XET languages—present a new paradigm
for modeling and programming Semantic Web applications. By integration with existing
Web and agent technologies, XDD and XET also allow both syntactic and semantic
interoperability among Web applications, and hence enable the development of intelligent
services as well as automated software agents.

Section 2 formalizes an extended XDD language with set-of-reference functions,
Section 3 presents an XDD approach to modeling Semantic Web resources and
applications, Section 4 describes XET programming language and outlines an approach to
its employment in Web application development, Section 5 demonstrates a prototype
system which adopts the developed technologies, Section 6 reviews current related works,
and Section 7 draws conclusions.

2 XML Declarative Descr iption

XDD [5,17] is a language the words and sentences of which are XML expressions and XML
clauses, respectively. XML expressions are used to express explicit and implicit as well as
simple and complex facts, while XML clauses are employed to represent ontology, implicit
and conditional relationships, constraints and axioms. First, the data structure of XML
expressions and their sets, characterized by an XML Specialization System, will be given
and then followed by the syntax and semantics of XML clauses.

2.1 XML Specialization System

XML expressions have a similar form to XML elements except that they can carry
variables for representation of implicit information and for enhancement of their expressive
power. Every component of an XML expression—the expression itself, its tag name,
attribute names and values, pairs of attributes and values, contents, sub-expressions as well

Valued Sony Customer
162

Table 1: Variable types.

Variable Type
Variable Names
Beginning with

Instantiation to

N-variables: Name-variables
���

Element types or attribute names
S-variables: String-variables

���
Strings

P-variables: Attribute-value-pair-variables
���

Sequences of zero or more attribute-
value pairs

E-variables: XML-expression-variables
���

Sequences of zero or more XML
expressions

I-variables: Intermediate-expression-variables
���

Parts of XML expressions
Z-variables: Set-variables

���
Sets of XML expressions

as some partial structures—can contain variables. XML expressions without variables are
called ground XML expressions or simply XML elements, those with variables non-ground
XML expressions. Table 1 defines all types of variables and their usages.

An XML expression takes formally one of the following forms:

1. evar,
2. 	 t a1=v1 … am=vm pvar1 … pvark /
 ,
3. 	 t a1=v1 … am=vm pvar1 … pvark
 vm+1 	 /t
 ,
4. 	 t a1=v1 … am=vm pvar1 … pvark
 e1 … en 	 /t
 ,
5. 	 ivar
 e1 … en 	 /ivar
 ,

where � evar is an E-variable,
� k, m, n � 0,
� t, ai are names or N-variables,
� pvar i is a P-variable,

� vi is a string or an S-variable,
� ivar is an I-variable,
� ei is an XML expression.

The domain of XML expressions and their sets can be defined as follows:
��

X : the set of all XML expressions,
��

X : the subset of � X which comprises all ground XML expressions in � X,
�� = � X � 2(� X � VZ) : the set of all XML expressions in � X and sets of XML

expressions and Z-variables in 2(� X � VZ), and
�� = �

X � 2� : the set of all ground XML expressions in � X, and sets of ground XML
expressions in 2� X.

Note that elements of the sets � and � may be at times referred to as objects and ground

objects, respectively, and when it is clear from the context, a singleton { X} where X � VZ is
a Z-variable, will be written simply as X.

Instantiation of those various types of variables is defined by basic specializations, each
of which has the form (v, w) where v specifies the name of the variable to be specialized
and w the specializing value. For example, (����� �����! , ���"� �#���%$), (�&��� �����%$, �'�)(+*) and (�&,-� * ,
(��,.� */ , ��,.� *0$)) are basic specializations which rename the N-variable �&��� �����1 to ���"� �#���%$,
instantiate the N-variable �&��� �����%$ into the tagname �'�0(+* , and expand the E-variable �&,-� *
into the sequence of the E-variables ��,.� *2 and ��,.� *0$, respectively. There are four types of
basic specializations:

Valued Sony Customer
163

Figure 1: Successive applications of basic specializations c1, …, c5 to a non-ground XML
expression a in

�
X by the operator � , yielding a ground XML expression g in � X.

1. Rename variables.
2. Expand a P- or an E-variable into a sequence of variables of their respective types.
3. Remove P-, E- or I-variables.
4. Instantiate variables to XML expressions or components of XML expressions which

correspond to the types of the variables, i.e., instantiate: N-variables to element types or attribute names, S-variables to strings, E-variables to XML expressions in � X,
 I-variables to XML expressions which contains their sub-elements at an arbitrary

depth, or Z-variables to sets of XML expressions and Z-variables.

The data structure of XML expressions and sets of XML expressions are characterized
by a mathematical abstraction, called XML Specialization System, which will be defined
in terms of XML specialization generation system � = � � , � , � , ��� , where

 � is the set of all basic specializations, and
 � is a mapping from � to partial_map(�) (i.e., the set of all partial mappings on �),

called the basic specialization operator; it determines, for each basic specialization c
in � , the change of objects in � caused by c.

Non-ground XML expression a: 	�
��������������
�� ����� "!$#&%' "()��*,+-��.0/1+32	 4,57698�:<;,= 2&>� "?@��A�#&��B�CD	"E 4�5F698�:<;,= 24�GH69I	"E)
�������J������
�� ����� "!�2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	 4K576L8�:H;�S 20>� 0?F��AQ#"�JB�CR	0E 4K5$6L8�:H;KS 24KG&6LI	0EQ
L�����M���1���J
M� ���'� 0!�2

	K
9�����M�<�1����
N� �)��� 0!T#"%) 0(Q��*K+R�1.O/�+�2	�U�#"?F�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?@�"24KG&6LI	0EQ
L�����M���1���J
M� �)��� 0!�2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	KU�#"?@�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?F�"24KG&6LIV= 4KG&6DIWS	0EQ
L�����M���1���J
M� ���'� 0!�2

	�
L�����M���1���J
M� ���'� 0!T#"%) 0()��*K+R�1.O/�+�2	KU�#"?@�"20>J 0?@�JA)#"��B�C-	0EXU�#"?@�"2	KB) ���� ��� O!�2KY��1#1���"
N	0EQB) ���� ��� O!�24KG&6DIWS	"EX
9�����M�<�1����
N� �)��� 0!J2

	K
L�����M�<�1����
N� �)��� O!P#"%) 0(Q��*K+R�1.O/�+�2	KU�#"?@�"20>� 0?F��AQ#"�JB�CR	0EQU�#"?F�"2	KB� ��1� ��� 0!J2�Y��1#1���"
M	0EXB� ��1� ��� 0!J2	0>�#"Z #"
L[<20\�.�.�.�.O	0E]>J#"Z #"
L[<2	0EQ
L�����M���1���J
M� ���'� 0!�2

V
ar

ia
bl

e
ex

pa
ns

io
n

c 3
:

^_` a
b c^
_` a
bd c
_` a
be ff

Variable renaming c1:g 4K5$6L8�:H;K= h 4K576L8�:H;�S i
jj jj

Variable instantiation c2:g 4K5$6L8�:H;KS h@U�#"?@�1i
kk kk

ll ll

Variable instantiation c4:g 4KG"6LIW= hm	KB) ���� ��� 0!�2Y��1#1���"
	0EXB� ��1� ��� 0!J2"i

nn nn

Variable instantiation c5:g 4KG&6LIWS ho	">J#"Z #"
L[<2\�.�.�.�.	"E3>�#"Z #"
L[H2"i

pp pp

Ground XML expression g:

Valued Sony Customer
164

Figure 2: Specialization of a non-ground set of XML expressions in
�

 into a ground set of

XML expressions in � by the operator � using a specialization
���

 in � .

Figure 1 illustrates examples of a non-ground XML expression a in � , basic
specializations c1, …, c5 in � and their successive applications to a by the operator � in
order to obtain a ground XML expression g in � .

Denote a sequence of zero or more basic specializations in � by a specialization.
Based on the XML specialization generation system � = � � , � , � , ��� , the XML

Specialization System is � = � � , � , � , � � , where
 � = � * is the set of all specializations, and
 � : � � partial_map(�) is the specialization operator which determines, for each

specialization s in � , the change of each object a in � caused by s such that:
o � (�)(a) = a, where � denotes the null sequence,
o � (c 	 s)(a) = � (s)(� (c)(a)), where c � � and s �
� .

Intuitively, the operator � is defined in terms of the operator � such that for each a � � and
s = (c1 … cn) ��� , � (s)(a) is obtained by successive applications of � (c1), …, � (cn) to a.
Note that, when � is clear from the context, for � � � , � (�)(a) will be written simply as a � .

With reference to Figure 1, let a specialization � in � denote the sequence of the basic
specializations c1, c2, c3, c4 and c5; by the definition of � , g = � (�)(a) = a� . Similarly,
Figure 2 shows examples of a non-ground set of XML expressions A in � , a specialization
�� in � and its application to A by the operator � , in order to obtain a ground set of XML

expressions G in � , i.e., G = � (��)(A) = A��.
2.2 XDD: Syntax

The definitions of XML declarative descriptions with references and its related concepts are
given next in terms of the XML specialization system � .

A non-ground set of XML expressions A �� ��
�� ��

 � 	 4K5$6L8�:H; 20>� 0?F��AQ#"�JB�CR	0E 4K576D8�:H; 20h	 4K5$6L8�:H; 20>O(��@#1���<CR	"E 4K576L8�:H; 20h4��,6�� IH8 �
A ground set of XML expressions G �� �� �� �� � 	��J? ��Z �[�1�"2">J 0?@�JA)#"��B�CR	"E��J? ��Z �[�1�"20h	��J? ��Z �[�1�"2"> (��@#1���<C-	0E��J? ��Z �[�1�"20h	��J? ��Z �[�1�"2��<�"
L���! CR	0E"�J? ��Z �[�1�"2"h	��J? ��Z �[�1�"2�#V
N(�!Q�1�%$QCR	0E"�J? ��Z �[�1�"2&�

Specialized into
by � (

���
)

' (*),+.-0/�1 2 �43�57698":�;<;>=' (*?@+BADCD- 2*EGF �43�57698":�;<;>H�I�;>JK;>LNM�O F�P �43�57698":�;<;>H 2F �43�57698":�;<;>H*QRJBS4TU;>; �KO F*P �43�546 8�:�;>;<HWVX=
A specialization

�� ��Y�� ��
 which changes the non-ground set A to the ground set G by Z Instantiation of the N-variable 4V5K6 83:J; occurred in the elements of the set A into the tag

name G7[]\4^ _4`�IJI , Z Instantiation of the Z-variable 4U�W6 �XI�8 into the set of two XML elements:
{ a G�[b\�^ _�`�I<Idc,e I*fMI*gihYj alk Gm[b\�^ _m`<I<I*c , a Gm[b\�^ _�`�I<Idc�nofqp�r�I<Its7j a,k Gm[b\�^ _�`�I<Idc } .

Valued Sony Customer
165

Table 2: Definitions of the concepts constraints, references and XML clauses on
�

.

Concept Being in Ground
Form IFF

Application of a Specialization �� ��
 �� ��,�� �� Yielding

A constraint: q(a1, … , an)

where n > 0, q � and ai �
�

ai � � for 1 � i � n q(a1, … , an)
�
 = q(a1

�
, … , an

�
)

A reference: r = � a, f, P�
where - a �

�
,

- f � and
- P is an XML declarative descrip-

tion which will be called the
referred description of r

a � � r
�
 = � a, f, P� � = � a � , f � , P�

An XML clause: H � B1, B2, ..., Bn
where - n � 0,

- H is an XML expression in
�

X,
- Bi is an XML expression in

�
X, a

constraint or a reference on
�

, and
- the order of Bi is immaterial.

Comprising only
ground objects,
ground constraints
and ground refer-
ences

H
�
 � B1

�
, B2

�
, ..., Bn

�

Let be a set of constraint predicates and the set of all mappings: 2� � 2� , the

elements of which are called reference functions. An XML declarative description on � ,
simply called an XDD description, is a (possibly infinite) set of XML clauses on � . Table 2
defines concepts of constraints, references and XML clauses on � .

The notion of constraints introduced here is useful for defining restrictions on objects in � , i.e., both on XML expressions in � X and on sets of XML expressions in 2(� X � VZ). Given
a ground constraint q(g1, … , gn), gi � � , its truth or falsity is assumed to be predetermined.
Denote the set of all true ground constraints by Tcon. For instance:

 Define ��� (a1, a2) as a constraint which will be true iff a1 and a2 are XML elements of
the forms 	 ��
 (� v1	�� ��
 (� and 	!��
 (� v2	�� ��
�(� , respectively, where v1, v2 are
numbers and v1 > v2. Obviously, a constraint ��� (��
�(� 10	�� ��
�(� , 	 ��
 (� 5	�� ��
 (�)
is a true ground constraint in Tcon. Define a constraint ����
�� � (G, g) which will be true, iff G is a set of XML elements and
g the XML element 	���*���
�� ��� v	����&*���
 � �!� , where v denotes G’ s cardinality.

The concept of references defined here together with an appropriate definition of a set-of-

reference function in will be employed to describe complex queries/operations on sets of
XML expressions such as set construction, set manipulation and aggregate functions, e.g.,
min, max and count in SQL. Given a, x � � X, let fx,a � denote a set-of-reference function

and be defined as follows: For each G " � X,

fx,a(G) = { { x � � � X | � � � , a � � G } } . (1)

In other words, for each subset G of � X, fx,a(G) is a singleton set, the element of which is a
set of ground XML expressions of the form x � , for any specialization � � � , which makes
a � become a ground XML expression in G. Intuitively, a and x are used to define the
condition for constructing a set and to determine the elements comprising that set,

Valued Sony Customer
166

respectively, i.e., x � � fx,a(G) iff a� � G. The objects a and x will be referred to as filter and
constructor objects, respectively. Given a specialization � in � , application of � to fx,a yields
fx,a � = fx� , a� . For example, assuming that G is the set

{ 	 , (���� ��� *�*���� �	� �
� � ������ �� �����%(���� ��� 	�� , (���� ��� *�*�� ,
 	 , (���� ��� *�*���� �	� �
� � ������ �� ���/��� *�* 	�� , (���� ��� *�*�� ,
 	 , (���� ��� *�*���� �	� �
� � ������ �� ����
�������	�� , (�� � ��� *�* � } ,

then
f ��� "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?<> !@> 9A(*.�B'� "B'4�/*0*1 (*��256C+�7*8 9;:�-A-,4 (G)

= { { 	�� ��� �#�ED5D � �)(+*����� � (���� ��� ��� , 	�� ��� �#�ED5D � �0(+*F����
��"���G � � } } .

In other words, such a set-of function filters the XML elements of the set G with the pattern

	 , (�� � ��� *�*���� �H� �
� �������� �� � ���%� � 	�� , (���� ��� *�*�� — the filter object

and then constructs the resulting set of XML elements using the pattern

	�� ��� ���ID5D � �0(+*��!���.� � � � — the constructor object

Note that the effect of the binding of the variable ���%� � in the filter object will also cascade
to the constructor object.

Based on the definition of the set-of function, a reference r = � S, fx,a, P� , for x, a � � X
and S � 2(� X � V), is called a set-of reference.

Given an XML clause C = (H J B1, B2, ..., Bn), H is called the head and (B1, B2, ..., Bn)
the body of C, denoted by head(C) and body(C), respectively. The sets of all XML
expressions, constraints and references in the body of C are denoted by object(C), con(C)
and ref(C), respectively. Thus, body(C) = object(C) � con(C) � ref(C). If n = 0, such a
clause is called a unit clause, if n
 0, a non-unit clause. When it is clear from the context, a
unit clause (H J) is written simply as H, i.e., the left-arrow symbol is omitted. Therefore,
every XML element can be considered as a ground XML unit clause, and moreover every
XML document can be modeled as an XDD description comprising solely ground XML
unit clauses.

The heights of an XML clause C and of an XDD description P, denoted by hgt(C) and
hgt(P), are defined as follows:

 If ref(C) = K (C contains no reference), then hgt(C) = 0;
Otherwise hgt(C) is the maximum height of all the referred descriptions contained in
its body plus one. hgt(P) is the maximum height of all the clauses in P.

2.3 XDD: Declarative Semantics

Given an XDD description P on � , its declarative semantics, denoted by (P), is defined
inductively as follows:

1. Given the meaning (Q) of an XDD description Q with the height m, a reference r =

� g, f, Q� is a true reference, iff g � f((Q)). For any m � 0, define Tref(m) as the set
of all true references, the heights of the referred descriptions of which are smaller
than or equal to m, i.e.:

Valued Sony Customer
167

Tref(m) = { � g, f, Q� | g � � , f � , hgt(Q)
�
 m, g � f ((Q)) } (2)

2. The meaning (P) of the description P is a set of XML elements defined by:

(P) =
���
� �1

)(][
n

n
PT (3)

where - K is the empty set,
 - TP

1(K) = TP(K) and [TP]n(K) = TP([TP]n-1(K)) for each n
 1, and
 - the mapping TP: 2� � 2� is:
For each G " � , g � TP(G) iff there exist a clause C � P and a specialization � �
�
such that C � is a ground clause, with head g and all objects, constraints and
references in its body belong to G, Tcon and Tref(n), for some n 	 hgt(P),
respectively, i.e.:

TP(G) = { head(C �) | C � P, � ��� , C � is a ground clause,
object(C�) " G, con(C �) " Tcon,
ref(C�) " Tref(n), n 	 hgt(P) }

(4)

Intuitively, the meaning of a description P, i.e., (P), is a set of all XML elements, which
are directly described by and derivable from the unit and the non-unit clauses in P,
respectively, i.e.:

 Given a unit clause (H J) in P, for � � � :

H � � (P) if H � is an XML element.
 Given a non-unit clause (H J B1, ..., Bi, Bi+1, ..., Bj, Bj+1, …, Bn) in P, assuming

without loss of generality that B1, ..., Bi are XML expressions, Bi+1, ..., Bj are
constraints, and Bj+1, ..., Bn are references, for � � � :

H � � (P) if - H � is an XML element,

- B1 � , ..., Bi � � (P),

- Bi+1 � , ..., Bj � are true constraints, and
- Bj+1 � , ..., Bn � are true references.

Based on the formalized concepts of XDD language, Figure 3 demonstrates two XDD
descriptions denoted by Q and P, and then determines their semantics, which is sets of
XML elements denoting certain objects and their relationships in a real-world domain.

3 Modeling Semantic Web Resources and Applications

XDD language allows collections of Semantic Web resources, such as documents, data,
metadata and ontologies, encoded in XML, RDF, OIL or DAML+OIL syntax, to be
represented in terms of XDD descriptions. In the descriptions, explicit information items
are directly expressed as ground XML unit clauses, while rules, conditional relationships,
integrity constraints and ontological axioms are formalized as XML non-unit clauses. The
descriptions’ semantics, which can be directly determined under the language itself, is
defined as sets of XML elements—surrogates of objects and their relationships in a real-
world domain.

Valued Sony Customer
168

{ C1:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+ $ O+N2H>� H?���A'#<� 	HEq�1?P��Z �[)� �<2 �

 C2:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+�����+]2��O#<Z � !'� �<	<E �1?P��Z [Q� �<2 �

 C3:
	d�1?P��Z �[)� �T�H� � � � � &!�*V+ $ O+N2H>&(�,# ��	<E �1?P��Z [Q� �<2 � }

(a) XML Declarative Descr iption Q.

Z hgt(C1) = hgt(C2) = hgt(C3) = hgt(Q) = 0 Z�� (Q) = { 	*�1?T��Z [Q� �P�&� � � � � H!�*V+ $ O+N2H>� &?,�1A�#<� 	HEq�1?T��Z [Q� �<2
 	*�1?T��Z [Q� �P�&� � � � � H!�*V+����<+N2	�0#<Z � �<	HE �1?P��Z [Q� �<2
 	*�1?T��Z [Q� �P�&� � � � � H!�*V+ $ O+N2H>&(q�,# �3	HEq�1?T� Z [)� �<2 }

(b) The height and the meaning of Q.

{ C4:
	U$ �>��-# �D�]U0(1?P%��<
 2	
�>&� !1(�?T	<E $ �>1�-# �D�]U0(�?T%��<
 2

 � �
�"� ��� � , f ���
! #%$'& &)(*$,+�-,.�/A0*1 (3254 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B � "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q� ,
 � H(1!�� g
��&� ��� � , 		� � � (�Z �32	
�>&� !1(�?T	<E�� � � (1Z �32Hi�� }

(c) XML Declarative Descr iption P.

Z hgt(C4) = hgt(Q) + 1 = 1, and hgt(P) = 1.

Z f ��� "! #%$'& &)(*$,+�-,.�/*0*1 (3254 , ��6C+�7*8 9;:�-A-�=*> ?<> !3> 9*(*.�B'� "B'4�/A0*1 (*��256C+�7*8 93:�-,-A4 ((Q)) =
 { { 	U$ ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 , 	U$ ����-# �D�V!�#<?,�<*V+L>"(�,# �3+DE'2 } }

Z � � �����q;�� , f ��� "! #%$'& &�(*$A+�-,.�/A0*1 (32 4 , ��6*+�7*8 9;:<-,-�=*> ?�> !@> 9A(*.�B � "B'4�/*0*1 (*� 2 6*+�7*8 9;:<-,-,4 , Q�
is a true reference, iff
�"� ��� � is specialized into the set

 { { 	U$ ����-# �D�V!�#<?��<*W+D>� H?���A'#<� +LE'2 , 	U$ ����-# �D�V!�#<?,�<*V+L>"(�,# �3+DE'2 } }
Z The constraint � H(1!�� is a true constraint, iff
�>&� !1(�? is specialized into the number 2.

Z�� (P) = { 	U$ �>1�-# �D�]U0(�?T%��<
�2	��	<E $ �>1�-# �D�]U0(�?T%��<
 2 } .

(d) The height and the meaning of P.

Figure 3:XDD descriptions Q and P and their declarative semantics.

Besides its employment to model various kinds of Semantic Web resources, XDD can
also be applied to describe certain operations such as queries, document transformation and
processing rules as well as program specifications. Figure 4 illustrates examples of
Semantic Web resource modeling and a query formulation and shows that although
information about senior employees and their bonuses is not explicit, it can be deductively
inferred based on the clause R3; this representation offers a more compact form and
provides an easier way of information modification than explicit enumeration of such
information. With this simple, yet expressive modeling mechanism, XDD can readily be
applied to model Semantic Web applications.

A Semantic Web application, offering certain Semantic Web services, comprises three
main components: application data, application rules or logic, and users’ queries or
requests for services. For instance: In a Semantic Web search engine, offering an
information-gathering service,

 its application data: a catalog or descriptions of Semantic Web contents, its application rules: domain-model ontologies and axioms, and its requests: user queries describing their informational needs.

Valued Sony Customer
 169

In a business-2-business (B2B) commerce application, its three components are
 a catalog of available products and services, business rules and policies such as price discounting and refund rules, and queries and business transactions such as a request for a quotation and an order

placement.

XDD language provides means for modeling Semantic Web applications in that it
enables direct representation of:

 application data (facts), encoded in XML, RDF, OIL or DAML+OIL syntax, in terms
of XML ground unit clauses, application rules or logic in terms of XML non-unit clauses—the heads and bodies of
the clauses describe the consequences and antecedents of the rules, respectively—and users’ queries or service requests in terms of XML non-unit clauses—the heads of the
clauses describe the structure of the query results or the service responses and the
bodies specify the queries’ selection conditions or the service requests and their
constraints.

Thus, XDD language has the three vital roles:
 content language, application-rule language, and query or service-request language.

See Figure 4 for an example of each role. Basically, each query/request will be executed on
a specified collection of application data and rules and will return as its answer a set of
XML elements, derivable from such a collection and satisfying all of its conditions. More
precisely, given a set of application data and rules, modeled as an XDD description P, and a
query/request, formulated as an XML clause Q: (H J B1, B2, ..., Bn), the response to Q is
the set

{ H � | H � � (P � { Q}), � � � } .

By employment of Equivalent Transformation (ET) computational paradigm [2,3], which
is based on semantics-preserving transformations (equivalent transformations) of
declarative descriptions, the computation of an answer/response to such a query/request Q
is carried out by successive transformations of the XDD description P � { Q} into a simpler
but equivalent description, from which the answer can be obtained readily and directly. In
brief, P � { Q} will be successively transformed until it becomes the description

P � { Q1, …,Qn} ,

where n � 0 and the Qi are ground XML unit clauses.
Note that in order to guarantee correctness of a computation, only equivalent

transformations are applied at every step. The unfolding transformation, a widely-used
program transformation in conventional logic programming, is a kind of equivalent
transformation. Other kinds of equivalent transformations can also be devised, especially
for improvement of computation efficiency. Thus, ET provides a more flexible, efficient
computational framework.

XET, a declarative programming language for computation of XDD descriptions in ET
paradigm, will be presented next.

Valued Sony Customer
 170

E1:
��������� 	�
������� ����� �����������������
 "!��$#

��������� �&%$��
'�(
�)��������
����*�+,��- ��%.

�0/1#
��
2�435�+,
2#26���+,��7���98�:0�2/.
2� 3��+,
2#
��
2�46��- ���%1#<;� � � � ��2/=
2�46��- ���%1#

�2/.�������4	�
�����(� ���&� ���5#

E3:
�������>� 	�
������� ���&� �����������������
 �?��$#

�������>� �&%$��
@��
�)��������
����*�+,��- ��%$

�0/9#
��
2� A1���)�B��
�)��������
����
 �C��0/1#
��
2� 3��+,
2#2	�
��
DFEG:0�2/=
2�435�+,
2#
��
2� 6��- ���%1#2H� � � � ��</=
2� 6��- ���%1#

�2/.������� 	�
�)�)��� ���&� ���5#
E2:

��������� 	�
������� ����� �����������������
 �C��$#
��������� �&%$��
'�(
�)��������
����*�+,��- ��%.

�0/1#
��
2�4A9�����I�(
�)��������
����
 "!��0/1#
��
2�435�+,
2#26��JK��GL1:0�2/=
2�435�+,
2#
��
2�46��- ���%1#<M� � � � ��2/=
2�46��- ���%1#

�2/.�������4	�
�����(� ���&� ���5#

E4:
�������>� 	�
������� ���&� �����������������
 �H��$#

�������>� �&%$��
@��
�)��������
����*�+,��- ��%$

�0/9#
��
2� A1���)�B��
�)��������
����
 �C��0/1#
��
2� 3��+,
2#NO������

@PQ:0�2/.
2� 35�+R
2#
��
2� 6��- ���%1#2?� � � � ��</=
2� 6��- ���%1#

�2/.������� 	�
�)�)��� ���&� ���5#

(a) M odeling of appl ication data – descr ipt ions of employee obj ects, based on RDF infr astr uctur e.

R1:
��*�+R��S2
- ��&� ���T�������)��U<V2W4XY������������� ����&
�KU<V2W4Z[-
\$
- �]!(/9#

^ ��������� 	�
�)�)��� ���&� ���_��������&��U<V<W4Z`#
��������� ��%.��
@��
���������)
����*�+,��- ��%$

�a/1#
��
2� A1�����I��
���������)
��U<V<W4X�/1#
U<bcW�d1egf

�2/=������� 	�
������� ����� ���"#2:

%
%
%
%
%
%

If Y is described as a re-
source of the type *+I�- �$%)
.

and its A��h��� property is
another resource X, then one
can derive that X is the first-
leveled �h�h��� of Y.

R2:
��*�+R��S2
- ��&� ���T�������)��U<V2W4Xi�)�������(��� �����
��U<V2W�jk-
\$
- ��U<V<W(l<m�/1#

^ ��*�+,��S2
- ���� ���T�����)����U<V<W XY�)����������� �����
��U<V2W4Zn-
\$
- ��U<V2W�l�/1#2o
��������� 	�
�)�)��� ���&� ���_��������&��U<V<W�jp#

��������� ��%.��
@��
���������)
����*�+,��- ��%$

�a/1#
��
2� A1�����I��
���������)
��U<V<W4Z5/1#qU<b2W(dregf

�2/=������� 	�
������� ����� ���"#2o
NO����st��35��+u#2U<V2W�l<�2/.35��+u#2o"�<NO����
������+u#�!)�2/vNO����
������+u#2o

��S2
����- ��#2U<V2W�l<m<�2/.S2
����- �>#2wv:

%
%
%
%
%
%

If X is the nth-leveled �h�h���
of Y and Y is referred to as a
direct ��$��� of an *+I�h- �$%�
.
 Z,
then one can imply that X is
the (n+1)th-leveled �h�$��� of
Z.

R3:
��������� 	�
������� ����� ���������������U<V2W4X'#

��������� �&%$��
'�(
�)��������
����6�
��� ����*�+,��- ��%$

�0/9#
��
2�4A9��������#2U<V2W�x<ycl<z<{h�2/=
2�4A9��������#
��
2�46������������ ����&
2#

��������� A1�|5#2U<j2W({hdr}��2/=������� A1�|"#
�2/.
2� 6��������(��� �����
2#
��
2�46��- ���%1#<U<V2W�{h~r�0�2/=
2�46��- ���%1#�U<bcW�dregf

�2/.�������4	�
�����(� ���&� ���5#
^ ��������� 	�
������� ����� ���������������U<V2W4X'#

���������4�&%$��
@��
���������)
�K�v*�+R��- ��%$

�0/9#
��
2� 6��- ��(%r#2U<V<W({h~r�0�2/.
2� 6��- ��(%r#�U<bcW�d1egf

�2/.�������4	�
�����(� ���&� ���5#2o
� U<j2W({hdr}�o f �=� ���0� �&��� ���a�(��� �a�������� �h� �=� �.����������� ��� � �(�r�(�����a������ F�a�(���(� ��� ����� ���h�>��� �K� ��¡&��� �h�>��� ¢v£&¤�� � o
{ E1,…, E4, R1, R2} ¥ o¦ ��������sQU<j2W�{hd1}�o"��S2
�)��- �>#<U<V2W�l<z<eg�2/.S2
����- ��#2wvo
§ E�sv��3���+u#2U<V<W�l<z<eg�2/.35��+g#2o"��3���+u#2?��2/.35��+u#2wvo
¨ ��- sQ�K35��+g#2U<V2W�{h~r�0�2/.35��+g#2o"� ¨ ��- �&� ��- �
�)#<C��</ ¨ ��- �&� ��- �
�)#<o

��S2
����- �>#2U<V<W�x2ycl<z<{h�2/.S2
����- ��#2wv:

%
%
%
%
%
%
%
%
%

For an
.+I�- �$%)
.
 X who has
more than 3 ����h�$�&�h� ��.�a
.� (of
any level), then X is con-
sidered to be a 6h
.�� �$�&©
*+I�- �$%�
.
 and will receive a
double-salary ��$�h�� . A list
of all ����h�$�&�� �h�.�a
.� of X is
also included in X’ s descrip-
tion.

 (b) M odeling of appl ication r ules and logic – descr ipt ions of r elat ionships among employee obj ects.

Q: �2NO����JF
�)#<U<V2W�l<~regd1�</QNO����JK
��#
^ ��������� 	�
�)�)��� ���&� ���_��������&��U<V<W4X@#

��������� ��%.��
@��
���������)
��ª�*�+,��- ��%$

ªa/1#
��
2� 35�+R
2#26���+R�)7���98�:0�2/=
2�435�+,
2#�U<bcW�d1e«f2m

�2/=������� 	�
������� ����� ���"#2o
��*�+,��S2
- ���� ���T�����)����U<V<W XY�)����������� �����
��U<V2W4Z¬-
\$
- ��C)/9#<o
��������� 	�
�)�)��� ���&� ���_��������&��U<V<W4Z`#

��������� ��%.��
@��
���������)
��ª�*�+,��- ��%$

ªa/1#
��
2� 35�+R
2#2U<V2W�l<~regdr�2/=
2�435�+,
2#�U<bcW�d1e«f2

�2/=������� 	�
������� ����� ���"#2:

%
%
%

A query Q finds �h�.+t
.� of all
Somchai P.’s second-leveled ���h�h�h�®�� �h�.�0
.� .

(c) M odeling of a quer y.

Figure 4: Modeling of an application.

Valued Sony Customer
 171

4 XET Programming Language

XET (XML Equivalent Transformation) [18] is a declarative programming language which
can directly and succinctly manipulates XML data. By integration of XDD language, ET
computational paradigm and XML syntax, XET possesses XDD’s expressiveness and ET’s
computational power as well as XML’s flexibility, extensibility and interchangeability.
Therefore, XET naturally unifies “Documents’ , “Programs” and “Data” , and with its
computational and reasoning services, it also unifies “Document Processing
(Transformation)” , “Program Execution” and “Query processing” . Available XML editing
and validating tools can also be employed to edit and validate XET programs. The syntax
of XET language, described by XML Schema, is available in [18]. XET provides useful
sets of built-in operations including:

Note: Step

kk kk
 can be automated.

Figure 5: A declarative approach to Semantic Web application development.

Operational System

Modeling of
Application

Data and Logic
using XDD
language

Application
Implementation

using XET
language

Model Specification:
an XDD descr iption P

Program
Refinement

An XET program
 P.xml

Program
Compilation and

System Setup

An XET program
 P.xml

An XET
program P.xml Addition of new ET

rules for improvement
of computational
efficiency

�� ��

�� ��

�� ��

�� ��

A query/request
represented in terms of

XDD/XET language

Result

Valued Sony Customer
 172

 Data type checking Document well-formedness and
validity checking Arithmetic operations and relations String manipulation operations

 XML expression unification and matching XML expression operations Input/Output operations File manipulation operations Communication services

Once an XDD description which models a Semantic Web application’s data and logic
has been formulated, an XET program corresponding to such a description can be obtained
directly. The obtained XET program can be iteratively refined, if new ET rules have been
devised for improvement of computational efficiency. Finally, using XET compiler [18], the
program is compiled and an operational system obtained. In response to a query/request
submitted in terms of XDD or XET language, the system executes it and returns its result.
Based on such processes, Figure 5 outlines a new declarative approach to Semantic Web
application development. With reference to the XDD description and the query Q of Figure
4, an XET program corresponding to such a description is given by Figure 6 and the answer
to the query Q by Figure 7.

Note that the declarative semantics of an XET program can be determined based on that
of its respective XDD description.

Figure 8 depicts an example scenario of Semantic Web service execution, which starts
when a user or an application A issues a query describing a service need together with
constraints and preferences to a Semantic-Web-Service Search Engine B, which will then
searches, from its database of Web services, for Semantic Web applications offering the
demanded services with the requested properties and restrictions. Based on the returned list
of applications, A selects an appropriate one, say Semantic Web application C, and sends it
a query or a service-request as well as user constraints and preferences. C then executes
such a query or request with respect to its data and application rules and logic. During its
execution, C may forward corresponding sub-queries and/or sub-requests to other related
applications based on its defined rules and logic and wait for their replies and responses.
Once the execution has been finished, a reply to A’ s query/request is returned. Note that
Steps 1 and 2 can be skipped, if the user/application A knows at a priori which application
provides the desired service. Similarly, at Steps 5.1 and 5.3 if the application C does not
know which application it should interoperate, it may ask B for a list of applications
offering the required services. In addition, during the execution, it is often a case that
communicating parties may involve in a negotiation for modification of service conditions.

From the example scenario, one may observe that XDD and XET can serve as a tool for
modeling and implementing a wide diversity of Semantic Web applications offering
various kinds of services. Consider, for instance, the Semantic-Web-Service Search Engine
B, which maintains a database of Web services described by means of Web-service
metadata and provides a search facility for finding of particular services satisfying some
specified criteria. Such a search engine is simply modeled as an XDD description
comprising XML unit clauses, describing a collection of registered services and their
properties/capabilities (in terms of Web-service metadata), and XML non-unit clauses,
modeling Web-service ontologies as well as implicit relations among services in the
collection. From such a description, an XET program which is capable of searching for
services with desired properties and constraints can be obtained directly. Other applications
C, D and E serving certain specific services can also be modeled and implemented in a
similar manner.

Valued Sony Customer
 173

���������
	����������� ����������� �����������! �"#�#�����������
�%$'&(�)�(*��+��,��
-.-0/1/1/32 /34'2 #�%�5-.6�7'7'75-0859'-.9'9':;�%$�&<:��>=?���+���#:@����A��
����������� �B���<*��+��,'�
-.-0���C,�2 #�%�5-.�#����DE� �>F'*��B�G��H(�F�����D ��'���I�J >"�KG�����C�L���@2 ���>$5�(M

���������
N�O'� ��PQ� ���>��RS��$��B�;M�6T9T4VU5��-0�������
N�O'� ��PQ� ���>�>RV�%$'�B�;M
���������
W(��F���M

X#Y Z\[@]_^.`�a;b.Y
c dfe;c g�h�i�jfg'kfefl#m�`'npo�mrq
X#Y Z\[@] e�s�d;`3Y `�a;g�k\Y b0`�l�mrt\uGdpv gps<`�`'m�w<q
X�`']_x\i'u�`�q�y\g�u�b.zfi�c�{p|EX�w�`�]
xpi'u�`'q
X�`'] y\i'v i'Y s�q�}�n�npnpnpX�w�`'] y\i'v i'Y s�q

X�w<Y Zp[@]
^.`�afb.Y
c dfe;c g�h\q
~

��-0�������
W0��F���M
���������
N�O'� �������L�B���< ���,�N��B� ����D #�'�),��;D ��@D �+=?����U5�<M

X��<`�e;]
�\`�i�Z�q
X#t\uGd\��`�v i�e;c g�h�j;gpafapl�m���� ���@:%� m'a\k\j;g�Y Z�c hfi�e�`�l�m���� ���@:%� m�v `��<`�v l#m��'� ���@:;�'6 m�w<q

X�w��<`�e;]_�.`�i�Z�q
X��<`�e;]
�(gpZps�q

X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq
X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�]
�(gpa;a�Y `�afg'k\Y b0`'l#m��'� ���@:�� m�w<q � ���;:%���C,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;]
��h\c [%s�q

X�x�k\uGq���� ���@:@�'6 X�w<x�k\uGq�X�x�k\uGq#opX�w<x�k\uGq
X�w��<`�e;]
��h\c [%s�q

X�w��<`�e;]_�<gpZps�q
X��<`�e;]
�(gpZps�q

X#t\uGd\��`�v i�e;c g�h�j;gpafapl�m���� ���@:%� m'a\k\j;g�Y Z�c hfi�e�`�l�m���� ���@:%� m5v `��<`'v l�m���� ���@:@� m�w<q
X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq

X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�]
�(gpa;a�Y `�afg'k\Y b0`'l#m��'� ���@:�� m�w<q � ���;:%�B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;] ��ZpZ�h\k\uGj;`'Y
l�m���� ���;:@� m'i�ZpZ\`�hfZ�k\uGl#mropm�Y `�a\k\v e;l�m���� ���@:@�'6 m�w<q

X�w��<`�e;]_�<gpZps�q
��-0�������
N#O'� �BM
���������
N�O'� �������L�B��� � ���'D #�@ ���,��),��;D #�@D �+=?�)�IU5�<M

X��<`�e;]
�\`�i�Z�q
X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq

X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#m�y\`'h\c g�Y
t\uGdpv gps<`�`'m�w<q
X�`�] y�k\j;g�Y Z�c hfi�e�`'q

X#Y Z\[@]_�(i���q � � ���@:��>��� X�w<Y Z\[@]_�(i���q
X�wI`'] y�k\jfg�Y Z�c hfi�e�`'q
X�`�]
�(g�h\kfapq���� ���@:@��#�'O�� X�w�`�]
�(g�h\kfa\q
X�`�] y\i�v i�Y s�q���� ���@:%����� X�w�`'] y\i'v i'Y s�q � ���@:��B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X�w��<`�e;]_�.`�i�Z�q
X��<`�e;]
�(gpZps�q

X#Y Z\[@]_^.`�a;b.Y
c d;e;c g'h�i�jfg�kfe;l#m��'� ���@:�� mrq
X�Y Zp[@] e_s�d;`3Y `�a;g�k\Y b0`'l#mrt\uGd\v gps<`�`�m�w<q
X�`�] y\i�v i�Y s�q���� ���@:%����� X�w�`'] y\i'v i'Y s�q � ���@:��B��,

X�w<Y Z\[@]_^.`�a;b.Y
c dfe;c g�h\q
X��>`�e;] y\`�e_�B[@q

X��<`�ef] y\`�e;q � � ���;:%����� X�w��<`�ef] y\`�e;q
X��<`�ef] ��g�hfa;efY
kfbfe_g'Y
q

X#Y Z\[@]_�<c�Y `�a;g�k\Y b0`�l�m���� ���@:%� m�w<q
X�wI�>`�e;] ��g�hfa;e;Y
kfb0e�g�Y
q
X��<`�ef]_{;i�e�e�`'Y
h\q

X#t\uGd\�>`'v i�e;c g'h�j;gpafapl�m���� ���;:%� m'a\k\j;g�Y Z�c hfi�e_`�l�m���� ���;:%� m�w(q
X�wI�>`�e;]
{;i�e�e�`'Y
h\q

X�w��<`�e;] y\`�e���[@q
X��>`�e;] ��g�k\hfe;q

X��<`�ef] y\`�e;q � � ���;:%����� X�w��<`�ef] y\`�e;q
X��<`�ef]_��`�a\k\v efq��'� ���@:;�'O'� X�wI�>`�e;]
��`�a\k\v e;q

X�w��<`�e;] ��g'k\hfefq
X��>`�e;] �Qt�h\k\uGj;`'Y
opl#m��'� ���@:;�'O'� m�h\k\uGj;`'Y
��l�m���m�w<q
X��>`�e;]
��k\v�h\k\uGjf`�Y
l�m���� ���;:%����� m�uGk\v e;c dpv c `'Y
l#mr�pm5Y `�a\k\v e;l�m���� ���;:@��#�'O�� m�w<q

X�w��<`�e;]_�<gpZps�q
��-0�������
N#O'� �BM

��-0�������
	��%��5�%���CM

Figure 6: An XET program P.xml.

A list of facts
corresponding to the
XML unit clauses
E1, ..., E4.

An XET rule
corresponding to
the XML non-unit
clauses R1 and R2.

An XET rule
corresponding to
the XML non-unit
clause R3.

Valued Sony Customer
 174

Figure 7: The answer to the query Q.

Figure 8: A scenario for Semantic Web service execution.

Semantic-Web-Service
Search Engine

B

User /Application
A

Issue a query describing a
service need together with user
constraints and preferences

A database of
Semantic Web
service proper-
ties and capa-
bilities

�� ��

Select an appropriate
application and send it a
query/service-request as well as
user constraints and preferences

Semantic Web
Application

C

�� ��

Find Web services
fulfilling the need

�� ��

Execute the query/request
with respect to its application

data and rules/logic.

�� ��

Sub-query/sub-request
5.1

Reply/
response

5.2
Sub-query/
sub-request

Reply/response
5.4

Return an
answer/response

�� ��

Return a list of Semantic
Web applications offering
the demanded service

�� ��

� Application data � Application rules and logic

5.3

Semantic Web
Application

D

Semantic Web
Application

E

�	� d�}QW�
Gzr�4dRlr~�e_d������zrd��������
����
.�v� �<
.�.�c#

�1N5�h��JO
.�>#1V���~����vlr~�e_d��r/�N5���JO
.�>#
�1/���
.�v� �<
.�.�2#
����
.�v� A��h�h%�#

�G�&�h�Q� 	<
.���>�®� ��a� �$�,�.�h�h�h�a�O�(V���~����aXF�)#
�O�®��Q� �0%)�
I�&
.���$��®�>
.�G��*+I�- �$%)
.
.�4/�#
�O
1� 32�.+I
1#r6h�$+I�>7h�.�h8$:4�r/�
1� 3<�.+I
1#
b���~����vd�e_frm

�1/)�®��Q� 	<
.�����&� �h�0� �$�c#
�G*+I�S9
.- �.�0� �$�,�h�$�����G��V���~�� �0XK�

���h��$�&�h� �h�.�0
.�G��V���~����aZK��-
.\)
.- �OC�/�#
�G�&�h�Q� 	<
.���>�®� ��a� �$�,�.�h�h�h�a�O�(V���~����aZ���#

�O�®��Q� �0%)�
I�&
.���$��®�>
.�G��*+I�- �$%)
.
.�4/�#
�O
1� 32�.+I
1#rV���~����vlr~�e_d��1/)
1� 32�.+I
1#
b���~����vd�e_fr

�1/)�®��Q� 	<
.�����&� �h�0� �$�c#
�1/���
.�v� A��$�%�#

�"!�� d�}QW�
Gzr�4d�

�	# lr{%$,d��&�	'�d���d�(*)�+ �,!-# lr{.$Rd��/�
��# lr{%$Rd��&� # ��zrlrd�d10-+ �"!-# lr{%$,d��&�

The answer to the query Q
-- the names of all Somchai

P.’s second-leveled
subordinates.

An XET rule cor responding to the query Q

An application
running the XET
program P.xml

Valued Sony Customer
 175

Figure 9: Prototype Semantic Web application.

5 Prototype Application

Founded on the proposed framework, a prototype Semantic Web application, which
provides product-information-gathering as well as e-shopping services, has been
implemented by means of XDD modeling language and XET programming language. The
employed XDD and XET languages have been enhanced with the ability to handle rule
conflicting problems using rule prioritization information [11]. Such an additional feature
enables, for example, a formalization of a discounting policy stating that if a customer is a
member of the store, a 10 percent discount is offered, and if a customer has a late-payment
history, no discount is offered and that the latter has higher priority than the former [11].
Due to space limitation, declarative semantics of prioritized XDD descriptions and XET
programs is omitted; its formal definition is available in [18].

To buy some products (Figure 9), a customer may fill out an order form and submit it on-
line to the application Web site or directly send an HTTP request with appropriate
parameters encoded in XML to the application URL. The application first checks its stock,
and if the products are available, it will calculate the order’s price, send a request to a credit
card company (another Semantic Web application) for a debit of the customer’s account,
send a request to a shipping company and then wait for their responses. After the order
process has been finished, the application notifies the customer of the completed process.

Customer

Submit an order

The Prototype
Application

�� ��

 Process order
2.1 Check product availability

2.2 Calculate order price

�� ��

Request for credit card
debiting

2.3

Response
2.4

Request for a
shipping service

Response
2.6

Order-process-
completion message

�� ��

� Descr iptions of products � Order processing, pr ice discounting,
warrantee, delivery and refund rules

2.5

Credit Card
Company

Shipping
Company

Valued Sony Customer
 176

6 Related Works

Business Rule Markup Language (BRML) [11] is an XML-based language for encoding of
Courteous Logic Programs (CLP)—an extension of conventional logic programs by
inclusion of the ability to express prioritized conflict handling. BRML is a language in the
RuleML Initiative, which has been specifically designed to represent business rules and
policies. However, since BRML provides merely an XML embodiment of CLPs, its
expressive power is relatively limited in that its sole permitted representation is atomic
formulae with simple-structure terms. Complex XML data with nesting structures cannot be
directly represented in BRML. Instead they require appropriate translations into
corresponding sets of atomic formulae. Figure 10, for example, shows the CLP’s and
BRML’s representations of the XML element E1 and the XML clause R1 of Figure 4.
Comparing XDD with BRML, one can readily observe that XDD provides a more direct
and succinct modeling mechanism; While possessing sufficient expressive power to
represent simple as well as complex statements and relations, its representation is still
readable.

�������4�&%$��
sv
 <!)o"*�+R��- ��%$

w

2� 3��+,
sQ
 "!)o"6���+,��7���98�:0w

2� 6��- ��(%$sv
 <!)o";� � � � �w

2� 8����)� �&� ����sQ
 "!)o"8���� �
�����$
���
��w

�K�)- �5#
��
����-
2#

��7�
��"#
����- � �&
���-9����
��� �)���
�����(����� ��%.��
�.#

���®�������&� ���_���+R
����
 <!)�0/1#
���®�������&� ���_���+R
����*�+,��- ��%$

�0/9#

�2/.�)- � ��
�(�-&#
�2/.7�
��5#

�2/=
����-
2#
��</=��- �"#

(a) The CLP’s representation of the XML element E1. (b) The BRML’s representation of the XML element E1.

S�!�� *�+,��S2
- ��&� ����s����9o���	�o !�w
^ �(����� ��%.��
s���	�o"*�+R��- ��%$

w�

2� A1�����)s���	�o����9wv:
�K�)- �5#

��
����-
@����-
- ���
- ����S�!��$#
��7�
��"#

����- � �&
���-9����
��� �)���
����*�+,��S2
- ��&� �����$#
��\$���� ���-
@���+,
�����9�0/9#
��\$���� ���-
@���+,
���	��0/9#
���®�������&� ���_���+R
���$!��0/1#

�2/.�)- � ��
�(�-&#
�2/.7�
��5#
��������%r#

������5#
���®��- � �&
���-9����
��� ����&
�����������4�&%$��
�$#

��\.���� ���-
@���+,
�K��	G�a/1#
��\.���� ���-
@���+,
�K�v*�+R��- ��%$

�0/9#

�2/.�®��- � �&
���-&#
���®��- � �&
���-9����
��� ����&
����
2� A1���)���$#

��\.���� ���-
@���+,
�K��	G�a/1#
��\.���� ���-
@���+,
�K���1�a/1#

�2/.�®��- � �&
���-&#
�2/.����"#

�2/.������%r#
�2/=
����-
2#

�</=��- �"#
(c) The CLP’s representation of the XML clause R1. (d) The BRML’s representation of the XML clause R1.

Figure 10: The CLP’s and BRML’s representations of the element E1 and the clause R1 of Figure 4.

Valued Sony Customer
 177

OIL [6,8,12] and DAML+OIL [13] are the two most recent, improved ontology-based
semantic markup languages for Web resources which extends RDF Schema by richer sets
of modeling primitives. However, their current versions still lack expressive power in that
arbitrary rules and axioms cannot be described [6]. Since these languages’ schemas and
instances, which are encoded in RDF/XML serialization, can be directly represented in
XDD as XML unit clauses, XDD can be employed to serve as their foundation, in order to
help enhance their expressiveness [17]. Therefore, resources and applications modeled by
these languages become immediately instances of XDD language and hence directly
programmable by XET language. Note that with the awareness of the DAML+OIL’s
limitation in representing rules and axioms, the language is being extended with the ability
to express Horn clauses and will be called DAML-L [16].

With reference to the overall process of Semantic Web service implementation defined in
[11,16], XDD can be uniformly employed to materialize each step of the process:

 Service Advertisement and Discovery: A collection of service properties and
capabilities described by means of metadata or Semantic Web Service Markup
Language [16] can be directly represented as XML unit clauses, and their additional
constraints and relations modeled in terms of XML non-unit clauses. Based on such
declarative advertisements of Web services, discovery of a particular service having
specific properties and capabilities is expressed as an XML non-unit clause, which
will be evaluated on the Web service database and return as its reply a list of
applications or service providers offering the requested service. Negotiation: Given particular negotiation rules and procedures for selection of Web
services (e.g., response time, data accuracy and cost conditions), corresponding XML
non-unit clauses can be declaratively defined. Besides definition of such rules, an
appropriate employment of Agent Communication Language (ACL) [15] which
allows the negotiating parties to effectively communicate and interoperate must also
be considered. By a careful formulation and implementation of the two major current
ACLs (i.e., KQML [9] and FIPA-ACL [10,15]) in XDD [14], XDD readily provides
an effective communication in the negotiation stage, allowing every negotiating party
to communicate with one another via XDD uniform interface, and hence enabling a
higher level of interoperability. Service Execution: Execution of a service according to a given procedure can be
represented in XDD by appropriate XML clauses. Based on such a declarative
specification, an application can automatically execute the service. Service Composition and Integration: It is often a case that a service is designed as a
composition or an integration of other existing services. The execution of such a
composite service often requires interaction with those related services in terms of
request-for-service calls and returned responses. Using XDD, one can represent
service composition and integration by an XML clause, the head of which specifies
the composite service and the body of which describes the composition rule as well as
the service calls and the data to be exchanged with other services. Such service calls
and exchanged data could be embodied in an ACL. Service Customization: In order to increase the level of share-ability, reusability and
user’s satisfactory of provided services, a service may be defined by a particular
generic procedure which can then be customized for execution of a specific service
request. Such a generic procedure is described by a set of XML clauses, and its

Valued Sony Customer
 178

customization is realized by either parameter instantiation or by addition of XML
clauses into it—this latter case is equivalent to program refinement. Note that
different customizations normally lead to different sequences and results of service
execution.

In summary, with these supports, XDD readily provides sufficient Semantic Web
modeling facilities for development of intelligent, automated Web applications requiring
interoperation with other independently-developed applications.

7 Conclusions

The proposed XDD language is an expressive modeling language which allows collections
of Semantic Web resources (modeled in terms of XML, RDF, OIL or DAM+OIL) to be
directly represented with their semantics precisely and formally determined. In addition to
such a resource modeling facility, XDD also provides a means for descriptions of Web
resource manipulations, service provisions and business rules and processes. Moreover, its
extension [18] by the ability to handle rule conflicting problems has enhanced its
expressive power to be sufficient to capture and describe complex and conflicting rules and
logic in Semantic Web applications.

Founded on XDD’s expressive power and ET’s computational efficiency, XET
programming language and its compiler have also been developed. By means of XDD and
XET languages, the paper has proposed a declarative framework for Semantic Web
application development and has demonstrated that a variety of Semantic Web applications
and services is simply expressible by XDD and hence programmable by XET. Moreover,
the development of the prototype system based on the proposed framework has helped
prove the framework’s viability and potential in real applications. Integration of the
proposed framework with appropriate Web and agent technologies allows intelligent as
well as automated Web services, which demand syntactic and semantic interoperability, to
be easily and rapidly developed. Note also that an XET program which performs particular
tasks can be exchanged, shared and reused by multiple applications.

References

[1] K. Akama, Declarative Semantics of Logic Programs on Parameterized Representation Systems.
Advances in Software Science and Technology 5 (1993) 45–63.

[2] K. Akama, Declarative Description with References and Equivalent Transformation of Negative
References. Technical Report, Department of Information Engineering, Hokkaido University, Japan
(1998).

[3] K. Akama, T. Shimitsu and E. Miyamoto, Solving Problems by Equivalent Transformation of
Declarative Programs. Journal of Japanese Society of Artificial Intelligence (JSAI) 13(6) (1998) 944–
952 (in Japanese).

[4] K. Akama, C. Anutariya, V. Wuwongse and E. Nantajeewarawat, A Foundation for XML Databases:
Query Formulation and Evaluation. Technical Report, Computer Science and Information Management
Program, Asian Institute of Technology, Thailand (1999)

[5] C. Anutariya, V. Wuwongse, E. Nantajeewarawat and K. Akama. Towards a Foundation for XML
Document Databases. Proc. 1st Int. Conference on Electronic Commerce and Web Technologies (EC-
Web 2000), London, UK. Lecture Notes in Computer Science, Springer Verlag 1875 (2000) 324–333.

[6] S. Bechhofer et al., An Informational Description of Standard OIL and Instance OIL. White Paper (Nov.
2000). Available at http://www.ontoknowledge.org/oil/downl/oil-whitepaper.pdf

Valued Sony Customer
 179

[7] T. Berners-Lee, Weaving the Web. Harpur, San Francisco (1999).
[8] S. Decker et al., The Semantic Web: The Roles of XML and RDF, IEEE Internet Computing, (Sep./Oct.

2000) 63–74.
[9] T. Finin, Y. Labrou and J. Mayfield, KQML as an Agent Communication Language. Software Agents,

AAAI/MIT Press (1997).
[10] FIPA: FIPA Specification, Version 2.0, Part 2: Agent Communication Language (1997)

Available at http://www.fipa.org/spec/f8a22.zip
[11] B.N. Grosof, Y. Labrou, and H.Y. Chan, A Declarative Approach to Business Rules in Contracts:

Courteous Logic Programs in XML. Proc. 1st ACM Conf. on Electronic Commerce (EC99), ACM Press
(1999).

[12] F.V. Harmelen, and I. Harrocks, FAQs on OIL: The Ontology Inference Layer. IEEE Intelligent Systems
15(2) (Nov./Dec. 2000) 69–72.

[13] J. Hendler and D. McGuinness, The DARPA Agent Markup Language. IEEE Intelligent Systems 15(2)
(Nov./Dec. 2000) 72–73.

[14] S. Jindadamrongwech, An Agent Communication Language using XML Declarative Description.
Master’s Thesis, Computer Science and Information Management Program, Asian Institute of
Technology, Thailand (2000).

[15] Y. Labrou, T. Finin, and Y. Peng, Agent Communication Languages: The Current Landscape. IEEE
Intelligent Systems, 14(2) (Apr./May 1999) 45–52.

[16] S.A. McIlraith, T.C. Son, and H. Zeng, Semantic Web Services. IEEE Intelligent Systems, 16(2)
(Mar./Apr. 2001) 46–53.

[17] V. Wuwongse, C. Anutariya, K. Akama and E. Nantajeewarawat: XML Declarative Description (XDD):
A Language for the Semantic Web. IEEE Intelligent Systems (to appear).

[18] V. Wattanapailin, A Declarative Programming Language with XML. Master’s Thesis, Computer Science
and Information Management Program, Asian Institute of Technology, Thailand (2000).

Valued Sony Customer
 180

Utilizing Host Formalisms to
Extend RDF Semantics

Wolfram Conen+ and Reinhold Klapsing++

+XONAR GmbH,
Wodanstr. 7

D-42555 Velbert, Germany,
Conen@gmx.de

++Information Systems and Software Techniques,
University of Essen, Universitätsstraße 9,

D-45141 Essen, Germany,
Reinhold.Klapsing@uni-essen.de

Abstract. RDF may be considered as an application of XML intended to inter-
operably exchange semantics between Web applications. In its current form, this
objective may be hard to reach. Even if the semantical gems hidden in the RDF/RDFS
specification are precisely captured, as, for example, in the axiomatic formalizations
currently available, the useabilty of RDF’s concepts and constraints is limited: RDF
offers a data model but does not specify the processing of RDF-encoded data. RDFS
describes some basic (ontological) concepts and constraints but does not specify
the processing of RDFS-encoded ontological information. The expressiveness of
the constraints is rather limited and no clear means of providing semantics for new
concepts and constraints are specified. This paper presents one possible approach to
overcome this weaknesses. The definition and interpretation of semantics and the
processing of the RDF-encoded information will be delegated to a host formalism
(first order logic). An elaborated example specifies an extended set-algebraic range
constraint and applies the extended vocabulary to a security management task. The
definition of semantics is made explicit in the RDF Schemata. The new constraints
and concepts are added to the concepts and constraints of an underlying axiomatic
interpretation of RDF(S). A Prolog-based implementation of the approach, the RDF
Schema Explorer, which is available on-line, is presented. The tool allows to process,
validate, query and extend a FOL interpretation of (extended) RDF Schemata.1

Keywords: Semantic Web, RDF, Semantic Extensibility, Host Formalism, Prolog

1This paper draws from an earlier paper that we will present at the German Wirtschaftsinformatik confer-
ence.

Valued Sony Customer
 181

1 Exchanging Semantics on the Web

Semantic annotation of data becomes increasingly important, as increasingly complex inter-
actions, involving a multitude of actors, call for a shared and common understanding of the
exchanged information. Semantic annotation may enable intelligent search instead of key-
word matching, query answering instead of information retrieval [7]2, knowledge base defi-
nition instead of data format exchanges etc. The Semantic Web Activity of the World Wide
Web Consortium (W3C) emphasizes the importance of semantics for the further develop-
ment of the Web. The Resource Description Framework (RDF) [9, 2] may develop into one
of the foundations of the Semantic Web by enabling semantic interoperability. RDF intends
to provide a standard for describing the semantics of information via metadata descriptions
(compare [7]).

For the Semantic Web to scale, independent and heterogenous actors (users, agent, tools)
must be able to exchange and process (meta-)data based on a common semantic interpreta-
tion. One may question if RDF provides the means to achieve this. We want to emphasize two
issues here: (1) most aspects of the RDF Schema specification are expressed informally, and
(2) the concepts and constraints of the RDF Schema specification do not provide sufficient
expressiveness and lack a clear extension mechanism.

The first issue has been addressed before3 – in [4] we chose first order logic (FOL) to
express the main concepts and constraints defined in the RDF specifications. The main benefit
of using FOL is that it is a well-studied expression mechanism with a commonly agreed-upon
interpretation. This has been utilized in theRDF Schema Explorer, a Prolog-based tool we
developed that integrates Jan Wielemaker’s RDF parser [11] and the axioms given in [4]. A
Web-based version of the RDF Schema Explorer is accessible online [10]. It allows to query
and validate RDF descriptions not only on the statement level but also with respect to the
facts and rules that capture the semantic concepts and constraints of RDF.

The second issue has been discussed in the context of modeling ontologies in RDF(S),
see [5]. Staab et al. state about RDF(S) that “the lack of capabilities for describing the se-
mantics of concepts and relations beyond those provided by inheritance mechanisms makes
it a rather weak language for even the most austere knowledge-based systems”. They pro-
pose an approach that extends the semantics of vocabularies expressed in RDF(S) via axioms
which are considered as objects that are describable in RDF(S).

Our work, to be discussed below, can be seen as a combination of the work cited above4.
We also provide means to explicitly specify the (axiomatic) semantic of properties from
within RDF, compare Figure 1. This capability is implemented and available in the RDF
Schema Explorer [10].

Furthermore, the definition of extended vocabularies is based on the axioms that capture
the core RDF(s) concepts and constraints. These axioms are also available accessibly and
explicitly. This tight integration of the RDFS concepts / constraints with the extended seman-

2Fensel provides an instructive overview of rationales for (ontology-driven) semantics in different network-
ing contexts.

3Though, unfortunately, it is not yet on the issue list of the current RDF working group to provide some more
formal (axiomatic) semantics for RDFS, so this effort documents only one possible, not-standardized attempt to
capture the meaning of RDF Schema

4While we implemented the RDF Schema Explorer without knowledge of the approach of Staab et al., we
nevertheless very much agree with their rationales for making axioms available “as objects that are describable
in RDF(S)”. We would like to recommend their paper as a complementary source of well-chosen arguments for
extending RDFS with explicitly available axioms

Valued Sony Customer
 182

Non-formal Semantics Formal Semantics

p1 p2

p3
p4

p5

+ +
Semantics expressed in Prose Semantics expressed in a Host Formalism

 <rdf:Property rdf:ID="path">
 <rdfs:isDefinedAs rdf:parseType="Literal">
 path(S,O) :- statement(S,path,O).
 path(X,Z) :- statement(X,path,Y), path(Y,Z).
 </rdfs:isDefinedAs>
 </rdf:Property>

 <rdf:Property rdf:ID="path">
 <rdfs:comment rdf:parseType="Literal">
 The semantic of this property is used to
 express transitiv path relations.
 </rdfs:comment>
 </rdf:Property>

risks leads to

RDF Schema
for Security

RDF Schema
for ebRDF

RDF Schema
for Agents

RDF Schema
for Security

RDF Schema
for ebRDF

RDF Schema
for Agents

RDF Tool
for Security

RDF Tool
for ebRDF

RDF Tool
for Agents

Generic
RDF Tools

able to
process

able to
process

able to
process

able to learn
to process

Figure 1: Defining more sophisticated semantics with a host formalism. In the left part of the figure, semantics
are informally described within rdfs:comments. This may lead to the development of a plethora of interpretation-
specific RDF tools. This is contrasted with the approach to make (axiomatic) meaning explicitly available, thus
making it generally accessible for precise and interoperable interpretation (within the limits of the chosen host
formalism as far as it extends RDFS).

tics, as well as the availability of a prolog-based implementation maybe considered as the
main difference to the work of Staab et al.

Below, we will demonstrate this integration by means of an application that especially
emphasizes the use of an extended range constraint in an access-control context. The remain-
der of this paper is structured as follows. In Section 2 the extension mechanisms is presented.
We describe how theRDF Schema Exploreroperates and which basic predicates are provided
to query an RDF description. In Subsection 2.1 the extension mechanism, used to formally
define more sophisticated semantics in RDF schemata, is explained. An example, taken from
an access control context, is presented in Subsection 2.3 to demonstrate the extension mech-
anism and the related RDF syntax. We include a brief discussion of one of the core concepts
of RDFS, the range constraint. In Section 3 the paper is concluded with a brief discussion of
the presented approach.

2 Specifying Extensible Semantics in RDF

Below, the RDF Schema Explorer [10] is presented that allows to query RDF models not
only on a statement level but also with respect to the facts and rules that capture the semantic
concepts and constraints of RDFS. For this purpose, a number of pre-defined predicates is
available. This also allows to validate the models against this RDFS rule set. In addition, it
is possible to define the semantics of newly introduced predicates from within RDF and to
query/check/validate these extended models.

Valued Sony Customer
 183

Predicate Purpose
statement(S,P,O) Contains the basic facts of the knowledge base.
res(R) Gives the resources.
lit(O) Gives the literals.
reifies(R,S,P,O) R reifies the (not necessarily present) triple[S,P,O] .
reifyingStatement(R) R fulfills reifies/4 for some S,P,O.
reifies fact(R) R fulfills reifies/4 for some S,P,O and the triple[S,P,O] is indeed

in the knowledge base.
subClassOf(C,D) Transitive predicate that captures the relation that is expressed with the

rdfs:subClassOf property.
instanceOf(R,C) Transitive predicate that captures the relation that is expressed with the

rdf:type/rdfs:subClassOf properties.
subClass cycle violation(C) This is true if the knowledge base allows to infersubClassOf(C,C) .
subPropertyOf(X,Y) A transitive predicate that captures the relation that is expressed with the

subPropertyOf predicate.
subProperty cycle violation(P) This is true if the knowledge base allows to infersubProper-

tyOf(P,P) .
domain constrained property(P) At least one statement that specifies a domain constraint is present for

property P.
domain(X,P) X is an instance of one of the classes that are in the domain of P.
domain violation(S,P,O) This is true if a statement[S,P,O] is in the knowledge base, and P is

domain-constrained and S is not in the domain of P.
is range(C,P) C is (one of) the range restriction(s) for P.
range cardinality violation(P) There are (at least) two different range restrictions for P.
has range(P) P is range-constrained.
range(X,P) X is an instance of (one of) the class(es) to which the range of P is con-

strained to.
range violation(S,P,O) P is range-constrained, the statement[S,P,O] is in the knowledge base

and O is not in the range of P.
violation(T,S,P,O) A convenience predicate that collects the above violations. T will show

the type of the violation and S,P,O will be the violating triple - with
the exception ofrange cardinality , where S will be the violating
predicate and O will be one of the ranges S should be constrained to. In
this case, all ranges that are given will be shown as different instances of
violation .

Table 1: A collection of the predicates that axiomatize the RDF Schema constraints.

The tool works as follows. First, some RDF-File will be fed into the SWI-Prolog-based
RDF parser5. This file will be parsed and a relation will be created that contains the triples,
e.g.[S,P,O], in a relationstatement(S,P,O)).6

The slightly modified parser tries tonormalize the URIs–no matter, if a resource is
given in subject, predicate, or object position, the parser tries to transform it into the for-
matnamespace:resource name. This makes querying much easier. Furthermore, some form
of normalization is necessary to be able to discover thatxxx:yyy andURI of xxx#yyy are (or
better: “represent”) indeed the same resource.

Now, one could already query this simple triple database. The tool offers a query
field allowing to ask the Prolog engine things likestatement(S,rdf:type,O) or

5Credits go to Jan Wielemaker. Some minor modifications have been made related to namespaces.
6Note that we do not assumeper sethat every triple encodes an instance of a binary relation. As has been

discussed in [5], a triple plus a reification and a simple negated truth predicate may easily be used to imply
intentions that render the mapping to binary relations faulty – e.g. triple [S,P,O], plus Reification R representing
[S,P,O], plus triple [R hasTruthValue FALSE] may express that it is known that [S,P,O] is not true.

Valued Sony Customer
 184

setof(O,statement(S,P,O),Z) . While it is certainly useful to know a little bit about Pro-
log, it is not necessary, because the tool offers a choice of predefined queries from a pre-
selection list.

However, this would not be completely satisfying. As one will normaly use con-
cepts/constructs from RDFS, the fact and rule base that has been outlined in the paper “A
logical interpretation of RDF” ([4]) is provided. The effect is that the knowledge level predi-
cates that are briefly explained in Table 2 can be used to check and query a model with respect
to the RDF schema constraints.

In addition, we have defined a number of additionalconvenience predicates. Most
of them can be chosen from the pre-selection menu on the query form. An example is
show statements(S,P,O) where a value for any of the variables S,P, or O cab be substi-
tuted in and a list of the triples containing the substituted value at the corresponding position
will be generated.

While this all makes it rather easy to play with the effects of RDF schema concepts and
constraints, one will soon discover that the semantics implied by RDFS are pretty general
(not to say “weak”). We therefore allow to introducesemantics on top of the basic facts and
rules which makes it possible to specify more precisely what a modeler intends with her
predicates. This can be done in two ways:

1. Either, some Prolog rules may be directly keyed into the query field, for example

assert(trans_rel(S,O):- statement(S,path,O)).
assert(trans_rel(S,O):- statement(S,path,Z), trans_rel(Z,O)).

which defines the predicatetrans rel to represent a transitive propertypath . This would
allow to inquire if two resource are transitively related, or

2. the RDF-level mechanism that we provide to define the semantics of predicates within
RDF documents is used. This mechanism will be discussed in some detail in the following
subsections.

2.1 The Extension Mechanism

The mechanism to be described allows to provide the semantics for properties within RDF
schema declarations. A special predicaterdfs:isDefinedAs is available to extend the basic
rule set with additional semantics for newly defined properties (it is also possible to define
the basic rule set this way). The interpretation of the schemata will rely on a suitably chosen
host formalism. For the current implementation, the Prolog-flavor of first-order logic has been
selected.

The example below, defining the transitive propertypath , can be fed directly into the
RDF Schema Explorer.7

<?xml version="1.0"?>
<RDF

xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

7Note, however, that to make it exiting, some resource that are related via the path property would be re-
quired.

Valued Sony Customer
 185

xmlns:rdfs="http://.../TR/2000/CR-rdf-schema-20000327#">

<rdf:Property rdf:ID="path">
<rdfs:isDefinedAs rdf:parseType="Literal">

path(S,O) :- statement(S,path,O).
path(X,Z) :- statement(X,path,Y), path(Y,Z).

</rdfs:isDefinedAs>
</rdf:Property>

</RDF>

Note the use ofstatement above, which is meaningful because all predicates that are
defined in the basic rule set are accessible.

In the current version of the RDF Schema Explorer, onlyProlog codemay be provided
(to be read by SWI-Prolog in the sequence that is implied by the XML serialization8). In
future versions, other languages (such as implementations of Description Logics [1]) may be
allowed as well.

2.2 An Advocacy for a set-algebraicrange -constraint

In RDFS, the applicability and expressiveness of the range constraint is rather limited. To see
this, first a brief review of (our version of) the intended semantics of the range constraint in
the current version of RDFS is given. In [4] the range constraint has been captured as

is_range(X,P) :- statement(P,rdfs:range,X).
has_range(P) :- is_range(_,P).
range(X,P) :- is_range(C,P), instanceOf(X,C).
range_violation(S,P,O) :- statement(S,P,O), has_range(P), not(range(O,P)).

In RDFS, the following further restrictions apply.

1. At most one range constraint is allowed.

2. Only two distinguished sets of entities, namelyResourcesandLiteralsexist.

3. The semantics of subclassing can be captured with the rule

instanceOf(I,C) :- statement(I,rdf:type,C).
instanceOf(I,D) :- statement(I,rdf:type,C), subClassOf(C,D).

With an open-world assumption, not much could be deduced from a range constraint9, be-
cause knowing that the range of a propertyp is constrained to the setX ⊂ Resources and

8Unfortunately, in standard SLD-resolution-based Prolog, sequence does matter. This matches, however,
naturally with XML (and not quite so naturally with RDF, which does not use sequence information with the
notable exception of Seq-type containers). If one would parse the XML serialization, compute triples from
it, scramble the triple sequence and subsequently start to assert the property definitions, this might lead to a
behaviour that was not intended – however, it would conform to the notion of RDF as being set-oriented.

9We do not infer types from rangeconstraints. Rationales: Two possible interpretations of therange con-
straint have been discussed (RDF-IG, Rdf-logic), (a) theconstraintand the (b)axiominterpretation. Roughly,
(a) says that a propertyp may (only) be applied to instances of classes that are in the range ofp while (b)
states that, from using a resourcer as a value of a range-constrained propertyp, it can be infered thatr
has the type of the range ofp. Formally, both interpretation can be formulated asinstanceOf(O,C) ←
statement(S, P,O), range(P,C), with the difference that, with the constraint interpretation, we have to ask
if this is a (logical)consequenceof the known statements (facts) and rules (axioms) while, with the axiom
interpretation, this will be treated as one of the rules/axioms that allows us to infer type information (and no

Valued Sony Customer
 186

knowing that a resourcer is an element of a setY ⊂ Resources does not allow to conclude
that attaching a valuer to pwould violate the range constraint. This would only be reasonable
if it would be known thatX andY are disjoint. However, this information is only available for
Literals andResourcesand is not expressible in RDF for the relation between two (or more)
arbitrary subsets ofResources. Assuming that the world is closed and complete, one could ar-
gue that two subclassesX, Y of a classR are disjoint if no entity is known that is an instance
of both classes. Nevertheless, two problems remain: schemata are mostly used to guide the
design/evolution of models, ie. not all instances will be known at schema design time – and
introducing further information may render earlier decisions inconsistent (because adding a
type information to a resource may show that two classes are in fact not distinct but overlap-
ping etc.) – SO, considering a world as complete is dangerous with respect to inter-temporal
validity. In addition, only a richer set of constraints (including set-union, set-difference and
set-disjunction) would allow to specify all constraints that seem reasonable if the range of
a property should be restricted. To see this consider the following: The are two classes,C1
andC2, and a propertyp. With “reasonable” we mean the following range constraints: for
[x,p,y] , range(p,Exp) may constrainy to be an element ofExp defined as

Exp := C1 ∪ C2 (y in C1 ORy in C2)
Exp := C1 ∩ C2 (y in C1 AND y in C2)
Exp := C1\C2 (y in C1 AND y NOT inC2)
Exp := C2\C1 (y in C2 AND y NOT inC1)
Exp := (C1\C2) ∪ (C2\C1) (y in C1 XOR y in C2)
Exp := !(C1) (y not inC1)

An often suggested extension of RDFS is to allow multiple range constraints and to interpret
these constraints as binding the allowed range to the disjunction of the classes. However,
this would restrict the interpretation of multiple range constraints to one (limited) case of
the cases given above10. Below, we will suggest a solution that not only conforms to RDF but
also offers a flexible and general way to specify range constraints. The required interpretation
can be encoded on schema level, making it possible to specify and enforce differenttypesof
range constraints in different application domains.

Below, only one range constraint will be allowed. This is sufficient if classes (or class
expressions) can be constructed from other classes (or class expressions). In this case, each
range constraint will point to exactly one class and theconstructionof the class directly
expresses the constraint. Above, theExp term represents the constructed class and the right
hand side gives the construction expression. An example for applying a range constraints
using a constructed class is:

validation will be possible). We adopt the practice of the examples in (Sec. 3.1, Sec. 7.1 of [2]), where types
are assigned to resources with therdf:type/rdfs:subClassOfproperties, and the range-constraint is used to “state
that a. . . property only ´makes sense’ when it has a value which is an instance of the class. . . ”, allowing
for validation. This conforms to interpretation (a) above. Please note that now, no types of resources will nor
should be infered, instead it is possible to check (with the range constraint) if properties are applied to resources
of the correct type (with rdf:type, rdfs:subClassOf or subproperties of these properties as the available devices
to provide typing information).

10A solution could be to introduce specific range constraints / range constraint types for all of the above
cases. This is, however, problematic, because it does not scale very good to “mixed” range dependencies with
3, 4, . . . , n classes.

Valued Sony Customer
 187

[C1,rdf:type,rdfs:Class]
[C2,rdf:type,rdfs:Class]
[A,rdf:type,ConstructedClass]
[A,isConstructedFrom,"C2 \ C1"]
[p, rdfs:range, A]

With [X, rdf:type, C1] , X would violate the intended range constraint if it would be
chosen as a value forp.

If it is assumed that the object “C2 \ C1” is modeled as a literal, the above solution can
be formulated as well-formed RDF easily. However, to interpret it, an application-level check
of the class construction semantics would be required. This is not really nice, because range
constraints seem to be too important to leave their semantics to “proprietary” vocabularies
and interpretations, but this might be a matter of taste. With respect to the intended interop-
erability based on RDF schemata, making the semantics of the constructs expressible within
RDF seems to offer a more interoperable solution. In fact, the propertyisConstructedFrom

denotes a multi-ary relation between classes. This can be transformed (generally) into a se-
quence of (3-ary) “atomic” set-algebraic operations (expressed below as nested tuples), as in
the following example that expressesA = (C1 ∩ C2)\C3.

[A1, intersection, [C1,C2]]
[A, difference, [A1, C3]]

In RDF, this is expressible using reification and a suitable interpretation of the reified state-
ments:

[A1, rdf:type, rdf:Statement]
[A1, rdf:subject, C1]
[A1, rdf:predicate, rdfsets:intersection]
[A1, rdf:object, C2]

[A, rdf:type, rdf:Statement]
[A, rdf:subject, A1]
[A, rdf:predicate, rdfsets:difference]
[A, rdf:object, C3]

Suitably interpreted, this allows to express a set algebraic range constraint like:

[p, rdfsets:range, A]

2.3 Sharing Security Schemata – An Example

In the following we demonstrate how such set constructs can be defined in an RDF-conform
manner by applying the above introduced extensions mechanism to the domain of role-based
access control. The semantics are build upon the basic RDF rules given in [4]. In the example
below11, the task is to decide if access to certain documents should be granted to certain users.
The decision depends on the membership of users in certain groups12. Figure 2 depicts the
specific situation.

11The RDF source of the following example is easily accessible as part of the RDF Schema Explorer on-line
demonstration [10].

12Conceptually, membership in groups or role assignment can both be represented with set-algebraic class
expression – and this is the mechanism used in this example.

Valued Sony Customer
188

External UsersInternal Users

= Bad Guys

User 2

User 1

Figure 2: Access shall only be granted to users in the white section of the above venn diagrams, i.e.,bad guys
like user 1 should not get access.

Three new predicates are introduced, namelyunion, differenceandintersection13. These pred-
icates can be used to construct classes from other classes with the help of binary relations and
reification, both being completely valid RDF constructs. This will be utilized to construct
classes from set-algebraic expressions over other (constructed) classes.

The extension is based on the already introduced semantic primitiveisDefinedAs(to ease
the demonstration, we assume that the property is in therdfs namespace). To make it possi-
ble to mix meta-schema, schema and instance expressions in the example below, we adopted
the following convention: if a namespacethis# is introduced, the namespace abbreviation
will be omitted during the parsing process. This makes it possible to use the namespace
within the document while still being able to normalize the resource names to make them
easily useable for querying the model.14.

First, a subclass ofrdfs:Class , ConstructedClass is introduced. The rules described
above are used to define the semantics of the newly introduced predicates. Additionally, the
semantics of both thetype and therange property are (monotonically) extended to be able
to cope with constructed classes.

<?xml version="1.0"?>
<RDF

xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://.../TR/2000/CR-rdf-schema-20000327#"
xmlns:rdfsets="this#">

<!-- Meta Schema definitions -->
<rdfs:Class rdf:ID="ConstructedClass">

<rdfs:subClassOf rdf:resource=
"http://.../TR/2000/CR-rdf-schema-20000327#Class"/>

</rdfs:Class>

<Description
about="http://www.w3.org/1999/02/22-rdf-syntax-ns#type">
<rdfs:isDefinedAs rdf:parseType="Literal">

constructed_class(C):-instanceOf(C,’ConstructedClass’).
</rdfs:isDefinedAs>

</Description>

13A NOT will not be introduced because it allows to formulate unbounded class expressions, ie. expressions
that depend on an (unknown) universal set. Set-difference contains implicit (bounded) NOT constraints and is
sufficient for most purposes.

14The reader may adopt this practice with self-developed extension schemata to make it easy to feed schemata
and instances as one document into the RDF Schema Explorer [10].

Valued Sony Customer
 189

<Property rdf:ID="union">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = union, instanceOfSet(X,S).
in(X,S,P,O) :- P = union, instanceOfSet(X,O).

</rdfs:isDefinedAs>
</Property>

<Property rdf:ID="difference">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = difference,
instanceOfSet(X,S), not(instanceOfSet(X,O)).

</rdfs:isDefinedAs>
</Property>

<Property rdf:ID="intersection">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = intersection,
instanceOfSet(X,S), instanceOfSet(X,O).

</rdfs:isDefinedAs>
</Property>

<Description about=".../CR-rdf-schema-20000327#range">
<rdfs:isDefinedAs rdf:parseType="Literal">

instanceOfSet(X,A) :- constructed_class(A),
reifies(A,S,P,O), in(X,S,P,O).

instanceOfSet(X,A) :- instanceOf(X,A).
range(X,P) :- is_range(C,P), instanceOfSet(X,C).

</rdfs:isDefinedAs>
</Description>

Now the schema definitions follow, expressing thatInternal Users, External Users, and
Bad Guys are plain classes and thatAll Users andTrusted Users are constructed classes,
with All Users = Internal Users ∪ External Users andTrusted Users = All Users \
Bad Guys.

<rdfs:Class rdf:ID="Internal_Users"/>
<rdfs:Class rdf:ID="External_Users"/>
<rdfs:Class rdf:ID="Bad_Guys"/>

<rdfsets:ConstructedClass rdf:ID="All_Users">
<subject rdf:resource="#Internal_Users"/>
<predicate rdf:resource="#union"/>
<object rdf:resource="#External_Users"/>
<type rdf:resource=".../22-rdf-syntax-ns#Statement"/>

</rdfsets:ConstructedClass>

<rdfsets:ConstructedClass rdf:ID="Trusted_Users">
<subject rdf:resource="#All_Users"/>
<predicate rdf:resource="#difference"/>
<object rdf:resource="#Bad_Guys"/>
<type rdf:resource=".../22-rdf-syntax-ns#Statement"/>

</rdfsets:ConstructedClass>

Access will be granted according to a closed security policy that is, all accesses have to

Valued Sony Customer
 190

be allowed explicitly. This will be expressed by attaching a propertyAccessAllowedFor to
resources that is constrained to the rangeTrusted Users .

<Property rdf:ID="AccessAllowedFor">
<rdfs:range rdf:resource="#Trusted_Users"/>

</Property>

The following instance definitions will entail a range constraint violation.

<Description rdf:ID="user_1">
<type rdf:resource="#Internal_Users"/>

</Description>

<Description rdf:ID="user_1">
<type rdf:resource="#Bad_Guys"/>

</Description>

<Description rdf:ID="user_2">
<type resource="#External_Users"/>

</Description>

<!-- Objects to restrict access to: -->
<rdfs:Class rdf:ID="Important_Documents"/>

<rdfsets:Important_Documents rdf:ID="Weak_Secret_1">
<rdfsets:AccessAllowedFor rdf:resource="#user_1"/>
<rdfsets:AccessAllowedFor rdf:resource="#user_2"/>

</rdfsets:Important_Documents>
</RDF>

Here,user 1 is known as a bad guy, accordingly, he should not be granted access. In fact, the
range constraint onAccessAllowedFor is violated. To see this, consider the extended rule
set for the set-algebraic range constraint:

/* RDFS rule set */
is_range(X,P) :- statement(P,rdfs:range,X).
has_range(P) :- is_range(_,P).
range(X,P) :- is_range(C,P), instanceOf(X,C).

/* Extension */
range(X,P) :- is_range(C,P), instanceOfSet(X,C).

/* Detecting the violation (from RDFS rule set) */
range_violation(S,P,O) :- statement(S,P,O), has_range(P), not(range(O,P)).

The RDF descriptions above allow to derive thatuser 1 is not a member of the constructed
classTrusted Users and thus, is not in the range ofAccessAllowedFor .

We hope that this simple example may already demonstrate that the above mechanism,
together with a Prolog engine, is a pretty powerful instrument todefine/extend semantics, to
validate documentsagainst RDFS and user-provided constraints, and toquery a model on the
knowledge level. This may help to leave the simplistic triple structure behind and to capture
the meaning of (extended) vocabularies more precisely. It allows to develop domain specific
vocabularies build upon the formalized RDF/RDFS constraints. These vocabularies can be
re-used in schema definitions for other domains as well. The RDF Schema Explorer will
support this with dynamic loading and incremental interpretation of schema definitions (via
HTTP).

Valued Sony Customer
 191

3 Discussion

The approach outlined above allows to define RDF (meta-)schemata that precisely capture
the semantic intentions if interpreted within a suitable host formalism. The approach rep-
resents the intended semantics of RDF schemata explicitly, making it possible to treat the
definition as first-class resources within RDF15. The approach is paradigm-independent, as it
allows to select different host formalisms for specific purposes16. The specific Prolog-based
instantiation of the approach is expressive as it allows to utilize the available expressiveness
of Prolog. Furthermore, production-quality implementations of Prolog are widely available.
It may be asked why pure Prolog or any other KR Language (like KIF/SKIF) has not been
chosen as an implementation language for the semantic web. We think that constraining peo-
ple to a certain implementation language may not always be a good idea. There are always
pros and cons for a certain implementation language. We propose to give an implementer
the possibility to use a suitable implementation language for her application domain. Pure
RDF/RDFS remains to be an exchange mechanism for (rudimentary) knowledge while an
implementer should have the choice to integrate this basic knowledge (for example based on
an axiomatization of RDFS) with more elaborate semantics defined on top of a suitable host
formalism (with the consequence that this part of the knowledge may not be interpretable in
different host formalisms).

To summarize: We presented a detailed example that demonstrates the use of the involved
techniques in an access control context. The Prolog-based RDF Schema Explorer that we
developed allows to validate and query such extended models. Both, the tool and a workable
version of the example are accessible on-line. Besides being able to interpret (extended) RDF
schemata, the tool is suitable to support the prototyping of domain-specific schemata, as the
semantics of the defined properties can be changed on the fly and the consequences can be
inspected utilizing the convenience predicates (such asviolation , show classes , etc.).

We expect that the interoperable definition of meta-schemata will develop into a neces-
sity, once the formulation of complex semantic constraints in various emerging application
domains such as cooperative security management, automated business contract negotiation
etc. – all involving a number of autonomous partners and, thus, exhibiting a need for se-
mantic interoperability – is identified as a key requirement for the success of the underlying
collaborations.

References

[1] Alexander Borgida. Description Logics in Data Management.Knowledge and Data Engineering,
7(5):671–682, 1995. http://citeseer.nj.nec.com/borgida95description.html.

[2] Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification 1.0. Candi-
date Recommendation, W3C, March 2000. http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

15This allows to apply the RDF concepts to describe/relate the semantic definitions as well. For example, new
properties expressing containment, semantic dependencies, abstraction etc. can be defined and used, which may
ease to maintain and re-use the (meta-) schemata.

16Both, making the semantics of the underlying (meta-)concepts explicit and being not bound to a specific
world view / paradigm (such as, for example, ontology-based agent modeling), renders our approach different
from such languages as OIL [3, 6] or DAML [8] that offer a set of non-manipulable primitives whose semantics
are not expressed in the RDF-based languages themselves. This necessarily restricts the applicability of the
languages to domains/applications that exhibit a “natural” and “close” fit with the concepts the languages offer.

Valued Sony Customer
 192

[3] Jeen Broekstra, Michel Klein, Dieter Fensel, Stefan Decker, and Ian Horrocks. OIL: a case-study in ex-
tending RDF-Schema. Technical report, ontoknowledge.org, 2000. http://www.ontoknowledge.org/oil/oil-
rdfs.pdf.

[4] Wolfram Conen and Reinhold Klapsing. A Logical Interpretation of RDF.Linköping Elec-
tronic Articles in Computer and Information Science, ISSN 1401-9841, 5(13), December 2000.
http://www.ep.liu.se/ea/cis/2000/013/.

[5] Wolfram Conen, Reinhold Klapsing, and Eckhart Köppen. Rdf m&s revisited: From reification to nesting,
from containers to lists, from dialect to pure xml. InProceedings of the Semantic Web Working Symposium
(SWWS), Stanford, August 2001.

[6] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a Nutshell.
Technical report, ontoknowledge.org, 2000. http://www.cs.vu.nl/ dieter/oil/oil.nutshell.pdf.

[7] Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce.
Springer, Heidelberg, 2001.

[8] Ian Horrocks, Frank van Harmelen, Tim Berners-Lee, Dan Brickley, Dan Connolly, Mike Dean, Stefan
Decker, Dieter Fensel, Pat Hayes, Jeff Heflin, Jim Hendler, Ora Lassila, Deb McGuinness, Peter Patel-
Schneider, and Lynn Andrea Stein. DAML+OIL Language. http://www.daml.org/2000/12/daml+oil-
index.html, December 2000.

[9] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax Specifica-
tion. Recommendation, W3C, February 1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[10] Web-based RDF Schema Explorer. http://wonkituck.wi-inf.uni-essen.de/rdfs.html.

[11] SWI-Prolog. http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

Valued Sony Customer
 193

Valued Sony Customer
 194

RDF M&S revisited: From Reification to
Nesting, from Containers to Lists, from

Dialect to pure XML
Wolfram Conen+, Reinhold Klapsing++, and Eckhart K̈oppen+++

+XONAR GmbH,
Wodanstr. 7

D-42555 Velbert, Germany,
Conen@gmx.de

++Information Systems and Software Techniques,
University of Essen, Universitätsstraße 9,

D-45141 Essen, Germany,
Reinhold.Klapsing@uni-essen.de

+++40Hz.org
343A Nature Drive
San Jose, CA 95123

eck@40hz.org

Abstract. The basic result presented is the following: with two (hopefully reasonable)
assumptions about the intentions behind the RDF model, it can be shown that the
RDF model and a model allowing for nested triple and lists of resources and triples,
can be mapped to one another (in both directions). This allows to establish a close
link between the RDF model and extended models recently suggested (SlimRDF [3],
XRDF [4]). Further, the approach may help to clarify some problems related to inter-
preting the roles of reification and containers in the RDF model.

1 Introduction

As RDF is considered to be a key ingredient of the evolving semantic web, lack of clarity
should be avoided.ReificationandContainersgave rise to a number of discussions. In this
paper, we propose an interpretation of these two constructs that may help to clarify this issue.
It also demonstrates, how complex expressions can be constructed from RDF that allow a
straightforward representation of the modeler’s intentions. The basic idea is as follows: In
RDF, if someone wants to express a relation between a statement and a resource or two
statements, she has to utilize reification. If a relation between an entity (be it a resource or
a triple or another group of entities) and a group of entities should be expressed, rdf:Bag,
rdf:Seq or rdf:Alt have to be used. Essentially, both constructs are needed to allow expressing

Valued Sony Customer
 195

nested or grouped constructs with flat triples. Both constructs are not properly tied into the
RDF model, for example, the meaning of attaching a predicate to a reificant1 is not fixed in
the model (ifr reifies [s, p, o] and [r, p2, o2] is given, is the intention to express[s, p, o] is
p2-related too2 or is the intention to take the triple literally, that isr is p2-related too2?).
Fig. 1 and Fig. 2 demonstrate the interpretation of a collection of flat-triple statements as one
nested triple.

/Home/Lassila

s:Title

rdf:Statement

s:Creator

D_001

rdf:Bag

Ora’s Home Page Ora Lassila

rdf:predicate rdf:predicate

rdf:_1 rdf:_2

rdf:subject rdf:subject
rdf:object rdf:object

s:Creators:Title

rdf:type

Figure 1: Demonstrating bags and reification (Figure 9 in [2])

rdf:type

rdf:Bag

/Home/Lassila Ora Lassila
s:Creator

Ora’s Home Page
s:Title

/Home/Lassila

1

2

Figure 2: An intention-equivalent nested representation.

We decided to fix the possible interpretation of the flat-triple constructsreificationandcon-
tainersby assuming that each reification is only a surrogate for the triple it represents and
each container is only a surrogate for a list of entities2, that is, in a natural representation of
the intentions, each reification and each container will be substituted by the represented triple
or list and all only technically necessary triples of the flat model will be eliminated. We will
argue that such a non-flat model captures theessenceof the initial set of statements. In the
following, the two underlying assumptions will be presented more precisely.

1.1 Assumptions

Let S be a set of flat-triple statements.
1This terminology will be explained shortly.
2An entity may be a resource, a literal, a statement or a list of entities.

Valued Sony Customer
 196

Assumption 1:Be r the reificant3 of the triple [s, p, o] as defined in [2], that is,
the setS contains the triples[r, rdf:subject, s], [r, rdf:predicate, p], [r, rdf:object, o] and
[r, rdf:type, rdf:Statement] (we will generally present triples in an infix4 sequence, that is
as [subject, predicate, object]). The reification is used in another statement, say[s1, p1, r].
Now, we assume that the intentions behind this subset of statements is to express thatp1 re-
latess1 to [s, p, o]. This intention can easily be captured in a model allowing nested triples
as [s1, p1, [s, p, o]].

Assumption 2:Be c a container, for example of type Seq, that is[c, rdf:type, rdf:Seq] ∈
S. The n-ary sequenceRC = (r1, . . . , rn) of resources contains the elements ofc, that is,
[r, rdf: i, ri] ∈ S for all i, 1 ≤ i ≤ n. The container is used in another element ofS, say
[s, p, c]. Now, we assume that the intentions behind this subset of statements is to express that
p relatess to (r1, . . . , rn). This intention can easily be captured in a model allowing for lists
of resources as[s, p, (r1, . . . , rn)].5

Based on these two assumptions, the role of containers and reification can intuitively be
described as allowing to express structure of arbitrary complexity with the limited instrument
of a model based on flat triples.

In the next section, an extended model will be suggested that directly captures the under-
lying intentions of the constructsreificationandcontainerby introducing nesting and lists. In
Section 3, we will prove that every RDF model can be expressed as an extended modeland
that every extended model can be expressed as an RDF model. This may suggest that the more
comprehensive representation of the RDF model (that is: the extended model) may be pref-
ered when RDF models are used in applications. In Section 4 this aspect is briefly explored
and two representation of the extended model, namely a graph notation and a straightforward
XML DTD are suggested. In Section 5, two issue that explore the relation between structural
and semantical aspects may give hints on possible directions for developing semantics for the
extended models. Section 6 concludes the paper with a brief discussion.

2 An Extended Model

Let A be a reasonably selected alphabet. LetA∗ be the set of strings defined overA. The
following grammar defines expressions overA∗ of the formR recursively as

R ::= r | ′(′ R ′,′ R ′)′ | ′[′ R ′,′ R ′,′ R ′]′

Here,r denote elements ofA∗. (Sub-)Expressions of this form will be calledatomic. A (sub-
)expression of form R is calledresource. A (sub-)expression of form R which matches the
pattern[R,R,R] is calledstatement. A (sub-)expression of form R which matches the pat-
tern(R,R) is calledlist. Note that we will frequently use(r1, r2, . . . , rn) instead of the more
cumbersome(r1, (r2, (. . . , (rn−1, rn) . . .) where this can be done without the risk of misin-
terpretation. We will also leave out the comma regularly. Furthermore, we will only consider

3In [2], this is calledreified statement, which might be a bit confusing–there is something that is reified, yes,
but that is the “original” statement[s, p, o]. Instead ofreificant, reifying resourcecould be used. Note, that it
would not be very useful to sayreifying statementbecauser is not defined to be a member of the setstatement
(which is a concept of the RDF model defined in [2]), insteadr has thetype rdf:Statement, which is, for the core
RDF model, only a string representing a resource, and requires an interpretation in the context of RDF Schema
and its constraints and concepts.

4infix with respect to the predicate.
5Note, that both assumptions together can be used to build list of statements etc.

Valued Sony Customer
 197

finite sets of finite expressions.

3 Relation between Extended model and RDF model

Let us begin with a remark: we will assume that the sets of statements of the RDF model that
we will consider below are, in a certain sense, well-behaved, that is, we will assume that no
reificant nor container is part of the (possibly complex) structure that it represents6. We will
capture this more precisely in an algorithm that tries to order resources in strata so that each
resource in a stratum represents structures that consist of resources of lower ranking strata.
The algorithm can also be used to detect whether its input (a set of statements of the RDF
model), is not well-behaved.

Below, we will show that extended model and RDF model can be mapped to another. First,
some definitions are needed to prepare the stage. In the following,s, p, o, s1, o1, r1, . . . , rn will
all be entities, that is, either an atom, a statement or a list if the extended model is considered
or resources or literals (only possible in object position) if the RDF model is considered.

Note that the definitions 1 and 3 can be applied to both models.

Definition 1 (Reification).
Given a resourcer and the following set of statements,T r:
T r = { [r, rdf:subject, s], [r, rdf:predicate, p],

[r, rdf:object, o],[r, rdf:type, rdf:Statement] }
Then,r is called areificantof [s, p, o] andT r is called areificationof [s, p, o].

Definition 2 (Reification: Derivation, Consequence).
Let u be a nested statement of the extended model of the form[[s, p, o], p1, o1]. Let r be a
reificant of [s, p, o] andT r be the corresponding reification. The setD = [r, p1, o1] ∪ T r is
called aderivationofu. u, in turn, is called aconsequenceofD (analogously defined foru =
[s1, [s, p, o], o1] and [s1, p1, [s, p, o]]). With respect to a setC of statements, we say thatu is
derivablein C if D ⊆ C.

Definition 3 (Container).
Given a resourcec and the following set of statements (withX ∈ {rdf:Seq, rdf:Alt,rdf:Bag}):
T c = { [c, rdf:type,X]} ∪ {[c, rdf: i, ri] | i ∈ N, 1 ≤ i ≤ n}. Then,c is called acontainer, T c

is called ann-ary container definitionand then-ary sequenceRc = (r1, . . . , rn) of entities
is called theelementsof c.

Definition 4 (Container: Derivation, Consequence).
Let u be a nested statement of the extended model of the form[(r1, . . . , rn), p, o]. Let c be
a container for the elements(r1, . . . , rn) of the Seq-type and letT c be the correspond-
ing container definition. The setD = [c, p, o] ∪ T c is called a derivation of u. u, in
turn, is called aconsequenceof D (analogously defined foru = [s, (r1, r2, . . . , rn), o] and
[s, p, (r1, r2, . . . , rn)]). With respect to a setC of statements, we say thatu is derivablein C if
D ⊆ C.

6In the RDF model, as it is described in [2], it is, for example, possible to reify a statement that contains the
representing reificant–which should, almost certainly, not be allowed. The same goes for containers containing
themself.

Valued Sony Customer
 198

Note that aconsequencecan not be a statement from the flat RDF model. However, the
derivationof a statement with only one level of nesting can completely consist of statements
from the flat model. To be able to define some notion of equivalence between sets of state-
ments from the extended and the flat model, we have to define how a deeply nested statement
can be derived recursively from a set of flat statements.

Definition 5 (Rooted, Root, Hull). BeO a set of flat statements from the RDF model. Let
N be a set of statements from the extended model. Letu be a statement from the extended
model. We say thatu is rootedin O if either
(1) u ∈ O or
(2) a derivationD of u can be given such that each statementt ∈ D is rootedin O.
We say thatN is rootedin O if every statementn of N is rootedin O. O is calledroot of
u if u is rooted inO; it is called minimal rootof u if it is a root of u and for any statement
t ∈ O, u is not rooted inO\{t}.O is calledroot ofN if every statementn ∈ N is rooted in
O; it is calledminimal rootofN if it is a root ofN and for any statementt ∈ O a statement
n ∈ N can be found such thatn is not rooted inO\{t}. We say thatN is a hull ofO, if O
is a minimal root ofN – we will alternatively say thatN andO are intention-consistent(or
simplyconsistent).

Example The following setO of flat statements is aminimal root(that is, no statement can
be removed fromO) for the nested statement [Gustaf says [Ecki likes (Reinhold Wolfram)]]:
{ [Gustaf saysr1], [r1 rdf:type rdf:Statement], [r1 rdf:subject Ecki], [r1 rdf:predicate likes]
[r1 rdf:objectl1], [l1 rdf:type rdf:Seq], [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram] }. The sets
{ [Gustaf says [Ecki likes (Reinhold Wolfram)]]} or { [Gustaf says [Ecki likes (Reinhold
Wolfram)]], [Gustaf saysr1], [r1 rdf:predicate likes} are, among finitely many others7, are
hullsof O.

We look for hulls that contain only the minimally necessary number of statements to
capture, with respect to the above asumptions, the intentions of the underlying set of flat
statements.

Definition 6 (Essence).BeO a set of flat statements from the RDF model. Let
NO = {N |N is a set of statements from the extended model∧ N is a hull ofO} be theset
of possible hullsofO. The subset ofNOmin = {N ∈ NO |@M ∈ NO with |M| < |N |} is the
set of minimal hulls. An element ofNOmin is called aminimal hull or essenceofO – we will
alternatively say thatN andO are intention-equivalent(or simplyequivalent).

Note that due to the definitions of derivations, the minimal hull of a given set of statements
from the RDF model is unique.

Example The minimal hull for the setO of the above example is{ [Gustaf says [Ecki
likes (Reinhold Wolfram)]]}.

Now, the following two propositions can be proved. The first one essentially states, that
each set of extended statements can be expressed as an intention-consistent set of flat state-
ments, while the second will show that each set of flat statements can be expressed as an
intention-equivalent set of extended statements.

Proposition 1: For each setN of statements from the extended model, a setO of state-
ments from the RDF model can be found such thatO is a minimal root ofN .

7In contrast, for a set of nested statements there is usually an infinite set of possible minimal roots due to the
possible variations in naming the necessary containers and reificants.

Valued Sony Customer
199

Proof: Intuitively, each nested statement can be expressed with a set of flat statements
that allows to derive, possibly incurring intermediate nested statements, the initial statement
(some care has to be taken not to confuse thesymbolsused in the model). Let us consider an
example:

Initial Expression: [Gustaf says [Ecki likes (Reinhold Wolfram)]]
First Step: [Gustaf says [Ecki likesl1]]
(add derivation of [l1 rdf:type rdf:Seq]
the list) [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]

Second Step: [Gustaf saysr1]
(add derivation of [r1 rdf:type rdf:Statement], [r1 rdf:subject Ecki]
the embedded [r1 rdf:predicate likes], [r1 rdf:objectl1]
statement) [l1 rdf:type rdf:Seq]

[l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]

This can be formalized as follows. BeCE a set of statements8 from the extended model. With
the following construction, an intention-consistent setCR of statements from the RDF model
can be determined.

Algorithm Flaten(In:CE)
(1)CR = ∅. Foreacht ∈ CE do
(2) Expand(t,0,CR)

(1) FunctionExpand(In: Expressiont, In: Int l, InOut: Set of StatementsE) returns aSymbol
(2) If t ∈ A∗ then returnt
(3) If Form(t) =Statement (matching[s, p, o]) then
(4) sr = Expand(s,l+1,E);sp =Expand(p,l+1,E);so = Expand(o,l+1,E)
(5) r =Symbol9(t);
(6) if (l = 0)10 thenE = E ∪ { [sr, sp, so]}; returnEmptySymbolelse

E = E∪ { [r, rdf:type, rdf:Statement],
[r, rdf:subject, sr], [r, rdf:predicate, sp] [r, rdf:object, so] }; returnr

(7) If Form(t) =List (matching(r1, . . . , rn)) then
(8) r =Symbol(t);
(9) E = E ∪ { [r, rdf:type, rdf:Seq]}
(9) For1 ≤ i ≤ n do
(10) si =Expand(ri,l+1,E)
(11) E = E ∪ { [r, rdf: i, si] }
(12) returnr;

Let us sketch the proof of the correctness of the algorithm: (1) The algorithm terminates. To
see this, consider the following: The functionExpandrecursively descents through the struc-
ture of its input expression. It will stop the descent in each branch of the structure as soon as

8Arbitrary sets of expressions resp. resources could also be allowed. This would require only a simple, but
unnecessary (for this presentation) extension.

9The functionSymbol returns a new symbol for each subexpressiont that is not already represented in the
flat model, otherwise, the already known symbol will be returned. This will be discussed below

10The top-level expression is always a statement. There is no need to reify this statement because the reificant
would be left unused (in this particular expansion).

Valued Sony Customer
 200

an element ofA∗ is found (which will ultimately be the case, as the expressions have been as-
sumed to be finite). Furthermore, each subexpression branch will be considered exactly once.
(2)CE and and the computed setCR are intention-consistent. To see this, consider the follow-
ing. First note that all statements added toCR are flat. The algorithm constructs a derivation
for each top-level statement by constructing derivations for each embedded expression while
returning from the descent. Thus, each statements ofCE is rooted in the constructedCR. CR

is a minimal root because no other statements but elements of derivations are added toCR.�

A note regarding the functionSymbol. In the algorithm, we have chosen to compute one
uniquename for literally identic subexpressions, that is if, say, the statement [Ecki likes
RDF] is encountered twice, it will be reified only once (although, to keep the algorithm above
simple, it will be flatened twice but this will result in an identic set of flat statements and the
redundancy will thus vanish due to considering sets). This makes it easy to identify literally
equivalent expressions in the flat model (they have the same “name”), it, however, may make
it more difficult to explore the differences in the meaning of multiple occurences of literally
identic expressions (this will have to consider the structural context of such expressions –
sensibly dealing with this kind of context should be made possible in the semantics build
upon this models, so, for a full discussion of the implications, precise objectives for semantics
are required. It is, nevertheless, easy to generate a new symbol for each occurence of literally
identic subexpressions, if this is found to be the better way to go).

Proposition 2: For each setO of statements from the RDF model, a setN of statements
from the extended model can be found such thatN is a minimal hull ofO.

Proof: (constructive) The resources used in the RDF model can be arranged in strata if
it is assumed that no circular definitions of reifications resp. containers exist (see below for
details). The following algorithm will either determine a stratification or detect that circular
references exist.

Algorithm Stratification(In:CE)
Initially, all resources and literals are unmarked.
[Compute Stratum 0]Mark all literals as being in stratum 0. Mark all resources that are
neither a reificant nor a container as being in stratum 0.
[Compute further Strata]while there is a resourcer that isunmarkedand all the resources
or literals that are represented byr (this set of entities will be calledE)11 are markeddo

Determine the highest marking, sayj, of a resource inR.
Mark r to be in stratumj + 1.

[Check validity] if an unmarked resource exists
then return “ERROR: there are mutually referencing structures”
elsereturn “OK - a stratification has been determined”.

With the above assumption of a finite input set and finite expressions, the algorithm eventually
terminates (in each round, an unmarked resource is marked). If the algorithm prints out the
“OK” message, the following condition will hold: each resourcer that represents a structure

11If r is a reificant and[s, p, o] is a statement thatr reifies thens,p ando are inE. If c is a container then
the elements ofRc (as defined above) are inE. Note that with the definition of container above, a set of flat
statement that defines an-ary container also defines(n − 1), (n − 2) . . . -ary containers. We assume thatE
contains all eintities that are elements of the container with the largest arity. Besides this solution for the case in
whichr represents more than one structure, all other cases should probably be considered an error (for example,
a resource that represents two statements or a statement and a container, or two non-inclusive containers).

Valued Sony Customer
 201

belongs to a higher stratum then the resources/literals that are part of the represented structure.
If the algorithm returns an ERROR message, at least one resource represents a structure
that contains either the resource or a structure that, if recursively dereferenced, contains the
resource.12

From finiteness follows that a highest ranking non-empty stratum, sayk exists. Further-
more, it follows from the construction that the strata that are formed by marking resources
and literals as their elements, are consecutively numbered.

Example This is an example of a mapping from a stratified set of flat statements to an
extended statement:
Input: { [Gustaf saysr1] [r1 rdf:subject Ecki], [r1 rdf:predicate likes], [r1 rdf:objectl1], [r1

rdf:type rdf:Statement], [l1 rdf:type rdf:Seq], [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]}
Stratum 0: { Gustaf Reinhold Wolfram Ecki says likes rdf:object rdf:type rdf:subject
rdf:predicate rdf:Statement rdf:Seq rdf:1 rdf: 2 }
Stratum 1: {l1}
Stratum 2: {r1}
Now a mapping along the stratification can be performed. First,{ [l1 rdf:type rdf:Seq], [l1
rdf: 1 Reinhold], [l1 rdf: 2 Wolfram] } is mapped to (Reinhold Wolfram), the statements
are removed from the initial set, and each occurence ofl1 is replaced by (Reinhold Wol-
fram), leading to the next set of statements (now already extended):{ [Gustaf saysr1] [r1

rdf:subject Ecki], [r1 rdf:predicate likes], [r1 rdf:object (Reinhold Wolfram)], [r1 rdf:type
rdf:Statement], [(Reinhold Wolfram) rdf:type rdf:Seq]}. Next, the set{ [r1 rdf:subject Ecki],
[r1 rdf:predicate likes], [r1 rdf:object (Reinhold Wolfram)], [r1 rdf:type rdf:Statement]} is
mapped to [Ecki says (Reinhold Wolfram)] which replacesr1, resulting in the minimal hull,
[Gustaf says [Ecki likes (Reinhold Wolfram)].

This is captured in the following algorithm. It will determine an intention-equivalent ex-
tended model,CE from a set of statements of the RDF model,CR.

Algorithm Nest(In: CR)
For stratums = 1 to k do

For all resourcesr in s do
if r is a reificantthen

Remove fromCR the four statements defining the reification
which hasr as a reificant.

Replace all occurences ofr in expressions inCR by the statement thatr reifies.
if r is a containerthen

Remove fromCR all statements of the form[r, i, ri] and
build a listRr from the resourcesri

Replace all occurences ofr in expressions inCR by the listRr

CE = CR.
Again, the proposition follows from the construction. �

The relation between the RDF model and the extended model relies on the two assumptions.
If these assumptions are not accepted as being a reasonable interpretation of the intentions
behind the RDF model, then the propositions and proofs given above do not hold. However,
the newly introduced model may still be considered as a reasonable, comprehensive alterna-

12Note that this can also be a chain of reifications and containers, that is, we consider it to be an error if a
container contains a reificant that reifies a statement that contains the container etc.

Valued Sony Customer
 202

tive to the RDF model due to its ability to capture complex expressions naturally. We will
try to illustrate this by suggesting two alternative representations in the next section, namely
a graphical notation and a XML DTD, which both may be considered as advantageous13 if
compared to the alternatives offered in the RDF M&S specification.

4 Graphical and XML Representations of the Extended Model

The following graphical examples and the XML DTD largely follow the presentation in the
XRDF discussion paper [4]. Both offer (reversibly mapable) alternatives to the statement/list
notation of the extended model.

4.1 The Extended Model as a Graph

The graphical language for the extended model provides the constructs oval (representing re-
sources) and directed labeled arcs (representing relations). Each oval representing a resource
of the atom-type has inscribed a content taken from the alphabetA∗. Each embedded oval
will be augmented with a number that is unique within the oval it is directly embedded in.
Numbers will be left out where possible (ie., in statements, where the ordinal number follows
from the direction of the arc, and in lists with one element only). A precise transformation to
and from the nested-triple notation of the extended model is straightforward (compare [4]).
Some examples of the graphical notation are given in the figures below.

XWMF Reinhold Klapsing

was created by

Figure 3: Representing “XWMF was created by
Reinhold Klapsing”

XWMF Reinhold Klapsing
was created by

Figure 4: The same statement, now neglecting the
fact that the predicate is also a resource (which is
the usual way).

XWMF Reinhold Klapsing
was created by

was said by

Eckhart

Figure 5: Representing “‘XWMF was created by
Reinhold Klapsing’ was said by Eckhart.”, a state-
ment about the previous statement.

XWMF Reinhold Klapsing
was created by

was said by

Eckhart

Porsche
was founded by

Dr. F. Porsche 2

1

Figure 6: Eckhart made two statements.

It is left to the reader to flaten the graphically represented statement of the extended model
to corresponding sets of flat RDF statements. This may suffice to demonstrate that already
mildly complex examples of modeling tasks are much more straightforward to formulate
(either graphical or in triple notation) with the extended model than with the flat model. Given

13Aware: subjective judgement. We hope, however, that some readers may share our opinion.

Valued Sony Customer
 203

Reinhold Klapsing

Eckhart Köppen

Wolfram ConenXRDF Document

were created byRDF-XRDF-Converter

XRDF-to-Flat-Triples

1

2

3

1

2

3

Figure 7: A group of people jointly created a collection of artifacts.

the intention-equivalence of the two models (based on the two assumptions stated above), the
extended model seems the more convenient way to express the intentions of set of flat model
statement in which reification and containers are used.

4.2 A pure XML syntax for the Extended Model

It is straightforward to represent the (few) ingredients of the nested/list model as an XML-
DTD (compare [4] with slightly different list and predicate definitions).

<!ELEMENT statement (subject, predicate, object)>
<!ELEMENT list (statement | atom | list)+>
<!ELEMENT atom (#PCDATA)>
<!ELEMENT subject (atom|statement|list)>
<!ELEMENT predicate (atom|statement|list)>
<!ELEMENT object (atom|statement|list)>

A conversion of an XML document that conforms to the above DTD into an extended model
is immediate. The algorithmFlaten from above gives a conversion to an RDF model. From
this, a XML/RDF representation (at least a direct, explicit representation where each state-
ment results in one description) can be derived easily.

Example: The statement [(XWMF wascreatedby ReinholdKlapsing) (Porsche
was foundedby Dr. F. Porsche) wassaidby Eckhart] , compare Figures 6 above, can
be “serialized” as follows:

<statement>
<subject><atom>Eckhart</atom></subject>
<predicate><atom>says</atom></predicate>
<object>

<list>
<statement>

<subject><atom>XWMF</atom></subject>
<predicate><atom>was_created_by</atom></predicate>
<object><atom>Reinhold Klapsing</atom></object>

</statement>
<statement>

<subject><atom>Porsche</atom></subject>
<predicate><atom>was_founded_by</atom></predicate>
<object><atom>Dr. F. Porsche</atom></object>

</statement>
</list>

</object>
</statement>

Valued Sony Customer
 204

There is a number of reasons that make pure XML an attractive alternative to the RDF/XML
serialization dialect, we refer the interested reader to the XRDF discussion paper for further
details. We will now briefly turn our attention to basic semantic aspects that are closely related
to the nested structure of expression of the extended model.

5 Some brief considerations of Semantics

To facilitate the authoring and deployment of meta-data, syntactical and structural simplic-
ity is needed. A layered approach has proven to be useful for the definition of models and
techniques (this is especially obvious in the context of XML-based standards, where XML
is the basis for other standards like namespaces which in turn are used in the definition of
XSLT).With the extended model proposed above, we define the syntax of a lowest layer,
make use of the structural primitives statement and list. On top of this basic structural model,
semantic definitions and interpretations can be layered. Though this is not the main topic of
the paper, we will briefly discuss two aspects that are related to semantical explorations of
nested structures.

5.1 Exploring/Propagating Meaning from Outside to Inside

For the task of designing suitable semantics with the extended model we will have to consider
a number of design options. We will propose one possible route and point out a few more
things that might come in handy. Our route makes use of the following key observation:
the semantics related to (sub-)expressions depend on their position within the surrounding
structure – that is, the semantics will be explored starting from the outermost part of the
structure and proceeding to the innermost part. Let’s consider an example that demonstrates
a simple kind of truth predicate.

[[sky color blue] hasTruthValue FALSE]]

or, in a flatened version

[r type statement][r subject sky][r predicate color][r object blue] [r hasTruthValue FALSE]

The following transformation and constraints will give the flatened version some meaning in
a FOL representation:

Transformation: Map each triple [s,p,o] into an instance of a predicate triple(s,p,o).

Constraints :
(1) reifies(R,S,P,O)←

triple(R,type,statement)∧ triple(R,subject,S)∧
triple(R,predicate,P)∧ triple(R,object,O).

(2) falsified resource(R)←
statementknown as true(R,hasTruthValue,FALSE).

(3) statementknown as false(S,P,O)←
triple(S,P,O)∧ reifies(R,S,P,O)∧ falsified resource(R).

(4) statementknown as true(S,P,O)←
triple(S,P,O)∧ not(statementknown as false(S,P,O)).

Valued Sony Customer
 205

The statement. . . -predicates could be used for further inferences. Note that further em-
bedding works out fine also, ie. falsifying falsified statements is possible. The key point here
is that the truth of the information contained in a triple will be propagated from the outer-
most expression to the innermost. This principle can be used to define more sophisticated
semantics as well, as would be necessary to give a proper meaning to expressions like

[Reinhold believes [Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]]

It is clear that the actual meaning of embedded expressions depends on the “semantical”
scope that is propagated from the outer predicates.

Scope 3: (believes Reinhold
Scope 2: (assumes Ecki
Scope 1: (hasTruthValue FALSE
Scope 0: (is Wolfram nice))))

What is actuallydonewith this information will depend on the proper definition of semantics
for predicates and their interaction. With respect to the above example the following ques-
tion should be answered: what should be the meaning of an elementary statement of which
someone believes that someone else assumes that its negation is true. Here, an “elementary”
statement can be defined as a statement that has a predicate that does not modulate the truth
value of the subject or object (likeis in the above example). This may suffice to show how
the meaning of statements generally depend on theirposition. From the intention-equivalence
of extended and RDF model shown above, it follows that this is also true for RDF models
– note, that the “position” of a statement in a complex structure is given by its occurence in
reifications/lists, for example, the following set of statements flatens the above expression:

[Reinhold believesr3]
[r3 subject Ecki] [r3 predicate assumes] [r3 objectr2] [r3 type Statement]
[r2 subjectr1] [r2 predicate hasTruthValue] [r2 object FALSE] [r2 type Statement]
[r1 subject Wolfram] [r1 predicate is] [r1 object nice] [r1 type Statement]

Note that there is no need (or better: no use) to “materialize” the intermediate “propositions”
like [Ecki assumesr2], for, if this would be done, an intention-equivalent extended model
would contain two statements:

[Reinhold believes [Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]]
[Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]

which is somewhat different from having only the first statement, because now, [Ecki. . .]
has become a factual statement. It should also be clear from this example that, within the
scope of different statements, literally identic subexpressions can have different meaning.
This also demonstrates that it is not necessary to give every occurence of literally identic
subexpressions an unique identity, because the actual meaning of each occurence depends on
its context, which is captured by the position of the subexpression within other expressions.

5.2 Abbreviating Expressions with Structural Transformations

It is possible to provide some kind of syntactic sugar with the help of structural transforma-
tions that map a “sugarized” notation to the regular extended model. Some possible transfor-
mations are discussed in [4]. This creates the possibility to specify for a predicate which type

Valued Sony Customer
 206

of transformation should be performed prior to interpreting the predicate. The transforma-
tions can also be applied recursively and can make use of indirection (see example below).
This touches upon basic layers of semantics for which an extensive discussion is beyond the
scope of this paper. We will therefore only give two brief examples.

The predicatelikes is defined to be of the transformation typen × m, that is a state-
ment of the form [(n1, . . . , nk) likes (m1, . . . ,ml)] will be expandedto the list of statements
([n1 likesm1] . . . [n1 likesml] [n2 likesm1] . . . [nk likesml]). So,

[Wolli likes (Reinhold Eckhart)]

is transformed to

([Wolli likes Reinhold] [Wolli likes Eckhart])

Further assume that a specific predicate,representedBy, can be used to givenamesto lists (a
similar predicate will exist for statements), like in

[(Reinhold, Eckhart) representedBy Friends]

Now, the type of the predicatelikescan be adapted to the possibilities ofindirection, that is if
a nameis encountered in subject or object position, the predicate will not be applied to the
name (which is a resource itself) but to resource or list of resources that is represented by
that name. We will denote the transformation type oflikesaccordingly asin× im. Now, the
following becomes possible:

[Wolli likes Friends]

which will result in the same list of statements as above. Note that this or similar kinds of
indirection can be used to cleanly seperate between relations to a resource and to the resources
(lists/statements) that may be represented by resources.

This technique of basic transformation that may be applied prior to assessing the complete
semantics of predicates, may easily be used to answer the above question:

Assume thatdescribedByis a predicate of the transformation typedescriptivewhich takes
a list with an even number of elements in object position as an input to the transformation
which performs the following:

[Reinhold describedBy (hasName Klapsing hasAddress Essen)]

which will be transformed to

([Reinhold hasName Klapsing] [Reinhold hasAdress Essen])

Whether this kind of transformations should be part of a basic layer of (pre-)semantics cer-
tainly remains to be discussed.

6 Discussion

Let us briefly discuss one of the potential problems of upgrading from the RDF model to the
extended model: the typing of containers. The issue is that two containers with definitions
that refer to the same sequence of elements but with different types (e.g., one Bag, one Seq)
become indistinguishable with the above mapping into the extended model. Allow two brief
remarks: (1) one solution is to relegate this kind of typing of containers to a schema level.

Valued Sony Customer
 207

Together with, for example, therepresentedByproperty described in 5.2, names for lists can
be introduce and types for the lists represented by the names can be attached to the names
etc. (2) Another solution is to drop the typing of containers and to simply regard them all
as sequences – and to attach the information how a lists should be treated to the properties
that make use of the list (each property can interpret a sequence as a Bag or an Alt construct
if this suits the definition of the semantics of this property). More alternatives exist and a
solution (an adaptation of the mapping) should be provided when defining a schema level for
the extended model

Certainly, more details could be explored and more questions should be asked and an-
swered14. However, this may suffice to demonstrate that the nesting of statements and the use
of list of statements and resources may allow for a natural representation of useful structures
that are cumbersome to model and difficult to use in RDF. Based on the interpretation of reifi-
cation and containers given above, the RDF model (or, intention-equivalently, the extended
model) can be seen as providing a (relatively rich) abstract syntax to build rather complex
expressions. This may ease modeling with RDF (respectively with the extended model) and
may also provide a more clear-cut syntactic layer for the schema layer(s) to be put on top of
this model.

References

[1] Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification 1.0. Candidate
Recommendation, W3C, March 2000. http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

[2] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax Specification.
Recommendation, W3C, February 1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[3] Sergey Melnik. Slim RDF. Email to the RDF-IG, 12. February 2001.
http://lists.w3.org/Archives/Public/www-rdf-interest/2001Feb/0090.html

[4] W. Conen, R. Klapsing and E. Koeppen. XRDF - an eXtensible Resouce Description Framework Discussion
Paper, November 2000. http://nestroy.wi-inf.uni-essen.de/rdf/xrdf/

14Don’t hesitate to contact us if you found your questions unanswered, want to contribute ideas, or simply
want to share your opinion on RDF/extended models with us. We thank Graham Klyne and an anonymous
reviewer for comments on a previous version of the paper

Valued Sony Customer
 208

Toward Semantic Interoperability in Agent-
Based Coalition Command Systems

David N. Allsopp, Patrick Beautement, John Carson and Michael Kirton
{d.allsopp, j.carson, m.kirton}@signal.QinetiQ.com, pbeautement@QinetiQ.com

QinetiQ Ltd
Malvern Technology Park

St Andrews Road, Malvern, WR14 3PS
United Kingdom

Abstract

The Coalition Agents Experiment (CoAX) is an international collaboration carried
out under the auspices of DARPA’s Control of Agent-Based Systems (CoABS)
programme. The overall aim of CoAX is to demonstrate how an agent-enabled
infrastructure, based upon the CoABS Grid, can enhance interoperability between
heterogeneous components, including actual military systems, in a realistic
scenario. The scenario is based on a peace-enforcement operation in the year 2012
in ‘Binni’ (a mythical state in Africa) which requires a mix of Coalition forces to
work together.

The agent infrastructure allows the construction of a coalition command
support system, with agents grouped into domains to reflect real-world
organisational and national boundaries. Each domain is a community of agents that
has its own secure communications, capabilities and information spaces, and is
governed by policies at the domain, host, virtual machine and agent levels.

Communications between agents, whilst given some minimal semantic
grounding via the use of conversation policies, should in future utilise emerging
Semantic Web technology. In particular, the Resource Description Framework
(RDF) and the DARPA Agent Mark-up Language (DAML) promise to deliver a
greater degree of semantic interoperability. This paper describes practical
experiences taking initial steps towards this goal, implementing agents that use a
query language to exchange data between RDF models and implementing a
prototype RDF browser. We discuss the specific requirements for querying,
merging and attributing of RDF data by agents in a coalition environment, and the
particular restrictions affecting agents on controlled networks, rather than on the
Web. Finally, some challenges and requirements for the future are outlined.

Valued Sony Customer
 209

1. Introduction

In order to demonstrate how planning, visualisation and execution activities in coalition
operations can be augmented by agent technology, a collaborative programme of work has been
put together under DARPA's Control of Agent-Based Systems programme (CoABS). This work
involves 16 partner organisations, and is entitled the Coalition Agents Experiment (CoAX) [1,2].

This paper begins with an introduction to the challenges of coalition operations and
our technical approach to solving them, and gives an overview of the CoAX demonstrations. It
then outlines the infrastructure and systems in the current demonstration and the techniques used
to integrate them. In evaluating this demonstration, areas that would benefit from Semantic Web
technology are noted.

Our initial work on implementing agents that use RDF, including a basic query
language and a RDF browser, is then described. This is followed by discussion of the benefits
gained from this approach and the limitations of the current technology, in particular the
querying and merging of RDF models and the attribution of data via the reification mechanism.
The importance of software tools for rapid integration is emphasised. Finally, we note the
potential advantages of the emerging DAML language [3] over RDF, and discuss future work.

2. Background

The year is 2012, and climate change in the Sudanese plain of East Africa has enabled the
production and export of wheat in large quantities. The only way to transport this increasing
volume of food to the European market is by sea. Competition over sea port access has led the
government of Gao to launch a pre-emptive strike to open a corridor to the sea, declaring the
annexed area to be the independent country of Binni. This action has incensed the government of
neighbouring Agadez, who have launched repeated guerrilla activities to dislodge the Gao
forces. Because of this dangerously unstable situation in Binni, the UN has passed a Resolution
to create and deploy a UN War Avoidance Force for Binni (UNWAFB).

"Binni - Gateway to the Golden Bowl of Africa" [4] is a hypothetical scenario based
on the Sudanese Plain. The countries of Gao, Agadez and Binni are fictitious, as are the events,
organisations and personalities that lead to the crisis requiring UN intervention.

The vignette used for the CoAX experiment concerns a specific operation in which
the UN forces are attempting to keep mutually hostile forces apart long enough to enable peace
negotiations (figure 1). Incomplete, changing information, as well as deliberate misinformation
from some parties hampers the UN efforts.

2.1 Coalition operations

Coalition military operations will become an increasingly important feature in future years. In
any military operation, enabling commanders to have access to timely and relevant information
is crucially important to a successful outcome. The difficulties are compounded in the virtual
organisation of the coalition since there will be a mixture of equipment, operational procedures,
languages, etc. Moreover, there is a pressing need to set up such organisations rapidly in order to
respond decisively to emerging crises.

Valued Sony Customer
 210

Figure 1. The fictional nation of Binni. The UN forces are considering a controversial firestorm to separate the
warring forces of Gao and Agadez. Misinformation from Gao agents initially leads the UN to believe that the forces

are further to the west than is in fact the case.

2.2 Technical approach

From a technical perspective, coping with the inherent heterogeneity and tight time-scales are
major challenges. Traditional approaches to software integration are too inflexible to share
information between such disparate command systems at short notice. Agent-oriented
approaches are believed to offer advantages in such environments [5].

The principal motivation of the CoAX experiment is to investigate the conjecture that
software agent technology can provide an advanced infrastructure able to support the demanding
information, Command and Control requirements of a coalition force [2].

For the purposes of this research, an agent is defined as a software entity acting on
behalf of, or mediating the actions of, a human user and having the ability to autonomously carry
out tasks to achieve goals or support the activities of the user. Here, agents are supporting a
community of human experts; they must not ‘take over’ or become obtrusive or obstructive.
Their purpose is to help people cope with the complexities of working collaboratively in a
distributed information environment. Agents operate mostly behind the scenes, integrated into
familiar tools and methods of working, linking and fusing disparate sources of information as
available — tasks well-matched with Semantic Web technologies. The CoAX project is
producing a series of staged demonstrations of increasing complexity, showing agents and agent-

Valued Sony Customer

Valued Sony Customer
 211

wrapped legacy systems communicating over the CoABS Grid [6], developed at Global InfoTek,
Inc (GITI). The Grid is a framework for federating heterogeneous systems. Although the Grid is
being developed with a military application in mind, it is a general-purpose agent framework
with potential use by a variety of applications.

In recent demonstrations, agents are grouped into domains, using the Knowledgeable
Agent-oriented System (KAoS) from Boeing and the University of West Florida’s Institute for
Human and Machine Cognition (IHMC) [7]. This system enables domain policies to be changed
at runtime; for example, to cut off communications with a domain containing hostile agents or to
drastically reduce CPU and network resources to agents launching a denial-of-service attack.

The current demonstration at the time of writing has grown to 25 agents grouped into
6 domains; elements of this demonstration are outlined below. The full demonstration
(documents, images and video) may be seen in detail on the CoAX web-site [1]. The
demonstration is genuinely heterogeneous, comprising systems and agents from at least 6
different organisations (including two real military systems) with more to be added in future
demonstrations for 2001 and beyond.

3. Current demonstration

3.1 CoABS Grid Infrastructure

At the most basic level, the agents and systems to be integrated require infrastructure for
discovery of other agents, and messaging between agents. This is provided by the CoABS Grid.
Based on Sun's Jini services [8], the Grid allows registration and advertisement of agent
capabilities, and communication by message passing. Agents can be added or removed, or their
advertisements updated, without reconfiguration of the network. Agents are automatically purged
from the registry after a short time if they fail. Multiple lookup services may be used, located by
multicast or unicast protocols.

In addition, the Grid provides functionality such as logging, visualisation, encryption
and authentication.

3.2 Knowledgeable Agent-oriented System (KAoS)

At a higher level, the KAoS framework is used to group agents into domains, to facilitate policy
administration. Agents in a domain are subject to the policies of that domain. A given domain
can extend across host boundaries and, conversely, multiple domains can exist concurrently on
the same host. Policies can be scoped variously to individual agent instances, agents of a given
class, agents running on a given host or instance of a platform (e.g., a single Java VM), or agents
in a given domain or sub-domain [7]. The KAoS Policy Administration Tool (KPAT), a
graphical user interface to domain management functionality, has been developed to make policy
specification, revision, and application easier for administrators without specialized training.

The concept of policy-based management necessarily extends beyond typical
security concerns. For example, KAoS policies will ultimately be used to represent not only
authorization, encryption, access and resource control policies, but also conversation policies,
mobility policies, domain registration policies, and various forms of obligation policies. The

Valued Sony Customer
 212

Figure 2. Agents are shown grouped into domains. Each domain contains two specialised agents: the Domain
Manager (DM) and Matchmaker (MM). There are domains for countries (the US, and the fictional country of Gao),
for coalition structures (such as the Joint Forces Air Component HQ), and for functional groups (Observers). Some

agents (shown below the line) are not domain-aware, but have proxies within the domains. Various agents are
associated with databases (DB). Other agents (MBP, Intel, CAMPS, WeatherViz, PP) are described below.

KAoS policy representation is currently very simple but an implementation of a more
sophisticated DAML-based policy representation will be available later this year.
The domain structure of the current demonstration is shown in figure 2. Each domain contains
two specialised agents, the Domain Manager, which enforces (directly or indirectly) the domain
policies, and the Matchmaker, which provides functionality similar to the Grid registry.

KAoS also provides support for defining and using conversation policies: the
structuring of messages for particular purposes or speech acts, such as Inform, Query, Request
and others. Each basic policy forms a finite state machine, where each message, labelled with a
verb identifying its purpose, represents a transition between states [9]. More general constraint-
based DAML policy representations and mechanisms incorporating additional communications
aspects, such as time limits, and the ability to compose policies from smaller fragments, are
under development [10].

3.3 Systems integrated

The demonstration, at the time of writing, includes 25 agents from about six different
organisations, grouped into six domains, written using three different programming languages.
Some of the main elements are described briefly below.

3.3.1 Master Battle Planner (MBP)

A core agent in the demonstration is MBP – a highly effective visual planning-tool
for air operations. MBP assists air planners by providing them with an intuitive visualisation on
which they can manipulate the air intelligence information, assets, targets and missions, using a
map-based graphical user interface (figure 3).

Valued Sony Customer
213

Figure 3. Master Battle Planner map display of the fictional countries of Binni, Gao and Agadez. A selected mission
is highlighted in yellow; proceeding from an airbase, to refuelling tanker, via waypoints and airspaces to the target,

and back to base by a different route.

The operator can interact with these operational entities and can plan individual air missions (or
complex packages of missions) by dragging and dropping offensive units onto targets on the
map. Supporting / defensive elements are added in the same way. The system provides the
operator with analytical tools to assess the planned air operations.

MBP is a monolithic C++ application, which has been agent-enabled by wrapping it
in Java code, using the Java Native Interface, and providing a proxy agent which communicates
with the wrapper using the JavaSpaces API [11]. The agent enabling of MBP allows it to receive
scenario data (targets, assets, airspaces etc) from other agents (Intel, figure 2), and update this
information continuously. Information concerning other air missions can be accepted and merged
with missions planned within MBP; export of mission data to other agents is under development.

3.3.2 Consolidated Air Mobility Planning System (CAMPS)

The second real military system integrated into the demonstration is Air Force Research
Laboratories’ CAMPS Mission Planner. CAMPS develops notional schedules for aircraft to pick
up and deliver cargo within specified time windows. It takes into account numerous constraints
on aircraft capabilities, port capabilities, etc. [12–14].

In the demonstration scenario, CAMPS schedules airlifts of cargo into Binni. These
airlift flights could potentially conflict with offensive air missions, so the scheduled flights are
requested from the CAMPS agent, translated by another agent, and sent to MBP, forming part of

Valued Sony Customer
 214

the normal MBP air visualisation.
This is an interesting example, as only partial translation is possible; CAMPS and

MBP differ fundamentally in their definition of air missions. A CAMPS mission consists of an
arbitrary collection of flights, where a flight is a single journey from A to B by a single aircraft.
However, an MBP mission consists of a starting point and a route, which must return to the
starting point (perhaps by a different path), and may consist of multiple aircraft. CAMPS can
therefore produce routes that have no fully valid representation in MBP, although they could be
partially represented or indicated graphically. This is a fundamental limit on the achievable
degree of interoperability.

3.3.3 Ariadne

In a similar manner, weather information extracted from web-sites by the Ariadne system from
USC/ISI is gathered by the WeatherViz agent (figure 2). It is translated and forwarded to MBP,
again forming part of the normal picture of the air situation. Ariadne facilitates access to web-
based data sources via a wrapper/mediator approach [15,16]. Wrappers that make Web sources
look like databases can be rapidly constructed; these interpret a request (expressed in SQL or
some other structured language) against a Web source and return a structured reply. The
mediator software answers queries efficiently using these sources as if they formed a single
database. Translation of the XML from Ariadne into the XML expected by MBP was initially
handled by custom code, but can now be performed more easily using XSL Transformations
[17].

3.3.4 Process Panel

The Artificial Intelligence Applications Institute (AIAI) of the University of Edinburgh has
provided its IP2 Process Panel agent (PP, figure 2), which provides user level, configurable task
and process management aids for inter-agent co-operation [18]. Each user may have their own
panel to reflect their role in a co-operative process. The Process Panel keeps track of the air
planning process through inter-agent messages.

3.3.5 NOMADS agents

The NOMADS mobile agent system from IHMC is used in the demonstration to allow untrusted
agents (Gao Observer) to run in the Observer domain alongside trusted agents (DGO, DAO,
figure 2). The Aroma virtual machine provides dynamic resource control mechanisms, protecting
the host from a malicious or buggy agent [19]. When a denial-of-service attack is mounted by an
agent from Gao, the excessive usage of CPU, disk and network is detected and a change of
policy is automatically executed, in concert with the KAoS domain management mechanisms. A
human operator can then choose to lower the resource limits even further using KPAT.

3.3.6 Future additions

Future demonstrations for 2001 and beyond have introduced further agent systems and
capabilities. These include a multi-level co-ordination agent from the University of Michigan
[20]; a field observation system using Dartmouth College’s D’Agents technology [21]; and
eGents (agents communicating over e-mail) from Object Services and Consulting, Inc [22]. This
demonstration extends into the execution phase of coalition operations, showing near real-time

Valued Sony Customer
 215

visualisation of air operations based upon data from agents.

4. Evaluation of demonstration

4.1 Aims and achievements

The aim of this demonstration was to investigate how software agent technology can provide an
advanced coalition infrastructure. We were successful in integrating a variety of real military
systems and agents, and were able to demonstrate increased functionality and interoperability
between previously stand-alone systems. The systems were written separately by different
organisations, in different languages, under different operating systems. Dynamic data sources
were an important feature, removing the reliance on static data files. Agents also integrated data
from disparate systems seamlessly as far as the user was concerned; weather and airlift missions
were merged into the MBP view of air operations, for example.

Agent enabling of real legacy systems via wrappers was found viable, even where the
original system made no allowance for integration with other systems.

Using KAoS, the ability to group agents into domains was demonstrated, and to
change the domain policies dynamically; for example, to cut off communications with a domain
containing hostile agents. Using KAoS domain management tools in conjunction with the Aroma
virtual machine also allowed dynamic resource limits to be applied to individual agents to
prevent denial-of-service attacks.

4.2 What is missing?

However, the vision of the CoAX project is to achieve rapid, dynamic coalition formation, in
which agent domains are created and removed on-the-fly, and agents come and go.
Interoperability between agents should be achieved very rapidly, with as little human
intervention as possible. Agent interoperability was achieved relatively easily, due to the
discovery and messaging facilities provided by the CoABS Grid, but message structures,
primarily in XML, were pre-agreed, or translators were hand-coded. This process is time-
consuming. Tools such as XSLT can accelerate the process (and for rapid integration, graphical
tools based on languages such as XSLT may still be valuable) but are still human driven. A
fundamental problem for such agents is that there is no mechanism for sharing terms and
relations (via shared or partially shared ontologies). Consequently, messages have no
unambiguous meaning (even to humans) outside of the agent that generates them. XML provides
shared syntax, but not shared meaning.

4.3 How can Semantic Web technology help?

Berners-Lee et al write: [23] "Some low-level service-discovery schemes are currently available,
such as Microsoft's Universal Plug and Play, which focuses on connecting different types of
devices, and Sun Microsystems's Jini, which aims to connect services. These initiatives,
however, attack the problem at a structural or syntactic level and rely heavily on standardisation
of a predetermined set of functionality descriptions. Standardisation can only go so far, because
we can't anticipate all possible future needs. The Semantic Web, in contrast, is more flexible."

The CoABS Grid infrastructure used in this work is based upon Sun’s Jini, but

Valued Sony Customer
 216

requires only one standard interface – the ‘AgentRep’ which provides inter-agent messaging
functionality, with arbitrary message content. It is therefore possible to combine the discovery
services of Jini and the messaging, security, logging and other services of the CoABS Grid with
machine-understandable semantics by writing messages in emerging Semantic Web languages
such as the Resource Description Framework (RDF) and the DARPA Agent Mark-up Language
(DAML).

5. Initial work

The aim of this initial work was to implement simple agents using a Semantic Web language to
exchange data about the demonstration scenario. Practical experience with RDF and RDF
Schema will assist in understanding the issues involved and assessing the current technology.

5.1 Special features of the Coalition domain

There are some differences between the Web and the networks expected in a command
information system.

Hendler [24] predicts that on the Web we will not see large complex consistent
ontologies, carefully constructed by expert AI researchers, and shared by a great number of
users. Rather, we will see a great number of small ontological components largely created of
pointers to each other and developed by Web users in much the same way that Web content is
currently created. There has been little work so far on developing explicit ontologies for coalition
operations; we expect that the situation will improve as benefits from the initial Semantic Web
technology are realised.

A coalition network could perhaps be regarded as being ‘on the edge of the Web’,
consisting of multiple fire-walled networks with guarded portals between them, and between
them and the Web itself. A greater degree of control will be present. Medium size ontologies
would be expected, constructed with care by individual coalition members and groups of
members, but not all directly interoperable or consistent with each other. The challenge is to map
between them at short notice. In a best-case scenario, many of these ontologies would use
standard ontology libraries developed over time for common domains. Complete mapping is not
always possible, as noted in the description earlier (section 3.3.2) of mapping data between MBP
and CAMPS. There is a need for techniques and tools to handle this, perhaps detecting and
flagging the problematic elements for human attention. Hendler [24] notes that there are many
possible techniques to map between ontologies, and that this is an interesting challenge for the
future.

Some of the initial interest in Semantic Web technology has focussed on the mark-up
of conventional web pages with semantic metadata for improved search engines and web-
crawling agents. In a coalition system, some data may be utilised in this way, but the main focus
is on inter-agent messages expressed directly in RDF or another Semantic Web language. It is
important to note that not all agents in a command system will have direct access to the WWW,
for obvious security reasons.

5.2 Resource Description Framework (RDF)

Our initial work was based on RDF and RDF Schema (RDFS), following the initial W3C

Valued Sony Customer
 217

Recommendation and the release of a number of parsers, APIs and frameworks for RDF. Due to
the time scales of this project, it was essential to investigate technologies available now, as well
as potential for the future. We regard RDF as an initial test-bed for investigating Semantic Web
issues, and a stepping-stone to future technologies.

DAML promises a far greater level of power but is still at an early stage of
development as far as tools are concerned. For rapid coalition integration, effective tools are the
essential requirement. A powerful and expressive language is not useful in practice until it can be
written, modified and applied rapidly, by those without expertise in logic: “A crucial aspect of
creating the Semantic Web is to enable users who are not logic experts to create machine-
readable Web content” [24].

There is also an interesting correspondence between RDF and DCADM (Defence
Command and Army Data Model), the UK Ministry of Defence’s preferred – and indeed in
many cases, mandated – solution [25]. DCADM is a combination of two technologies. The first
is an innovative immutable datastore. In most datastores when a record is modified the old
version is overwritten by the new version. In the DCADM immutable datastore, both versions
are preserved. This has considerable potential advantages in the sort of Command and Control
systems that are envisaged as the primary applications of DCADM. The datastore can support
multiple competing values, reflecting the uncertainty factor present in the 'fog of war', and it
maintains a complete audit trail of who changed what values and when.

The second component of DCADM is a metadata model that can be used to describe
the data models that form the basis for interoperability. In this respect, DCADM and RDF
provide essentially equivalent facilities. Data models developed in DCADM are readily
translated into RDF, and vice versa.

We have implemented simple agents, running on the CoABS Grid inside KAoS
domains, which can store and query RDF databases. They make use of basic RDF Schema
ontologies for defining the class and property hierarchy and the range and domain constraints on
properties and their values. The entities in the scenario fall into a number of superclasses, such as
mobile or fixed objects, natural features or man-made installations, locations, airspaces, or
activities. Basic constraints apply: physical objects possess a location; vehicles can have a speed;
airfields have runways. RDF Schema cannot however express many other features of the
domain; even the fact that friends are disjoint from enemies.

The agents need to acquire information from other agents, and from their own
databases. We have therefore implemented a simple RDF query language and query engine with
an SQL-like syntax, similar to other recent query languages [26,27]. Most RDF query language
proposals appear to be client-server oriented, assuming fast access by the client to a local
database in-memory or on disk. However, with a mainly peer-to-peer model, where access via
messages over a network may be slow, special features may be required.

As an alternative to returning individual values of properties matched by a query, the
query engine can return the sub-graph of triples matched by the query, as a complete RDF
document, using a query of the form:

select triples where <constraint list>

This allows the returned data to be directly parsed and merged into an agent’s database.
Returning complete RDF documents in this way supplies the context necessary when using
asynchronous messaging; if individual context-free values were returned they would have to be
somehow matched up with large numbers of outstanding queries.

Valued Sony Customer
 218

Queries may be formed which return the sub-graph accessible from a specified
resource, so an agent can ask for everything known about a resource in a single query, using the
form:

select reachable where <constraint list>

Without this feature, a potentially very large number of queries would be required.
Reading or editing raw RDF syntax is difficult, and rapidly becomes impractical as

the number of triples increases. In the process of developing the experimental schemas, a
prototype RDF browser has been implemented. This allows the user to seamlessly navigate
through both the schema and data, searching for resources either by type or via the query
language. All resources are clickable hotlinks, and a history is kept, allowing navigation of an
RDF graph in the now-familiar style of a Web browser. Namespaces are automatically
abbreviated to namespace prefixes, e.g. 'rdf:type'. In figure 4, scenario data from the CoAX
demonstration is being queried for resources of a specified type; the properties of a selected
resource can then be viewed. In figure 5, the classes in the corresponding RDF Schema are being
examined; super-classes and properties related to the selected class are shown.

This browser was not intended to replace dedicated ontology editors, but to provide
tighter support for the specific features of RDF, to handle data and schema seamlessly, and
handle large numbers of instances. Some ontology editors do not support features of RDF such
as the sub-property hierarchy, global properties, and multiple domains and ranges for properties;
in general they cannot handle arbitrary RDF. The aim is to facilitate the creation and
examination of models without having to hand-code RDF in XML; there is a lack of mature tools
for this at present.

Desirable enhancements to the browser include:
• support for reification and containers (creation, and checking of imported data for all 4

properties of a reification quad; checking and repairing collection properties (_1, _2,...)
for correctness; filtering data by origin and timestamp;

• enhanced namespaces support including filtering by namespace;
• explicit support for properties (subPropertyOf relationship, range and domain);
• editing support (selection of sub-graphs and multiple nodes; clean deletion of entire

objects, collections, and reified statements);
• graphical display of portions of an RDF graph.

Valued Sony Customer
 219

Figure 4. RDF browser. A search for resources of a specified type has been performed; these resources are listed on
the left. All the properties of the selected resource (Bandar Airbase) are shown – these form hotlinks that can be

explored further by clicking on them. Literals are not hotlinks, of course; these are shown in black.

Figure 5. RDF Browser class display, showing superclasses, properties of the class (both direct and inherited) and
usage of this class by other properties.

Valued Sony Customer
 220

6. Discussion

6.1 Advantages of RDF

RDF provides a formal data model for representing entities (resources) and the relations between
them, and a syntax for XML serialisation of data models. RDF describes directed labelled
graphs, rather than just labelled trees as in XML. The use of RDF is a move away from inflexible
XML data structures and DTDs, allowing more natural handling of partial data, which inevitably
occur in uncertain military environments. For example, a system that represents an entity such as
a radar installation may store many attributes such as location, allegiance, range, type and so on;
yet if a radar is detected electronically at a great distance, we know very little about it and cannot
'fill in all the blanks' of a database form or XML DTD. Rather, data arrive gradually from
disparate sources and must be merged together. Partial data records or changes in document
structure can be problematic when handling XML, although more recent XML technologies such
as XPath and XQuery have increased flexibility to some extent. These advances also counter the
size and complexity of code previously required to handle XML trees.

RDF Schema adds a very basic ontological framework, although it appears from the
many discussions on the RDF mailing lists that the semantics of RDF and RDFS are unclear in
the current specifications [28]. This may be hindering the development of systems with formal
semantics on the top of RDF, such as DAML. Very basic inference is possible using the RDFS
class and property hierarchy definitions, and property restrictions [24]. This is already used to
some extent by current query engines.

Although this seems trivial, it offers a substantial improvement over the keyword
searches that Web users suffer at present, and a qualitatively different capability from semantics-
free XML data. In many cases, the level of power needed to achieve significant benefits in
interoperability is quite small, and so RDF and RDF Schema are useful in themselves. For
example, in this coalition scenario, it is easy to search for data about any damaged friendly
ground units, without needing to know their exact type. One could also learn their exact types
(subclasses of the class GroundUnit) in the same query. Simple constraints on properties would
also allow queries to specify particular regions in space or time. A flexible query interface to
agents creates possibilities for all kinds of useful (and perhaps unforeseen) interactions between
systems, in contrast with rigid one-to-one message links.

6.2 Current limitations

The growing industry support for XML points to an XML-based solution for semantic mark-up,
yet RDF is verbose and not easily readable or writeable by humans. ‘Notation 3’ [29] is an
interesting experiment with a more concise syntax (with additional logic elements). Authoring
and processing tools would of course make the syntax less of an issue.

For rapid integration of agents, tools are the emphasis, not languages. A more
powerful language is of no use in this domain if it cannot be deployed easily. Tools and APIs are
needed throughout the lifecycle of the data – creation, checking, storing, querying and inference,
mapping and converting.

Judging from the large volume of debate on the RDF mailing lists, the development
of such tools appears to be suffering delays due to the substantial number of unresolved issues
concerning the RDF and RDF Schema standards, and their interpretation [28].

Valued Sony Customer
 221

A practical problem encountered is that there is an assumption in some APIs and
parsers that schemas will always be loaded over the Web from their home site (rather than being
cached) which is not realistic on a coalition network.

6.3 Querying requirements

A query language allows agents to seek and exchange information, especially when enhanced by
a schema/ontology, but of course we rely on agents understanding the same query language, and
there is no standard query language for RDF.

A standard language is of less importance when querying local databases or Web
documents; any suitable language could be used. In a community of heterogeneous agents there
is a need to talk to other agents in a common tongue, or at least translate down to some ‘lowest
common denominator’.

A variety of languages have been developed [26, 27, 30–33] with differing
capabilities. Many do not yet deal with some of the more controversial aspects of RDF such as
reification and collections. Kokkelink [34] has suggested work on standard RDF querying by
attempting to re-use previous experience with XML in the development of XPath, XQuery and
XSL Transformations.

In the absence of a standard query language, a simple technique for gaining rapid
interoperability at the expense of increased messaging load is the use of a remote model
interface. The majority of current RDF frameworks allow an RDF graph (model) to be queried
using a single triple where each of the subject, predicate and/or object can be a wildcard. This
can be regarded as the lowest common denominator for querying. Instead of sending complex
queries for a remote agent to process, the work could be done locally, sending multiple messages
invoking only the basic query method of the remote agent. As far as the initiating agent is
concerned, the process is the same as querying a local (albeit very slow) model database (figure
6). Primitive agents can be made to support complex queries, and agents using differing query
languages can be rapidly integrated, although the load on the network will greatly increase.

One could also send a mobile agent implementing complex queries to a remote host,
interrogate agents there using low-level messages, and return the results. This could reduce the
network load but requires more sophisticated infrastructure, especially for security issues.

Figure 6. Use of a remote model interface, allowing Agent 1 to perform complex querying of the more primitive
Agent 2, which only supports matching of single wild-carded triples.

Valued Sony Customer
 222

6.4 Merging models

A fundamental process in a command information system is the collection and fusion of data
from many sources. Merging data from multiple RDF sources (agents) into a single model raises
several issues. Firstly, the identification of redundant anonymous resources. Anonymous
resources are usually assigned locally unique identifiers by the parser; if the data in an RDF
model originates from multiple documents, the same (anonymous) resource in different
documents will normally receive two different identifiers. For example, figure 7 shows data
obtained from three separate sources, which require merging.
Unfortunately, it does not seem possible to determine in general whether the duplication is
intended, and therefore whether the redundancy can safely be eliminated. Cardinality restrictions,
available in DAML, could help to resolve this issue. For example, in RDF, either of the graphs in
figure 8 might be chosen. Can John Smith only have one weight? It might initially appear so, but
suppose the data track his weight during a diet! Each weight would then be valid for a particular
point in time, and could possess equivalent values in various units.

Figure 7. Three RDF data models which we are attempting to merge. The anonymous middle nodes are assigned a
locally unique identifier by the parser, but we cannot determine unambiguously whether they are in fact the same

resource.

Figure 8. Two possible results of merging the models in figure 7.

Valued Sony Customer
 223

Secondly, merging of RDF Bags or Alternatives cannot be achieved without renumbering all the
member attributes (rdf:_n) of one of the collections. Merging of Sequences does not necessarily
make sense in general. Other problems with the RDF containers have been identified [28]; for
example, adding an element to an RDF Bag requires one to know all the existing elements.

6.5 Attribution

As mentioned earlier, it is valuable for an agent operating in an uncertain environment to store
multiple competing values, and maintain an audit trail of changes. As levels of trust and other
factors change, the most reliable or up-to-date data can be selected. In a military coalition
context this ability is essential.

Reification provides part of the solution; we can reify statements and attach
additional data (timestamp, origin, trust values) to them. In the example above, it would then be
possible to determine that John Smith weighed 200 pounds (91 Kg) last year but only 180
pounds last week, although the initial value was measured by his doctor and the recent value is
his own optimistic claim! However, once the criteria for selecting competing data values have
been chosen, we still need to query the data as easily as if it were ‘flat’. Most current APIs and
query languages do not appear to provide a solution yet. Reification is a contentious issue in
RDF with a number of problems identified. The concept of contexts has been introduced as an
improvement [28,35].

In practical cases, it may be that no decision can be made automatically; to assist
human decisions, there is a need for ways of visualising the changes in data according to time, or
source.

6.6 DAML versus RDF(S)

The case for DAML is strongly made in several recent papers [24,36], and centres on DAML’s
greater expressive power and formal semantics. RDF(S) is not considered to provide sufficient
expressive power for many applications.

DAML+OIL, an ontology language based upon description logics and encoded in
RDF, provides a rich set of constructs not available in RDF(S). In addition to defining classes
and properties, one can express the disjointness or equivalence of classes and a variety of
restrictions on the usage of classes and properties, such as cardinality. Additional information
can be expressed about properties, for example stating that they are transitive. New classes can
be constructed by taking the complement of another class or the intersection of other classes. A
Property can be declared as the inverse of other properties. In recent versions, DAML+OIL has
also been integrated with the XML Schema datatypes. A logical language, DAML-L, is under
development.

There are some incompatibilities between RDF(S) and DAML. Firstly, the semantics
of domain and range are different from those in RDF Schema. Secondly, the RDF Schema
specification demands that the subclass relation between classes must be acyclic. DAML+OIL
deliberately has no such restriction. Finally, parsers based on the current RDF specification will
not support the daml:collection parse type, although a pre-processing stage can overcome this
problem. The DAML collections address the previously mentioned problems with RDF Bags
(section 6.4).

Valued Sony Customer
 224

6.7 What next ?

Initial proof-of-concept contributions to the CoAX experiment will involve replacing some of the
XML communication links with RDF to compare the relative complexity and robustness of the
code. The simple agents used for this will provide a test-bed for showing the increased flexibility
of RDF(S), for example assembling partial data from several sources to form a complete
description, and queries assisted by the class hierarchy defined in the schema. Agents supporting
a common query language, or a remote model interface, are far more accessible to other agents,
greatly increasing the interaction possibilities.

We also wish to explore the use of RDF Reification or Contexts [35] for tagging data
with their origin, reliability, timestamp etc. This is obviously of crucial importance in a
command information system where it is essential to be able to roll back or exclude false or
inaccurate data. There is much scope here for work on tools to visualise the data, providing
different views of the data filtered by time, origin, etc.

A further step would be the interoperation of agents without fully shared
terminology, via translator agents. There are interesting practical issues in handling the agent
conversation policies with interruptions to request translation of terms.

Further steps, such as more expressive ontologies and the use of inference rules,
move into the territory of DAML; we expect that emerging DAML tools and the DAML-L logic
language will provide us with an opportunity to explore these capabilities. As previously noted,
we are collaborating with IHMC on specification and implementation of a DAML-based policy
representation (KAoS Policy Language, or KPL), which will used to represent both simple
atomic policies (e.g., Java permissions) and complex constructions. Representation of both
authorizations (i.e., permitting, permitting with qualification, or forbidding some action) and
obligations (i.e., requiring some action to be performed) will be possible. We expect that an
initial specification of KPL will be available later this year.

7. Conclusions

Although RDF and RDF Schema have a number of flaws, they are useable for a variety of
applications and for agent experimentation. In the context of CoAX, for example, they allow
richer interactions between agents, and more useful and complex queries. Thus, RDF and RDF
Schema still offer interesting possibilities and can contribute significantly to agent
interoperability in a coalition setting. Alongside the development of languages, tools and agents,
expertise in constructing ontologies for coalition operations will be needed. Some of the flaws
will be addressed by the emerging DAML family of languages; others relate to the RDF data
model and syntax; these need to be addressed. There is also a profusion of RDF query languages,
although work toward a standard has been proposed.

DAML adds the formal semantics and expressiveness demanded by the logic
community, but is incomplete as yet; we look forward to future developments, particularly in the
area of tools for creating, parsing, checking, querying and reasoning with the languages.

One of the greatest challenges ahead lies in the development of mechanisms for
merging or mapping between ontologies automatically, as far as possible, and fusing data from
disparate sources, enabling heterogeneous agent systems to interoperate rapidly and effectively.
It is important to acknowledge that any fundamental differences between systems (such as
described in section 3.2.2 will always be a barrier to complete interoperability.

Valued Sony Customer
 225

Acknowledgements

QinetiQ work was carried out as part of the Technology Group 10 of the UK Ministry of
Defence Corporate Research Programme. We acknowledge the contributions of the following
CoAX partners:

• Ariadne web wrapper/mediator (University of Southern California, Information Sciences
Institute)

• Consolidated Air Mobility Planning System (CAMPS) (Global InfoTek, Inc / BBN
Technologies / Air Force Research Laboratories).

• Knowledgeable Agent-oriented System (KAoS) Policy-Based Tools and Framework
(University of West Florida, Institute for Human and Machine Cognition / Boeing).

• EMAA / CAST agents (Lockheed Martin Advanced Technology Laboratories).
• NOMADS Mobile Agent System (University of West Florida, Institute for Human and

Machine Cognition).
• Process and Task Management tools (University of Edinburgh, Artificial Intelligence

Applications Institute).
• The DARPA CoABS Grid (Global InfoTek Inc, ISX Corporation).

We would like to thank our QinetiQ colleagues Chris Walker and Don Brealey for provision of
the Master Battle Planner (MBP) tool for Air Battle Planning, and Sergey Melnik of Stanford
University for provision of RDF API software.

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing official policies or endorsements, either express or
implied, of the UK MoD, DARPA, the Air Force Research Laboratory, the US Government, the
University of Edinburgh or the University of West Florida.

References

[1] Coalition Agents eXperiment: http://www.aiai.ed.ac.uk/project/coax/

[2] David Allsopp, Patrick Beautement, Jeffrey M. Bradshaw, John Carson, Michael Kirton, Niranjan Suri and
Austin Tate, Software agents as facilitators of coherent coalition operations, 6th International Command and
Control Research and Technology Symposium, 19-21 June 2001, US Naval Academy, Annapolis, MD, USA.

[3] DARPA Agent Mark-up Language: http://www.daml.org/

[4] R. A. Rathmell, A Coalition Force Scenario ‘Binni – Gateway to the Golden Bowl of Africa’, Proceedings of the
International Workshop on Knowledge-Bases Planning for Coalition Forces, (ed. A. Tate) pp. 115-125,
Edinburgh, Scotland, 10-11 May 1999.

[5] Nicholas R. Jennings, An agent-based approach for building complex software systems, Communications of the
ACM, April 2001/Vol. 44, No. 4, pp 35-41.

[6] CoABS Grid: http://coabs.globalinfotek.com/

[7] Jeffrey M. Bradshaw, Niranjan Suri, Martha Kahn, Phil Sage, Doyle Weishar and Renia Jeffers, Terraforming
Cyberspace: Toward a policy-based grid infrastructure for secure, scalable, and robust execution of Java-based
multi-agent systems, Proceedings of the Workshop on Agent-based Cluster and Grid Computing, IEEE
International Symposium on Cluster Computing and the Grid, Brisbane, Australia, 14-18 May, 2001. (Enlarged
version in IEEE Computer, July 2001, pp 48-56).

http://www.aiai.ed.ac.uk/project/coax/
http://www.daml.org/
http://coabs.globalinfotek.com/
Valued Sony Customer
 226

[8] Jini: http://www.sun.com/jini/

[9] Jeffrey M. Bradshaw, Stewart Dutfield, Pete Benoit and John D. Woolley, KAoS: Toward an industrial-strength
generic agent architecture, In J. M. Bradshaw (Ed.), Software Agents, 1997, pp. 375-418, Cambridge, MA:
AAAI Press/The MIT Press.

[10] Jeffrey M. Bradshaw, Mark Greaves, Heather Holmback, Wayne Jansen, Tom Karygiannis, Barry Silverman,
Niranjan Suri, and Alex Wong, Agents for the masses? In J. Hendler (Ed.) Special issue on agent technology,
IEEE Intelligent Systems, March/April 1999, 53-63.

[11] JavaSpaces: http://www.sun.com/jini/specs/

[12] Mark Burstein, and Douglas Smith, A Portable, Interactive Transportation Scheduling Tool Using a Search
Engine Generated from Formal Specifications, Proceedings of the Third International Conference on Artificial
Intelligence Planning Systems, B. Drabble (ed.), The AAAI Press, Menlo Park, CA, May, 1996 ISBN 0-
929280-97-0.

[13] Thomas Emerson and Mark Burstein, Development of a Constraint-based Airlift Scheduler by Program
Synthesis from Formal Specifications, Proceedings of the 1999 Conference on Automated Software
Engineering, Orlando, FL, September, 1999.

[14] Mark Burstein, George Ferguson, and James Allen, Integrating Agent-Based Mixed-Initiative Control with an
Existing Multi-Agent Planning System, Proceedings of the Fourth International Conference on MultiAgent
Systems, Boston, MA, 2000.

[15] Craig A. Knoblock and Steven Minton, The ariadne approach to web-based information integration, IEEE
Intelligent Systems, 13(5), September/October 1998.

[16] Ariadne: http://www.isi.edu/info-agents/ariadne/

[17] XSL Transformations: http://www.w3.org/Style/XSL/

[18] AIAI’s IX Technology: http://www.aiai.ed.ac.uk/project/ix/

[19] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill and R. Jeffers, Strong mobility and fine-grained
resource control in NOMADS, Proceedings of the 2nd International Symposium on Agents Systems and
Applications and the 4th International Symposium on Mobile Agents (ASA/MA 2000), Zurich, Switzerland;
Berlin: Springer-Verlag

[20] Michigan MCA: http://ai.eecs.umich.edu/people/durfee/COABS/

[21] Dartmouth College: http://actcomm.dartmouth.edu/

[22] OBJS eGents: http://www.objs.com/agility/

[23] Tim Berners-Lee, James Hendler and Ora Lassila, The Semantic Web, Scientific American, May 2001
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html

[24] James Hendler, Agents and the Semantic Web, IEEE Intelligent Systems, vol. 16, no. 2, March/April 2001, pp.
30-37. http://www.cs.umd.edu/~hendler/AgentWeb.html

[25] Robert Andrews, Data Interoperability with DCADM and XML, DERA report DERA/CIS/CIS3/TR000265/1.0,
March 2000, Defence Evaluation & Research Agency (now QinetiQ Ltd), St. Andrews Road, Malvern, UK.

[26] RDFDB: http://web1.guha.com/rdfdb/query.html#query

http://www.sun.com/jini/
http://www.sun.com/jini/specs/
http://www.isi.edu/info-agents/ariadne/
http://www.w3.org/Style/XSL/
http://www.aiai.ed.ac.uk/project/ix/
http://ai.eecs.umich.edu/people/durfee/COABS/
http://actcomm.dartmouth.edu/
http://www.objs.com/agility/
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html
http://www.cs.umd.edu/~hendler/AgentWeb.html
http://web1.guha.com/rdfdb/query.html
Valued Sony Customer
 227

[27] Squish: http://swordfish.rdfweb.org/rdfquery/

[28] RDF issue tracking: http://www.w3.org/2000/03/rdf-tracking

[29] Notation 3: http://www.w3.org/DesignIssues/Notation3.html

[30] RQL: http://139.91.183.30:9090/RDF/

[31] RDFQL: http://www.intellidimension.com/RDFQLmanual.html

[32] RDFQuery: http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html

[33] XWMF: http://nestroy.wi-inf.uni-essen.de/xwmf/

[34] RDFPath: http://zoe.mathematik.Uni-Osnabrueck.DE/QAT/

[35] RDF Contexts: http://public.research.mimesweeper.com/RDF/RDFContexts.html

[36] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng, Semantic Web Services, IEEE Intelligent Systems, vol.
16, no. 2, March/April 2001, pp. 46-53.

© Copyright of QinetiQ Ltd, 2001

http://swordfish.rdfweb.org/rdfquery/
http://www.w3.org/2000/03/rdf-tracking
http://www.w3.org/DesignIssues/Notation3.html
http://139.91.183.30:9090/RDF/
http://www.intellidimension.com/RDFQLmanual.html
http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html
http://nestroy.wi-inf.uni-essen.de/xwmf/
http://zoe.mathematik.uni-osnabrueck.de/QAT/
http://public.research.mimesweeper.com/RDF/RDFContexts.html
Valued Sony Customer
 228

ObjectInteroperabilityfor Geospatial
Applications

�

PaulW. Calnan� andIsabelF. Cruz
Departmentof ComputerScience

Universityof Illinois
Chicago,IL 60607-7053,USA�
paulc|ifc � @cs.uic.edu

Abstract. In this paper, we analyzea geospatialapplicationfor visualizingU.S.elec-
tion resultsin order to show the problemsthat needto be solved in the mapping
betweendifferentXML representationsand their conceptualmodels.We proposea
framework thatprovidesanumberof coreclassesthatallow applicationsto treatXML
documentsasgraphsandto evaluateXPathexpressionsagainstsuchdocumentgraphs.
We alsoproposea mechanismthatallows informationto beexchangedbetweendoc-
umenttypes.Our goal is to ultimatelyattainanoverall framework for interoperation
wheremaintenanceproblemsareminimized.To achieve this, we anticipatethe need
for introducingmetadatain thesemanticlayer thatwill guidethe translationprocess
betweendocumenttypes.

Keywords: Geospatialapplications,userinterfacebackend,objectinteroperabil-
ity, technologiesfor interoperability.

1 Introduction

In statewide geospatialapplications,hundredsof systemsneedto beintegrated.In theseap-
plications,challengesin achieving interoperabilityareat the semanticlevel (e.g.,different
classificationschemes)andat the datastructurelevel (e.g.,differentXML DTDs). Current
approachesthatdealwith thisproblemrequiretheinterventionof ahumanexpertto perform
the mappingbetweenXML representationsor to map betweenthe conceptualmodelsfor
thoserepresentations.Also, changesin therepresentationswill typically entailspecificcode
changesby a humanexpert.A recentlyproposedlayeredmodel[11] partitionsthis problem
by consideringtherequirementsof differentlayers:syntax,object,semantic,andapplication.

This paperdiscussesour approachto interoperabilityin theobjectlayerusingXML [2],
developedasa part of a framework for geospatialdatavisualizationapplications.Applica-
tions usingour framework shouldbe ableto seamlesslypull datafrom multiple XML data

�
Researchsupportedin partby theAdvancedResearchandDevelopmentActivity (ARDA) andtheNational

ImageryandMappingAgency (NIMA) underAwardNumberNMA201-01-1-2001,andby theNationalScience
FoundationunderCAREERAwardIRI-9896052.
The views andconclusionscontainedin this documentarethoseof the authorsandshouldnot be interpreted
asnecessarilyrepresentingthe official policiesor endorsements,eitherexpressedor implied, of the National
ImageryandMappingAgency or theU.S.Government.�

WorcesterPolytechnicInstitute,ADVIS ResearchGroup

Valued Sony Customer
 229

Figure1: Userinterfacefor theelectionscenario

sources.Thus,we focuson thebackendportionsthatallow for queryingandintegratingdata
from multipleXML sources.

In developingour framework, we have focusedon a numberof applicationscenarios.In
this paper, we examineour electionresultsscenario.In this scenario,we createanapplica-
tion thatwill visualizeresultsfrom the2000U.S.PresidentialElection,superimposingvote
totalsandcampaigndonationsover a given region on a map.Userswill be able to search
for a geographicareain theUnitedStates,choosewhich datato display(e.g.,demographic
information,votescastpercandidate,campaigndonations,etc.),andthenview thatdataon
a mapof theregion. Datacanbedisplayedat multiple granularities,dependingon what the
userwantsto see(e.g.,theusercandisplaya mapof Massachusettswith countyboundaries
showing electionresultsfor eachcountyandthenzoomin on a mapof WorcesterCounty
showing electionresultsandcampaigndonationsfor eachmunicipality).A screenshotfrom
this scenariois shown in Figure1.

XML waschosenasour datarepresentationlanguagebecauseit is quickly becomingthe
new standardfor informationinterchange.The main appealof XML is that it allows users

Valued Sony Customer
 230

to definetheir own documenttypes,andthenstoreandexchangedocumentsconformingto
thatdocumenttype.A documenttypedeclarationis usedto accomplishthis.Documenttype
declarationsserve to identify the root elementof a document,but canalsocontaina docu-
menttypedefinition(DTD) [1]. This providesusersa way of declaringthemarkup,syntax,
andstructureof a givendocumenttype.This alsoprovidestheparsera way of determining
whetheradocumentis valid (i.e.,conformsto aDTD), ratherthanjustwell formed(i.e.,uses
correctXML syntax).

Allowing everyoneto createtheirown documenttypesmakesdataexchangeeasier, but it
alsomakesdatainteroperabilitymoredifficult. Dif ferentorganizationscouldmodelthesame
informationwith differentdocumenttypes[1]. It is trivial to loadandview documentswith
differentdocumenttypes,but integratingthedatabetweenthemis potentiallyquitedifficult.

In this paper, we concentrateon providing a general-purposeapplicationframework that
allows datato be interchangedbetweenvariousXML documenttypes.We utilize XPath to
conciselydescribeapaththroughthedocumentgraphandto selectanumberof nodeswhose
valuescanbe aggregated.Finally, we introducethe conceptof a geospatialauthority. Au-
thoritative geospatialinformationaboutthe region beingcoveredby a given applicationis
collectedin anXML document.This documentservesasthesourcefor geospatialrelation-
shipsat the core of the application.For instance,in our electionscenario,we maintaina
geospatialauthoritycontainingthenamesof all of thestates,thecountiescontainedin those
states,andthemunicipalitiescontainedin thosecounties.This providesuswith a meansof
query refinementby providing context for a given geospatialquery (e.g.,a searchfor the
string “Worcester”would yield matchesin New York, Vermont,Massachusetts,Wisconsin,
Missouri,andPennsylvania—theauthorityallowsusto asktheuserfor clarificationin which
“Worcester”is desired).Thisalsoprovidesuswith context andastartingpointwhenlooking
up datain otherdocuments,asseenin theexamplesgivenbelow.

Ourframework is implementedin Java1.3andusesApache’sXalan-Java2 API for XML,
XPath,andXSLT processing.

Thepaperis organizedasfollows: In Section2, we examinetreatinganXML document
asagraph,usingtheDocumentObjectModel(DOM) andXPathasameansof traversingthe
graph.In Section3, we presenta numberof classesthatform thecoreof thebackendof our
applicationframework. In Section4,weintroduceour lookupmechanismthatallowsusersto
interchangedatafrom onedocumenttypeto another. Finally, in Section5, weexamineissues
thatremainopenor thatneedto beaddressedto completeour framework.

2 XML As a Graph

XML is actuallya collectionof W3C recommendationsthat definethe syntaxandseman-
tics of XML andits relatedtechnologies[1]. The coreXML recommendationis the XML
InformationSet(or Infoset)[5], which modelsthecoreabstractionsof XML asa setof in-
formationitems[1]. Information itemsrepresentthe piecesof an XML document,what is
requiredof them,andhow they behave. The itemsmodeledin the Infosetarereflectedin
the DocumentObject Model (DOM) [9]. The DOM allows programmersto accessXML
documentsuniformly, regardlessof theunderlyingimplementation.

Whenan XML documentis loadedusinga DOM compliantparser, a DOM tree is re-
turned.TheDOM providesinterfacesto thefollowing informationitems:documents,docu-
mentfragments,documenttypes,entities,entity references,elements,attributes,processing

Valued Sony Customer
 231

instructions,comments,text, CDATA sections,andnotations.While this is useful,for certain
purposesit wouldbemoreusefulto dealwith XML documentsasagraphof elements.1 Each
elementwouldhavea typecorrespondingto its attributes.It shouldbepossibleto retrievean
element’schildren,parent,siblings,etc.

Also worthnotingis theXPath[4] enginein theXalan-JavaAPI. XPathprovidesasimple
way of expressinga path througha documenttree to selecta set of nodes.When a path
expressionis evaluated,theXPath facilities selecta setof nodesrelative to a context node.
Any information item representedin the DOM (andconsequentlyany information item in
any document)canbeselectedby anXPathexpression.UsingXPathexpressionsto traverse
an XML documentis much more conciseand easierto understandthan using the DOM.
Also, afteranalyzinga DTD, it is possibleto generateXPathexpressionsfor thebodyof the
accessormethodsnecessaryto performthegraphoperationsdescribedabove.

3 Framework Core Classes

Our framework providesa numberof coreclasses,shown below in Figure2, thatallow ap-
plicationsto treatXML documentsasgraphs,to performXSL transformationson anXML
document,to evaluateXPathexpressionsagainstadocument,andto performinter-document
lookups.

Thebaseclassthatweusein theframework is theXMLObject class.In ourJava imple-
mentation,theXMLObject classcontainsa referenceto a nodein theDOM tree.Through
this nodereference,it is possibleto retrieve any datacontainedin the node,aswell asany
nodeslinkedto thatnodein theDOM tree.Thisclassalsoprovidesaninterfaceto theXPath
facilitiesin theXalan-JavaAPI. Thenodereferencedby anXMLObject objectis usedasthe
context nodewhenevaluatingXPathexpressions.WhenanXPathexpressionis evaluated,a
setof DOM nodesmatchingthatexpressionareselectedandplacedin a DOM NodeList.
TheNodeList interfaceis wrappedby theXPathResult class,which allows usersto
castthe ���
	 nodein thelist to aBoolean,Double, Integer,Node, orString. Coupled
with prior knowledgeof attribute types(determinedby a domainexpert,or in the futureby
analyzingan XML Schemafor a givendocumenttype), this allows typedaccessto datain
thedocument.

The XPathResult classalsoprovidesaggregateoperationsfor the setof nodesthat
matcha given XPath expression.Oncea set of nodesis selected,it is often necessaryto
traversetheset,accumulatingdata.Ratherthanhave theapplicationdesignerwrite codeto
performtheseaggregateoperations,we provide suchcodein our framework. Theaggregate
operationsthatareprovidedarelistedin Figure3.

Therearethreesubclassesof theXMLObject class:XMLData,XMLSource, andLook-
upResult. TheXMLData classrepresentselementsin theDOM treeandis thebasisfor
treatingadocumentasahomogeneousgraph.It encapsulatesmany of theDOM methodsthat
relateonly to elements(i.e.,retrieving attributenames,retrieving attributevaluesby attribute
name,retrieving children,ancestors,andsiblings).It alsotranslatesthenameandnamespace

1Documentswhoseelementscontainreferencesto otherelements(e.g.,IDREFs)canbe consideredto be
a graph,ratherthana tree.In the DOM, referencesarenot consideredto be edgesin the documenttree,thus
maintainingthe treestructure.However, in certaincircumstances,it may be necessaryto treat referencesas
edges,andthustreatthedocumentasa graph.In any case,anXML documentis primarily tree-structured,so
we canusetermslike sibling,parent,ancestor, andchild.

Valued Sony Customer
 232

+XMLObject(node : org.w3c.dom.Node)
+evalXPath(xpathExpr : String) : XPathResult
+getNode() : org.w3c.dom.Node

XMLObject
�

#node : org.w3c.dom.Node
�

#XMLSource(doc : org.w3c.dom.Document)
�
+applyXSLTransformation(xsltFilename : String) : XMLSource
+getRootNode() : XMLData
+newInstance(filename : String) : XMLSource
+serialize(output : java.io.PrintWriter)

XMLSource

#
�

cachedDocuments : Hashtable

+XMLData(element : org.w3c.dom.Node)
+getAttrNames() : Enumeration<String>
+getAttrByName(name : String) : String
+getChildren() : Enumeration<XMLData>
+getParent() : XMLData
+getType() : String
+getValue() : String
+toString() : String

XMLData

#LookupResult(result : org.w3c.dom.DocumentFragment)
�
+newInstance(result : org.w3c.dom.DocumentFragment,
 lookup : Lookup,
 srcNode : org.w3c.dom.Node) : LookupResult
+invokeOperation(opName : String, args : Object[]) : Object
+getLookup() : Lookup
#setLookup(lookup : Lookup)
�
+getSourceNode() : org.w3c.dom.Node

LookupResult

#lookup : Lookup
�
#srcNode : org.w3c.dom.Node
�

Figure2: UML classdiagramof coreframework classes

Valued Sony Customer
233

+XPathResult(result : org.w3c.dom.NodeList)
+itemAsBoolean(i : int) : Boolean
+itemAsDouble(i : int) : Double
+itemAsInteger(i : int) : Integer
+itemAsNode(i : int) : org.w3c.dom.Node
+itemAsString(i : int) : String
+getLength() : int
+aggregateAnd() : Boolean
+aggregateOr() : Boolean
+aggregateDoubleSum() : Double
+aggregateDoubleProduct() : Double
+aggregateDoubleMin() : Double
+aggregateDoubleMax() : Double
+aggregateDoubleMean() : Double
+aggregateIntegerSum() : Integer
+aggregateIntegerProduct() : Integer
+aggregateIntegerMin() : Integer
+aggregateIntegerMax() : Integer
+aggregateIntegerMean() : Integer
+aggregateConcatenate() : String
+aggregateStringList() : Enumeration<String>
+aggregateStringSet() : Enumeration<String>
+aggregateNodeList() : org.w3c.dom.NodeList

XPathResult

#result : org.w3c.dom.NodeList
�

Figure3: UML classdiagramfor theXPathResult class

of anelementinto thetypeof thegraphnode.XMLData objectsareinstantiatedby theXML-
Source class.XMLSource objectsrepresentXML documentsandallow usersto loadand
parsedocuments,to serializedocumentsout to a stream,andto retrieve the root nodeof a
documentasanXMLData object.TheXMLSource classalsoprovidesaccessto theXSLT
[3] facilities(discussedbelow) providedin theXalan-Java API. TheLookupResult class
encapsulatestheresultingdatafrom aninter-documentlookup(discussedbelow).

3.1 ExampleusingtheFrameworkCore Classes

In ourelectionscenario,westartwith anXML documentthatwecall thegeospatialauthority,
which containsgeographicinformationaboutthe areabeingcoveredby the application(in
this case,theUnitedStates).For simplicity, weconsideranauthoritydocumentthatcontains
stateelements,which in turn containcountyelements,which in turn containmunicipality
elements.TheDTD for thegeospatialauthorityis shown below:

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality EMPTY>

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>

Thiswouldsuggestthatsubclassesof XMLData areneededfor states,counties,andmu-
nicipalities.Eachof theseclasseswould have anaccessormethodthatwould allow theuser

Valued Sony Customer
 234

to retrieve thename,aswell astheregion(s)containedby thatregion (e.g.,retrieveall coun-
tiesfor agivenstate,or retrieve themunicipalitynamed“Worcester”from Worcestercounty
in Massachusetts).Therearealsodocumentsfor eachstatecontainingelectionresults.Po-
tentially, eachstatecanhave a differentDTD, andconsequently, a differentstructurefor its
resultsdocument.For simplicity, we will examinethe DTDs for electionresultsfrom only
two states,MassachusettsandMaine:

MA results.dtd

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality (candidate+)>
<!ELEMENT candidate EMPTY>

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>
<!ATTLIST candidate name CDATA #REQUIRED

votes CDATA #REQUIRED>

ME results.dtd

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality (ward+)>
<!ELEMENT ward (precinct+)>
<!ELEMENT precinct (candidate+)>
<!ELEMENT candidate EMPTY>

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>
<!ATTLIST ward id CDATA #REQUIRED>
<!ATTLIST precinct id CDATA #REQUIRED>
<!ATTLIST candidate name CDATA #REQUIRED

votes CDATA #REQUIRED>

This representsthegeneralstructureof theelectionresultdataaspresentedat theMas-
sachusettsandMainestatewebsites.In orderto betterunderstandtheseDTDs,Figure4shows
theE-Rdiagramsof thesedocumenttypes.

Note that in thediagram,thecardinalityof all relationshipsis one-to-many. This is due
to thefactthat,in theDTD, all subelementshave the“+” qualifier, meaningthatoneor more
instancesof thatsubelementcanappear. While this is fine for thestate-to-countyrelationship
andthe county-to-municipalityrelationship,it doesnot tell the whole story for candidates.
The municipality- or precinct-to-candidaterelationshipshouldhave a cardinalityof many-
to-many, sincetherearemany municipalitiesor precinctsandmany candidates.However,
the DTD doesnot reflect this—it only statesthat eachmunicipality or precinctcan have
morethanonecandidate.To determinea many-to-many relationship,it would benecessary
to examinetheactualdata.

Valued Sony Customer
 235

state�name�

county�

municipality

name

name

1

n

1

n

ward�id
�

1

n

precinct�id
�

1

n

candidate�name

1

n

votes

state�name�

county�

municipality

name

name

1

n

1

n

candidate�name�
1

n

votes�

state�name�

county�

municipality

name

name

1

n

1

n

Geospatial Authority Massachusetts Maine

Figure4: DTD E-R Diagrams

It wasstatedabove whendiscussingthe geospatialauthoritydocumentthat classesfor
states,counties,andmunicipalitieswould be desirable.However, sinceeachstate’s results
documentcouldpotentiallyhaveadifferentstructure,it wouldbeunfeasibleto defineasepa-
ratestate,county, municipality, andcandidateclassfor eachstate’s electionresults.It would
makemoresenseto have just onestate,county, andmunicipalityclassfor theentireapplica-
tion andlet the framework classeshandlethe necessarytranslationbetweentheunderlying
XML formatsof thevariouselectionresultdocuments.To accomplishthis,we introduceour
lookupmechanism.

4 Lookups

Interoperabilityhingesupona systemthat is able to seamlesslyinterchangedatabetween
variousdocumenttypes.Datafrom onedocumentneedsto beselected,possiblyrestructured,
andthenlinkedto datain anotherdocument.Our framework providesa way of linking data
in this mannerusingwhatwe call lookups. This sectiondiscussesthefeaturesof our lookup
mechanismandsomeof the designrationalebehindthosefeatures.We will illustrate this
usinga running examplefrom our electionscenario:defining a lookup for Massachusetts
electionresultsfor municipalities.

Lookupsin our systemare specifieddeclaratively in a lookup specificationdocument.
This document,storedin XML, allows applicationdesignersto specifyall lookup typesfor
anapplication.Eachlookupis givenaname,adescription,andanidentifier, asshown below:

<?xml version=‘1.0’ standalone=‘no’?>
<!DOCTYPE lookup-spec SYSTEM ‘lookup-spec.dtd’>

<lookup-spec>

Valued Sony Customer
 236

<lookup name=‘MA Municipal Results’
description=‘Massachusetts election results per

municipality’
id=‘1’>

4.1 Predicates

Any nodein an XML documentusedby our systemcan potentially have any numberof
lookupsassociatedwith it. Therefore,we first needa way in which we can definepredi-
catesthatdeterminewhethera lookupexistsfrom a givensourcenode.Thesepredicatesare
expressedasXPath expressions.Whencheckingif a nodeis associatedwith a lookup, the
predicateXPathexpressionsareevaluatedusingthis sourcenodeasthecontext node.If all
of thepredicatesevaluateto non-null results,we canconsiderthis nodeassociatedwith this
lookup andcanproceedto executethe lookup. In our example,we only want to link mu-
nicipalitiesin thegeospatialauthorityto municipalitiesin theMassachusettselectionresults
document.Consequently, wedefinethefollowing predicates:

<predicate>
<!-- ensure that the source node is a municipality -->
self::municipality
</predicate>

<predicate>
<!-- ensure that the source node is in Massachusetts -->
ancestor::state[attribute::name=‘Massachusetts’]
</predicate>

4.2 Arguments

Lookupsactually link entities(that is, entitiesin the databasesense;theseentitiesareex-
pressedin XML aselements)in differentdocuments,not actualinstancesof theentities.In
otherwords,lookupsactasa link betweendifferentdatatypes,not their objects.It mayonly
be possibleto statea lookup in termsof variableswhosevaluesdependon the context of
the lookup beingperformed(i.e., the sourcenode’s context). For instance,in our running
examplelinking a municipality in Massachusettswith a municipality in theelectionresults,
onelookupcanserve all municipalitiesin thestate.Contextual data,suchasthecountyand
municipality name,is necessaryfor the lookup to be performed,but cannotbe determined
until the lookup is aboutto be executed.Therefore,we provide a mechanismfor defining
argumentswhosevaluesarecomputedbeforeexecutingthelookupandthensubstitutedinto
thebodyof thelookup.Theseargumentsareassociatedwith anXPathexpression.Whenthe
lookupis aboutto beexecutedfrom a givensourcenode,theXPathexpressionis evaluated
usingthesourcenodeasthecontext node,andtheresultingvalueis substitutedfor theargu-
mentnamein thebodyof the lookup.For example,we would needto defineargumentsfor
countyandmunicipalitynamesin orderto properlylink amunicipalityto theelectionresults:

<argument>
<name>$county_name</name>

Valued Sony Customer
237

<value>parent::county/attribute::name</value>
</argument>

<argument>
<name>$municipality_name</name>
<value>attribute::name</value>

</argument>

4.3 Lookups:XPathor XSLT

Thenext stepis to definetheactualbodyof thelookup.Therearetwo typesof lookupssup-
portedby our framework. Thefirst typeof lookupinvolvessimplyselectingasetof nodesin
adocumentusinganXPathexpression.To specifyanXPathlookup,theactualXPathexpres-
sioncanbestateddirectly in thelookupspecificationdocument.Thesecondtypeof lookup
involvesrestructuringa subsetof the datain a documentusingXSLT. To specifyan XSLT
lookup,thenameof theXSLT file canbestatedin thelookupspecificationdocument.When
thetimecomesto executeagivenlookup,theXPathexpressionor XSLT file is loaded,argu-
mentvaluesareevaluatedandsubstituted,andthe lookup is performed.It is alsonecessary
to statethefile nameof thetargetdocument.In our example,we wantto find themunicipal-
ity elementin thetargetdocumentandto selectall childrenof thatmunicipality. TheXPath
lookupto accomplishthis,written in termsof thevariablesgivenabove, is shown here:

<target-document>
MA_election_results.xml
</target-document>

<!--
Start at the root, trace through the tree to find the
municipality, and select all children of the municipality.

-->
<xpath-expr>
/child::state[attribute::name=‘Massachusetts’] \

/child::county[attribute::name=‘$county_name’] \
/child::municipality[attribute::name=‘$municipality_name’] \
/child::*

</xpath-expr>

4.4 Linking theResults

WhenanXPathexpressionis evaluated,aNodeList or aNodeIterator containingthe
selectednodesis returned.Whenan XSLT file is evaluated,the resultingDOM treestruc-
ture is returned.While DOM treesthat result from XSL transformationscan have XPath
expressionsevaluatedagainstthem,NodeLists andNodeIterators that result from
XPathexpressionscannot.It would beusefulto organizetheseresultsin sucha mannerthat
XPathexpressionscanbeevaluatedagainstthem.Similarly, wewouldliketo beableto cache
andpossiblyserializetheseresults.It would benice if we couldsimply addthesenodesas
childrenof the lookup’s sourcenode,but this is not allowed by the DOM becauseit could

Valued Sony Customer
 238

potentiallymake the containingdocumentinvalid. However, the DOM providestheDoc-
umentFragment interfacefor representinglightweightcollectionsof nodes.TheDocu-
mentFragment interfaceis intendedto supportmovementof nodesfor operationssuchas
“cut” and“paste”[9]. Also, sinceDocumentFragmentsarenodes,XPathexpressionscan
beevaluatedagainstthem.

We canspecifythat theXSLT partof theXalan-Java API produceaDocumentFrag-
ment with the resultsof the transformation.For XPath lookups,we cansimply take each
nodein the resultingNodeList or NodeIterator and add that nodeas a child of a
DocumentFragment.

Our framework providestheLookupResult class,asubclassof XMLObject, to store
theresultingDocumentFragment. Thedetailsof thisclassarediscussedlateron,but it is
worthnotingherethatin thelookupspecification,theapplicationdesignercanspecifywhich
resultclassto instantiatewith the lookup results.EitherLookupResult, or a subclassof
it, canbe specifiedto take the lookup results.In our runningexample,we simply usethe
LookupResult class:

<result-class>LookupResult</result-class>

4.5 Operations:AccessingtheResults

Oncea lookup is performed,codeis neededto accessthe datacontainedin the nodesthat
result from the lookup.Potentially, eachlookup canselectnodesfrom differentdocuments
containingdifferentstructures.Therefore,eachlookupwould requireits own classto bein-
stantiatedwith theappropriatecodeto accessitsdata.However, thiscanquicklybecomecum-
bersomeasthenumberof lookupsincrease.Also, if thestructureof thevariousdocuments
change,thoseclasseswould needto be rewritten. In our electionscenario,eachstatecould
potentially requirea separateclassfor lookupsfor its electionresults.While theseclasses
couldbearrangedinto aninheritancehierarchy, having 50 electionresultclasseswould bea
little excessive. It would bemoreusefulif accessormethodscouldbedefinedat the lookup
level.

AccessormethodscanbedefinedusingXPathexpressionsthatwill beevaluatedusingthe
DocumentFragment asthecontext node.Thereturnvaluesfor suchaccessormethodscan
becomputedusingour aggregateoperationsdiscussedabove. Theapplicationdesignercan
thereforedefineaccessoroperationsin the lookup specificationusinga name,aggregation
type,andanXPathexpressionfor thebodyof theoperation.Parameterscanalsobedefined
whenextra context is neededfor theoperation.Default valuesfor thoseparameterscanalso
begiven,wherenecessary.

In our runningexample,wewoulddefinethefollowing two operations:

<!-- select all candidate names, return a set of strings -->
<operation name=‘getCandidateNames’ aggregation=‘sset’>

<body>
child::candidate/attribute::name

</body>
</operation>

<!-- select vote total for a candidate, return an integer -->

Valued Sony Customer
 239

<operation name=‘getVotesByCandidate’ aggregation=‘isum’>
<parameter>
<name>$candidate_name</name>

</parameter>

<body>
child::candidate[attribute::name=‘$candidate_name’] \
/attribute::votes

</body>
</operation>
</lookup>
</lookup-spec>

If all electionresult lookupsdefineoperationswith the samename,multiple classesto
representtheelectionresultswouldno longerbeneeded.Rather, we canuseonesubclassof
LookupResult. Operationsdefinedin the lookup specificationcanbe invoked usingthe
invokeOperation() methodprovided by theLookupResult class.In our subclass,
wecanprovidemethods(e.g.,getCandidateNames()andgetVotesByCandidate()),
whichsimply call invokeOperation() with theappropriateparameters.

4.6 TheLookupSpecification

As statedabove, all lookupsare specifiedin an XML document.Thesedocumentsmust
conformto thelookupspecificationDTD (lookup-spec.dtd), shown below:

<!ELEMENT lookup-spec (lookup+)>
<!ELEMENT lookup (predicate+,

argument*,
target-document,
(xpath-expr | xslt-file),
result-class,
operation*)>

<!ATTLIST lookup name CDATA #REQUIRED
description CDATA #REQUIRED
id ID #REQUIRED>

<!ELEMENT predicate (#PCDATA)>
<!ELEMENT argument (name,

value)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>

<!ELEMENT target-document (#PCDATA)>
<!ELEMENT xpath-expr (#PCDATA)>
<!ELEMENT xslt-file (#PCDATA)>
<!ELEMENT result-class (#PCDATA)>

<!ELEMENT operation (parameter*,

Valued Sony Customer
 240

body)>
<!ATTLIST operation name CDATA #REQUIRED

aggregation (nodelist |
and | or |
dsum | dprod | dmin | dmax | dmean |
isum | iprod | imin | imax | imean |
concat | slist | sset) #REQUIRED>

<!ELEMENT parameter (name, default-value?)>
<!ELEMENT default-value (#PCDATA)>
<!ELEMENT body (#PCDATA)>

5 Conclusion and Open Issues

In this paper, we analyzeda geospatialapplicationfor the U.S. electionsasa meansof il-
lustratingtheproblemsthatneedto besolvedin themappingbetweendifferentXML repre-
sentationsandtheir conceptualmodels.Theframework thatwepresentedallowsapplication
designersto treatXML documentsashomogeneousgraphsandto evaluateXPathexpressions
andXSL transformationsagainstadocument.Our framework alsoallowsapplicationdesign-
ers to definea set of lookupsthat integratedatafrom multiple documents.Data retrieved
usinga lookup canalsohave operationsdefinedfor it declaratively in a lookup specifica-
tion.Coupledwith ouraggregationoperations,thisprovidesuniformaccessto non-uniformly
structureddata.

We anticipatetheneedfor introducingmetadatain thesemanticlayerto guidethetrans-
lation processbetweendocumenttypes.In this section,we discussmetadataissuesin the
semanticlayerandanumberof otherissuesthatstill needto beinvestigated.

5.1 Metadata,Semantics,andOntologies

A certainamountof metadatais necessaryfor adomainexpertor applicationdesignerto ap-
propriatelyidentify theentitiesthatcanbelinkedandhow thelookupsshouldbeperformed.
In somecases,this metadatais availablefrom theDTD or from anotherexternalsourcethat
describesthatdocumenttype.In othercases,thismetadatamaybeimplied.For example,one
canreasonablyexpectmeasurementsin documentsfrom Europeto bein metricunits,while
measurementsin documentsfrom the United Statesto be in feet and inches,even though
this informationis notexplicitly statedanywherein thedocument.Someconversionsmaybe
handledby XSLT, but somemayrequiremorecomplicatedcomputationsandconsequently
mustbeperformedby anothermechanism.

Therearealso namingissuesthat needto be taken into consideration.For instance,it
is possiblefor a geographicentity to have multiple acceptedspellings(e.g.,Foxboro,MA
vs.Foxborough,MA; or Mt. Washingtonvs.MountWashington).Oftentimes,foreignplace
nameshavemultipleacceptedEnglishspellings,andthistoomustbetakenintoconsideration.
In somecases,this canbehandledusinga crosswalk tableor someotherform of dictionary
datastructure.In other cases,the acceptedspellingsof a placenamemay dependon the
currentcontext or thelocationof thatplace.

Furtherresearchis alsoneededto seehow to useontologies,especiallyaspresentedin
[7] and[8], in our system.

Valued Sony Customer
 241

5.2 Technical Issues

Weneedanenginecapableof executinggraphqueries.With suchanengine,it maybepossi-
bleto takeagenericgraphquerylanguagethatsupportsaggregation,suchastheG+ language
presentedin [6], andcompilequeriesin thatlanguageinto XPathexpressionsor anotherXML
basedquerylanguage(e.g.,XQL, or whichever XML querylanguagereachesW3C recom-
mendationstatus).

We canalso look at performanceissues,especiallyin a distributedenvironment.Each
XML documentthat we areinteroperatingbetweencanpotentiallybe storedon a different
server. We needto look at differentwaysof cachingandprocessingdata.We alsoareexam-
ining differentsecurityschemesfor accessingthevariousXML datasources.

At this point in the developmentof our framework, muchof the codenecessaryto per-
form the tasksdescribedabove mustbe written by hand.This may becometoo complex to
be practical.In the future, we plan to analyzeall DTDs that will be supportedby andap-
plication andgeneratethe necessarycodeto performmany of the tasksdescribedabove. It
would still be necessaryfor the applicationdesigneror a domainexpert to determinethe
links betweenthedifferentdocumenttypes.It maybepossible,however, to automaticallyor
semi-automaticallygeneratethe lookupspecificationsnecessaryto executethe lookups,but
moreresearchis neededin this area.In orderto generateany codebasedonaDTD, it is first
necessaryto parsetheDTD to determineits structure.This canbedoneby creatinga DTD
graph,usingalgorithmsdescribedin [10] and [12]. From there,we canbegin to examine
codegenerationfor XPath-basedaccessormethodsin thelookupspecification.It mayalsobe
possibleto automaticallyor semi-automaticallygeneratethelookupcode(usingeitherXPath
or XSLT). Codegenerationcanbesupplementedby the input of theapplicationdesigneror
domainexpertvia avisualtool thatdisplaysE-Rdiagramsbasedona givenDTD.

5.3 DocumentStructure

The electionscenarioexampleshown throughoutthis paperis somewhatcontrived(theac-
tual datawas originally retrieved in HTML format from a websiteand then convertedto
XML) aswe have createdall of the documentsanddefinedtheir structure.Obviously, in a
real-world application,thedocumentstructurescouldpotentiallybequitedifferent,requiring
morerestructuringof thedata.

We alsoneedto examinetheeffectsthatchanginga documenttypewould have on code
thathasalreadybeenwrittenor generated.Ideally, ourfinal framework wouldbesufficiently
powerful to handlesuchchanges.

6 Acknowledgements

We would like to thankNancy WiegandandSteve Venturafor discussionson thesubjectof
statewidegeospatialapplications.

References

[1] D. Box, A. Skonnard,andJ.Lam. EssentialXML BeyondMarkup. Addison-Wesley, 2000.

[2] T. Bray, J. Paoli, andC. M. Sperberg-McQueen.ExtensibleMarkupLanguage(XML) 1.0 (SecondEdi-
tion). W3CRecommendation,2000.

Valued Sony Customer
 242

[3] J.Clark. XSL Transformations(XSLT) Version1.0. W3CRecommendation,1999.

[4] J.ClarkandS.DeRose.XML PathLanguage(XPath)Version1.0. W3CRecommendation,1999.

[5] J.CowanandR. Tobin. XML InformationSet.W3CCandidateRecommendation,2001.

[6] I. CruzandT. Norvell. AggregativeClosure:An Extensionof TransitiveClosure.In IEEE International
ConferenceonData Engineering, pages384–390,1989.

[7] M. ErdmannandR. Studer. How to StructureandAccessXML Documentswith Ontologies,2001.DKE
36(3):317–335.

[8] F. Fonseca.GIS ontology.com. GIScience2000. http://www.giscience.org/GIScience2000/papers/218-
Fonseca.pdf.

[9] A. Le Hors,P. Le Hégaret,L. Wood,G. Nicol, J.Robie,M. Champion,andS. Byrne. DocumentObject
Model (DOM) Level 2 CoreSpecificationVersion1.0. W3CRecommendation,2001.

[10] D. Lee andW. Chu. Constraints-PreservingTransformationfrom XML DocumentType Definition to
RelationalSchema.In Proc.19thInt’l Conf. onConceptualModeling. Springer-Verlag,October2000.

[11] S.Melnik andS.Decker. A LayeredApproachto InformationModelingandInteroperabilityon theWeb.
In ECDL 2000Workshopon theSemanticWeb, Lisbon,Portugal,September2000.

[12] J.Shanmugasundaram,K. Tufte,G. He,C. Zhang,D. DeWitt, andJ.Naughton.RelationalDatabasesfor
QueryingXML Documents:LimitationsandOpportunities.In Proceedingsof the ������� VLDBConference,
Edinburgh,Scotland,1999.

Valued Sony Customer
 243

Valued Sony Customer
 244

Brokerage of Intellectual Property Rights
in the Semantic Web

Roberto García, Jaime Delgado
Distributed Multimedia Applications Group (DMAG)

Technology Department, Universitat Pompeu Fabra (UPF)
Pg. Circumval·lació 8, E-08003 Barcelona, Spain

 {roberto.garcia, jaime.delgado}@tecn.upf.es

Abstract. New approaches in the Web environment are underway. These new
methodologies try to leverage it from an information medium to a knowledgeable
level, from a machine point of view. This upgrade, mainly focused on improving Web
automation capabilities, can solve some of the problems derived from its widespread
adoption. Among them, the necessity of a framework to manage the enormous market
of digitalised multimedia and to ensure that all the intervening actors get a satisfactory
experience from the Internet adventure. An application under development is
described and future plans in this direction are presented. A broker component has
already been implemented applying a Semantic Web layered architecture. Its mission
is to mediate in a restricted community of digital video providers and distributors,
benefiting also final purchasers. The intention is to use it as a test bed for this
promising initiative and its application in the Intellectual Property Rights (IPR)
domain.

1 Introduction

The Internet, and more concretely Web technologies, has matured, passed the promises phase
and is currently firmly established in our society. Now it takes part of our daily life, it is in the
appropriation phase [1]. We are trying to profit, economically or not, from it, as we did with
other revolutionary ideas that arose before. Now, we can observe with greater perspective and
calm what has been achieved and what can be done further. It seems like new phases must be
engaged, solving the new problems that came up and, why not, making new promises.
 One of the biggest problems, strongly founded on the consequences of the overall Digital
Era, is the easy copy and ulterior uncontrolled distribution of multimedia creations. This
motivates new approaches to intellectual property management, mechanisms by which the
authors of these materials and all other implicated actors get fair revenues from their efforts.
However, the management of such features in the current Web environment, decentralised
and enormously dynamic, becomes almost impossible if these mechanisms are not largely
automated. Therefore, the real problem is the lack of an easy automation framework in the
current Web, as it also happens to other initiatives in the field, for instance thus centred on
resource location.
 This fundamental problem is the focus of the new Web environment initiative, the
Semantic Web. The migration of the interoperability layer from the syntactic to the semantic

Valued Sony Customer
 245

level is the base of this initiative. This new approach, despite less suited a priori to computer
abilities, provides a more capable base for the automation of complex processes in a highly
heterogeneous environment like the Web.

The Semantic Web is the core of all the work presented in this paper. It has been applied to
its main objective, the use of semantics in the Web for IPR conceptual modelling. In addition
the implemented business model and architecture will be shown, since there is already a
developed part and in order to provide a practical context.

Work already done has been co-financed by the Catalonian Government initiative to
establish a pilot infrastructure of the future Internet 2. Concretely, inside the multimedia
cluster that explores the multimedia capabilities of this evolution of the current Internet,
especially for video distribution. The developed application, called MARS (Multimedia
Advanced brokerage and Redistribution Surveillance), deals with video IPR management for
a group of video producers that also participate in the project. However, it is important to
remark that despite this initial focus, it can easily upgrade to any type of intellectual property
resources and to wider environments, mainly thanks to the semantic approximation choosen.

2 Approach

In this section, we depict the different facets that explain the way the described project has
been considered. They have marked the development until now but have even greater
influence in the future work.

2.1 Intellectual Property Rights and the Semantic Web

Since now the Web is more and more business oriented, organisations in all sectors are trying
to automate its processes and relations to improve services, reduce costs and attain global
markets. However, these efforts are finding great difficulties, especially when considering its
implementation in the wide and open environment that the Web provides. Moreover, the
multimedia creations sector is not one of the easiest to deal with.

There are many problematic issues. The products in this market are not clearly defined
ones. They can have multiple independent components that involve multiple actors with
different rights over this material. Consider, for instance, a sophisticated Web advertisement,
with a soundtrack, some good quality photos, a synthetic animation of the product to clearly
show its functionality, etc.… Related to this, there is the identification problem of all these
creations and the actors involved.

Finally, there are the interoperability problems that an automated approximation to this
problem will find. There exist many different vocabularies to deal with intellectual property,
derived from diverse cultures, legislations, communities… This is the key issue to extract full
potential from an automated platform for IPR management can provide. Understanding
between parties using different vocabularies is fundamental. Therefore, there must be a
supporting layer enabling such mappings, since no communication is possible if there is not a
common base.

All these requirements fit pretty well in the features Semantic Web is promising. Indeed,
we can now observe some initiatives in this direction, as it could be observed in the last W3C
Workshop on Digital Rights Management [2]. Therefore, our intention in the underway

Valued Sony Customer
 246

MARS project [3] is to develop an IPR management system that profits from Semantic Web
features. It should appear completely integrated in the Web, facilitating interoperability and
allowing advanced processes automation by extracting full potential from the provided
semantic layer.

As an overview, detailed further, our plans involve the following Semantic Web building
blocks:

• URIs as identifiers. This includes URNs when persistence is needed. They are used to
identify creations and to reference digital certificates. The latter, in conjunction with
digital signatures, will allow actor identification and validation of the statements they
made.

• Ontologies. They define the different vocabularies used during statements construction.
They are not limited to the intellectual property domain, some model more abstract levels
or describe concrete multimedia types, for instance videos. Ontologies are interconnected,
directly or by common upper levels, so interoperability through mappings between them is
feasible.

• Metadata carrying semantic annotations. It is the framework that merges the previous
pieces. Metadata fragments will talk about a resource through an URI and use ontology
words and the semantics they define.

2.2 Semantic ExtraWeb

Although Semantic Web initiative has great potential, it is still at its beginnings. For the
moment, as it happened to the initial Web, it is being applied to very limited and more or less
closed environments, sometimes called Community Web Portals. We can also use the more
general term Semantic Extrawebs, since they apply to the same scope than the well-known
extranets. However, Semantic Web has openness in its foundations, inherited from its Web
origins, and this establishes a great difference with other similar initiatives. In the future, it
may upgrade easily to the global domain aggregating independently developed initiatives.

Therefore, for the moment, the developed system is intended to cope with the necessities
of a small community of users in the multimedia environment. This is not a handicap for
future wider extensions or interactions with other previously endemic communities. As has
been said, interoperability is one of the main features of the Semantic Web, as can be read for
instance in [4].

2.3 Business model and brokerage

Figure 1 shows the general IPR model that has been considered. It is inspired by the one
defined by the Imprimatur project [5].

However, we have simplified this model considering the necessities of the community
participating in our project. This allows us to facilitate implementation without losing any
characteristic because the application environment does not have the entire requirements
covered by the complete model. First, the number of actors has been reduced because the
main participants in our project cope with the three top roles of the value chain, shown in the
centre of figure 1.

Valued Sony Customer
 247

Figure 1: general IPR model

A further modification is the introduction of a new entity that will coordinate all the
services provided to the value chain. Brokerage is a main issue in e-commerce environments
[6][7]. Therefore, a broker will be the main interacting party for the other actors, hiding them
the complexities of the whole model. At the same time, it presents a unified view to all the
available services. The broker can also coordinate actions in an efficient and coherent form
because it has a central and complete view of all that occurs.

The final considered business model is presented in figure 2.

Figure 2: Considered business model

Two of the provided services must be highlighted because they are tightly connected to the
undertaken approximation. They are the Watermark and Fingerprint facility and the IPR
Control service. They appear because IPR control, and not IPR enforcement, is the method
we have implemented to ensure that all the actors get the expected revenues. There have been
many attempts to implement methods that restrict uncontrolled multimedia contents

Creator

Provider

Rights Holder

Distributor

CreatorCreator

Provider

Rights Holder

Distributor

W aterm ark
&

Fingerprint

Purchaser

IPR
Database

Unique
Num ber
Issuer

Certification
Authorities

IPR

Control

Payment
Service

Content
Provider

W eb Shop

W aterm ark
&

Fingerprint

Custom er

IPR
Database

Unique
Num ber
Issuer

Certification
Authorities

IPR

Control

Payment
Service

Rights Holder

Provider

Creator

B
 R
 O
 K
 E
R

Distributor

Purchaser

Valued Sony Customer
 248

distribution. However, until now, they have not had the expected results. They have not
succeeded because they impose proprietary software, or even hardware, solutions and
contradict the current openness and multi-device tendencies.

Therefore, our approach comes from a different point of view. Digital multimedia
materials treated by the application do not carry any mechanism to avoid its copy and
redistribution. Instead, they are watermarked, they contain an invisible digital mark that
contains an identification number. It is inserted with a password that must be provided later to
retrieve it.

On the other hand, modular chunks of metadata are also associated to multimedia
resources. They explain, in a machine understandable way, the rights situation of these
multimedia streams of bytes and other characteristics. No need to say that such streams, with
so complex senses for us, are hardly understandable for computers. Therefore, metadata must
have the necessary expressive power to deal with the complexities of the intellectual property
and multimedia field.

These metadata annotations, in conjunction with the possibilities of digital signatures and
certificates, can be used as proofs on transmission and licensing of rights on intellectual
property, i.e. digital contracts. For instance, we can get a system mainly based on licensing,
where this semantically modelled licenses and other statements allow a great level of
automation of their processing [8].

Among this processes there is IPR Control. Its commitment is the continuous monitoring
of the Web, focusing in those services providing multimedia material online. When a
suspicious digital creation is found it tries to identify it. There are three kinds of identification:

• If the creation is not watermarked, or the mark is not accessible, identification could be
done by contextual information or some unique characteristics.

• If a watermark is retrieved, automatic identification can be very reliable. There is also the
possibility that more than one watermark is found, identifying different component
creations.

• There is also the possibility that the creation has a fingerprint. This special watermark, not
only identifies a creation, but also determines a concrete transaction.

Results could not be accurate enough in the first case. For instance, from the video title
appearing in the controlled Web page a controlled video copy corresponding to it can be
located. Digital videos can be compared, e.g. total length or some key frames. Finally, if it is
not possible to determine identity, pre-established with a similarity threshold, identification
may require human intervention. Therefore, the watermarks and fingerprints present in the
other two cases are very useful.

Finally, after identification, the relevant IPR statements are retrieved. Thus, we can check
if the intellectual property is available in a situation under its rights statements. In case the
identification has been done thanks to a fingerprint, we can even track to the last controlled
transaction on this creation.

If any problem is encountered then we enter the legal scenario. Now, we have some clues
pointing to a party that may have bypassed the rights it has acquired and, at least, one actor
using a creation under unlawful conditions, from the IPR statements perspective. Here we
must return from the world of bits back to the world of atoms. Affected parties must be

Valued Sony Customer
 249

notified and then laws have the floor. At this point, our system has nothing to do and we must
rely on laws application. However, some help can be provided, digital signatures have legal
support in some countries and signed contracts and notarisation of the IPR database can be
considered in the legal scenario. We hope, in the future, laws and technology may evolve
more aware from each other and mutual support would be easier.

To conclude, we must say that, although the business model points to IPR control, the
application per se is not limited technologically to this methodology. The components
focusing on this control solution are only Watermarking and IPR Control. However, semantic
IPR statements can be used also for rights enforcement.

3 Architecture

This section will describe the architecture of the application we are developing. It is
composed of the broker and some related tools, shown in figure 2. The provided view is
structured in layers, see figure 3, starting at the final user side with the presentation layer and
then going deeper in. Application logic layer provides the high level services available for the
intervening actors of the multimedia value chain. Knowledge layer is the application core
setting the vertebral column for the whole initiative, which is made persistent using the
storage layer at the bottom.

Figure 3: Layered application architecture

However, we will explain the different layers in an order more coherent with the followed
development process. We started conceptualising the domain, i.e. establishing the knowledge
layer. Then, over the previous structure, the services required by the actors were defined
inside the application logic. Finally, the persistence and the user interface were completed.

3.1 Knowledge layer

This layer has guided the application development from the beginning. Its mission is to create
a well-established conceptualisation of the domain, in our particular case a digitalised
multimedia market. More specifically, it is an environment for video commercialisation
structured following the previous business model, centred in supporting IPR management of
these digital assets.

The fundamental objective is producing a machine interpretable model and thus to make
the conceptual level the automation support point. We have followed Semantic Web guidance

Presentation

Application logic

Knowledge

Storage

RDF Metadata
RDFSchemas

Relational
Database

Java Applets
HTML

CORBA/HTTP
Services

Valued Sony Customer
 250

and, in this initial phase of the project, only the more basic tools it provides have been used.
More sophisticated ones were not available when the project started or just announced.

Therefore, we use RDF [9] and RDFSchema [10] as the building blocks of the knowledge
layer. RDF uses URIs as resource identifiers and becames the language to express the
metadata that describes video semantics. Nevertheless, the real semantics carrier resides in the
structure of the vocabularies used by the metadata language. These vocabularies are
implemented using RDFSchema.

These key issues of the knowledge level (identification, vocabulary and metadata) are
detailed in the next sections.

3.1.1 Identification

URLs are the way things are named in the Web but URLs have a serious problem, its
persistence. We can get one URL to some Web resource but it may be unavailable in the
future or point to a completely different thing.

To avoid this problem and enlarge the set of things that RDF can refer to it uses URIs [11].
These are very similar to URL, indeed URIs include URLs, but they are an identification
system, not only locators. Formally, any identifiable object, real or virtual, can have an URI
and, what is more important, URIs also include URNs. These are especial ones because they
have an institutional commitment to persistence. This can be reduced to a kind of mapping
service from the URN that continuously identifies it to the location where it can be actually
found, which is an URL. It can also provide more information but, at least, we have the
institution compromise this identifier is stable.

Therefore, URIs give us a very flexible identification system. Commonly we will use
directly URLs in the IPR statements we construct with RDF. This is not a problem if we have
a clear idea about what the URL is pointing to. Nevertheless, in some cases it would be
preferable a more Web-independent and deeply founded identifier.

For instance, if we are talking about a book it is preferable to use the ISBN that actually is
identifying it, in URN form urn:isbn:84-85081-95-1.

In our case, we will use URN when talking about creations in their abstract form, this is a
video as an intellectual creation. The mapping schemes, or institutions that make the
persistence commitment, can be specialised ones like in the books case or other oriented to
the digital environment, like the digital object identifiers provided by DOI [12].

For the moment, because the system is pretty closed and for testing purposes, the broker is
acting as an identifiers issuer in the form of URNs, like urn:mars:687455. Nevertheless, the
broker can be completely transparent to this matter. Creations can be previously identified
and this identifier provided to the broker, although always in URI form. In the other hand,
when talking about a concrete copy of a video available in a defined location, an URL will be
used in the common way. For example http://video.provider.org/687455.mpg.

Finally, all the intervening actors also need identification. The intention stated in the
approach was to identify them by using digital certificates. Profiting from this public key
infrastructure digital signatures would also be used to track responsibility in the transactions
actors realise. However, this module has not been adapted yet. Now, we use the traditional
user-identifier and password method, so this issue is moved to the future work section.
Currently, the broker generates these user identifiers, like the previous video creations
identifiers in URN form.

Valued Sony Customer
 251

3.1.2 Vocabularies

Ontologies, formalised vocabularies, are the building blocks of the Semantic Web. Indeed, the
Semantic Web tools provide only the grounding over which different vocabularies can be
developed and interconnected, facilitating its reuse and refinement.

In the MARS project, some of these vocabularies have been used to construct the
conceptual model of the application domain. Some are reused and some are RDFSchema
implementations of previously defined conceptualisations. Finally, the uncovered aspects
have been attained developing the application specific ones.

Any RDFSchema can be reused. Actually, the application is reusing the Dublin Core [13]
RDFSchema. This provides a very generic set of properties for basic creations descriptions.
However, other possibilities exist, the most remarkable could be future schemas for MPEG7
[14] that would allow very detailed video descriptions.

The basic schema, that provides the groundings of the application domain model, is a
RDFSchema implementation of a predefined model. Work started from the results of the
INDECS [15] project, mainly a structured dictionary of terms for metadata related to the e-
commerce of intellectual property. Its focus is providing an interoperability framework for
this sector so it was a good starting point for the implementation of a schema for IPR
management. First, a deep study of the INDECS documentation resulted on a clearer
hierarchical view. The upper levels and the connection we made to RDF for its posterior
RDFSchema implementation are shown in figure 4.

Figure 4: MARS INDECS-based upper ontology levels

After that, a minimal implementation of the whole model was made resulting in a RDF
schema. We focused on the indispensable parts for our concrete application. The basic upper
levels and those necessary for IPR modelling were the main interesting parts.

On top of that, the more concrete part dealing with videos, and other features specific to
our approach, were constructed. This new schema is not an isolated part, it is grounded on the
INDECS based schema by refining the appropriate concepts it defines. For instance, we
added some concrete intellectual property rights so real IPR statements can be done. Some of

rdfs:Literal

rdfs:Class

Entity

rdf:Property

SituationEvent

Percept Concept Relation

Being Thing CreationAttribute

Role Quantity Label

Valued Sony Customer
 252

these extensions are presented in figure 5, where original INDECS concepts are preceded by
the indecs alias.

Figure 5: Some concepts defined in mars-schema

3.1.3 Metadata
Now we have the methods to refer to resources and some words to say things about them.
There is an example of metadata in table 1, a set of RDF statements serialized in XML form
about a video documentary. This is only a video description.

Table 1: Video resource RDF annotation

 A more complex example dealing with IPR statements is shown in figure 6. It presents a
graph view of a set of statements modelling an IPR agreement between two hypothetic
parties, Gamma Productions and Wide Distributions. The former is transferring the
Reproduction Right for a limited time to the latter. Furthermore, it is licensing the
dissemination of a concrete number of copies worldwide for the same period using the
Internet. Gamma Productions revenue is a fixed payment of 1000

���������	��
������������������������

This agreement can be easily expressed using the RDF Data Model and consequently
serialised in its XML form.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1#"
xmlns:mars="http://dmag.upf.i2/schemas/mars/video#"

>
<mars:Documentary rdf:ID=”urn:mars:3928172”>

<dc:title>Climate change</dc:title>
<dc:description>

 Some reseach groups. . .of the planet.
</dc:description>
<dc:language>en</dc:language>
<dc:date>1999-06-27</dc:date>
<mars:markedCopy

 rdf:resource=”ftp://mmm.upc.i2/30m-climatics.mpg”/>
<mars:preview

 rdf:resource=”vstcp://192.168.48.3:5000/climatics.mpi/>
</mars:Documentary>
</rdf:RDF>

News

Thriller

Exploitation
Right

indecs:Creation

MoralRight

indecs:IPR

Video

Comedy

Documentary

Film

indecs:IP

Reproduction
Right

Distribution
Right

Communication
Right

Valued Sony Customer
 253

controlled
Creation

granter

2001-01-01

www.media
broker.org

2000-11-05
T08:15+01:00context

requirement

grantee

permission

Agreement

transfer

Wide
Distributions

IPR
Transfer

Gamma
Productions

1000 �

payer

C/A 1203-2345-
45-4254235601

time

payee
Payment

input

5%
royalty rate

Gamma
Productions

time from time to

Reproduction
Righttransferred

Right

disseminator

VideoInternet
tool patientDisseminating

Event
 # of copies

Wide
Distributions

time from time to

Worlwide

place

2001-05-212001-01-01 2001-05-21

place from

place to

C/A 7930-3041-
56-2230355601

Figure 6: Graph view of an IPR agreement

It can serve as an example of the great expressive power that can be achieved using the
basic tools of the Semantic Web, RDF and RDFSchema.

The conclusion of this part is that, although not visible, the important thing behind these
chunks of metadata is their hidden semantics that emerge from the structure and interrelations
of the used RDFSchemas. Now, we will move to the application logic level, where all this
knowledge is really used. There, in an automated environment, they will be more significant.

3.2 Application logic layer

The broker provides a CORBA [16] interface to the entities willing to use their services. The
actors in the considered model, especially content providers and distributors, can use this
interface or http encapsulations of it with Java Servlets [17]. The remaining actors, the
purchasers, will interact with the system through more user-friendly interfaces, distributors
will provide them with web video-shops.

Available services for the business model roles are shown in table 2.

Table 2: Available services for the business model roles

Affiliated (any registered user)
- affiliate(string rdfUserDescription)
- login(string affiliatedId, string password)
- getRightsHolderRole()
- getDistributorRole()

RightsHolder (content provider)
- register(string rdfVideoDescription)
- offer(string videoId, string markedProductLoc, string markKey)

Distributor (or a purchaser through distributor’s web shop interface)
- getSchemas()
- search(string xmlQuery)
- buy(string markedVideoId)

Valued Sony Customer
 254

For the moment, the logical layer focuses on facilitating storage and retrieval of video
descriptions and IPR statements about these videos. Therefore, the real work carried out in
this layer reduces to profit from semantic annotations to improve searches for registered
videos.

Queries are sent using the search method of the Distributor role. Actually, a XML
formatted string is fetched containing a multiple property-value query with logic connectives.
This allows easy integration with common web shop’s forms without restricting the available
properties. The used schemas determine the available properties and they can be listed with
the getSchemas method. The broker contains an independent module to map XML to internal
queries so new and more expressive query formats can be plugged in.

Future work, presented in section 4, will try to extract its full potential from the knowledge
layer, which will also be improved. These enhancements would allow more sophisticated
services, some of them sketched then.

3.3 Storage layer

Supporting all the system there is the storage layer, it provides the necessary persistence. A
RDF oriented mechanism has been adopted, the RDF Data Model is directly stored in a
database in its triple form. This allows a Relational Database implementation using only a
table for triples. We will refer to it as the monolithic approach.

However, to avoid redundant storage of entities with many properties, or entities or literals
referred as values of diverse properties, we have taken them out of the main table. To improve
efficiency, digests of all entity and property identifiers, i.e. URIs, are used as the real table
identifiers.

Consequently, entities and literals were stored in different tables, but this introduced a lot
of problems when translating user queries to SQL ones, they became really complicated. We
opted to unify both tables and to add a new attribute, isLiteral, to easily differentiate literals
from entities. This increases searches efficiency; when we find a literal, as there cannot be
properties applying to it, we can stop searching for them.

The database design can be seen in figure 7.

ENTITIES (ID, name, isLiteral)

PROPERTIES (subjectID, propertyID, propertyName, entityID)

Figure 7: EER diagram and table intensions

A completely knowledge-independent storage medium has been obtained. The database
does not suffer any change when new schemas are developed or reused. Even the previous
and new schemas are stored in the same medium, because they are expressed using RDF and,
consequently, they have a triple form that allows their transparent storage in the database.

Entities Properties

Valued Sony Customer
 255

3.4 Presentation layer

Finally, this layer contains all that purchasers will see when interacting with MARS services.
As mentioned before, the user will interact through the Web pages of the distributors’ video
shops. These pages are totally out of the main MARS development process, though we have
implemented a minimal web shop for testing purposes. In addition, we have developed a tool
to facilitate that distributors use broker’s search capabilities without great effort.

The tool takes the form of an easily integrable Java applet. It provides a palette of
properties and classes for each of the available schemas and, when a concrete property is
selected, help on possible values. Figure 8 shows a capture of it.

Figure 8: Query construction applet.

4 Future work

Not all the planned work has been finished and even the completed part needs an update,
since new advances in the field are continuous. Therefore, there is still a lot of work to be
done. Some of these future intentions are depicted in this section. They are presented
following the layered structure of the architecture, each improvement is described in the
section where it takes place.

4.1 Knowledge layer

This layer is one of the more affected by the future advances of the Semantic Web,
consequently it is going to cope with a great part of the future work.

4.1.1 Ontologies

In the future, we are going to stop talking about schemas. New languages on top of
RDFSchema have been developed and they allow expressing what now can be considered as

Valued Sony Customer
 256

real ontologies. Therefore, future plans in the knowledge layer will centre in upgrading the
developed schemas to the possibilities offered by ontology capable languages, like
DAML+OIL [18].

Moreover, we are going to substitute the current upper levels inherited from the INDECS
model with those from another ontology really focused on this matter, like SUO [19].
Nevertheless, the more concrete levels of INDECS, mainly those concerned with IPR, will be
maintained but adapted to be founded in the new conceptual base level. It will not be really a
replacement process, it will be implemented, if possible, by cross mapping the old and the
new upper levels. Acting this way will allow greater interoperability and backward
compatibility between the different versions of MARS. Therefore, even INDECS unaware
application would communicate, or at least partially understand all the metadata generated by
MARS.

Finally, one of the problems that have come out is the sparse diffusion of metadata in the
Web. To reduce its impact, a lexical layer will be put under the main part of the application
ontology. This will allow ontology driven information extraction from natural language.
Metadata will be easier to produce or will be automatically retrieved, for instance from Web
pages. This can be faced using a lexicon like Wordnet [20], although it is limited to English.
However, recently the EuroWordnet [21] project has extended it to other European languages.

4.1.2 Trust

As commented in section 3.1, the use of public key infrastructures has been moved to future
work. The primary intention is requiring that each actor taking part in the systems have its
own digital certificate. This certificate, with its corresponding private key, will be used for
digitally signing all the statements done by this actor (agreements, offers, assertions…) so
responsibility can be tracked later and even produce contracts.

We are planning to apply digital signatures at the RDF Data Model level [22], not to its
serialised form. This approach avoids ambiguity problems while maintaining the flexibility
RDF annotations provide.

4.2 Application logic layer

This layer may also receive a lot of work. However, unlike the previous one, it will not have
the priority. This is because this layer feeds on the semantics generated by the knowledge
layer. Therefore, the new extensions will be undertaken when all profit from a well-developed
knowledge level can be taken.

However, a research line classifiable under this section is already been designed and first
implementations are been produced. It is a mobile agent platform related to the IPR control
service. It would consist of a brigade of mobile agents patrolling the Web randomly or
focusing on suspicious user constrained zones. Their mission will be, when possible, to
automatically test the IPR situation of the found multimedia items against available IPR
databases [23]. In addition, we are considering automatic, or partially assisted, negotiation on
multimedia assets carried out by agents [24].

However, to enable sophisticated and highly automated implementations, more powerful
tools are necessary. The Semantic Web has been until now very focused on representation
issues, and less effort has been made to exploit these representations. That is reasonable

Valued Sony Customer
 257

because the latter needs that the former is well established before advances can be done.
Following these trends, we are now considering Conceptual Graphs [25] as on of the
formalisms to apply to the logical level.

Conceptual Graphs, due to their graph oriented philosophy, seem well suited as
RDF/RDFSchema extensions. Indeed, some proposals to map between Conceptual Graphs
and RDF/XML have been done [26]. Conceptual Graphs can also be translated to and from
predicate logics, so integration with other initiatives in the field is possible, like DAML-L
[27].

4.3 Storage layer

The intention is to continue using common relational databases, they are widely used and this
facilitates implementation and deployment. However, some improvements can be done, for
instance using Object Relational Databases. They provide subtable relations between tables
that simplify queries on subtype hierarchies, this allows simplifying the current complex and
inefficient SQL queries.

We are also considering using pre-build RDF storage packages, like the ICS-FORTH [28]
RDFSuite. This package provides advanced storage of RDF metadata and enhanced
mechanisms for retrieval, a SQL like language and RDF oriented called RQL.

4.4 Presentation layer

Finally, we are also planning to use Conceptual Graphs in the user. We can profit from its
graphical orientation to develop more intuitive interfaces, allowing a more sophisticated level
of interaction. For instance, graphical conceptual graphs editors could guide user interaction,
during resource description or query formulation, profiting from domain knowledge, i.e.
ontologies. Therefore, the editor can recommend best-suited choices or even warn user about
inconsistent constructions. Figure 9 shows its possible appearance.

Figure 9: Drawing of a feasible query interface using graphs and ontologies palette.

Valued Sony Customer
 258

5 Conclusions

Although the Semantic Web is at its beginnings, in our experience in the MARS project it has
demonstrated its high potential. The promise of interoperability at the semantic level seems
very appropriate in a heterogeneous domain with great expressiveness requirements, like IPR
management.

Most significant improvements must be done in the business models, and it is going to be
difficult to satisfy all the participants, from customers to authors. Notwithstanding,
technology can provide a very valuable help in this process. Moreover, there are many other
environments where this approach could give great results. Those tightly related to the Web
approach (openness, decentralisation, universality…) could be specially benefited.

From a more general point of view, it has been interesting to see the benefits that a
knowledge driven approximation to software development can provide. Traditionally, in the
software development environment, there is a knowledge level phase were a model of the
domain of application is done. Nevertheless, the produced model is only used for human
consumption. When the project enters the machine aware part most of the produced
conceptual value is lost. For instance, we can think about relational database models, the SQL
implementation is the only view that the application has, while the Extended Entity
Relationship diagram is exclusively used for documentation purposes.

Therefore, it would be interesting to profit from this initial effort, making the conceptual
model machine available. The Semantic Web faces this problem using ontologies.
Nevertheless, this is not revolutionary, the new value it adds is inherited from the previous
Web. The Web provided the rhizome1 approach to the information level, where the rhizome
approach stands for a hierarchy less, open and decentralised way of organisation [29]. This
approach, applied to information, has showed as the best suited in an Internet-connected
world. Therefore, the novelty, and the challenge, is to apply it to the knowledge level, i.e.
constructing a Web of interrelated ontologies.

1 The rhizome serves as a metaphor for the multiplicity and infinite interconnectedness of all thought, life,

culture, and language. Developed by French theorists Gilles Deleuze and Felix Guattari in their book “A

Thousand Plateau's” [29], from which there is an interesting quote:

“A rhizome ceaselessly establishes connections between semiotic chains, organizations of power, and

circumstances relative to the arts, sciences, and social struggles. A semiotic chain is like a tuber agglomerating

very diverse acts, not only linguistic, but also perceptive, mimetic, gestural, and cognitive: there is no language in

itself, nor are there any linguistic universals, only a throng of dialects, patois, slangs, and specialized languages.

There is no ideal speaker-listener, any more than there is a homogeneous linguistic community.... There is no

mother tongue, only a power takeover by a dominant language within a political multiplicity. Language stabilizes

around a parish, a bishopric, a capital. It forms a bulb. It evolves by subterranean stems and flows, along river

valleys or train tracks; it spreads like a patch of oil. It is always possible to break a language down into internal

structural elements, an undertaking not fundamentally different from a search for roots. There is always

something genealogical about a tree. It is not a method for the people. A method of the rhizome type, on the

contrary, can analyse language only by decentering it onto other dimensions and other registers. A language is

never closed upon itself, except as a function of impotence.”

Valued Sony Customer
 259

References

[1] Flichy, P. (translation Libbrecht, L.) “Dynamics of Modern Communication : The Shaping & Impact of
New Communications Technologies”. ISBN: 0 803 97851 0. Sage Publications, 1995.

[2] W3C Workshop on Digital Rights Management for the Web, 2001.
http://www.w3.org/2000/12/drm-ws

[3] MARS project, http://www.upf.es/esup/dmag
[4] The evolution of a specification (Evolvability), Tim Berners-Lee, 1998.

http://www.w3.org/designissues/evolution.html
[5] IMPRIMATUR Project, http://www.imprimatur.net
[6] Gallego, I., Delgado, J., Acebron, J.J. “Distributed models for brokerage on electronic commerce”, in

“Trends in distributed systems for electronic commerce”. ISBN: 3 540 64564 0. Springer, Germany,
1998, pp. 129-140.

[7] Delgado, J., Gallego, I., Polo, J. "Electronic commerce of multimedia services", in “MultiMedia
Modeling” (invited paper). ISBN: 981 02 4146 1. World Scientific Publishing, Singapur, 1999, pp. 97-
110.

[8] Manasse, M.S. “Why Rights Management is wrong (and what to do instead)”. W3C Workshop on
Digital Rights Management for the Web, 2001. http://www.w3.org/2000/12/drm-ws/compaq.html

[9] Lassila, O., Swick, R.R. (editors). “Resource Description Framework (RDF) Model and Syntax
Specification”. W3C Recommendation 22 February 1999.
http://www.w3.org/TR/REC-rdf-syntax

[10] Brickley, D., Guha, R.V. (editors). “Resource Description Framework (RDF) Schema Specification 1.0”.
W3C Candidate Recommendation 27 March 2000. http://www.w3.org/TR/rdf-schema

[11] Naming and Addressing: URIs, URLs,... http://www.w3.org/Addressing
[12] The Digital Object Identifier, http://www.doi.org
[13] Dublin Core Element Set, http://dublincore.org/documents/dces
[14] MPEG7, http://www.cselt.it/mpeg
[15] INteroperability of Data in E-Commerce Systems (INDECS) Framework Ltd, http://www.indecs.org
[16] Common Object Request Broker Architecture, http://www.corba.org
[17] Java Servlets, http://java.sun.com/products/servlet
[18] DAML+OIL (DARPA Agent Markup Language + Ontology Interchange Language),

http://www.daml.org/2001/03/daml+oil-index.html
[19] IEEE Standard Upper Ontology (SUO), http://ltsc.ieee.org/suo
[20] Wordnet, http://www.cogsci.princeton.edu/~wn
[21] Eurowordnet, http://www.hum.uva.nl/~ewn
[22] RDF API Draft, Cryptographic digests of RDF models and statements.

http://www-db.stanford.edu/~melnik/rdf/api.html#digest
[23] Gallego, I., Delgado, J., García, R. “Use of Mobile Agents for IPR Management and Negotiation”, in

“Mobile Agents for telecommunication applications”. Lecture Notes in Computer Science 1931, MATA
2000. ISBN: 3 540 41069 4. Springer, Germany, 2000, pp. 205-213.

[24] Delgado, J., Gallego, I. “Negotiation of Copyright in E-Commerce of Multimedia Publishing Material”,
in “Electronic Publishing’01. 2001 in the Digital Publishing Odyssey”. ISBN 1 58603 191 0. IOS Press,
2001, pp. 298-306.

[25] Conceptual Graphs Standard, http://www.cs.uah.edu/~delugach/CG
[26] Corby, O., Dieng, R., Hébert, C A. “Conceptual Graph Model for W3C Resource Description

Framework”. In Proceedings of ICCS 2000, LNAI 1867, 2000.
[27] Lassila, O., van Harmelen, F., Horrocks, I., Hendler, J., McGuinness, D.L.

“The semantic Web and its languages”. IEEE Intelligent Systems, Volume: 15 Issue: 6, 2000.
[28] ICS-FORTH RDFSuite, http://www.ics.forth.gr
[29] Deleuze, G., Guattari, F. “Mil plateaux (capitalisme et schizophrénie)”, 1980. Ed. de Minuit.

Valued Sony Customer
 260

 Adding Multimedia to the Semantic Web
 - Building an MPEG-7 Ontology

Jane Hunter
DSTC Pty Ltd

University of Qld, Australia
 jane@dstc.edu.au

Abstract. For the past two years the Moving Pictures Expert Group (MPEG), a working group of ISO/IEC, have
been developing MPEG-7 [1], the "Multimedia Content Description Interface", a standard for describing
multimedia content. The goal of this standard is to develop a rich set of standardized tools to enable both humans
and machines to generate and understand audiovisual descriptions which can be used to enable fast efficient
retrieval from digital archives (pull applications) as well as filtering of streamed audiovisual broadcasts on the
Internet (push applications). MPEG-7 is intended to describe audiovisual information regardless of storage,
coding, display, transmission, medium, or technology. It will address a wide variety of media types including: still
pictures, graphics, 3D models, audio, speech, video, and combinations of these (e.g., multimedia presentations).
MPEG-7 is due for completion in October 2001. At this stage MPEG-7 definitions (description schemes and
descriptors) are expressed solely in XML Schema [2-4]. XML Schema has been ideal for expressing the syntax,
structural, cardinality and datatyping constraints required by MPEG-7. However it has become increasingly clear
that in order to make MPEG-7 accessible, re-usable and interoperable with other domains then the semantics of
the MPEG-7 metadata terms also need to be expressed in an ontology using a machine-understandable language.
This paper describes the trials and tribulations of building such an ontology represented in RDF Schema [5] and
demonstrates how this ontology can be exploited and reused by other communities on the semantic web (such as
TV-Anytime [6], MPEG-21 [7], NewsML [8], museum, educational and geospatial domains) to enable the
inclusion and exchange of multimedia content through a common understanding of the associated MPEG-7
multimedia content descriptions.

1. Introduction

Audiovisual resources in the form of still pictures, graphics, 3D models, audio, speech, video
will play an increasingly pervasive role in our lives, and there will be a growing need to enable
computational interpretation and processing of such resources. Forms of representation that
will allow some degree of machine interpretation of audiovisual information’s meaning will be
necessary [27]. The goal of MPEG-7 [1] is to support such requirements by providing a rich
set of standardized tools to enable the generation of audiovisual descriptions which can be
understood by machines as well as humans and to enable fast efficient retrieval from digital
archives (pull applications) as well as filtering of streamed audiovisual broadcasts on the
Internet (push applications).

The main elements of the MPEG-7 standard are:
• Descriptors (D), representations of Features, that define the syntax and the semantics of

each feature representation;
• Description Schemes (DS) that specify the structure and semantics of the relationships

between their components. These components may be both Descriptors and Description
Schemes;

Valued Sony Customer
 261

• A Description Definition Language (DDL) to allow the creation of new Description
Schemes and, possibly, Descriptors and to allows the extension and modification of
existing Description Schemes;

• System tools, to support multiplexing of descriptions, synchronization of descriptions with
content, transmission mechanisms and coded representations (both textual and binary
formats) for efficient storage and transmission, management and protection of intellectual
property in MPEG-7 descriptions.

XML Schema language has been chosen as the DDL [9] for specifying MPEG-7

descriptors and description schemes because of its ability to express the syntactic, structural,
cardinality and datatyping constraints required by MPEG-7 and because it also provides the
necessary mechanisms for extending and refining existing DSs and Ds. However it has
recently become increasingly clear that there is also a need for a machine-understandable
representation of the semantics associated with MPEG-7 DSs and Ds to enable the
interoperability and integration of MPEG-7 with metadata descriptions from other domains.
New metadata initiatives such as TV-Anytime [6], MPEG-21 [7], NewsML [8], and
communities such as the museum, educational, medical and geospatial communities, want to
combine MPEG-7 multimedia descriptions with new and existing metadata standards for
simple resource discovery (Dublin Core [10]), rights management (INDECS [11]), geospatial
(FGDC [12]), educational (GEM [13], IEEE LOM [14]) and museum (CIDOC CRM [15])
content, to satisfy their domain-specific requirements. In order to do this, there needs to be a
common understanding of the semantic relationships between metadata terms from different
domains. XML Schema provides little support for expressing semantic knowledge. RDF
Schema provides us with a way to do this.

The Resource Description Framework (RDF) [16] is the accepted language of the
semantic web due to its ability to express semantics and semantic relationships through class
and property hierarchies. In this paper, we investigate the feasibility of expressing the
semantics of MPEG-7 Descriptors (Ds) and Description Schemes (DSs) in an RDF Schema [5]
ontology. An earlier paper evaluated RDF Schema for video metadata representation (prior to
the development of MPEG-7) and determined a number of limitations [23]. In this paper we
hope to ascertain whether those limitations still exist when representing the semantics of
MPEG-7 DSs and Ds or whether they can be overcome – either by using the extra constraints
provided by DAML+OIL [17] or through combining RDF Schema semantics with XML
Schema encoding specifications in a complementary manner.

Whilst manually building the RDF Schema for a core subset of MPEG-7, we also hope to
be able to recognize patterns and hence determine automatic mechanisms for generating
compatible RDF Schema definitions corresponding to the complete set of MPEG-7 XML
Schema definitions.

In Section 2 we describe the methodology, problems encountered and results of building
an RDF Schema ontology for MPEG-7. In Section 3 we describe how the RDF Schema
semantic definitions for MPEG-7 can be linked to their corresponding pre-existing XML
Schema definitions (or recommended encodings). In Section 4 we describe how the MPEG-7
RDF Schema can be merged with RDF schemas from other domains to generate a single
"super-ontology" called MetaNet. Expressed in DAML+OIL [17], MetaNet can be used to
provide common semantic understanding between domains. Finally we illustrate how this
super-ontology can be used to enable the co-existence of interoperability, extensibility and
diversity within metadata descriptions generated by integrating metadata terms from different
domains.

Valued Sony Customer
 262

2. Building the Ontology

During the early development stages of MPEG-7, Unified Modelling Language (UML) [18]
was used to model the entities, properties and relationships (description schemes and
descriptors) which comprised MPEG-7. However the massive size of the specification (the
Multimedia Description Schemes specification [19] is almost 800 pages and that is only one
part out of 7 parts) combined with the belief that the UML models were a development tool
only, which duplicated information in the XML schemas, led to the decision to drop them
from the final specifications.

Although the lack of an existing data model hampered the development of an RDF
Schema ontology, it also means that the generated RDF Schema will be even more valuable -
providing both a data model as well as definitions of the semantics of the MPEG-7 terms and
the relationships between them. Building the data model and schema should also highlight any
inconsistencies, duplication or ambiguities which exist across the large number of MPEG-7
description schemes and descriptors.

Without a data model to build on, the class and property hierarchies and semantic
definitions had to be derived through reverse-engineering of the existing XML Schema
definitions together with interpretation of the english-text semantic descriptions. To simplify
the process, we used a core subset of the MPEG-7 specification together with a top-down
approach to generate the ontology described here. An additional very helpful mechanism for
determining the data model was to generate the DOM (Document Object Model) for the XML
Schema (using XML Spy). This graphical representation of the structures helped determine the
class and property hierarchies.

The first step was to determine the basic multimedia entities (classes) and their hierarchies
from the Multimedia Description Scheme (MDS) basic entities [19]. This process is described
in Section 2.1. Next the structural hierarchies were determined from the Segment Description
Schemes (Section 2.2). Section 2.3 describes the non-multimedia entities defined within
MPEG-7. Section 2.4 describes the different multimedia and generic properties associated with
the multimedia entities. Sections 2.5 describes the RDF Schema representations of the MPEG-
7 visual and audio descriptors defined in [20] and [21] respectively.

2.1 Top-level MPEG-7 Multimedia Entities

The top-level Multimedia Content entities are described in Section 4.4 of the MDS FCD [19].
The RDF class hierarchy corresponding to these basic entities is illustrated in Figure 1 and the
RDF Schema representation of these entities and relationships is shown in Appendix A.
Within MPEG-7, multimedia content is classified into five types: Image, Video, Audio,
Audiovisual and Multimedia. Each of these types have their own segment subclasses.

Valued Sony Customer
 263

Figure 1: Class Hierarchy of MPEG-7 Top-level Multimedia Content Entities

2.2 MPEG-7 Multimedia Segments and Hierarchical Structures

MPEG-7 provides a number of tools for describing the structure of multimedia content in time
and space. The Segment DS (Section 11 of [19]) describes a spatial and/or temporal fragment
of multimedia content. A number of specialized subclasses are derived from the generic
Segment DS. These subclasses describe the specific types of multimedia segments, such as
video segments, moving regions, still regions and mosaics, which result from spatial, temporal
and spatiotemporal segmentation of the different multimedia content types. Table I describes
the different types of MPEG-7 segments and Figure 2 illustrates the corresponding segment
class hierarchy.

Segment Fragment or segment of multimedia content.
StillRegion 2D spatial regions of an image or video frame.
ImageText Spatial regions of an image or video frame corresponding to text or

captions.
Mosaic Mosaics or panoramic view of a video segment.
StillRegion3D 3D spatial regions of a 3D image.
VideoSegment Temporal intervals or segments of video data.
MovingRegion 2D spatio-temporal regions of video data.
VideoText Spatio-temporal regions of video data that correspond to text or captions.
AudioSegment Temporal intervals or segments of audio data.
AudioVisualSegment Temporal intervals or segments of AV data.
AudioVisualRegion Arbitrary spatio-temporal segments of AV data.
MultimediaSegment Composites of segments that form a multimedia presentation.
EditedVideoSegment Video segments that result from an editing work.

Table I: Semantic Definitions of MPEG-7 Segment Types

Valued Sony Customer
 264

Figure 2: Class Hierarchy of MPEG-7 Segment Classes

 The RDF Schema representation for the segment class hierarchy can be found in Appendix
A. Certain segment entities, such as the VideoSegment, are subclasses of multiple superclasses
i.e., both the Video class and the Segment class. The relationships of these segment types to the
top-level multimedia entities is illustrated in Figure 3. Multimedia resources can be segmented
or decomposed into sub-segments through 4 types of decomposition:
• Spatial Decomposition - e.g., spatial regions within an image;
• Temporal Decomposition - e.g., temporal video segments within a video;
• Spatiotemporal Decomposition - e.g., moving regions within a video;
• MediaSource Decomposition - e.g., the different tracks within an audio file or the different

media objects within a SMIL presentation.

The different types of segment decomposition can be represented via an RDF property
hierarchy. For example:

<rdf:Property rdf:ID="decomposition">
 <rdfs:label>decomposition of a segment</rdfs:label>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>

 <rdf:Property rdf:ID="temporal_decomposition">
 <rdfs:label>temporal decomposition of a segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#decomposition"/>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>

Valued Sony Customer
 265

 Figure 3: Valid decomposition relationships between MPEG-7 Segment Classes (from Figure 32 [19])

If we consider the decomposition of a VideoSegment then, we would like to constrain the
temporal decomposition of VideoSegments into either smaller VideoSegments or StillRegions.

<rdf:Property rdf:ID="videoSegment_temporal_decomposition">
 <rdfs:label>temporal decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#temporal_decomposition"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#StillRegion"/>
 </rdf:Property>

However this is illegal within RDF Schema because of the inability to specify multiple
range constraints on a single property. This limitation was first recognized in [23] when RDF
Schema was being considered as a candidate for the MPEG-7 DDL. The only way to express
this within RDF Schema is to define a new superclass which merges the permissable range
classes into a single common class.

DAML+OIL [17] permits multiple range statements but interprets the resulting range to
be the intersection of the specified classes. In this case, we want to specify that the range will
be an instance from the union of the two classes (VideoSegment and StillRegion). In order to
do this we must use daml:unionOf to define a class which is the union of these two classes and
then specify this new class as the range. For example:

<rdfs:Class rdf:ID="#VideoSegmentsOrStillRegions">
 <daml:unionOf rdf:parseType="daml:collection">
 <rdfs:Class rdf:about="#VideoSegment"/>
 <rdfs:Class rdf:about="#StillRegion"/>
 </daml:unionOf>
</rdfs:Class>

<rdf:Property rdf:ID="videoSegment_temporal_decomposition">
 <rdfs:label>temporal decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#temporal_decomposition"/>

Valued Sony Customer
 266

Valued Sony Customer

 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#VideoSegmentsOrStillRegions"/>
 </rdf:Property>

Also associated with the segment classes are the properties which define the location of a
segment within its containing media object. These include such properties as: mediaLocator,
spatialLocator, mediaTime (temporal locator) and spatioTemporalLocator. If the segment is
non-continuous (i.e., the union of connected components) , then the spatialMask,
temporalMask, spatio-TemporalMask and mediaSpaceMask properties may be applicable.
These are sequences of spatial, temporal or spatiotemporal locators. Below we represent the
temporalLocator or mediaTime property (which has two components, the mediaTimePoint
(start of a segment) and the mediaDuration (length of the segment)):

<rdf:Property rdf:ID="mediaTime">
 <rdfs:label>temporal location of a video or audio segment</rdfs:label>
 <rdfs:domain rdf:resource="#Segment"/>
 <rdfs:range rdf:resource="#MediaTime"/>
 </rdf:Property>
<rdfs:Class rdf:ID="MediaTime">
 <rdfs:label>time point or interval within media</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Time"/>
 </rdfs:Class>
<rdf:Property rdf:ID="mediaTimePoint">
 <rdfs:label>time point</rdfs:label>
 <rdfs:domain rdf:resource="#MediaTime"/>
 <rdfs:range rdf:resource="http://www. mpeg7.org/2001/MPEG-7_Schema# basicTimePoint"/>
 </rdf:Property>
 <rdf:Property rdf:ID="mediaDuration">
 <rdfs:label>temporal length of segment</rdfs:label>
 <rdfs:domain rdf:resource="#MediaTime"/>
 <rdfs:range rdf:resource=" http://www. mpeg7.org/2001/MPEG-7_Schema#basicDuration"/>
 </rdf:Property>

2.3 Basic Non-multimedia Entities within MPEG-7

As well as the multimedia entities described above, MPEG-7 defines a number of basic non-
multimedia entities which are used in different contexts across MPEG-7. These include:
• Agent

o Person
o PersonGroup
o Organisation

• Role
• Place
• Time
• Instrument

 The RDF Schema representations of these classes can be found in Appendix A. The code
below shows both the XML Schema definition for the Person complexType. Figure 4 shows
corresponding the RDF model for the Person Class. This example illustrates how, in generating
the RDF Schema, we have translated the children elements of the XML Schema complexType to
properties attached to the RDF Schema class.

Valued Sony Customer
 267

<complexType name="PersonType">
 <complexContent>
 <extension base="mpeg7:AgentType">
 <sequence>
 <element name="Name" type="mpeg7:PersonNameType"/>
 <element name="Affiliation" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <choice>
 <element name="Organization" type="mpeg7:OrganizationType"/>
 <element name="PersonGroup" type="mpeg7:PersonGroupType"/>
 </choice>
 </complexType>
 <element name="Address" type="mpeg7:PlaceType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="PersonNameType">
 <sequence>
 <choice minOccurs="1" maxOccurs="unbounded">
 <element name="GivenName" type="string"/>
 <element name="FamilyName" type="string"/>
 </choice>
 </sequence>
 </complexType>

Again we have the situation where we would like to be able to say that the Affiliation property
can have values which are instantiations of either the Organisation or PersonGroup class i.e., we
would like to be able to define multiple possible ranges. DAML+OIL provides a way of doing
this through the unionOf mechanism as shown below:

<rdfs:Class rdf:ID="Affiliation">
 <rdfs:comment>Either an Organisation or a PersonGroup</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <rdfs:Class rdf:about="#Organisation"/>
 <rdfs:Class rdf:about="#PersonGroup"/>
 </daml:unionOf>
</rdfs:Class>

 <rdf:Property rdf:ID="affiliation">
 <rdfs:label>affiliation</rdfs:label>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Affiliation"/>
</rdf:Property>

Valued Sony Customer
 268

Figure 4: RDF Class and Property Representation of PersonDS

2.4 Multimedia Description Schemes

Figure 5 provides an overview of the organization of MPEG-7 Multimedia DSs into the
following six categories: Basic Elements, Content Description, Content Management, Content
Organization, Navigation and Access, and User Interaction. The MPEG-7 DSs in Figure 5
define descriptions which provide:
• Information describing the creation and production processes of the content (director, title,

short feature movie);
• Information related to the usage of the content (copyright pointers, usage history, broadcast

schedule);
• Media information of the storage features of the content (storage format, encoding);
• Structural information on spatial, temporal or spatio-temporal components of the content

(scene cuts, segmentation in regions, region motion tracking);
• Information about low level features in the content (colors, textures, sound timbres,

melody description);
• Conceptual, semantic information of the reality captured by the content (objects and

events, interactions among objects);
• Information about how to browse the content in an efficient way (summaries, views,

variations, spatial and frequency subbands);

Valued Sony Customer
 269

• Organization information about collections of objects and models, which allows
multimedia content to be characterized on the basis of probabilities, statistics and
examples;

• Information about the interaction of the user with the content (user preferences, usage
history)

Figure 5 - Overview of MPEG-7 Multimedia DSs (from Figure 1 [19])

We will not cover all of these DSs in this paper but have chosen to represent only the
CreationDS in order to demonstrate RDF Schema’s ability to model a typical MPEG-7 DS.
Figure 6 illustrates the RDF Schema classes and properties corresponding to the CreationDS
(expressed in XML Schema) below.

 <complexType name="CreationType">
 <complexContent>
 <extension base="mpeg7:DSType">
 <sequence>
 <element name="Title" type="mpeg7:TitleType"/>
 <element name="Abstract" type="mpeg7:TextAnnotationType"/>
 <element name="Creator">
 <complexContent> <extension base="mpeg7:AgentType">
 <complexType>
 <sequence>
 <element name="Role" type="mpeg7:ControlledTermType"/>
 <element name="Instrument" type="mpeg7:CreationToolType"/>
 </sequence>
 </complexType>
 </extension></complexContent>
 </element>
 <element name="CreationLocation" type="mpeg7:PlaceType"/>
 <element name="CreationDate" type="mpeg7:DateType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Valued Sony Customer
 270

Figure 6 – RDF Class and Property Representation of MPEG-7 Creation DS

2.5 Low Level Visual and Audio Descriptors

The set of features or properties which is specific to the visual entities (Image, Video,
AudioVisual, StillRegion, MovingRegion, VideoSegment) include:

• Colour
• Texture
• Motion
• Shape

Each of these features can be represented by a choice of descriptors. Table II below lists the
visual features and their corresponding MPEG-7 descriptors. Precise details of the structure
and semantics of these visual descriptors are provided in ISO/IEC 15938-3 FCD Multimedia
Content Description Interface - Part 3 Visual [20].

Valued Sony Customer
 271

Feature Descriptors
Color DominantColor

 ScalableColor
 ColorLayout
 ColorStructure
 GoFGoPColor

Texture HomogeneousTexture
 TextureBrowsing
 EdgeHistogram

Shape RegionShape
 ContourShape
 Shape3D

Motion CameraMotion
 MotionTrajectory
 ParametricMotion
 MotionActivity

Table II: Visual features and their corresponding Descriptors

Similarly there is a set of audio features which is applicable to MPEG-7 entities containing
audio (Video, AudioVisual, Audio, AudioSegment):

• Silence
• Timbre
• Speech
• Melody

ISO/IEC 15938-3 FCD Multimedia Content Description Interface - Part 4 Audio [21]
describes in detail the XML Schema specifications of the audio descriptors. Each of these
audio features can be represented by one or more audio descriptors. Table III below lists the
audio descriptors which correspond to each audio feature.

Feature Descriptors
Silence Silence
Timbre InstrumentTimbre
 HarmonicInstrumentTimbre
 PercussiveInstrumentTimbre
Speech Phoneme
 Articulation
 Language
MusicalStructure MelodicContour
 Rhythm
SoundEffects Reverberation, Pitch, Contour, Noise

Table III: Audio features and their corresponding Descriptors

Only certain low-level visual and audio descriptors are applicable to each segment type. Table
IV below illustrates the association of visual and audio features to different segment types.
RDF Schema must be able to specify the constraints on these property-to-entity relationships.

Valued Sony Customer
 272

Feature Video
Segment

Still
Region

Moving
Region

Audio
Segment

Time X - X X
Shape - X X -
Color X X X -
Texture - X - -
Motion X - X -
Audio X - - X

Table IV: Relationships between Segment types and Visual and Audio Features

Using the color descriptor, we demonstrate in Figure 7, how RDF Schema is able express these
constraints through the domain and range values in the color property definitions.

Figure 7: RDF Class and Property Representation of the MPEG-7 Color Descriptor

3. Linking the MPEG-7 XML and RDF Schemas

In a previous paper [22] we outlined the advantages of separating the semantics of domain-
specific metadata terms from the recommended encodings by defining both an RDF Schema
and an XML Schema in the domain’s registered namespace. The RDF Schema file defines the
domain-specific semantic knowledge by specifying type hierarchies and definitions - based on
the ISO/IEC 11179 standard for the description of data elements. The XML Schema file
specifies the recommended encodings of metadata elements and
descriptions by defining types and elements, and their content models, structures, occurrence
constraints and datatypes. In addition, the XML Schema file contains links to the
corresponding semantic definitions in the RDF Schema file. Because the underlying semantics
will remain relatively stable compared to the syntax, which will be application-dependent, we

Valued Sony Customer
 273

choose to make the RDF Schema the base schema and to point to the base RDF Schema from
the application-specific XML Schemas, rather than the other direction.

The most concise and flexible method for implementing the link from the XML Schema
definitions to their corresponding RDF Schema definitions is to exploit the openness of XML
Schema attributes. Since nearly all types are extended from the openAttrs type in the Schema
for Schemas in [3], it is possible to extend XML Schema simpleType and complexType
definitions with a "semantics" attribute defined in another namespace e.g.,
"XMLRDFSchemaBridge". Using this approach, the value of the "semantics" attribute is set to
the RDF Property or Class which defines the semantics of the corresponding simple or
complex type. We have chosen to link the semantics to XML Schema type definitions, rather
than element declarations. This is because restrictions, extensions, redefinitions and elements
are all built on top of XML Schema types, so the most logical and flexible approach is to
attach the semantics to the type rather than the element. The XML Schema code below
demonstrates an implementation of this approach.

4. Balancing Metadata Interoperability, Extensibility and Diversity

By making the semantic knowledge of a domain or community available in a machine-
understandable RDF Schema, it becomes possible to merge separate ontologies or metadata
vocabularies from different communities into a single encompassing ontology expressed using
DAML+OIL. Using the ABC vocabulary ([24][28]), developed within the Harmony project
[29], as the top-level or umbrella, we have manually developed a draft version of such a
"super-ontology" - the MetaNet ontology [26]. MetaNet expresses the semantic relationships
(e.g., equivalent, narrower, broader) between metadata terms from different domains. By
linking the semantic knowledge provided by MetaNet with XSLT [25], we have been able to
perform both the semantic and the structural and syntactic mapping required to map between
XML-encoded metadata descriptions from different domains. The overall architecture of a
system, which should enable the coexistence of metadata interoperability together with
extensibility and diversity, is illustrated in Figure 8. The key components are:

<schema xmnls="http://www.w3.org/2001/10/XMLSchema"
 targetNamespace="http://www.mpeg7.org/2001/MPEG-7_Schema"
 xmlns:mpeg7="http://www.mpeg7.org/2001/MPEG-7_Schema"
 xmlns:xx="http://www.example.org/XMLRDFSchemaBridge">

 <annotation>
 <documentation>
 XML Schema for MPEG-7
 </documentation>
 </annotation>

 <simpleType name="Person"
 xx:semantics="http://www.mpeg7.org/2001/MPEG7_Schema/mpeg7.rdf#Person">
 <extension base="Agent"/>
 </simpleType>

 <simpleType name="Organisation"
 xx:semantics="http://www.mpeg7.org/2001/MPEG-7_Schema/mpeg7.rdf#Organisation>
 <extension base="Agent"/>
 </simpleType>
 ...

 </schema>

Valued Sony Customer
 274

• Domain-specific namespaces which express each domain’s metadata model and vocabulary
using both an RDF Schema and an XML Schema. Each XML Schema contains links to the
corresponding RDF Schema;

• MetaNet - a single "super" metadata ontology, generated by merging the domain-specific
ontologies (RDF Schemas) from different namespaces. This is expressed using
DAML+OIL and will be based on a common underlying, extensible vocabulary such as the
ABC vocabulary being developed within the Harmony project [24];

• XSLT - a language suitable for transforming between XML-encoded metadata
descriptions. Combined with the semantic knowledge of MetaNet, XSLT [25] is capable of
flexible dynamic mappings between application profile instantiations;

• Application Profiles - XML Schema definitions which combine, restrict, extend and
redefine elements from multiple existing namespaces. Application profiles could also
embed RDF Schema definitions of new classes or properties which are derived from
classes and properties defined in the domain-specific RDF Schemas.

Figure 8: The Proposed Web Metadata Architecture

5. Conclusions

In this paper, we first outlined the reasons for why an RDF Schema representation of MPEG-7
is desirable. We then described the methodology, problems encountered and results of
manually building an RDF Schema representation for a core subset of MPEG-7. Our

Valued Sony Customer
 275

conclusion from this exercise is that, although RDF Schema is capable of expressing the
semantics of MPEG-7 Description Schemes and Descriptors, it does have certain serious
limitations. RDF Schema’s property-centricity makes it difficult to generate property
definitions and domain constraints from the class-centric XML Schema definitions. The
inability to specify multiple range constraints or class-specific property constraints are other
major limitations of RDF [23] within this context. However, these can be overcome through
the use of DAML+OIL extensions to RDF Schema including multiple range constraints,
boolean combinations of classes and class-specific constraints on properties. In addition, the
lack of cardinality and datatyping constraints in RDF Schema can be overcome by maintaining
the XML Schema definitions and linking them to the RDF Schema semantic definitions.

Whilst generating the RDF Schema representation of a subset of MPEG-7, we have also
been able to determine certain repetitive patterns and other information which can be derived
from the XML Schema definitions (baseTypes, comments, annotation, textual semantic
descriptions, the DOM). We believe that by exploiting this information, it may be possible to
automate the generation of an RDF Schema/DAML+OIL representation of MPEG-7 from the
existing XML Schema definitions.

So our future work plan is to attempt to develop programmatic tools capable of
automatically processing an MPEG-7 XML Schema document and converting this to a
DAML+OIL ontology which correctly represents the semantics of MPEG-7 description
schemes and descriptors and which is compatible and consistent with the corresponding XML
Schema. Links to this ontology can then be added to the MPEG-7 XML Schema definitions.

Once the MPEG-7 ontology is complete, we will then investigate ways of merging this
with the ABC/MetaNet ontology [28] as well as other metadata ontologies from other domains
(rights management, museums (CIDOC CRM)), to enable a common understanding of
descriptive terms across domains and the sharing and exchange of multimedia content over the
semantic web.

Acknowledgements

The work described in this paper has been carried out as part of the Harmony Project. It has
been funded by the Cooperative Research Centre for Enterprise Distributed Systems
Technology (DSTC) through the Australian Federal Government’s CRC Programme
(Department of Industry, Science and Resources).

References

[1] J. Martinez, "Overview of the MPEG-7 Standard (version 5.0)", ISO/IEC JTC1/SC29/WG11 N4031,
Singapore, March 2001. <http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm>

[2] XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001,
 <http://www.w3.org/TR/xmlschema-0>

[3] XML Schema Part 1: Structures, W3C Recommendation, 2 May 2001,
 <http://www.w3.org/TR/xmlschema-1/">

[4] XML Schema Part 2: Datatypes, W3C Recommendation, 2 May 2001,
 <http://www.w3.org/TR/xmlschema-2/>

[5] RDF Schema Specification 1.0, W3C Candidate Recommendation 27 March
 2000. <http://www.w3.org/TR/rdf-schema/>

[6] TV-Anytime Forum, <http://www.tv-anytime.org/>

[7] MPEG-21 Multimedia Framework,
 <http://www.cselt.it/mpeg/public/mpeg-21_pdtr.zip>

[8] NewsML <http://www.newsml.org/>

Valued Sony Customer
 276

[9] ISO/IEC 15938-2 FCD Information Technology - Multimedia Content Description Interface - Part 2:
Description Definition Language, March 2001, Singapore

[10] Dublin Core Metadata Element Set, Version 1.1, 2 July, 1999.
 <http://www.purl.org/dc/documents/rec-dces-19990702.htm>

[11] G. Rust, M. Bide, "The indecs Metadata Schema Building Blocks", Indecs Metadata Model, November,
1999. <http://www.indecs.org/results/model.htm>

[12] Content Standard for Digital Geospatial Metadata (CSDGM),
 <http://www.fgdc.gov/metadata/contstan.html>

[13] The Gateway to Educational Materials <http://www.the gateway.org>

[14] IEEE Learning Technology Standards Committee’s Learning Object Meta-data Working Group. Version 3.5
Learning Object Meta-data Scheme.

[15] ICOM/CIDOC Documentation Standards Group, Revised Definition of the CIDOC Conceptual Reference
Model, September 1999. <http://www.geneva-city.ch:80/musinfo/cidoc/oomodel>

[16] RDF Model and Syntax Specification, W3C Recommendation 22 February 1999.
<http://www.w3.org/TR/REC-rdf-syntax/>

[17] DAML+OIL Revised Language Specification, March 2001.
 <http://www.daml.org/2001/03/daml+oil-index>

[18] UML Resource Center, <http://www.rational.com/uml/index.jsp>

[19] ISO/IEC 15938-5 FCD Information Technology - Multimedia Content Description Interface - Part 5:
Multimedia Description Schemes, March 2001, Singapore

[20] ISO/IEC 15938-3 FCD Information Technology - Multimedia Content Description Interface - Part 3: Visual,
March 2001, Singapore

[21] ISO/IEC 15938-4 FCD Information Technology - Multimedia Content Description Interface - Part 4: Audio,
March 2001, Singapore

[22] J. Hunter, C.Lagoze, "Combining RDF and XML Schemas to Enhance Metadata Interoperability Between
Application Profiles", WWW10, HongKong, May 2001.

 <http://www10.org/cdrom/papers/572/index.html>

[23] J. Hunter, L.Armstrong, "A Comparison of Schemas for Video Metadata Representation", WWW8, Toronto,
May 1999 <http://archive.dstc.edu.au/RDU/staff/jane-hunter/www8/paper.html>

[24] C.Lagoze, J. Hunter, D. Brickley, "An Event-Aware Model for Metadata Interoperability", ECDL 2000,
Lisbon, September 2000.

[25] XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 November 1999,
<http://www.w3.org/TR/xslt.html>

[26] J. Hunter, "MetaNet – A Metadata Term Thesaurus to Enable Semantic Interoperability Between Metadata
Domains", Journal of Digital Information, Volume 1, Issue 8, April 2001

 <http://jodi.ecs.soton.ac.uk/Articles/v01/i08/Hunter/>

[27] J. van Ossenbruggen et al., "Towards Second and Third Generation Web-Based Multimedia", WWW10,
HongKong, May 2001

[28] C. Lagoze, J. Hunter, "The ABC Ontology and Model", <http://metadata.net/harmony/dc_paper.pdf>

[29] The Harmony International Digital Library Project, <http://metadata.net/harmony/>

Appendix A: An MPEG-7 Ontology Expressed as a DAML+OIL Schema

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
 xmlns:mpeg7="http://www.mpeg7.org/2001/MPEG-7_Schema#"
 xmlns="http://www.mpeg7.org/2001/MPEG-7_Schema#">

<rdfs:Class rdf:ID="MultimediaContent">
 <rdfs:label>MultimediaContent</rdfs:label>
 <rdfs:comment>The class of multimedia data</rdfs:comment>

Valued Sony Customer
277

 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Image">
 <rdfs:label>Image</rdfs:label>
 <rdfs:comment>The class of images</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Video">
 <rdfs:label>Video</rdfs:label>
 <rdfs:comment>The class of videos</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Audio">
 <rdfs:label>Audio</rdfs:label>
 <rdfs:comment>The class of audio resources</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="AudioVisual">
 <rdfs:label>AudioVisual</rdfs:label>
 <rdfs:comment>The class of audiovisual resources</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Multimedia">
 <rdfs:label>Multimedia</rdfs:label>
 <rdfs:comment>The class of multimedia resources</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
<rdfs:Class rdf:ID="Segment">
 <rdfs:label>Segment</rdfs:label>
 <rdfs:comment>The class of fragments of multimedia content</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="StillRegion">
 <rdfs:label>StillRegion</rdfs:label>
 <rdfs:comment>2D spatial regions of an image or video frame</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#Image"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="ImageText">
 <rdfs:label>ImageText</rdfs:label>
 <rdfs:comment>Spatial regions of an image or video frame that correspond to text or
captions</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#StillRegion"/>
 </rdfs:Class>
<rdfs:Class rdf:ID="Mosaic">
 <rdfs:label>Mosaic</rdfs:label>
 <rdfs:comment>Mosaic or panaoramic view of a video segment</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#StillRegion"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="StillRegion3D">
 <rdfs:label>StillRegion3D</rdfs:label>
 <rdfs:comment>3D spatial regions of a 3D image</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#Image"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="VideoSegment">
 <rdfs:label>VideoSegment</rdfs:label>

Valued Sony Customer
 278

 <rdfs:comment>Temporal intervals or segments of video data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#Video"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="MovingRegion">
 <rdfs:label>MovingRegion</rdfs:label>
 <rdfs:comment>2D spatio-temporal regions of video data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="VideoText">
 <rdfs:label>VideoText</rdfs:label>
 <rdfs:comment>Spatio-temporal regions of video data that correspond to text or captions</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MovingRegion"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="AudioSegment">
 <rdfs:label>AudioSegment</rdfs:label>
 <rdfs:comment>Temporal intervals or segments of audio data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#Audio"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="AudioVisualSegment">
 <rdfs:label>AudioVisualSegment</rdfs:label>
 <rdfs:comment>Temporal intervals or segments of audiovisual data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#AudioVisual"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="AudioVisualRegion">
 <rdfs:label>AudioVisualRegion</rdfs:label>
 <rdfs:comment>Arbitrary spatio-temporal segments of AV data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="MultimediaSegment">
 <rdfs:label>MultimediaSegment</rdfs:label>
 <rdfs:comment>Segment of a composite multimedia presentation</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Multimedia"/>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </rdfs:Class>
<rdfs:Class rdf:ID="EditedVideoSegment">
 <rdfs:label>EditedVideoSegment</rdfs:label>
 <rdfs:comment>Video segment that results from editing work</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#VideoSegment"/>
</rdfs:Class>
<rdf:Property rdf:ID="decomposition">
 <rdfs:label>decomposition of a segment</rdfs:label>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>
 <rdf:Property rdf:ID="spatial_decomposition">
 <rdfs:label>spatial decomposition of a segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#decomposition"/>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>
 <rdf:Property rdf:ID="temporal_decomposition">
 <rdfs:label>temporal decomposition of a segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#decomposition"/>
 <rdfs:domain rdf:resource="#MultimediaContent"/>

Valued Sony Customer

Valued Sony Customer
279

 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>
 <rdf:Property rdf:ID="spatio-temporal_decomposition">
 <rdfs:label>spatio-temporal decomposition of a segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#decomposition"/>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
 </rdf:Property>
 <rdf:Property rdf:ID="mediaSource_decomposition">
 <rdfs:label>media source decomposition of a segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#decomposition"/>
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#Segment"/>
</rdf:Property>
<rdf:Property rdf:ID="videoSegment_spatial_decomposition">
 <rdfs:label>spatial decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#spatial_decomposition"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#MovingRegion"/>
 </rdf:Property>
<rdfs:Class rdf:ID="VideoSegmentsOrStillRegions">
 <daml:unionOf rdf:parseType="daml:collection">
 <rdfs:Class rdf:about="#VideoSegment"/>
 <rdfs:Class rdf:about="#StillRegion"/>
 </daml:unionOf>
</rdfs:Class>
 <rdf:Property rdf:ID="videoSegment_temporal_decomposition">
 <rdfs:label>temporal decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#temporal_decomposition"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#VideoSegmentsOrStillRegions"/>
</rdf:Property>

<rdfs:Class rdf:ID="MovingOrStillRegions">
 <daml:unionOf rdf:parseType="daml:collection">
 <rdfs:Class rdf:about="#MovingRegion"/>
 <rdfs:Class rdf:about="#StillRegion"/>
 </daml:unionOf>
</rdfs:Class>
 <rdf:Property rdf:ID="videoSegment_spatio-temporal_decomposition">
 <rdfs:label>spatio-temporal decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#spatio-temporal_decomposition"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#MovingOrStillRegions"/>
</rdf:Property>
 <rdf:Property rdf:ID="videoSegment_mediaSource_decomposition">
 <rdfs:label>media source decomposition of a video segment</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#mediaSource_decomposition"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#VideoSegment"/>
</rdf:Property>
<rdfs:Class rdf:ID="Agent">
 <rdfs:label>Agent</rdfs:label>
 <rdfs:comment>Agent - person, organisation or group which performs
 an act.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>

Valued Sony Customer
 280

 <rdfs:Class rdf:ID="Person">
 <rdfs:label>Person</rdfs:label>
 <rdfs:comment>An individual person.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Agent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="PersonGroup">
 <rdfs:label>PersonGroup</rdfs:label>
 <rdfs:comment>A group of persons with a collective title.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Agent"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Organisation">
 <rdfs:label>Organisation</rdfs:label>
 <rdfs:comment>Organisation.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Agent"/>
 </rdfs:Class>
<rdf:Property rdf:ID="role">
 <rdfs:label>The Role played by an agent or place in an event</rdfs:label>
 <rdfs:domain rdf:resource="#Agent"/>
 <rdfs:domain rdf:resource="#Place"/>
</rdf:Property>
 <rdfs:Class rdf:ID="Place">
 <rdfs:label>Place</rdfs:label>
 <rdfs:comment>Describes real, fictional, historical locations.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Time">
 <rdfs:label>Time</rdfs:label>
 <rdfs:comment>Describes date/time points and durations</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Instrument">
 <rdfs:label xml:lang="en">Instrument</rdfs:label>
 <rdfs:comment>Describes instrument or tool used to perform an action.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>
<rdf:Property rdf:ID="name">
 <rdfs:label>name</rdfs:label>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#PersonName"/>
 </rdf:Property>
<rdfs:Class rdf:ID="Affiliation">
 <rdfs:comment>An affiliation is either an Organisation or a PersonGroup </rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <rdfs:Class rdf:about="#Organisation"/>
 <rdfs:Class rdf:about="#PersonGroup"/>
 </daml:unionOf>
</rdfs:Class>
 <rdf:Property rdf:ID="affiliation">
 <rdfs:label>affiliation</rdfs:label>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Affiliation"/>
</rdf:Property>
 <rdf:Property rdf:ID="address">
 <rdfs:label>address</rdfs:label>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Address"/>
 </rdf:Property>

Valued Sony Customer
 281

 <rdfs:Class rdf:ID="Address">
 <rdfs:label>Address</rdfs:label>
 <rdfs:comment>Address of person, organisation or person group.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Place"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="PersonName">
 <rdfs:label>PersonName</rdfs:label>
 <rdfs:comment>Name of an individual person.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>
 <rdf:Property rdf:ID="givenName">
 <rdfs:label>givenName</rdfs:label>
 <rdfs:domain rdf:resource="#PersonName"/>
 <rdfs:range rdf:resource="#Literal"/>
 </rdf:Property>
 <rdf:Property rdf:ID="familyName">
 <rdfs:label>familyName</rdfs:label>
 <rdfs:domain rdf:resource="#PersonName"/>
 <rdfs:range rdf:resource="#Literal"/>
 </rdf:Property>
<rdfs:Class rdf:ID="Creation">
 <rdfs:label>Creation</rdfs:label>
 <rdfs:comment>A multimedia content creation.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </rdfs:Class>
 <rdf:Property rdf:ID="title">
 <rdfs:label>title</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#multimediaDescriptor"/>
 <rdfs:domain rdf:resource="#Creation"/>
 <rdfs:range rdf:resource="#Title"/>
 </rdf:Property>
 <rdf:Property rdf:ID="abstract">
 <rdfs:label>abstract</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#multimediaDescriptor"/>
 <rdfs:domain rdf:resource="#Creation"/>
 <rdfs:range rdf:resource="#TextAnnotation"/>
 </rdf:Property>
 <rdf:Property rdf:ID="creator">
 <rdfs:label>creator</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#multimediaDescriptor"/>
 <rdfs:domain rdf:resource="#Creation"/>
 <rdfs:range rdf:resource="#Creator"/>
 </rdf:Property>
 <rdf:Property rdf:ID="creationLocation">
 <rdfs:label>creationLocation</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#multimediaDescriptor"/>
 <rdfs:domain rdf:resource="#Creation"/>
 <rdfs:range rdf:resource="#Place"/>
 </rdf:Property>
 <rdf:Property rdf:ID="creationDate">
 <rdfs:label>creationDate</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="#multimediaDescriptor"/>
 <rdfs:domain rdf:resource="#Creation"/>
 <rdfs:range rdf:resource="#Time"/>
 </rdf:Property>
 <rdfs:Class rdf:ID="Creator">
 <rdfs:label>Creator</rdfs:label>

Valued Sony Customer

Valued Sony Customer
282

 <rdfs:comment>Person, organisation or person group who created the content.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Agent"/>
 </rdfs:Class>
 <rdf:Property rdf:ID="role">
 <rdfs:label>role</rdfs:label>
 <rdfs:domain rdf:resource="#Creator"/>
 <rdfs:range rdf:resource="#ControlledTerm"/>
 </rdf:Property>
 <rdf:Property rdf:ID="creationTool">
 <rdfs:label>instrument</rdfs:label>
 <rdfs:comment>Instrument used by creator to create multimedia content.</rdfs:comment>
 <rdfs:domain rdf:resource="#Creator"/>
 <rdfs:range rdf:resource="#Instrument"/>
 </rdf:Property>
<rdfs:Class rdf:ID="Color">
 <rdfs:label>Color</rdfs:label>
 <rdfs:comment>Color of a visual resource</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="DominantColor">
 <rdfs:label>DominantColor</rdfs:label>
 <rdfs:comment>The set of dominant colors in an arbitrarily-shaped region.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Color"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="ScalableColor">
 <rdfs:label>ScalableColor</rdfs:label>
 <rdfs:comment>Color histogram in the HSV color space.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Color"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="ColorLayout">
 <rdfs:label>ColorLayout</rdfs:label>
 <rdfs:comment>Spatial distribution of colors.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Color"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="ColorStructure">
 <rdfs:label>ColorStructure</rdfs:label>
 <rdfs:comment>Describes color content and the structure of this content.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Color"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="GoFGoPColor">
 <rdfs:label>GoFGoPColor</rdfs:label>
 <rdfs:comment>Group of frames/pictures color descriptor.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ScalableColor"/>
 </rdfs:Class>

 <rdf:Property rdf:ID="color">
 <rdfs:label>color</rdfs:label>
 <rdfs:comment>Color descriptor - applicable to video segments, still regions and moving
regions.</rdfs:comment>
 <rdfs:subPropertyOf rdf:resource="#visualDescriptor"/>
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:domain rdf:resource="#StillRegion"/>
 <rdfs:domain rdf:resource="#MovingRegion"/>
 <rdfs:range rdf:resource="#Color"/>
 </rdf:Property>
</rdf:RDF>

Valued Sony Customer
 283

Valued Sony Customer
 284

OvercomingOntologyMismatchesin

Transactionswith Self-DescribingService

Agents
Drew McDermott

YaleUniversity

drew.mcdermott@yale.edu

Mark Burstein

BBN Technologies

burstein@bbn.com

DouglasSmith

KestrelInstitute

smith@kestrel.edu

Abstract.Onevision of the “SemanticWeb” of the future is that softwareagents

will interactwith eachotherusingformal metadatathat revealtheir interfaces.We

examineoneplausibleparadigm,whereagentsprovideservicedescriptionsthattell

how they canbeusedto accomplishotheragents’goals. Fromthepoint of view of

theseotheragents,theproblemof decipheringaservicedescriptionis quitesimilar

to thestandardAI planningproblem,with someinterestingtwists.Two suchtwists

arethepossibilityof having to reconcilecontradictoryontologies— or conceptual

frameworks— usedby theagent,andhaving to rearrangethe datastructuresof a

message-sendingagentso they matchthe expectationsof the recipient.We argue

that theformerproblemrequireshumaninterventionandmaintenance,but thatthe

lattercanbefully automated.

1 Introduction

Supposeanagentis giventhetaskof buying thepaperbackeditionof “Robo Sapi-

ens”for lessthan$25.

Theagentmustcarryout severaltasks:

1. Find otheragentsthat might be ableto help carry out the given action.(A

broker agentwould performthis part.)

2. For eachsuchagent,get a descriptionof what serviceit provides.This de-

scriptionmustbeexpressedin a formal language,suchasDAML (DARPA

AgentMarkupLanguage).

Valued Sony Customer
 285

2 OvercomingOntologyMismatchesin Transactionswith Self-DescribingServiceAgents

3. If thegoaldescriptionandtheservicedescriptiondo not usethesameontol-

ogy, find a commonframework to translatethemto. An ontology is a “con-

ceptualscheme,” a wayof talkingabouttheworld.1

4. Findandexecuteaplan for satisfyingits goal,thatis, aseriesof interactions

with a givenbooksellerthatresultin theagentacquiringa copy of thebook.

Theprimitive actionsof theplanwill beactionsthatsendandreceive mes-

sages.Building anddecodingthesemessagesmayrequirefurthertranslation,

betweenwhatoneagentwantsto receiveandwhattheotherknows.

One of the key questionswe addressin this paperis how agents’goalsand

servers’ servicedescriptioncanberepresented,andwhat is necessaryto make the

two mesh.Many treatmentsof suchproblemsassumethatrepresentationscanbeas

simpleaslistsof keywordsandvalues

(‘‘Task: buy; Thing-to-buy: book; Price: (
�

$25); ����� .’’)
Suchnotationswork fine aslong asall tasksfit within a preimaginedframework,

but areunableto expressanythingnovel.

We preferto usenotationsthat respectthe degreesof freedomwe’re likely to

requirein the future.It seemsinescapablethat suchnotationswill have thepower

of formal logic:

(do-for-some (� (m - Merchant b - Book)

(and (= (title b) "Robo Sapiens")

(sells m b)

(< (price m b) (* 25 $))))

(� (m - Merchant b - Book)

(buy-from m 1 b)))

(do-for-some ���) means,“For someobject(s) � satisfyingpredicate� , do

(���).” We useLisp-style notationfor logical constructs.Functionapplication

is written (function arg 	
����� arg�), even if the function is traditionallywritten

usinginfix notation.So(* (+ 3 4) 5) is theLisp way to write (3+4)*5.2

Thenotation(� (params)) denotesafunctionwhoseparametersareparams

andwhosevalueis . We usethe term bodyof the � -expressionto refer to . Al-

thoughit’snotouremphasisin thispaper, all expressionsmustbetypable, meaning

thatit mustbepossibleto assignconsistenttypesto all their subexpressions.When

necessaryfor typability or perspicuity, parameterscanhave declaredtypes,indi-

catedusingthenotation(� (����� param - type �����) �����). � -expressions

have many purposes.Thefirst � -expressionin our exampleis a predicate,because

its bodyis of typeProposition. Theseconddenotesa functionfrom merchants

andbooksto actions,so that applyingit to a particularmerchantandbook yields

a particularaction,namely, buying onecopy of thatbookfrom thatmerchant.The

1Original meaning:the philosophicalstudyof being.As usedin AI, the word “ontology” hascometo

mean“what is representedasexisting.”
2We departfrom Lisp notationin two contexts. We representfinite setsusingbracesand tuplesusing

anglebrackets.Lisp puristsmaypreferto read � a, b, c � as(set a b c), and<a b c> as(tuple

a b c).

Valued Sony Customer
 286

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents3

combinationof do-for-some and � work togetherto definea“quantifier” for ac-

tions,analogousto theusualexistentialquantifier ������������������� in mathematical

logic. The action(do-for-some ���) is carriedout whenever the agentdoes

(���) for some� satisfying� . Thereis no presuppositionthat it achievesthis by,

say, finding an � that satisfies� , thendoing(� �). In the presentcase,it might

searchfor a planfor (buy-from m96 1 b97), wherem96 andb97 areplace-

holderconstantslabeledwith the constraintsthatb97 be RoboSapiens, andthat

m96 bea merchantthatsellsb97 for lessthan$25.Or it might pursueit in some

otherwayentirely;thelogic doesn’t care.

In this paper, we focuson the questionhow theselogic-basedrepresentations

canbeused,andin particularwhathappensafterbrokershave donetheir work, so

that two or more agentsknow of eachother’s existenceandpossibleusefulness.

At that point the taskbecomesgettingthe agentsto talk to eachotherin orderto

solvea commonproblem.For clarity, wewill adoptthefollowing terminology:the

planningagent is theonewhosepoint of view we aretaking,i.e., thebuyer in our

example;the target agent(s)arethosetheplanningagentis trying to interactwith.

We assumethe target agentsare not underour control. They sharesomeof the

notationalassumptionswemake,but wemusttake their notationsaswefind them.

2 Using Self-Describing Agents

Oneof our notationalassumptionsis thateachtargetagentwill have a servicede-

scription embeddedin the interfaceit presentsto the world, which onemay visu-

alize asa web page.This descriptionwill have an internalandan external form.

The external form is “web-friendly,” in the sensethat it looks like XML, and,

whenappropriate,canbe displayedandbrowsedthrough.Sucha languageis un-

der developmentunderthe label “DARPA Agent Markup Language,” or DAML

(http://www.daml.org), which is an extensionof RDF, the ResourceDe-

scriptionFramework.

(Seehttp://www.w3.org/TR/1999/REC-rdf-syntax-19990222.)

Sowhatwe havebeenwriting as

(book-isbn book21 "0-262-13383-0")

might beencodedon thewebmorelike this:

<rdf:Description about=‘‘#book21’’>

<pub:book isbn>0-262-13383-0</pub:book isbn>

</rdf:Description>

However, theseare simply two alternative syntaxes for the samething, which is

representedinternallyasanabstractsyntacticobject.

The first hurdleto overcomeis that the two agentsmust“speakthe samelan-

guage.” Two differentbooksellers(e.g.,Amazon.comandBarnes& Noble) must

usethesameindustry-specificvocabularyin theirservicedescriptions.If they don’t,

thenwehaveanontologytranslationproblem,anissuewe’ll addressin section??,

Valued Sony Customer
 287

4 OvercomingOntologyMismatchesin Transactionswith Self-DescribingServiceAgents

makingonly two remarkshere:(1) Within an industry therewill be strongmoti-

vation to adopta standardvocabulary, asis indeedalreadyhappeningwith XML;

(2) the main placethe translationproblemwill ariseis whensatisfyinga request

requiresinteractionof agentsfrom multiple communities.

Assumingfor now that the servicedescriptionis in the samelanguageasour

servicerequest,whatwe have to do is verify thatthereis a way of carryingout the

requestby talkingto thetargetagent.(In general,wemayhaveacollectionof target

agentsto talk to, but we’ll ignorethat.)

Thiskind of verificationis closeto whatAI researcherscall aplanningproblem:

Givena descriptionof a system,aninitial stateof thesystem,anda goal,find a se-

quenceof actionsthatachieve thegoal in thatsystem.Heretheservicedescription

playstherole of systemdescriptionandinitial state.Oncetheactionsequencehas

beenfound,during theplanningphase, it mustbeexecuted.During this plan exe-

cutionphase,theactionsareexecutedin order. It is reasonable(wehope)to assume

that the planningagentwill succeedif it executesthe plan; but theremay well be

situationswheretheplanexits prematurelywith somesortof failure indication.In

thatcasetheagentmaygive up, or replan, startingfrom thesituationit finds itself

in halfway throughtheoriginalplan.

Let’s look at anexampleof planningandexecution,involving a fictional book-

seller, “Nile.com.” . One thing you cando at Nile.com’s web pageis find out if

they have a book in stock.Nowadaysthis is doneby usingthesearchfacility, and

visually inspectingtheoutput,looking for phrasessuchas“In stock,usuallyships

within 24 hours.” In anagent-orientedworld, actionssuchasfilling in a form and

pushinga buttonwill have dualdescriptionsin termsof agentssendingmessages.

Similarly, outputswill be definedin termsof formal languages,aswell asbeing

displayablefor humanconsumption.

We will formalizethis by having send andreceive actions:

! (send agentmessage): Sendthegivenmessageto thegivenagent;creates

a messageid thatthesendingagentcanuseto identify replies.

! (receive agentmessage-id): Receiveamessage,sentin replyto theorig-

inal sender’smessage.

Themessageto thebooksellerisof theform(search � <key	 , val 	 >, ����� ,
<key" , val" > �).3 Theresponseis a list of “book descriptions,” giving important

informationabouteachbookthatmatchesthesearchkeys.Thesedescriptionswill

alsobein anXML dialect,but asusualwewill useamorecompactnotation.

Sotheplanwe arelooking for might begin:

(series (tag s1

(send Nile.com

(test-in-stock

<<author "Philip K. Dick">

<title "Ubik">>)))

(tag r2 (receive Nile.com (value s1))))

(test (= (value r2) empty-set)

3As before,what’s actuallysentis a pieceof XML. This is anongoingareaof research;W3C’s effort is

describedathttp://www.w3.org/MarkUp/Forms/.

Valued Sony Customer
 288

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents5

(fail (not-in-stock �����))
�����))

In this plan,thetags allow usto give namesto stepsin theplan.Thevalue of a

stepis theresultit returns.Thevalueof s1 is amessageid thatlaterreceivescan

refer to. Thevalueof r2 is thesetof tuplesreceivedin answerto thein-stock

query.

To formalizethis in termsaplannercanunderstand,wecreateactiondefinitions

suchas

(:action (send ?a - agent ?msg - Message)

:vars (?id - Message-id)

:value ?id

:effect (reply-pending ?a ?id ?msg))

(:action (receive ?a - agent ?id - Message-id)

:vars (?msg - Message)

:precondition (reply-pending ?a ?id ?msg)

:effect (forall (?d - (Lst (Tup Attribute String))

?sv - Message)

(when (and (= ?msg (test-in-stock ?d))

(this-step-val ?sv))

(know-val (has-in-stock ?a ?d)

?sv))))

This is an extensionof PDDL (PlanningDomainDefinition Language)notation,

which is in standardusein theAI planningworld[?, ?]. Thedetailsof thenotation

arenot importanthere,but thegist is thatsendinga messagecreatesa messageid,

so that a later receptioncanknow what it’s a responseto. In addition,in the case

wherethemessagesentwasan“in-stock” inquiry, oneresultof theactionis thatthe

planningagentknowswhetherthetargetagenthasthebookin stock.In otherwords,

by executingthis actiontheplanningagentwill haveacquirednew information.

This way of representingthe effectsof receive is too clumsy for practical

use,becauseto berealisticstheeffect specificationwould have to list theeffectsof

all thepossiblesends thatthereceive couldbein answerto. A betterideais to

haveassertionsof theform

(message-exchange message-id

sent-message

received-message

effect)

andhave the:effect field of :receive consulttheseassertions:

:effect (when (and (this-step-val ?sv)

(message-exchange ?id ?smsg ?sv ?e))

?e)

Obviously, anAI plannercansolve problemsinvolving actionsthatacquirein-

formationonly if it canreasonaboutsituationsin which it doesn’t alreadyknow

everything.As it happens,many planningalgorithms,includingsomeof the most

Valued Sony Customer
 289

6 OvercomingOntologyMismatchesin Transactionswith Self-DescribingServiceAgents

efficient,cannot.They requireit to bethecasethattheinitial stateof theworld, the

setof possibleactions,andtheeffectsof every actionareall known. Theonly un-

certaintyis whichactionsequencewill bringaboutadesiredresult.Therehasbeen

much researchon relaxing theseassumptions,but no approachthat is obviously

correct.

Fortunately, theversionof theproblemwe areconfrontedwith is not asbadas

thegeneralcase,becauseouragentknowsatplanningtimeexactlywhatit will and

will not know at plan-executiontime. In addition,we canavoid tacklingextremely

generalformalizationsof what it meansfor an agentto know something.For au-

tomatedagents,we canappealto thedifferencebetweencomputableandnoncom-

putableterms.A termis computable4 if it canbe“evaluated,” yielding a canonical

termfor anobjectof its type.For instance,theterm(+ 5 4) is computable,be-

causewecanhandit to aprogramming-languageprocessorandgetback9. Wewill

usethetermcomputationalfor atermlike9 thatis canonicalin thesensealludedto,

meaningthatit cantakepartin furthercomputationsusingstandardalgorithms.We

write (val (+ 5 4) 9), whereval is a variantof equalitythat appliesonly

to computabletermsandtheir computationalvalues.By contrast,(number-of-

planets sun), while it mayalsohappento denotenine,is not a computational

representationof ninein theway theterm9 is. It is not evencomputable,because

we cannotsimply aska Lisp systemto evaluate(number-of-planets sun)

andexpectto getback9.5

A plausibleprinciplefor agentsis

To knowsomethingis to havea computabletermwhose

value is (a computationalrepresentationof) that some-

thing.

We formalize this principle by introducingpredicatesexpressingwhat the plan-

ningagentknows.(Wecurrentlydonotprovidefor reasoningaboutwhatthetarget

agentsknow; we believe that thereis little symmetrybetweenthe two cases,be-

causeevenif theplanningagentbelievesthata targetagenthasa computableterm

denotingsomething,the planningagentwon’t know what that term is or how to

evaluateit.)

Onesuchpredicateis (know-val $#), which meansthat the agentknows

thevalueof expression , andthat thevalueis thevalueof computableterm # . For

example,theagentmight record

(know-val (book-isbn book21) (value step14))

meaningthat(val (value step14) %) if andonly if % is a string giving a

legal ISBN (InternationalStandardBookNumber)for book21. Herewemakeuse

of thefactthataftera planstep� hasbeenexecuted,(value �) is a computable

term.

We will alsorequirea predicate(know-val-is
#'&), which is roughly

equivalentto

4Weadoptthistermwith somehesitation,becauseits usualmeaninghassomewhatdifferentconnotations.

However, we can’t think of a betterone.
5Of course,theremaybeprograms,say, a front endto adatabaseof astronomicalfacts,in which onecan

do exactly this; in thatcontext theterm(number-of-planets sun) wouldbecomputable.

Valued Sony Customer
 290

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents7

(and (know-val
) (val #(&)))
exceptthat theplannerwill avoid trying to make sucha goal trueby changingthe

valueof # .
A computationalterm representinga finite set is the familiar �)#*	*+�������+�# " � ,

where #�, is a computationalterm representingthe - ’ th elementof the set.Some-

timesit is sufficient for anagentto have a partial listing of a set.To representthat

situation,we havetwo furtherpredicates

! (known-elements �.#): Meaningthat # is a computableterm whose

valueis a computationalrepresentationof thesetof all objectstheplanning

agentsknowsto beelementsof � .

! (known-elements-are �.#���# 	 +�������+/#)"0�): In whichtheelementsare

spelledout.

2.1 ProposedPlanningAlgorithm

Mostpreviouswork in theareaof planningwith incompleteknowledge—so-called

contingentplanning—hasbeendonein thecontext of partial-orderplanning[?, ?,

?]. This factis mainly a historicalaccident,becausework on planningwith incom-

pleteknowledgehappenedto coincidewith a periodwhenpartial-orderplanning

waspopular.

We areaddinga contingent-planningability to our Unpopplanner[?], which

is in thefamily of estimated-regressionsearch planners[?]. Thesesystemsbuild a

planby startingwith a null seriesof actionsandaddingactionsto its trailing end.

At eachstage,it attemptsto addtheactionthatwill maximallyreducetheestimated

effort requiredto finish the plan.The effort is estimatedby constructinga treeof

subgoalsthat relatestheoriginal goal to thecurrentsituation.Thebranchesof the

treearesimplifiedversionsof the actualsequenceof actionsthatwill be required

to solve the problem.The tree,calledthe regressiongraph, canbecomputedeffi-

ciently, but is only aheuristicestimateof theactualactionsrequired,becausemany

interactionsbetweenactionsareignored.

To handlecontingentplanning,Unpopmustbemodifiedthus:

1. Theoutputof the plannercan’t bea simplesequenceof actions;it mustin-

cludeif-then-else teststhatsendexecutionin differentdirectionsbased

on informationgathered.

2. As aconsequence,thespacesearchedby theplannercannotbeasimplespace

of actionsequences.Onealternative would be to let the spacebe the setof

“action trees,” eachbranchof which correspondsto a sequence.However,

this ideahasa coupleof bugsthatwe will discussbelow.

3. Givenagoalof theform(know-val 1�����), theplannermusteitherver-

ify that theplanningagentalreadyknows , or find anactionwhosevalue

canbebeusedto construct . For agoalof theform(send � 2), theplan-

nermustverify thatit knows,or cancometo know, sufficient informationto

build 2
To dealwith this last issue,the plannermustindex actionsby the valuesthey

compute,in muchtheway thatplannerstraditionallyindex themby theeffectsthey

Valued Sony Customer
 291

8 OvercomingOntologyMismatchesin Transactionswith Self-DescribingServiceAgents

can bring about.However, thereare somedifferences.Therewill seldombe an

exactalignmentbetweenwhattheplanningagentknowsandwhatit needsto know.

For instance,if thevalueof anaction(ask-name ?c) is <(last-name ?c)

(first-name ?c)>, and the planningagentwantsto know the last-nameof

D, it will have a goal(know-val (last-name D) ?r). The term(last-

name D) canbeextractedfrom theactionvalueby usingthefunction(elt 34-),

which getsthe - ’ th elementof a tuple 3 . Soall theplannerhasto do is proposethe

action(ask-name D), which will have,amongotherthings,theeffect(know-

val (last-name D) (elt (value �) 1)), assuming� is thestepwith

action(ask-name D). A bit of caremust be taken hereto ensurethat � is a

placeholderfor thecorrectstep,which of coursedoesn’t exist yet.We discussthis

issueat greaterlengthin section3.1.

Let’s look morecloselyat the search-spaceissue.As we saidabove, the most

straightforward ideais to think of a partially constructedplanasa treeof actions,

with thebranchpointsoccurringafter information-gatheringsteps.A planis com-

pletedsuccessfullywhenevery branchleadsto a successfulconclusion.Onebug

with this ideais thatit maybeaskingtoomuchto requireeverybranchof aplanto

succeed.Oftenthereis a“normal” resultof aninformation-gatheringstep,suchthat

it is reasonableto expectthenormalresultto occur. If it might not occur, thebest

thing for theplannerto do is tackonashortbranchsaying“Giveup!” Theresulting

branchingplanhasonebranchthatsucceedsandonethat fails, which is perfectly

all right. If Nile.commight not have your book,that is no reasonto give up on the

attemptto dealwith them.Henceratherthanrequireall branchesto succeed,we

requirejust oneto succeed,hopefullythemostlikely one.

Anotherproblemhasto do with efficiency. Supposea plan hasa branchpoint

fairly early, leading to subplans� 	 and �65 . In general,the plannerhas to do a

searchthroughdifferentpartialversionsof � 	 and �65 . Supposeit eventuallyfinds

versions� 	7	 , � 	 5 , ����� , � 	�8 of � 	 , andversions�65 	 , �����9�65 � of �95 . Usingthetree

representation,we mustrepresenttheseas 2;: distinct trees.The numbers2 and

: might bearound50 in a realisticcase,sowe have 2500differentplansto think

about.Worse,thecomputationtheplannerdoesfor, say, �<	>= 57? is thesameregardless

of whetherit is pairedwith � 5 = 	 ? or � 5 = ?75 , sotheplannerwill have to do thesame

work overandover.

Thebestsearchspacethereforeturnsout to betheonewe startedwith: a setof

sequencesof steps,eachrepresentingapartialplan.Theonly differenceis thateach

sequencemaybeannotatedwith zeroor moreknowledgenotesrecordingwhatthe

plannerwill havelearnedatvariouspointsin thesequence.Thereisalsoadifference

in whattheplannermustdowhenacompletesequenceis found.It now maydiscard

all thecompetingplansthatreflectthesameknowledgenotes,andkeepworkingon

plansthat representotherknowledgestates.For instance,the plannermay find a

planfor buyinga bookassumingthatthereis apaperbackedition.Having foundit,

it maycontinueto look for a planto handlethecasewhereit discoversthatthereis

no paperbackedition.

Whentheplannerrunsout of patience,it returnshowevermany branchesit can

cobbletogether. If duringexecutionit divergesfrom thebranchesit predictedwould

succeed,it mustreplan.In somesuchcases,thenew informationit haswill allow it

to find agoodplan;but many timestheproblemwill just not haveasolution.

Valued Sony Customer
 292

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents9

2.2 ScriptsandHierarchical Planning

So far, we seemto beassumingthat servicedescriptionscontainspecificationsof

the effectsof individual atomictransactionswith the server. Theseareindeedim-

portant,but in practicemany serverswill alsoprovide “scripts,” that is, standard

sequencesof transactionsthatcanbeusedto accomplishcommongoals.

For instance,abooksellermightprovideascriptfor theaction(buy-from 2
:A@), meaning“Buy : copiesof somethingansweringto the description@ .” (To

keepthingssimple,we suppressthe price argumentwe usedearlier.) That script

might look like:

(:method buy-from

:params (?m - Merchant

?quant - Integer

?d - Item-description)

:vars (?r - (Set ISBN) ?isbn - ISBN)

:precondition

(and (forall (x) (if (?d x) (is Book x)))

(know-val-is (image book-isbn

(set-of-all ?d))

?r � ?isbn �))
:expansion

(series (send ?m

(verify-in-stock ?isbn))

�����))
The notation(set-of-all ?d) is the setof all objectsmatchingdescription

?d. In traditionalnotationthatwouldbewritten �)�6B(?d ?x) � . Thefunction

(image CED)
createsalist with elements(CEDGF), (C�D), ����� , (CED �IHJ), so(image book-

isbn �����) changesa list of booksinto a list of their ISBNs, a computational

object.

The ideabehindscriptsis that if theplanningagentjust wantsto carryout the

action(buy-from �����), or any action that fits oneof the scripts,it cansave

searchingfor aplanby justfindingandtuningtheappropriatescript.(Tuningmight

includefilling in actionsto achievegoalsfor which thescriptsuppliesno action.)

This styleof planningis usuallycalledhierarchical, becausetheproblemis to

instantiatehierarchiesof actionsusinglargebuilding blocksratherthanassembling

sequencesof individualactions.Hierarchicalplanningis fairly well understood,and

tendsto beefficient whenit is applicableat all (becausethescriptwriter hasdone

mostof thework already).Thereis aninterestingresearchquestionhereabouthow

to geta plannerto do bothhierarchicalandsequentialplanning.Our approachwill

beto augmentthenotionof partialplanto includepartiallyexpandedscriptsaswell

asopengoals,but thefocusof this paperis on agent-communicationissues,sowe

won’t go into this any further. However, we do point out that the goal we started

with, (do-for-some ����� (� (�����) (buy-from m 1 b))), is actually

anactionratherthana propositionalgoal,sowe’vebeenassumingthatactionsare

partof problemspecificationsall along.

Valued Sony Customer
 293

10OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents

3 Ontology and Data Structure Translation

It’ s time we turnedto our principal topic, which is how to copewith ontologyand

data-structuremismatch.We begin with thelatter.

3.1 GlueCode

Assumingthat theplanningagentandtargetagentusethesameontology, thereis

still a potentialmismatchproblem.Supposethattheplanningagentis dealingwith

abooksellerthatoffersadiscountif youorder10or morebooks,notcountingbulk

orders.Somewhat artificially, let’s supposethat the planningagentis responsible

for sendingthetotal at somepoint.That is, theplannercontemplatesexecutingthe

action:

(send G (non-bulk-total

(size (set-of-all

(� (b)

(intention (buy-from G 1 b)))))))

This lookscomplex, solet’sbreakit down into parts.

(set-of-all (� (b) (intention (buy-from G 1 b))))

is thesetof all booksb suchthattheplanningagentintendsto buy exactly1 copy of

b from G. Thefunctionnon-bulk-total is a constructorthatbuilds a message

to sendto thetargetagent— a computationalobject.

Obviously, theplanningagentshouldknow whatit plansto buy. Usingtheprin-

ciple of section2, that meansit musthave a computableterm for it. Supposethe

following is truein theinitial situation:

(� (know-val (image (b k)

(set-of-all

(� (b k)

(intention

(buy-from G k b)))))

pending-orders)

This formulastatesthat thecomputablevariablepending-orders contains(by

stipulation)a set of triples <author title quantity> for every book the planning

agentintendsto buy somequantityof. Let’sexplain thatmoregradually. Theset-

of-all expressionhereis similarto theoneweneedto send,exceptthatit denotes

a set of tuples< KML > for every book K that the agentplansto buy L copiesof.

Thesetuplesarenot computational,but we canconvert it to somethingthat is by

usingimage. While a book or an author is an abstractobject in a universeof

discourse,thenameof thebookor authoris just a string,andthenumberof copies

theagentintendsto buy is representedasa sequenceof binarydigits.Furthermore,

theuseof know-val announcesthatthevariablestoredin pending-orders is

computable,andits valuewill beapurelycomputationalobject,namelyanordinary

tupleholdingtwo stringsandaninteger.

Themessagethe agentneedsto send,andthe datait hasin its possession,are

tantalizinglycloselyrelated,but not identical.We needa procedurethat translates

Valued Sony Customer
 294

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents11

from whattheagentknows to whatit needsto send.We call sucha procedureglue

code, becauseit connectstwo thingstogether. In [?] we discussedhow to generate

glue codeautomatically;the sameapproachwill work in this context, with some

minormodificationsto theassumptionswemakeaboutthesourceside.In theorig-

inal paperwe assumedthat the thingsthe agent“knows” arestrungtogetherin a

tuple;now we posit that theseentitiesarethevaluesof anunorderedcollectionof

computableterms,of which only a subsetmayberelevant to building a particular

datastructure.

Spacedoesnotpermitusto explain in detailhow thealgorithmworks.We treat

theglue-code-generationproblemasfindinga computablefunction C suchthat

(C “things agentknows”) = “things agentneeds”

The right-handsideis calledthe target, the argumentsto C arecalledthe source.

Thealgorithmoperatesby transformingthetargetuntil it containsonly termsthat

appearin thesource,in which caseC canbeproducedby � -abstraction(replacing

termswith variables).

Theoutputof thealgorithmin ourexampleshouldbe

(non-bulk-total

(size (filter (� (b k) (= k 1))

pending-orders)))

Thevalueof

(filter ��D)
is acopy of list D containingjust theelementssatisfyingpredicate� . In thiscontext,

it meansthatwe discardfrom pending-orders all the tuplescorrespondingto

bulk orders.

Theplanningcontext addsanotherdimensionto theproblemof glue-codegen-

eration.In additionto thecomputabletermsthat theplannerknows about,it must

alsoentertainthepossibilityof generatingnew computabletermsof theform(value

step), wherestepis anew stepaddedto theplan.Theopenresearchquestionis how

to fit this into thecomputationof theregressiongraph.

3.2 OntologyTranslation

We now turn to themostdifficult problemthatweb-basedagentsmustcopewith,

the problemof reconcilingdisparateontologies,or representationalframeworks.

The reasonit is so difficult is that it often requiressubtlejudgmentsaboutthe re-

lationshipsbetweenthemeaningsof formulasin onenotationandthemeaningsof

formulasin another. Furthermore,thereis noobvious“oracle” thatwill make these

judgments.For instance,we cannotassumethat thereis an overarching(possibly

“global”) ontologythatservesasa courtof appealsfor semanticjudgments.There

aretimeswhensucha strategy will work, but only after someonehasprovideda

translationfrom eachof thedisparateontologiesto theoverarchingframework,and

thereis noreasonto expecteitherof thesetranslationtasksto beany easierthanthe

onewestartedwith. Indeed,themoretheoverarchingframework encompasses,the

harderit will beto relatelocal ontologiesto it. Hencethework of ontologyrecon-

ciliation inevitably involvesahumanbeingto dotheheavy lifting. Themostwecan

Valued Sony Customer
 295

12OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents

hopefor is to providea formaldefinitionof theproblem,andsoftwaretools6 to aid

in solvingit.

Thegoalof thesetoolsis to developandmaintainontologytransformations. An

ontologytransformationis a mechanismfor translatinga setof factsexpressedin

oneontology(N) into a setof expressionsin anotherontology(NO5), suchthatthe

new set“saysthesamething” astheoriginal set.

Ontologytranslationis partly a matterof syntaxandpartly a matterof logic.

Thelogical issuesinclude:

! Vocabulary: Whatsymbolsdoestheontologyuseandwhatdo they referto?

! Expressiveness:Whatlogicalconstructsareallowed?

Theexpressivenessissuemaynot soundontological,but it canbe.For instance,if

the ontologyallows us to talk aboutpossibletruth, it maycommitus to assuming

the existenceof possiblebut nonactualworlds in which propositionsfalsein this

world aretrue.

In addition to suchpurely logical issues,computationalquestionsabouthow

factsarestructuredandaccessedareoftenmixedinto theontologyquestion.Exam-

ples:

! Implicit content:Whatfactsarerepresentedimplicitly in agivenformalism?

For instance,if theformalismallows a list of objectsat a certainpoint,does

it imply thatthelist comprisesall theobjectswith a certainproperty?

! Indexing: How arefactsassociatedwith “keys” sothat they canberetrieved

whennecessary?Specifically, is every factassociatedwith a classof object

it is trueof?

! Efficiency:Is thelanguagerestrictedin sucha way asto make someclassof

inferencesmoreefficient?

Pastwork in theareaof ontologytransformation[?, ?] hasaddressedbothlogi-

calandcomputationalissues.Wethink it is moreenlighteningto separatethemout.

From the point of view of logic, computationalissuesaffect mainly the concrete

syntaxof anontology. Thereforeit oughtto bepossibleto find anabstractversion

NQP of any ontology N , suchthatany setof factsexpressedin N canbe translated

into a setof factsin N P . Furthermore,all abstractontologiesusethesamesyntax,

so that thereis no longerany needto mix syntacticandcomputationalissuesinto

logical ones.In otherwords,we assumethatanontologytransformationNQ	ORSN 5
canalwaysbefactoredinto threetransformationsNT	URVNQ	 P RVN 5>P RWN 5 . This

maynot seemlike an improvementat first, but it hassomeadvantages.First, it al-

lows usto focuson abstractR abstracttransformations,andput syntaxon theback

burner. Second,the translationN�RXNYP shouldnot bevery difficult, becauseit is

essentiallyamatterof “parsing”asetof facts;goingin theotherdirection,NQPURZN
is a matterof “generating”theconcreterepresentationof a setof facts.Third, the

transformationN([ZNQP hasto bedonejust oncefor eachontology.

Onemight objectthatnot all thecontentof a setof factscanbepulledout and

madeinto explicit formulas,and thereforethat our decomposition,however tidy,

will notwork in practice.Wetakethisobjectionseriously, but for now ourprincipal

6Suchasthosedescribedby [?].

Valued Sony Customer
 296

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents13

reply is that for ontologiesin which it is valid the transformationproblemis not

very well definedno matterwhatapproachyou take to it.

Hencewewill continueto employ our tacticof focusingon abstractratherthan

concretedatastructures.We will assumethat all factsare expressedin termsof

formal theories,eachof which we take to containthefollowing elements:

1. A setof types.

2. A setof symbols, eachwith a type.

3. A setof axiomsinvolving thesymbols.

In additionweintroducetheconceptof adataset,thatis,asetof factsexpressed

usinga particularontology. This conceptabstractsaway from theactualrepresen-

tationsof, say, Nile.com’s currentinventory, andtreatsit asa setof identifiersand

factsaboutthem,which usessymbolsfrom thatontology.

Oncewehaveclearedawaythesyntacticunderbrush,theontology-transformation

problem becomesmuch clearer. One is likely, in fact, to seeit as trivial. Sup-

poseonebooksellerhasa theory NQ	 with a predicate(in-stock x - Book

t - Duration), meaningthatx is in stockandmaybeshippedin timet. An-

otherbooksellerexpressesthe sameinformationin its theory N 5 , with two predi-

cates,(in-stock y - Book) and(deliverable d - Duration y -

Book). We arepresentedwith a dataset\ 	 that is in termsof N 	 , which contains

fragmentssuchas

(:constants ubik blade-runner - Book)

(:axioms (in-stock ubik (* 24 hr))

(in-stock blade-runner (* 4 day))

�����)
To translatethis into an equivalentdatasetthat uses NO5 , we must at leastfind a

translationfor theaxioms.Thetypesandconstantsneedto behandledaswell, but

we’ll setthatasidefor amoment.Wewill usethenotation\ 	 RZ\]5 asamnemonic

for this sortof transformationproblem.

With this narrow focus,it becomesalmostobvious how to proceed:Treatthe

problemasa deductionfrom thetermsof onetheoryto thetermsof theother. That

is, combinethetwo theoriesby “bruteforce,” taggingeverysymbolwith asubscript

indicatingwhich theoryit comesfrom. Thenall weneedto do is supplya“bridging

axiom” suchas

(forall (b t) (iff (in-stock 	 b t)

(and (in-stock 5 b)
(deliverable 5 t b))))

which we canuseto translateevery axiomin \ 	 . More precisely, we canuseit to

augmentthecontentsof \ 5 . Any time we needan instanceof (in-stock 5 x)
and(deliverable 5 y x), thebridgingaxiomwill tell us that(in-stock 5
ubik) and(deliverable 5 (* 24 hr) ubik) aretrue (andmaybeother

propositionsaswell). We thendiscardthesubscripts,andwe’redone.Furthermore,

elementarytypeanalysistellsusthatubik is of typeBook 5 .
This ideais similar to the lifting axiomsof [?]. Themaindifferenceis thatthey

focusedon axiomsof the form (if (axiomin onedomain)axiomin another),

Valued Sony Customer
 297

14OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents

whereaswe useiff. The reasonfor the differenceis that we are interestedin

inferring factsof the form (not (in-stock 5 x)); we could avoid this sort

of inferenceif we could rely on a closed-world assumptionfor thepredicatein-

stock.

Of course,thedeductiveapproachdoesnot solve all problems.Hereis a list of

someof theremainingissues:

1. It is potentiallyrecklessto reduceontologytransformationto theoremprov-

ing. In theexample,therequireddeductionwaseasy, but in generalit could

beundecidable,afterfindingzero,one,or two axioms,whetherthereareany

more.However, we are inclined to think that mostof the theorem-proving

problemsthatariseduringontologytranslationarestraightforward.

2. We attachedsubscriptsto predicatesandtypes,but not to other identifiers.

That implies that we can just take a symbol like ubik over to the target

theory. But supposethetargetdatasetmustbecompatiblewith someexisting

N 5 dataset,andthesymbolubik is alreadyin use.In principlethedeductive

framework canaccommodatethis situation,by including a testfor whether

ubik 	 andubik 5 refer to the sameobject,i.e., whetherwe canprove(=

ubik 	 ubik 5). It is ofteneasyto show thatthey arenotequal,by showing

thatthey areof differenttypes.But supposewecan’t proveeitherthatthetwo

identifiersareequalor that they areunequal.Whatdo we do then?Also, do

we have to testall pairsof symbolsfor equality?(Two symbolscouldeasily

beprovablyequaleventhoughthey arespelleddifferently.)

Weglossedoversimilarproblemswith variablesandtypes.Wewrote(forall

(x y) �����), implying thatx andy couldlive in bothontologies.Wemay

wantto allow thatasa specialcase,but in thegeneralcaseit is necessaryto

provide transformationsfor the valuesof variables.To modify our example

somewhat, supposethat the typesof the argumentsof deliverable are

actuallyInteger andBook, sothat(deliverable 24 K) meansthat

K shipswithin 24hours.But let’salsosupposethatthesymbolBook happens

to denoteexactly thesamesortof thing in bothdomains.Thenour bridging

axiommight become:

(forall (b - Book

t 	 - Duration 	 t 5 - Integer)

(if (= t 	 (* t 5 hr)))
(iff (in-stock 	 b 	 t)

(and (in-stock 5 b 5)
(deliverable 5 t 5 b 5)))))

Note that equality and Integer are not domain-specific.(Put anotherway,

thereis a standardontologywheresuchgeneral-purposethingslive, andall

otherontologiesinherit from it.)

3. As hasbeenobservedbefore,two ontologiesoftencarve theworld updiffer-

ently. They may have different“granularity,” meaningthat onemakesfiner

distinctionsthantheother;of course,NT	 might make finer distinctionsthan

N 5 in onerespect,coarserdistinctionsin another.

Valued Sony Customer
 298

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents15

The last issueis likely to be the most troublesome.Here’s an example:Sup-

pose N 	 is the ontologywe have beendrawing examplesfrom, a standardfor the

mainstreambook industry. Now supposeNY5 is anontologyusedby the rare book

industry. Themaindifferenceis thattherare-bookpeopledealin individualbooks,

eachwith its own provenanceandspecialfeatures(e.g.,an autographby the au-

thor). Hencethe word “book” meansdifferentthingsto thesetwo groups.For the

mainstreamgroup,a book is an abstractobject,of which thereareassumedto be

many copies.If a customerbuys a book, it is assumedthathe or shedoesn’t care

which copy is sent,provided it’s in goodcondition.For the rare-bookindustry, a

book is a particularobject.It maybean“instance”of anabstractbook,but this is

not a definingfactaboutit.

For example,if you buy Walt Whitman’s Leavesof Grassfrom Amazon.com,

youcanprobablychoosefrom differentpublishers,differentdurabilities(hardcover

vs. paperback,pageweight),differentprices,andvariousotherfeatures(scholarly

annotations,largeprint, spiral binding,etc.).However, you certainlycan’t choose

exactly which copy you will receive of the book you ordered;andyou probably

can’t choosewhich poemsare included,even thoughWhitman revised the book

throughouthis life. The versionsin print today include the last versionof each

poemincludedin any edition.

If you buy the book from RareBooks.com,then thereis no suchthing asan

abstractbookof whichyouwishto purchaseacopy. Instead,everyconcreteinstance

of Leavesof Grassmustbejudgedon its own merits.Indeed,makingthis purchase

is hardlyajob for anautomatedagent,althoughit couldbeusefulto setupanagent

to tell youwhenapossiblyinterestingcopy comesinto theshop.

Let’s look at all this moreformally. Supposethat the planningagentusesthe

industry-standardontology(NO5), andthebrokerputsit in touchwith RareBooks.com,

with anotethatalthoughit bills itself assellingbooks,its servicedescriptionusesa

differentontology(N). If aftertrying moreaccessiblesourcestheplanningagent’s

goal can’t beachieved,thenthebroker maysearchfor anexisting ontologytrans-

formationthatcanbeusedto translateRareBooks’sservicedescriptionfrom NQ	 to

N 5 .7
Let ussketchwhatsomeof thebridgingaxiomsbetweenNT	 and N 5 might look

like. In particular, we needto infer instancesof (is Book 5 �) given various

objectsof typeBook 	 with variousproperties.Objectsof typeBook 5 we will call

commoditybooks; anexampleis thePocket Bookseditionof Mein Kampf. Objects

of typeBook 	 wewill call collectablebooks; anexampleis acopy of MeinKampf

onceownedby JosefStalin. It is roughly true that many, but not all, rarebooks

canbethoughtof asinstancesof particularcommoditybooks.Two rarebooksare

instancesof the samecommoditybook if they have the samepublisher, the same

title, the“same”contents,andthesamecharacteristics(e.g.,hardcover, largeprint,

andsuch).8 We canproducethefollowing bridgeaxioms:

(:functions (book-type x - Book) - Book 5)
7If it can’t find one,all it cando is notify themaintainersof theontologiesof theproblem;thereis noway

for thebroker, theplanningagent,or theenduserto find a transformationon thefly.
8An easyway to tell if they arethe samewould be to checkif they have the sameISBN, but the ISBN

systemhasbeenin effect for only thirty years,soit won’t applyto many rarebooks.

Valued Sony Customer
 299

16OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents

(:axioms (forall (b1 	 b2 	 - Book)
(iff (and (= (publisher 	 b1)

(publisher 	 b2))
(= (title 	 b1) (title 	 b2))
(= (phys-charac 	 b1)

(phys-charac 	 b2))
(< (revision-dif 	 b1 	 b2) 1.5))

(= (book-type b1) (book-type b2))))
(forall (b 	 - Book)

(= (buy 	 b)
(buy 5 (book-type b)))))

Thisshouldall beself-explanatory,exceptfor thepredicaterevision-dif, which

we supposeis in usein the rarebook businessto expresshow many revisionsare

foundbetweenanearlierandlatercopy of anauthor’swork. We have introduceda

new functionbook-type, whichmapsindividualcollectablebooksto their types,

which arecommoditybooks.

For axiomssuchastheseto do theplanningagentany good,it mustbepossible

for theplanningagentto usethemto translatea rare-bookdealer’s servicedescrip-

tion. Supposetheagentis trying to buy a copy of LadyChatterly’s OtherLover, a

little-known9 sequelto D.H. Lawrence’s famouswork. Having exhaustedtheusual

sources,it attemptsto dealwith RareBooks.com.Theplanningagentfirst translates

theservicedescription,sothatall actionsarein termsof (book-type K) instead

of K . Assumingit canfind a way to carryout its plan,at thelaststageit musttrans-

lateits messagesbackinto talkingaboutcollectablebooks.This requiresproducing

glue-codein thecombinedaxiomset.Similarly, thefirst stepin decipheringames-

sagefrom thetargetagentis to applygluecodeto rearrangethedatastructuresinto

somethingtheplanningagentcandecode.

4 Conclusions

Herearethemainpointswe have tried to make:

1. Interagentcommunicationrequiresa sophisticatedlevel of representationof

knowledgestates,actiondefinitions,andplans.

2. This representationcanonly be logic-based;no othernotationhasthe ex-

pressive power. Embeddingthis logic in someform of XML/RDF/DAML

notationis agoodideafor web-basedagents,but putsnontrivial demandson

therepresentationalpowerof thosenotations.

3. In spiteof theexpressivity, therearealgorithmsfor manipulatinglogic-based

expressionsthatmight overcomecomputational-complexity problems.

4. In particular, planningalgorithmsarea naturalfit to theideaof a servicede-

scription. Theservicedescriptionspecifiesthepossibleinteractionswith an

agent;a planis a sequenceof interactionsto achievea specificgoal.Finding

suchplansis moreor lesswhatplanningalgorithmsdo.

9in fact,fictitious

Valued Sony Customer
 300

OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents17

5. Planningalgorithmswill, however, have to be extendedin variousways,in

order to copewith disparitiesbetweenwhat it knows and what the target

agentwantsto receive.

6. Therearetwo key disparitiesthatmustbe dealtwith: ontologymismatches

anddata-structuremismatches.The former requireshumanmanagementof

a formal inter-theoryinferenceprocess.Thelatter requiresautomaticgener-

ationof “glue code”to translatedatastructures.

This is obviously work in progress.We arein theprocessof adaptingour Un-

popplannerto handlehierarchicalandcontingency planning,andconnectingit to

the glue-codegenerator. We arebuilding the architecturefor managingontology

transformations.

Acknowledgements:This work was supportedby DARPA, the DefenseAd-

vancedResearchProjectsAgency. Thanksto Dejing Dou for input.

References

[1] B. Bonet,G. Loerincs,andH. Geffner. A fast and robust action selection

mechanismfor planning.In Proc.AAAI-97, 1997.

[2] M. Burstein,D. McDermott,D. Smith,andS. Westfold. Derivationof glue

codefor agentinteroperation.In Proc.4thInt’l. Conf. onAutonomousAgents,

pages277–284,2000.

[3] H. Chalupsky. Ontomorph:A translationsystemfor symboliclogic. In Proc.

Int’l. Con.on Principlesof KnowledgeRepresentationandReasoning, pages

471–482,2000.SanFrancisco:MorganKaufmann.

[4] O. Etzioni, S. Hanks,D. Weld, D. Draper, N. Lesh,andM. Williamson. An

approachto planningwith incompleteinformation. In Proc. Third Interna-

tional Conf. on Knowledge Representationand Reasoning, pages115–125,

1992.MorganKaufmann.

[5] G. Frank,A. Farquhar, andR. Fikes.Building a largeknowledgebasefrom a

structuredsource.IEEEIntelligentSystems, 14(1),1999.

[6] T. Gruber. Ontolingua:A TranslationApproachto Providing PortableOntol-

ogySpecifications.KnowledgeAcquisition, 5(2):199–200,1993.

[7] D. McDermott. A HeuristicEstimatorfor Means-endsAnalysisin Planning.

In Proc. InternationalConferenceon AI PlanningSystems, pages142–149,

1996.

[8] D. McDermott. ThePlanningDomainDefinition LanguageManual. Techni-

calReport1165,YaleComputerScience,1998.(CVC Report98-003).

[9] D. McDermott. The1998Ai PlanningSystemsCompetition.AI Magazine,

21(2):35–55,2000.

[10] P. Mitra, G.Wiederhold,andM. Kersten.A graph-orientedmodelfor articula-

tion of ontologyinterdependencies.In Proc.of Conf. on ExtendingDatabase

Technology(EDBT2000), 2000.

Valued Sony Customer
 301

18OvercomingOntologyMismatchesinTransactionswith Self-DescribingServiceAgents

[11] M. PeotandD. Smith. Conditionalnonlinearplanning. In J.Hendler, editor,

Proceedingsof the First InternationalConf. on AI PlanningSystems, pages

189–197.1992.

[12] L. Pryor andG. Collins. Planningfor contingencies:A decision-basedap-

proach.J. of Artificial IntelligenceResearch , 4:287–339,1996.

Administrator
302

A Framework for Ontology Integration
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universit̀a di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini }@dis.uniroma1.it

Abstract. One of the basic problems in the development of techniques for the semantic
web is the integration of ontologies. Indeed, the web is constituted by a variety of
information sources, each expressed over a certain ontology, and in order to extract
information from such sources, their semantic integration and reconciliation in terms
of a global ontology is required. In this paper, we address the fundamental problem
of how to specify the mapping between the global ontology and the local ontologies.
We argue that for capturing such mapping in an appropriate way, the notion ofquery
is a crucial one, since it is very likely that a concept in one ontology corresponds
to a view (i.e., a query) over the other ontologies. As a result query processing in
ontology integration systems is strongly related to view-based query answering in data
integration.

1 Introduction

One of the basic problems in the development of techniques for the semantic web is the inte-
gration of ontologies. Indeed, the web is constituted by a variety of information sources, and
in order to extract information from such sources, their semantic integration and reconcilia-
tion is required. In this paper we deal with a situation where we have various local ontologies,
developed independently from each other, and we are required to build an integrated, global
ontology as a mean for extracting information from the local ones. Thus, the main purpose
of the global ontology is to provide a unified view through which we can query the various
local ontologies.

Most of the work carried out on ontologies for the semantic web is on which language or
which method to use to build the global ontology on the basis of the local ones [13, 2]. For
example, the Ontology Inference Layer (OIL) [13, 2] proposes to use a restricted form of the
expressive and decidable DL studied in [4] to express ontologies for the semantic web.

In this paper, we address what we believe is a crucial problem for the semantic web: how
do we specify the mapping between the global ontology and the local ontologies. This aspect
is the central one if we want to use the global ontology for answering queries in the context of
the semantic web. Indeed, we are not simply using the local ontologies as an intermediate step
towards the global one. Instead, we are using the global ontology for accessing information in
the local ones. It is our opinion that, although the problem of specifying the mapping between
the global and the local ontologies is at the heart of integration in the web, it is not deeply
investigated yet.

We argue that even the most expressive ontology specification languages are not sufficient
for information integration in the semantic web. In a real world setting, different ontologies

Valued Sony Customer
 303

are build by different organizations for different purposes. Hence one should expect the same
information to be represented in different forms and with different levels of abstraction in
the various ontologies. When mapping concepts in the various ontologies to each other, it
is very likely that a concept in one ontology corresponds to aview (i.e., aquery) over the
other ontologies. Observe that here the notion of “query” is a crucial one. Indeed, to express
mappings among concepts in different ontologies, suitable query languages should be added
to the ontology specification language, and considered in the various reasoning tasks, in the
spirit of [4, 5]. As a result query processing in this setting is strongly related to view-based
query answering in data integration systems [20, 17]. What distinguishes ontology integration
from data integration as studied in databases, is that, while in data integration one assumes
that each source is basically a databases, i.e., a logical theory with a single model, such an
assumption is not made in ontology integration, where a local ontology is an arbitrary logical
theory, and hence can have multiple models.

Our main contribution in this paper is to present a general framework for an ontology of
integration where the mapping between ontologies is expressed through suitable mechanisms
based on queries, and to illustrate the framework proposed with two significant case studies.

The paper is organized as follows. In the next section we set up a formal framework for on-
tology integration. In Sections 3 and 4, we illustrate the so called global-centric approach and
local-centric approach to integration, and we discuss for each of the two approaches a specific
case study showing the subtleties involved. In Section 5 we briefly present an approach to in-
tegration that goes beyond the distinction between global-centric and local-centric. Finally,
Section 6 concludes the paper.

2 Ontology integration framework

In this section we set up a formal framework forontology integration systems(OISs). We
argue that this framework provides the basis of anontology of integration. For the sake of
simplicity, we will refer to a simplified framework, where the components of an OIS are the
global ontology, the local ontologies, and the mapping between the two. We call such systems
“one-layered”. More complex situations can be modeled by extending the framework in order
to represent, for example, mappings between local ontologies (in the spirit of [12, 6]), or
global ontologies that act as local ones with respect to another layer.

In what follows, one of the main aspects is the definition of the semantics of both the
OIS, and of queries posed to the global ontology. For keeping things simple, we will use in
the following a unique semantic domain∆, constituted by a fixed, infinite set of symbols.

Formally, an OISO is a triple〈G,S,MG,S〉, whereG is the global ontology,S is the set
of local ontologies, andMG,S is the mapping betweenG and the local ontologies inS.

Global ontology. We denote withAG the alphabet of terms of the global ontology, and we
assume that the global ontologyG of an OIS is expressed as a theory (named simplyG)
in some logicLG.

Local ontologies. We assume to have a setS of n local ontologiesS1, . . . ,Sn. We denote
with ASi the alphabet of terms of the local ontologySi. We also denote withAS the
union of all theASi ’s. We assume that the variousASi ’s are mutually disjoint, and each
one is disjoint from the alphabetAG. We assume that each local ontology is expressed as

Valued Sony Customer
 304

a theory (named simplySi) in some logicLSi, and we useS to denote the collection of
theoriesS1, . . . ,Sn.

Mapping. The mappingMG,S is the heart of the OIS, in that it specifies how the concepts1

in the global ontologyG and in the local ontologiesS map to each other.

Semantics. Intuitively, in specifying the semantics of an OIS, we have to start with a model
of the local ontologies, and the crucial point is to specify which are the models of the
global ontology. Thus, for assigning semantics to an OISO = 〈G,S,MG,S〉, we start by
considering alocal modelD forO, i.e., an interpretation that is a model for all the theories
of S. We callglobal interpretationfor O any interpretation forG. A global interpretation
I for O is said to be aglobal model forO wrt D if:

• I is a model ofG, and

• I satisfies the mappingMG,S wrt D.

In the next sections, we will come back to the notion of satisfying a mapping wrt a local
model. The semantics ofO, denotedsem(O), is defined as follows:

sem(O) = { I | there exists a local modelD for O
s.t.I is a global model forO wrt D }

Queries. Queries posed to an OISO are expressed in terms of a query languageQG over the
alphabetAG and are intended to extract a set of tuples of elements of∆. Thus, every query
has an associated arity, and the semantics of a queryq of arityn is defined as follows. The
answerqO of q toO is the set of tuples

qO = {〈c1, . . . , cn〉 | for all I ∈ sem(O), 〈c1, . . . , cn〉 ∈ qI }

whereqI denotes the result of evaluatingq in the interpretationI.

As we said before, the mappingMG,S represents the heart of an OISO = 〈G,S,MG,S〉.
In the usual approaches to ontology integration, the mechanisms for specifying the mapping
between concepts in different ontologies are limited to expressing direct correspondences
between terms. We argue that, in a real-world setting, one needs a much more powerful
mechanism. In particular, such a mechanism should allow for mapping a concept in one
ontology into aview, i.e., a query over the other ontologies, which acquires the relevant
information by navigating and aggregating several concepts.

Following the research done in data integration [16, 17], we can distinguish two basic
approaches for defining this mapping:

• the global-centric approach, where concepts of the global ontologyG are mapped into
queries over the local ontologies inS;

• the local-centric approach, where concepts of the local ontologies inS are mapped to
queries over the global ontologyG.

We discuss these two approaches in the following sections.
1Here and below we use the term “concept” for denoting a concept of the ontology.

Valued Sony Customer
 305

3 Global-centric approach

In the global-centric approach (aka global-as-view approach), we assume we have a query
languageVS over the alphabetAS , and the mapping between the global and the local on-
tologies is given by associating to each term in the global ontology aview, i.e., a query, over
the local ontologies. The intended meaning of associating to a termC in G a queryVs over
S, is that such a query represents the best way to characterize the instances ofC using the
concepts inS. A further mechanism is used to specify if the correspondence betweenC and
the associated view issound, complete, orexact. LetD be a local model forO, andI a global
interpretation forO:

• I satisfies the correspondence〈C, Vs, sound〉 inMG,S wrt D, if all the tuples satisfying
Vs in D satisfyC in I,

• I satisfies the correspondence〈C, Vs, complete〉 in MG,S wrt D, if no tuple other than
those satisfyingVs in D satisfiesC in I.

• I satisfies the correspondence〈C, Vs, exact〉 in MG,S wrt D, if the set of tuples that
satisfyC in I is exactly the set of tuples satisfyingVs in D.

We say thatI satisfiesthe mappingMG,S wrt D, if I satisfies every correspondence in
MG,S wrt D.

The global-centric approach is the one adopted in most data integration systems. In such
systems, sources are databases (in general relational ones), the global ontology is actually a
database schema (again, represented in relational form), and the mapping is specified by as-
sociating to each relation in the global schema one relational query over the source relations.
It is a common opinion that this mechanism allow for a simple query processing strategy,
which basically reduces to unfolding the query using the definition specified in the mapping,
so as to translate the query in terms of accesses to the sources [20]. Actually, when we add
constraints (even of a very simple form) to the global schema, query processing becomes
even harder, as shown in the following case study.

3.1 A case study

We now set up a global-centric framework for ontology integration, which is based on ideas
developed for data integration over global schemas expressed in the Entity-Relationship
model [3]. In particular, we describe the main components of the ontology integration system,
and we provide the semantics both of the system, and of query answering.

The OISO = 〈G,S,MG,S〉 is defined as follows:

• Theglobal ontologyG is expressed in theEntity-Relationship model(or equivalently as
UML class diagrams). In particular,G may include:

– typing constraints on relationships, assigning an entity to each component of the
relationship;

– mandatory participation to relationships, saying that each instance of an entity must
participate asi-th component to a relationship;

– ISA relations between both entities and relationships;

Valued Sony Customer
 306

– typing constraints, functional restrictions, and mandatory existence, for attributes
both of entities and of relationships.

• The local ontologiesS are constituted simply by a relational alphabetAS , and by the
extensions of the relations inAS . For example, such extensions may be expressed as
relational databases. Observe that we are assuming that no intensional relation between
terms inAS is present in the local ontologies.

• The mappingMG,S betweenG andS is given by a set of correspondences of the form
〈C, Vs, sound〉, whereC is a concept (i.e., either an entity, a relationship, or an attribute)
in the global ontology andVs is a query overS. More precisely,

– The mapping associates a query of arity 1 to each entity ofG.

– The mapping associates a query of arity 2 to each entity attributeA of G. Intuitively,
if the query retrieves the pair〈x, y〉 from the extension of the local ontologies, this
means thaty is a value of the attributeA of the entity instancex. Thus, the first
argument of the query corresponds to the instances of the entity for whichA is
defined, and the second argument corresponds to the values of the attributeA.

– The mapping associates a query of arityn to each relationshipR of arity n in G.
Intuitively, if the query retrieves the tuple〈x1, . . . , xn〉 from the extension of the
local ontologies, this means that〈x1, . . . , xn〉 is an instance ofR.

– The mapping associates a query of arityn + 1 to each attributeA of a relationship
R of arity n in G. The firstn arguments of the query correspond to the tuples ofR,
and the last argument corresponds to the values ofA.

As specified above, the intended meaning of the queryVs associated to the conceptC
is that it specifies how to retrieve the data corresponding toC in the global schema
starting from the data at the sources. This confirms that we are following the global-
as-views approach: each concept in the global ontology is defined as a view over the
concepts in the local ontologies. We do not pose any constraint on the language used
to express the queries in the mapping. Since the extensions of local ontologies are rela-
tional databases, we simply assume that the language is able to express computations over
relational databases.

To specify the semantics of a data integration system, we have to characterize, given the
set of tuples in the extension of the various relations of the local ontologies, which are the
data satisfying the global ontology. In principle, one would like to have a single extension as
model of the global ontology. Indeed, this is the case for most of the data integration systems
described in the literature. However, we will show in the following the surprising result that,
due to the presence of the semantic conditions that are implicit in the conceptual schemaG,
in general, we will have to account for a set of possible extensions.

Example 1. Figure 1 shows the global schemaG1 of a data integration systemO1 =
〈G1,S1,M1〉, whereAge is a functional attribute,Student has a mandatory participation in
the relationshipEnrolled, Enrolled isaMember, andUniversity isaOrganization. The schema
models persons who can be members of one or more organizations, and students who are

Valued Sony Customer
 307

Age

University

OrganizationPerson Member

Student Enrolled

Figure 1: Global ontology of Example 1

enrolled in universities. Suppose thatS is constituted byS1, S2, S3, S4, S5, S6, S7, S8, and that
the mappingM1 is as follows:

Person(x) ← S1(x)

Organization(x) ← S2(x)

Member(x, y) ← S7(x, z) ∧ S8(z, y)

Student(x) ← S3(x, y) ∨ S4(x)

Age(x, y) ← S3(x, y) ∨ S6(x, y, z)

University(x) ← S5(x)

Enrolled(x, y) ← S4(x, y)

From the semantics of the OISO it is easy to see that, given a local modelD, several
situations are possible:

1. No global model exists. This happens, in particular, when the data in the extension of the
local ontologies retrieved by the queries associated to the elements of the global ontology
do not satisfy the functional attribute constraints.

2. Several global models exist. This happens, for example, when the data in the extension
of the local ontologies retrieved by the queries associated to the global concepts do not
satisfy the ISA relationships of the global ontology. In this case, it may happen that several
ways exist to add suitable objects to the elements ofG in order to satisfy the constraints.
Each such ways yields a global model.

Example 2. Referring to Example 1, consider a local modelD1, whereS3 contains the tuple
〈t1, a1〉, andS6 contains the tuple〈t1, a2, v1〉. The query associated toAge by the mapping
M1 specifies that, in every model ofO1 both tuples should belong to the extension ofAge.
However, sinceAge is a functional attribute inG1, it follows that no model exists for the OIS
O1.

Example 3. Referring again to Example 1, consider a local modelD2, whereS1 containsp1

andp2, S2 containso1, S5 containsu1, S4 containst1, and the pairs〈p1, o1〉 and〈p2, u1〉 are
in the join betweenS7 andS8. By the mappingM1, it follows that in every model ofO1, we

Valued Sony Customer
 308

have thatp1, p2 ∈ Person, 〈p1, o1〉, 〈p2, u1〉 ∈ Member, o1 ∈ Organization, t1 ∈ Student, and
u1 ∈ University. Moreover, sinceG1 specifies thatStudent has a mandatory participation in
the relationshipEnrolled, in every model forO1, t1 mustbe enrolled in a certain university.
The key point is that nothing is said inD2 aboutwhichuniversity, and therefore we have to
accept as models all interpretations forO1 that differ in the universityt1 is enrolled in.

In the framework proposed, it is assumed that the first problem is solved by the queries
extracting data from the extension of the local ontologies. In other words, it is assumed that,
for any functional attributeA, the corresponding query implements a suitable data cleaning
strategy (see, e.g., [15]) that ensures that, for every local modelD and everyx, there is at
most one tuple(x, y) in the extension ofA (a similar condition holds for functional attributes
of relationships).

The second problem shows that the issue of query answering with incomplete informa-
tion arises even in the global-as-view approach to data integration. Indeed, the existence of
multiple global models for the OIS implies that query processing cannot simply reduce to
evaluating the query over a single relational database. Rather, we should in principle takeall
possible global models into account when answering a query.

It is interesting to observe that there are at least two different strategies to simplify
the setting, and overcome this problem that are frequently adopted in data integration sys-
tems [16, 20, 17]:

• Data integration systems usually adopt a simpler data model (often, a plain relational data
model) for expressing the global schema (i.e., the global ontology). In this case, the data
retrieved from the sources (i.e., the local ontologies) trivially fits into the schema, and can
be directly considered as the unique database to be processed during query answering.

• The queries associated to the concepts of the global schema are often considered as exact.
In this case, analogously to the previous one, it is easy to see that the only global exten-
sion to be considered is the one formed by the data retrieved by the extension of the local
ontologies. However, observe that, when data in this extension do not obey all semantic
conditions that are implicit in the global ontology, this single extension is not coherent
with the global ontology, and the OIS is inconsistent. This implies that query answering
in meaningless. We argue that, in the usual case of autonomous, heterogeneous local on-
tologies, it is very unlikely that data fit in the global ontology, and therefore, this approach
is too restrictive, in the sense that the OIS would be often inconsistent.

The fact that the problem of incomplete information is overlooked in current approaches
can be explained by observing that traditional data integration systems follow one of the
above mentioned simplifying strategies: they either express the global schema as a set of
plain relations, or consider the sources as exact (see, for instance, [11, 19, 1]).

In [3] we present an algorithm for computing the set of certain answers to queries posed to
a data integration system. The key feature of the algorithm is to reason about both the query
and the global ontology in order to infer which tuples satisfy the query in all models of the
OIS. Thus, the algorithm does not simply unfold the query on the basis of the mapping, as
usually done in data integration systems based on the global-as-view approach. Indeed, the
algorithm is able to add more answers to those directly extracted from the local ontologies,
by exploiting the semantic conditions expressed in the conceptual global schema.

LetO = 〈G,S,MG,S〉 be an OIS, letD be a local model, and letQ be a query over the
global ontologyG. The algorithm is constituted by three major steps.

Valued Sony Customer
 309

1. From the queryQ, obtain a new queryexpandG(Q) over the elements of the global ontol-
ogyG in which the knowledge inG that is relevant forQ has been compiled in.

2. From expandG(Q), compute the queryunfoldMG,S (expandG(Q)), by unfolding
expandG(Q) on the basis of the mappingMG,S . The unfolding simply substitutes each
atom ofexpandG(Q) with the query associated byMG,S to the element in the atom. The
resultingunfoldMG,S (expandG(Q)) is a query over the relations in the local ontologies.

3. Evaluate the queryunfoldMG,S (expandG(Q)) over the local modelD.

The last two steps are quite obvious. Instead, the first one requires to find a way to compile
into the query the semantic relations holding among the concepts of the global schemaG. A
way to do so is shown in [3]. The queryexpandG(Q) returned by the algorithm is exponential
wrt toQ. However,expandG(Q) is a union of conjunctive queries, which, if the queries in the
mapping are polynomial, makes the entire algorithm polynomial in data complexity.

Example 4. Referring to Example 3, consider the queryQ1 toO1:

Q1(x)← Member(x, y) ∧ University(y)

It is easy to see that{p2, t1} is the set of certain answers toQ1 with respect toO1 andD2.
Thus, althoughD2 does not indicate in which universityt1 is enrolled, the semantics ofO1

specifies thatt1 is enrolled ina university in all legal database forO1. SinceMember is a
generalization ofEnrolled, this implies thatt1 is in QO1 , and hence is inunfM1

(expG1
(Q1))

evaluated overD2.

4 Local-centric approach

In the local-centric approach (aka local-as-view approach), we assume we have a query lan-
guageVG over the alphabetAG, and the mapping between the global and the local ontologies
is given by associating to each term in the local ontologies aview, i.e., a query over the
global ontology. Again, the intended meaning of associating to a termC in S a queryVg
overG, is that such a query represents the best way to characterize the instances ofC using
the concepts inG. As in the global-centric approach, the correspondence betweenC and the
associated view can be either sound, complete, or exact. LetD be a local model forO, andI
a global interpretation forO:

• I satisfies the correspondence〈Vg, C, sound〉 inMG,S wrt D, if all the tuples satisfying
C in D satisfyVg in I,

• I satisfies the correspondence〈Vg, C, complete〉 in MG,S wrt D, if no tuple other than
those satisfyingC in D satisfiesVg in I,

• I satisfies the correspondence〈Vg, C, exact〉 in MG,S wrt D, if the set of tuples that
satisfyC in D is exactly the set of tuples satisfyingVg in I.

As in the global-centric approach, we say thatI satisfiesthe mappingMG,S wrt D, if I
satisfies every correspondence inMG,S wrt D.

Recent research work on data integration follows the local-centric approach [20, 17, 18, 6,
8]. The major challenge of this approach is that, in order to answer a query expressed over the

Valued Sony Customer
 310

global schema, one must be able to reformulate the query in terms of queries to the sources.
While in the global-centric approach such a reformulation is guided by the correspondences
in the mapping, here the problem requires a reasoning step, so as to infer how to use the
sources for answering the query. Many authors point out that, despite its difficulty, the local-
centric approach better supports a dynamic environment, where local ontologies can be added
to the systems without the need for restructuring the global ontology.

4.1 A case study

We present here an OIS architecture based on the use of Description Logics to represent
ontologies [6, 7]. Specifically, we adopt the Description LogicDLR, in which both classes
andn-ary relations can be represented [4]. We first introduceDLR, and then we illustrate
how we use the logic to define an OIS.

4.1.1 The Description LogicDLR

Description Logics2 (DLs) are knowledge representation formalisms that are able to capture
virtually all class-based representation formalisms used in Artificial Intelligence, Software
Engineering, and Databases [9, 10].

One of the distinguishing features of these logics is that they have optimal reasoning algo-
rithms, and practical systems implementing such algorithms are now used in several projects.

In DLs, the domain of interest is modeled by means ofconceptsand relations, which
denote classes of objects and relationships, respectively. Here, we focus our attention on the
DL DLR [4, 6], whose basic elements areconcepts(unary relations), andn-ary relations.
We assume to deal with an alphabetA constituted by a finite set of atomic relations, atomic
concepts, andconstants, denoted byP , A, anda, respectively. We useR to denote arbitrary
relations (of given arity between 2 andnmax), andC to denote arbitrary concepts, respectively
built according to the following syntax:

C ::= >1 | A | ¬C | C1 u C2 | ∃[i]R | (≤ k [i]R)

R ::= >n | P | i/n :C | ¬R | R1 uR2

wherei denotes a component of a relation, i.e., an integer between 1 andnmax, n denotes the
arity of a relation, i.e., an integer between 2 andnmax, andk denotes a nonnegative integer.
We consider only concepts and relations that arewell-typed, which means that only relations
of the same arityn are combined to form expressions of typeR1 u R2 (which inherit the
arity n), andi ≤ n wheneveri denotes a component of a relation of arityn.

The semantics ofDLR is specified as follows. AninterpretationI is constituted by an
interpretation domain∆I , and aninterpretation function·I that assigns to each constant an
element of∆I under the unique name assumption, to each conceptC a subsetCI of ∆I ,
and to each relationR of arity n a subsetRI of (∆I)n, such that the conditions in Figure 2
are satisfied. Observe that, the “¬” constructor on relations is used to express difference of
relations, and not the complement [4].

A DLR knowledge base is a set of inclusion assertions of the form

C1 v C2 R1 v R2

2Seehttp://dl.kr.org for the home page of Description Logics.

Valued Sony Customer
 311

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI
(C1 u C2)I = CI1 ∩ CI2

(∃[i]R)I = {d ∈ ∆I | ∃〈d1, . . . , dn〉 ∈ RI .di = d}
(≤ k [i]R)I = {d ∈ ∆I |]{〈d1, . . . , dn〉 ∈ RI1 | di = d} ≤ k}

>In ⊆ (∆I)n

P I ⊆ >In
i/n :CI = {〈d1, . . . , dn〉 ∈ >In | di ∈ CI}

(¬R)I = >In \RI
(R1 uR2)I = RI1 ∩RI2

Figure 2: Semantic rules forDLR (P ,R,R1, andR2 have arityn)

whereC1 andC2 are concepts, andR1 andR2 are relations of the same arity. An inclusion
assertionC1 v C2 (resp.,R1 v R2) is satisfied in an interpretationI if CI1 ⊆ CI2 (resp.,
RI1 ⊆ RI2). An interpretation is amodelof a knowledge baseK, if it satisfies all assertions in
K.K logically impliesan inclusion assertionρ if ρ is satisfied in all models ofK.

Finally, we introduce the notion of query expression inDLR. We assume that the al-
phabetA is enriched with a finite set of variable symbols, simply calledvariables. A query
expressionQ over aDLR knowledge baseK is a non-recursive datalog query of the form

Q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

where eachconj i(~x, ~yi) is a conjunction ofatoms, and~x, ~yi are all the variables appearing
in the conjunct. Each atom has one of the formsR(~t) or C(t), where~t andt are variables
in ~x and~yi or constants inA, R is a relation ofK, andC is a concept ofK. The number of
variables of~x is called thearity of Q, and is the arity of the relation denoted by the queryQ.
We observe that the atoms in query expressions are arbitraryDLR concepts and relations,
freely used in the assertions of the KB.

Given an interpretationI, a query expressionQ of arity n is interpreted as the setQI of
n-tuples of constants〈c1, . . . , cn〉, such that, when substituting eachci for xi, the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)

evaluates to true inI.
DLR is equipped with effective reasoning techniques that are sound and complete with

respect to the semantics. In particular, checking whether a given assertion logically follows
from a set of assertions is EXPTIME-complete in (assuming that numbers are encoded in
unary), and query containment, i.e., checking whether one query is contained in another one
in every model of a set of assertions, is EXPTIME-hard and solvable in 2EXPTIME [4].

4.1.2 DLR local-centric OIS

We now set up a local-centric framework for ontology integration, which is based on ideas
developed for data integration overDLR knowledge bases [6, 5]. In particular, we describe

Valued Sony Customer
 312

the main components of the ontology integration system, and we provide the semantics both
of the system, and of query answering.

In this setting, an OISO = 〈G,S,MG,S〉 is defined as follows:

• Theglobal ontologyG is aDLR knowledge base.

• The local ontologiesS are again seen as a set of relations each giving the extension of
an ontology-concept in the ontology. We observe that again we have only extensional
knowledge on such relations inS.

• The mappingMG,S betweenG andS is given by a set of correspondences of the form
〈Vg, T, as〉, whereT is a relation of a local ontology,Vg is a query expression overG, and
as is eithersound , complete, or exact .

Observe that we could partition the global ontology in several parts, one for each local
ontology, modeling the intensional knowledge on the local ontology wrt the OIS, plus one for
the reconciled global view of such ontologies. By making use of the so called interschema
assertions [12] the different parts can be related to each at the intesional level. For simplicity
we do not deal with interschema assertion in this case study, however it is immediate to extend
the framework presented here to include them as well [6, 7].

Query answering in this setting requires quite sophisticated techniques that take into ac-
count the knowledge both in the global ontology and in the mapping in answering a query
posed over the global ontology with the data contained in the local ontologies. Such query
answering techniques are studied in [5].

Example 5. Consider for example the OISOd = 〈Gd,Sd,Md〉 defined as follows:

• The global ontologyGd is theDLR knowledge base

American u ∃[1](RELATIVE u 2 : Doctor) v Wealthy

Surgeon v Doctor

expressing that Americans who have a doctor as relative are wealthy, and that each sur-
geon is also a doctor.

• The setSd of local ontologies consists of two ontologies, containing respectively the
relationsT1 andT2, with extensions{ann, bill} and{ann, dan}.

• The mappingMG,S is {〈V1,T1, sound〉, 〈V2,T2, sound〉}, with

V1(x) ← RELATIVE(x, y) ∧ Surgeon(y)

V2(x) ← American(x)

Given the query expressionQw(x)←Wealthy(x) overGd, asking for those who are wealthy,
we have that the only answer inQOdw is ann. Consider an additional local ontology, consisting
of a relationT3 with an extension not containingbill, and mapped toG by the correspondence
〈V3,T3, exact〉, with V3(x) ← Wealthy(x). Then, from the constraints inGd and the infor-
mation we have on the correspondences, we can conclude thatbill is not an answer to the
query asking for the Americans.

Valued Sony Customer
 313

5 Combining the global-centric and local-centric approaches

The global-centric and the local-centric approach can be combined together into an approach
using unrestricted mappings, in which the restrictions on the direction of the correspondence
between global and local ontologies are overcome [14]. In the unrestricted approach, we have
both a query languageVS over the alphabetAS , and a query languageVG over the alphabet
AG, and the mapping between the global and the local ontologies is given by relating views
over the global ontology to views over the local ontologies. Again, the intended meaning of
relating the viewVg over the global ontology to the viewVs over the local ontology is thatVs
represents the best way to characterize the objects satisfyingVg in terms of the concepts inS.
Analogously to the other cases, the correspondences betweenVg andVs can be characterized
as sound, complete, or exact. LetD be a local model forO, andI a global interpretation for
O:

• I satisfies the correspondence〈Vg, Vs, sound〉 inMG,S wrt D, if all the tuples satisfying
satisfyingVs in D satisfyVg in I,

• I satisfies the correspondence〈Vg, Vs, complete〉 inMG,S wrt D, if no tuple other than
those satisfyingVs in D satisfyVg in I,

• I satisfies the correspondence〈Vg, Vs, exact〉 in MG,S wrt D, if the set of tuples that
satisfyVg in I is exactly the set of tuples satisfyingVs in D.

Again, we say thatI satisfiesthe mappingMG,S wrt D, if I satisfies every correspon-
dence inMG,S wrt D.

Example 6. Consider the OISOu = 〈Gu,Su,Mu〉, where bothGu and the two ontologiesS1

andS2 formingSu are simply sets of relations with their extensions.

• The global ontologyGu contains two binary relations,WorksFor, denoting researchers
and projects they work for, andArea, denoting projects and research areas they belong to.

• The local ontologyS1 contains a binary relationInterestedIn denoting persons and fields
they are interested in, and the local ontologyS2 contains a binary relationGetGrant,
denoting researchers and grants assigned to them, and a binary relationGrantFor denoting
grants and projects they refer to.

• The mappingMu is formed by the following correspondences

– 〈V1, InterestedIn, complete〉, with V1(r, f)← WorksFor(r, p) ∧ Area(p, f)

– 〈WorkFor,V2, sound〉, with V2(r, p)← GetGrant(r, g) ∧ GrantFor(g, p)

This situation can be represented neither in the global-centric nor in the local-centric ap-
proach.

Query answering in this approach is largely unexplored, mainly because it combines the
difficulties of the other ones. However, in a real world setting, this may be the only approach
that provides the appropriate expressive power.

Valued Sony Customer
 314

6 Conclusions

We have presented a general framework for ontology integration, where a global ontology
is used to provide a unified view for querying local ontologies, as in the semantic web. The
framework represents a sort of design space for the problem of integrating ontologies within
semantic web applications. We have argued that the mapping between the global and the local
ontologies is the main aspect of the framework, and we have discussed various approaches for
specifying such a mapping. Independently of the approach, we have stressed that the notion
of query is crucial for the task of ontology integration.

The two case studies we have presented have shown the need of sophisticated techniques
for query answering in an ontology integration system. The two case studies illustrated sim-
plified settings, drawn from data integration. One should expect things to become even more
complex when ontology integration is considered in its full generality. Recently several pro-
posals have been made, based on the idea of expressing ontologies as knowledge bases, e.g.,
in Description Logics [13, 2], and applying automated reasoning techniques for several ser-
vices in the design of and the interaction with the semantic web. We believe however that
such an idea needs to be extended by considering queries as first order citizens and having
the ability to reason on them.

References

[1] M. Bouzeghoub and M. Lenzerini. Special issue on data extraction, cleaning, and reconciliation.Infor-
mation Systems, 2001. To appear.

[2] J. Broekstra, M. Klein, D. Fensel, and I. Horrocks. Adding formal semantics to the Web: building on top
of RDF Schema. InProc. of the ECDL 2000 Workshop on the Semantic Web, 2000.

[3] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data integration systems through
conceptual schemas. InProc. of the 20th Int. Conf. on Conceptual Modeling (ER 2001), 2001. To appear.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under con-
straints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’98), pages 149–158, 1998.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over description logics
knowledge bases. InProc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 386–391,
2000.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description logic framework for
information integration. InProc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98), pages 2–13, 1998.

[7] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information integration: Concep-
tual modeling and reasoning support. InProc. of the 6th Int. Conf. on Cooperative Information Systems
(CoopIS’98), pages 280–291, 1998.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query processing and constraint
satisfaction. InProc. of the 15th IEEE Symp. on Logic in Computer Science (LICS 2000), pages 361–371,
2000.

[9] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data modeling. In J. Chomicki
and G. Saake, editors,Logics for Databases and Information Systems, pages 229–264. Kluwer Academic
Publisher, 1998.

[10] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms.J. of Artificial
Intelligence Research, 11:199–240, 1999.

Valued Sony Customer
 315

[11] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flickner, A. Luniewski,
W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers. Towards heterogeneous multi-
media information systems: The Garlic approach. InRIDE-DOM, pages 124–131, 1995.

[12] T. Catarci and M. Lenzerini. Representing and using interschema knowledge in cooperative information
systems.J. of Intelligent and Cooperative Information Systems, 2(4):375–398, 1993.

[13] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks, S. Melnik, M. Klein, and J. Broekstra. Knowledge rep-
resentation on the web. InProc. of the 2000 Description Logic Workshop (DL 2000), pages 89–97. CEUR
Electronic Workshop Proceedings, http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
33/, 2000.

[14] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. InProc. of the 16th Nat.
Conf. on Artificial Intelligence (AAAI’99), pages 67–73. AAAI Press/The MIT Press, 1999.

[15] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An extensible framework for data cleaning. Technical
Report 3742, INRIA, Rocquencourt, 1999.

[16] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. InProc. of the 16th
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’97), 1997.

[17] A. Y. Levy. Answering queries using views: A survey. Technical report, University of Washinghton, 1999.

[18] A. Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global information systems.J.
of Intelligent Information Systems, 5:121–143, 1995.

[19] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. D. Ullman, and M. Valiveti.
Capability based mediation in TSIMMIS. InProc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 564–566, 1998.

[20] J. D. Ullman. Information integration using logical views. InProc. of the 6th Int. Conf. on Database
Theory (ICDT’97), volume 1186 ofLecture Notes in Computer Science, pages 19–40. Springer-Verlag,
1997.

Valued Sony Customer
 316

A Scalable Framework for the
Interoperation of Information Sources

Prasenjit Mitra, Gio Wiederhold, and Stefan Decker�

Infolab, Stanford University
Stanford, CA, USA 94305

fmitra, gio, stefang@db.stanford.edu

Abstract.
Resolving heterogeneity among information systems is a crucial problem if we

wish to gain value from the many distributed resources available to us. Problems of
heterogeneity in hardware, operating systems, and data structures have been widely
addressed, but issues of diverse semantics have been handled mainly in an ad-hoc
fashion. In this paper, we presentONION, a system based a scalable approach to
interoperation of information systems by articulating their associated ontologies. An
articulation focuses on the semantically relevant intersection of information resources
with respect to a type of application. However, ontologies obtained from diverse sources
are represented using different conceptual models. We have designed a simple inter-
mediate conceptual model - theONION conceptual model - that we use to transform
ontologies into before we generate semantic correspondences or articulations between
them.

In ONION, application-dependent articulation rules that capture the correspon-
dence between concepts in different ontologies are established between source on-
tologies semi-automatically. Finally we present an ontology algebra, based on the
articulation rules, for the composition of ontologies.

1 Introduction

Today a large number of diverse information sources - databases, knowledge bases, collec-
tions of documents - are available on the Internet. Often, we cannot answer a query from a
single source, and need to compose knowledge from multiple sources. Intelligent searching
and querying on the World Wide Web - the largest collection of distributed information and
knowledge sources - often requires composing information from heterogeneous information
sources. Today, the bulk of this composition is done by the end-user. Not only is this ex-
tremely tedious and time-consuming, but also, often, the end-user does not have any idea
of the semantics used by the builder of the information source. In this paper, we present
a brief overview of the ONION (ONtology compositION) system, which takes a principled
approach to enable semi-automatic interoperation among heterogeneous information sources.

� This work was partially supported by a grant from the Air Force Office of Scientific Research (AFOSR).

Valued Sony Customer
 317

A Scalable Framework for the Interoperation of Information Sources

1.1 Heterogeneity

Most information sources have been independently constructed and are autonomously main-
tained. Attempts have been made to integrate information from these various information
sources into a monolithic information source [1], [2]. Such an approach creates maintenance
and scalability problems. When an information source is to be added, the large information
source must be restructured. Often such maintenance leads to substantial delays [3].

Some researchers have tried to first build a standard ontology or global schema and then
build information sources that conform to the ontology or schema [4], [5]. Even though the
approach has worked for small communities, it is almost impossible to come up with an
agreed-to-standard for knowledge in larger domains, especially among groups that have diffe-
rent applications in mind.

Besides, it is prohibitively expensive to restructure existing knowledge so that it conforms
to the standard ontology even if such a beast ever came into being.

1.2 Maintenance

Everyday new discoveries expand our knowledge, and change the views of the universe that
we live in. Therefore, even if information sources start off with a common ontology, such
an ontology has to be updated periodically. The maintainers of the information sources that
use the standard ontology will have to agree on the updates being proposed and on the re-
structuring of the ontology. They may have entirely different applications in mind or may not
subscribe to a newly discovered theory. Furthermore, some participants might see the changes
required to support the proposed updates as an unnecessary imposition since restructuring the
information source will require substantial effort on their part. Thus generating new consen-
sus on updates to the standard ontology is a time-consuming and tenuous process. For fast
changing fields, arriving at a consensus within a short period of time is not even feasible.
Therefore, we need a system where the information sources are autonomously maintained.

1.3 A Realistic Setting

We, believe that the information sources should be autonomous and we should not require
them to conform to a standard ontology in order to allow composition of knowledge from
them. Instead of integrating information sources, we intend to enable interoperation among
them.

Unfortunately, the composition of knowledge from multiple independently maintained
information sources is a hard problem. Independently constructed information sources are
heterogeneous and often use different vocabularies and conceptual models. The organization
of class-subclass hierarchies are substantially different. Often, they use different terms to rep-
resent the same concept and the same term to represent entirely different concepts. In order to
interoperate among such information sources we need to resolve their semantic heterogeneity.

Karp [6] proposes a strategy for database interoperation. We extend Karp’s approach to
apply to not only databases, but also to knowledge bases and information sources.

As in [7], [8], and [6], we assume that information sources are independently created
and maintained. In Karp’s system, each database comes with a schem a which is saved in
a Knowledge Base of Databases. Correspondingly, we assume that associated with each in-

Valued Sony Customer
 318

A Scalable Framework for the Interoperation of Information Sources

formation source is an ontology. However, we do not require all ontologies to be saved in a
central repository.

The ontologies associated with information sources are based on some existing, known
vocabularies and conceptual models. Native drivers and wrappers provide access to the on-
tol ogies and help us restructure the information if needed. We establish application-specific
articulation rules, i.e., rules that establish correspondence between concepts in different on-
tologies, semi-automatically.

Queries are rewritten using the articulation rules. Before a query is dispatched to a source,
the terms in the query are rewritten using the articulation rules that indicate the semantic cor-
respondence between the terms in the query and those in the source. This rewriting ensures
that a source gets a query that conforms to the vocabulary and the semantics of the source.
During query planning, optimization is enabled based on the algebraic properties of the op-
erations.

In this paper, we describe the ONION system and highlight our approach to interop-
eration. In Section 2, we describe the common conceptual model that ONION uses for its
internal representation of ontologies. In Section 3 we discuss the semi-automatic articulation
of ontologies. In Section 4 we outline an Ontology Algebra that we use to compose informa-
tion from diverse sources. Section 5 concludes the paper.

2 The ONION Conceptual Model

The heterogeneity among information sources needs to be resolved to enable meaningful in-
formation exchange or interoperation among them. The two major sources of heterogeneity
among the sources are as follows. First, different sources use different conceptual models and
modeling languages to represent their data and meta-data. Second, sources using the same
conceptual model differ in their semantics. The ONION system uses a common ontology
format, which we have described below. It first converts all external ontologies to this com-
mon format and then resolves the semantic heterogeneity among the objects in the ontologies
that it is articulating.

Melnik, et al., [9] have shown how to convert ontologies and different classes of concep-
tual models into those using one common format. For example, say one information source
uses UML [10] and another using DAML+OIL [11]. ONION will convert the ontologies
associated with both information sources to the ONIONconceptual modeldescribed below.
Since the number of classes of such conceptual models that are in use and that we want
to support is small, we will provide wrappers which will convert from these models to the
ONION format.

Instead of converting all ontologies from their native models to the ONION format, an
alternative is to do so declaratively. That is, first generate rules that correlate parts of one
ontology to parts of another based on semantic similarity. Then these rules could be used
to transform ontologies as required. However, this approach would require us to create and
manipulate articulation rules that would not only have semantic information but also have in-
formation about how we should transform the conceptual models underlying each ontology.
These rules would be more complex since they would have information about reformating
the ontologies, and would be less usable than the rules required once both ontologies have
been converted to a common format. Besides, by converting to the ONION format, we elim-
inate the necessity ofn2 pariwise conversions amongn ontologies and instead reduce it ton

Valued Sony Customer
 319

A Scalable Framework for the Interoperation of Information Sources

conversions (of all the ontologies to the common format).
We solve the problem of establishing correspondences among ontology formats and the

problem of establishing articulations among the concepts in the ontologies differently because
we believe that the small number of conceptual modeling formats that we intend to support
(currently XML, RDF, DAML+OIL) can be converted to use one common conceptual model,
whereas the number of concepts and thus objects used in ontologies are rather large and
creating a huge, integrated, common, global ontology is untenable and unmaintainable.

Information sources were, are and will be modeled using different conceptual models.
We do not foresee the creation of ade factostandard conceptual model that will be used
by all information sources. On the other hand, we need a common ontology format for our
internal representation. We use the ONION format to represent the source ontologies and
manipulate them to create the articulation ontology. The design choices for the conceptual
model that we will transform the various source ontologies to range from the least common
denominator of the different conceptual models used by the various sources to the greatest
common multiple of them. Instead of choosing a model that has various complex features
that capture the intricacies of all the conceptual models, we strive to keep our model simple.

2.1 A Graph-Oriented Conceptual Model

Our common conceptual model for the internal representation of ontologies is based on the
work done by Gyssens, et al.,[12]. In its core, we represent an ontology as a graph. Formally,
an ontologyO = (G;R) is represented as a directed labeled graphG and a set of rulesR.
The graphG = (V;E) comprises a finite set of nodesV and a finite set of edgesE.

An edgee is written as(n1; �; n2) wheren1 andn2 are two nodes belonging to the set
of nodesV and� is the label of the edge between them. The label of a noden is given by
a function�(n) that maps the node to non-null string. In the context of ontologies, the label
is often a noun-phrase that represents a concept. The label� of an edgee = (n1; �; n2) is a
string given by� = Æ(e). The label of an edge is the name of a semantic relationship among
the concepts and can be null if the relationship is not known. The domain of the functions�

andÆ is the universal set of all nodes and edges respectively (from all graphs) and the range
is the set of strings (from all lexicons). For the rest of the paper, we will assume that the
function� maps a node to a unique label (the concatenation of the name of the node in the
ontology and the name of the ontology), and thus will use the label of a node as a unique
identifier of the node. To represent an edge, we can substitute the label of a node for a node
and write edgee = (�(n1); �; �(n2).

The graph in the ONION conceptual model can be expressed using RDF [13]. Each
edge in our graph is coded as an RDF sentence, with the two nodes being the subject and
the predicate and the relationship being the property. However, in order to keep our model
simple, we have not included the containers that provide collection semantics in RDF. If the
children of a node need to be ordered we use a special relationship, as explained below. By
choosing RDF, we can use the various tools that are available and do not have to write parsers
and other tools for our model.

The set of logical rulesR are rules expressed in a logic-based language. Although, the-
oretically, it might make sense to use first-order logic as the rule language due to its greater
expressive power, to limit the computational complexity we will use a simpler language like
Horn Clauses. A typical ruler 2 R is of the formCompoundStatement) Statement.

Valued Sony Customer
 320

A Scalable Framework for the Interoperation of Information Sources

A CompoundStatementis the conjunction of multiple Statements. AStatementis of the form
(Concept Relationship Concept). A Conceptcan either be a label of a node in the ontology
graph or a variable that can be bound to a node (in the ontology graph) representing a concept.
A Relationship, as in an edge label in the ontology graph, expresses a relation between the
twoConcepts. A detailed description of the rule language can be found in [14].

2.2 Semantic Relationships inONION

The ONION articulation generatorcan easily derive better semantic matches among con-
cepts in a pair of ontologies if it has some semantic information about the relationships used in
the ONION ontology model. Certain conceptual models allow only strictly-typed relation-
ships with pre-defined semantics. For instance, relationships like SubClassOf, AttributeOf,
etc., have very clearly defined semantics in most object-relational databases. A system that
knows the exact semantics of the relationships in a conceptual model can use the information,
e.g., to find better matches between concepts in two ontologies or to perform type-checking
and flag errors.

Other models allow any user-defined relationships without any restriction. For instance,
relationships likeOwnerOf tend to be interpreted according to the semantics associated to
it by the local application. Such relationships need not be strictly typed and a general system
that imports such a model does not know of the application-specific semantic interpretation of
the relationships. This approach provides enormous flexibility and can accommodate a large
number of relationships. However, since the semantics of these relationships are not exactly
known by the system, it cannot use them for matching related concepts or for type-checking.

The ONION conceptual modeling encourages the use of a set of strictly-typed relation-
ships with precisely defined semantics. The set of relationships that our articulation generator
knows the semantics of isfSubClassOf; PartOf; AttributeOf; InstanceOf; V alueOfg.

In ONION, we assign the conventional semantics to each of these relationships. Some of
these relationships impose type-restrictions on the two nodes they relate. Some of the rela-
tionships (likeSubClassOf , InstanceOf) are somewhat similar to those in RDF-Schema
but the set of relationships that have defined semantics in our conceptual model is different
and much smaller to maintain its simplicity.

The following is a description of the semantics of he set of pre-defined relationships
available in our common conceptual model:

SubClassOf: The relationship is used to indicate that one concept is a subclass of an-
other. The two concepts that it relates must be of type Class. For example, the statement
(Car SubClassOf V ehicle) denotes that the conceptCar is a subclass of conceptV ehicle.
That is any instance of the classCar is also an instance of the classV ehicle and all the at-
tributes of the classV ehicle are also attributes of the classCar. The relationshipSubClassOf
is transitive and in the absence of an explicit rule in an ontology that states theSubClassOf

relationship is transitive, we will add one to the ontology before reasoning or rewriting the
queries using the rules.

AttributeOf: This relationship indicates that a concept is an attribute of another concept,
e.g., an edge(ConceptA AttributeOf ConceptB) indicates thatConceptA is an attribute
of ConceptB. ConceptB has to be of type Class or of type Object andConceptA is of
type Class. This relationship, also referred to as PropertyOf in some information models, has
typically the same semantics as attributes in (object-)relational databases .

Valued Sony Customer
 321

A Scalable Framework for the Interoperation of Information Sources

PartOf: This relationship indicates that a concept is a part of another concept, e.g., an edge
(Chassis PartOf Car) indicates thatChassis is part of aCar. The first concept is of type
Class while the second concept can be of type Class or Object. In relational databases, such
relationships are often coded as attributes, but we believe that this relationship is sufficiently
different semantically from the relationshipAttributeOf to warrant separate consideration.

InstanceOf: This relationship indicates that an object is an instance of a class. Therefore,
the first concept in the relationship is of type object and the second of type Class. For example,
an edge(MyCar InstanceOf Car) indicates thatMyCar is an instance of the ClassCar.

ValueOf: This relationship is used to indicate the value of an attribute of an object, e.g.,
("29" V alueOf Age). Thus, the first concept is of type literal and the second of type Class.
Typically, the second concept (in our example, the classAge), in turn has an edge (in our
example,(Age AttributeOf PersonA)) from the object it describes.

2.3 Sequences

XML is becoming the dominant format for expressing data and meta-data on the web. Like
SGML and other markup languages primarily designed to express documents, XML imposes
order among its elements. By itself, the graphical ONION model, described above, does not
impose order among the children of a node. In order to express order, we introduce a special
relationship, namelySequence, which is very similar to the containerSequence in RDF. For
example, a list ranking cars can be described using the edges(MoneyLineRanking Sequence CarRankingList

1 HondaAccord), and(CarRankingList : 2 FordTaurus). The intermediate node Car-
RankingList represents the list object and its elements form an ordered sequence. In an edge
of the form(ConceptA Sequence ConceptB) the first concept can be a class or an object
and the second concept is an object representing the list. The individual elements of the list
can be objects or classes and are related to the list-object via the relationships: 1; : 2; : : : ; : N
where the list hasN elements.

In ONION conceptual model, we do not require that every relationship must belong to
the small set of relationships whose semantics are predefined. The model is flexible enough
to allow any other user-defined relationship. The articulation generator will not be able to use
the relationships, whose semantics it is not aware of, unless the semantics are captured using
rules in the source ontology. For example, if the source ontology uses a relationshipIs�A and
has a rule that says that ”Is-A” is transitive, the articulation generator can use that information
to generate matches. The articulation rules that the articulation generator generates uses only
the relationships whose semantics are predefined to establish correspondences among nodes
in the source ontologies.

The articulation generator generates matches among nodes in the two source ontologies
that is supplied to it and does not attempt to match relationships among ontologies. The
articulation generator uses only relationships whose semantics are clearly defined to it to
derive meaningful matches among the nodes and ignores the relationships that it does not
know the semantics of. Therefore, if two RDF models have the relationships ”Buyer” and
”Owner” and for the purposes of the application we want to generate a match between the
two, we need to represent these relationships as nodes in the ONION model and then run the
articulation generator to match them.

Valued Sony Customer
 322

A Scalable Framework for the Interoperation of Information Sources

2.4 Reference and Subsumption

In conceptual models, especially those used to model documents, like XML, SGML, OEM
etc. [15], where there are nested objects and entities, an object is modeled as a subtree in
a graph. The entire subtree rooted at a node comprises the object that the node represents.
When a query asks for the object, the entire subtree is returned. Such models assume that an
object subsumes all objects that are in its subtree. If any relationship needs to be expressed
between two objects a reference to the second object is used. The reference is denoted by
having a node with the the identifier of the second object and having an edge to this node.
The use of this additional node that refers to a different object helps preserve the tree structure
of the models, which is required for documents, since they are in essence serialized entities.

In our model, however, even though many of the relationships, with pre-defined seman-
tics, are essentially subsumptive in nature, we intend to keep the concept of an object as
simple as possible. Faced with the question of defining the scope of an object in our common
conceptual model, we take the minimal approach. In our world, a single node represents a
concept: a class, an object, or a value. All edges are referential in nature. Thus, when a query
asks to select an object, only the node representing the object is returned and not the entire
subtree rooted at the node. This minimal definition of an object helps us keep the articula-
tion rules and the resulting ontology intersections as small as possible. As we will see later,
the larger the intersection, the greater the cost when using the articulation to answer queries.
Thus we make the choice to keep the definition of an object as simple as possible.

Apart from the graph model, our conceptual model allows us to declaratively supply rules.
Some features in other models can be converted using the rules to capture their semantics.
If this is not possible, relationships which are not interpreted by ONION can be used. Some
features still cannot be expressed using the ONION model.

The common conceptual model is used to bring ontologies to a common format - so that
the articulation generator needs to understand only one format. So if a feature cannot be
translated into our common conceptual model, it will not be matched with similar features
carrying similar semantic messages in other ontologies. However, such information will still
be accessible from the individual ontology and the engine associated with the individual
sources.

We resolve the heterogeneity with respect to ontology models and modeling languages
by building wrappers that convert ontologies using various conceptual models to an ontology
in our common conceptual model. However, the second problem of semantic heterogeneity
among the concepts used in the source models still remains. In the next section, we will
summarize various methods that we use to automatically suggest ontology articulations.

3 Resolving Semantic Heterogeneity

An important requirement for the application scenarios that our system will be used for is
high precision. In distinction to research tasks, casual browsing, and web-surfing, the cost of
eliminating false hits is very high in business environments. At this point we believe that re-
solving semantic heterogeneity entirely automatically is not feasible. We, therefore, advocate
a semi-automatic approach wherein an automaticarticulation generatorsuggests matches be-
tween concepts in the two ontologies it is articulating. A human expert, knowledgeable about
the semantics of concepts in both ontologies, validates the generated suggested matches using
a GUI tool. An expert can delete a suggested match or say that the match is irrelevant for the

Valued Sony Customer
 323

A Scalable Framework for the Interoperation of Information Sources

application at hand. The expert can also indicate new matches that the articulation generator
might have missed. The process of constructing an articulation is an iterative process and af-
ter the expert is satisfied with the rules generated, they are stored and used when information
needs to be composed from the two ontologies.

In order to keep the cost of computation and especially maintenance (which often dom-
inates other costs in established business environments) low, we strive to make the articula-
tions minimal. Currently, the onus is on the expert to keep the articulation minimal. In future,
we hope to make the automated heuristics aware of the needs of the application and minimize
the articulations.

The matching algorithms that we use can be classified into two types - iterative and non-
iterative.

Non-iterative Algorithms

Non-iterative algorithms are ones that generate the concepts that match in the two ontologies
in one pass. These algorithms do not generate any new matches based on existing matches.
The non-iterative algorithms that we employ involve matching the nodes based on their con-
tent.

The articulation generator looks at the words that appear in the label of the two nodes (or
associated with the two nodes, e.g., if the nodes are documents or if more elaborate descrip-
tions of the concepts that are represented using the nodes are available) that it seeks to match
and generates a measure of the similarity of the nodes depending upon the similarity of the
words used in their descriptions or labels.

The non-iterative methods that we currently use primarily refer to dictionaries and the
Nexus [16] and also use several semantic indexing techniques based on the context of occur-
rence of words in a corpus. Since the articulation generator is modular in nature, it should be
easy to add any other sophisticated heuristic (like consulting WordNet [17]) that allows us to
generate semantic similarity measures between phrases.

Iterative Algorithms

Iterative algorithms require multiple iterations over the two source ontologies in order to
generate semantic matches between them. These algorithms look for structural isomorphism
between subgraphs of the ontologies, or use the rules available with the ontologies and any
seed rules provided by an expert to generate matches between the ontologies. Iterative al-
gorithms are typically used after the non-iterative algorithms have already generated some
semantic matches between the ontologies and use these generated matches as its base.

For example, one heuristic we use is to look at the attributes of each node and see if
the attributes of the two nodes have matched. If a reasonably large number of attributes are
the same, the two nodes are related. If all the attributes of one node are also attributes of
another node, the articulation generator indicates that the second node is a subclass of the
first node. Another heuristic matches nodes based on the matches between their parent (or
child) nodes. The expert has the final decision whether to bless this educated guess generated
by the articulation generator.

Due to space limitations, we will not describe in detail all the heuristic algorithms that we
use to match ontologies, but refer the interested reader to [18].

Valued Sony Customer
 324

A Scalable Framework for the Interoperation of Information Sources

In the next section, we will briefly define an Ontology Algebra, which allows us to sys-
tematically compose information from diverse information sources. Since we focus on small,
well-maintained ontologies in order to achieve high-precision, but we still want to serve sub-
stantial applications, we will often have to combine results of prior articulations. The ontol-
ogy algebra provides the compositional capability, and thus enhances the scalability of our
approach.

4 Ontology Algebra

When we compose information from multiple information sources it is important to do so in a
principled fashion, especially when the number of such sources is large. The key to scalability
is the systematic and effective composition of information.

In this section, we present an algebra that allows us to compose information to any level.
By retaining a log of the articulation and subsequent composition process, we can also, with
minimal adaptations, replay the composition whenever any of the sources change[16]. With-
out such a capability, integrated ontologies soon became stale and useless. Redoing a sub-
stantial integration manually is rarely done, because of the cost, and the realization that the
work will be obsolete again in a short time.

The algebra has one unary operator: Select, and three binary operations:Intersection,
Union, and Difference. The unary operator allows us to highlight and select portions of an
ontology that are relevant to the task at hand. Given an ontology and a node, the select oper-
ator selects the subtree rooted at the node. Given an ontology and a set of nodes, the select
operator selects only those edges in the ontology that connect the nodes in the given set.

Each binary operator takes as operands two ontologies that we want to articulate, and gen-
erates an ontology as a result, using the articulation rules. The articulation rules are generated
by an articulation generation function briefly discussed above.

4.1 Intersection

Intersection is the most important and interesting binary operation. The intersection of two
ontologiesO1 = (N1; E1; R1), andO2 = (N2; E2; R2) with respect to the set of articula-
tion rule generating f unctionAR is:
OI1;2 = O1 \AR O2, whereOI1;2 = (NI;EI; RI),
NI = Nodes(AR(O1; O2)),
EI = Edges(E1; NI \N1) + Edges(E2; NI \N2) + Edges(Arules(O1; O2)) ,
andRI = Rules(O1; NI\N1)+Rules(O2; NI\N2)+AR(O1; O2)�Edges(AR(O1; O2)).
The nodes in the intersection ontology are those nodes that appear in the articulation rules.
The edges in the intersection ontology are the edges among the nodes in the intersection
ontology that were either present in the source ontologies or have been established as an ar-
ticulation rule. The rules in the intersection ontology are the articulation rules that have not
already been modeled as edges and those rules present in the source ontology that use only
concepts that occur in the intersection ontology.

The articulation rules are of two types - ones that are simple statements expressing binary
relationships and the more complex rules expressed in Horn Clauses that are mostly supplied
by the expert. An example of rules of the former type is:(O1:CarSubclassOfO2:V ehicle)
and one of the more complex logic-based ones is a conjunctive rule of the form: e.g. con-

Valued Sony Customer
 325

A Scalable Framework for the Interoperation of Information Sources

z ArticulationRules = { (O2.LuxuryCar SubClass O1.Car),

(O1.MSRP Equ O2.Price)}

InexpCar

Car LuxuryCar

MSRP Price LuxuryTax

SubClass

Equ

O1
O2OI

Figure 1: The Intersection OntologyOI of Source OntologiesO1 andO2

junctive rules of the form(O1:XInstanceOfO1:Car); (YPriceOfX); (Y > 30000))
(O1:XSubClassOfO2:LuxuryCar). The former set of rules are modeled as edges in the
articulation ontology and the second set of rules which require some form of reasoning to
derive statements from are left as rules belonging to the articulation ontology. These rules
will be processed during the query evaluation process only when necessary.

For all articulation generator functions, we require thatO1 \AR O1 = O1, that is the
articulation generator function should generate such articulation rules that upholds the above-
mentioned property as a sanity-check. Articulation generator functions that do not satisfy the
above equality areunsoundand for the purposes of our compositions, we do not use any
unsound articualtion generator function.

In Figure 1, we show two ontologiesO1, O2, the articulation rules between them and the
intersection ontologyOI. Equ is a short-hand that we use when to indicate classes that are
equivalent in the two ontologies.

Note that since we consider each node as an object instead of the subtree rooted at the
node, we will get only the node in the intersection by virtue of its appearing in an articulation
rule and not automatically include its attributes or subclasses. Again, a minimal linkage serves
our needs better than inclusion of possibly irrelevant concepts. Inclusion of attributes will be
required to define subclass relationships among nodes in the source ontologies precisely.

Each node in the intersection has a label which contains the URI of the source in which it
appears. If the attributes of the object that it represents are required, the application’s query
processor has to get that information from the original source. Defining the intersection with a
minimal outlook reduces the complexity of the composition task, and the maintenance costs,
which all depend upon the size of the articulation.

Valued Sony Customer
 326

A Scalable Framework for the Interoperation of Information Sources

4.2 Union

The unionOU between two ontologiesO1 = (V 1; E1; R1) andO2 = (V 2; E2; R2) is ex-
pressed asOU = O1 [AR O2 = (V U;EU;RU) where
V U = V 1 [V 2 [V I1;2,
EU = E1 [E2 [EI1;2,
andRU = R1 [R2 [RU1;2,
and whereOI1;2 = O1 \AR O2 = (V I1;2; EI1;2; RI1;2) is the intersection of the two ontolo-
gies.
The union operation combines two source ontologies retaining only one copy of the concepts
in the intersection. Though queries are often posed over the union of several information
sources, we expect this operation to be rarely applied to entire source ontologies. The union
of two source ontologies is seldom materialized, since our objective is not to integrate source
ontologies but to create minimal articulations and interoperate based on them. However, we
do expect that larger applications will often have to combine multiple articulations and here
is where the union operation is handy.

4.3 Difference

The difference between two ontologiesO1 andO2, written asO1�O2, includes portions of
the first ontology that are not common to the second ontology. The difference can hence be
rewritten asO1� (O1 \AR O2). The nodes, edges and rules that are not in the intersection
ontology but are present in the first ontology comprise the difference.

One of the objectives of computing the difference is to optimize the maintenance of artic-
ulation rules. An articulation might need to be updated when one of the source ontologies that
it articulates is changed. A change in the source ontology is to be forwarded to the articulation
engine.

The articulation engine then checks if the changes are confined to the difference between
the ontology and the other ontologies that it has been articulated with. If the change happens
to be in the difference, then it does not occur in the intersection and is not related to any
of the articulation rules that establish semantic bridges between ontologies. Therefore, the
articulation rules do not need to be changed. If the changes to a source ontology, instead, is
not in the difference, the articulation in which it occurs needs to be updated to reflect the
change in the source ontology.

Using a formal process minimizes the maintenance costs in two ways: first of all we can
recognize when a change in a source does not require a change in the articulation rules, and
if a change is required we can rapidly regenerate the affected articulations, and adapt them to
the new situation.

5 Conclusion

In this paper we present a brief overview of the ONION system used for the interoperation
of information sources. ONION uses a simple conceptual model to which different ontology
models are mapped using wrappers. The articulation generator is then applied to ontolo-
gies expressed using the sc ONION conceptual model to generate semantic correspondences
leading to articulation rules among concepts in the source ontologies. A domain expert vali-

Valued Sony Customer
 327

A Scalable Framework for the Interoperation of Information Sources

dates the generated rules or supplies new rules. These rules form the basis of interoperation
among the autonomously maintained information sources. Finally, we briefly highlighted an
ontology algebra that provides the formal basis for composition of information and the main-
tenance of the articulations. The ONION approach supports precise composition of infor-
mation from multiple diverse sources by not relying on simple lexical matches, but requiring
human-validated articulation rules among such sources. This approach allows the reliable
exploitation of information sources that are autonomously maintained without any imposi-
tion on the sources themselves. The algebra based on the articulation rules allows systematic,
composition, which unlike integration is much more scalable. When sources change main-
tenance is rapid since the effect of the changes can be determined using the algebra and the
composition can be regenerated where needed.

References

[1] Cia factbook: http://www.cia.gov/cia/publications/factbook/. 2000.

[2] O. Ritter, P. Kocab, M. Senger, D. Wolf, and S. Suhai. Prototype implementation of the integrated genomic
database.Computers and Biomedical Research, 27:97–115, 1994.

[3] Diane E. Oliver.Change Management and Synchronization of Local and Shared Versions of a Controlled
Vocabulary. PhD thesis, Stanford University, 2000.

[4] Information integration using infomaster, http://infomaster.stanford.edu/infomaster-info.html.

[5] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The information manifold. In
C. Knoblock and A. Levy, editors,Information Gathering from Heterogeneous, Distributed Environments,
Stanford University, Stanford, California, 1995.

[6] Peter D. Karp. A strategy for database interoperation.Journal of Computational Biology, 2(4):573–583,
1996.

[7] Michael D. Siegel Cheng Hian Goh, Stuart E. Madnick. Semantic interoperability through context in-
terchange: Representing and reasoning about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[8] Cheng Hian Goh, St´ephane Bressan, Stuart Madnick, and Michael Siegel. Context interchange: new
features and formalisms for the intelligent integration of information.ACM Transactions on Information
Systems, 17(3):270–270, 1999.

[9] Sergey Melnik. Declarative mediation in distributed systems. InProceedings of the International Confer-
ence on Conceptual Modeling (ER’00), 2000.

[10] Unified modeling language: http://www.omg.org/technology/uml/index.htm. 2000.

[11] Daml+oil http://www.daml.org/2001/03/daml+oil-index. 2001.

[12] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database model. InProc. PODS,
pages 417–424, 1990.

[13] Resource description framework(rdf) model and syntax specification, w3c recommendation
http://www.w3.org/tr/rec-rdf-syntax. 1999.

[14] P. Mitra. The onion rule language http://www-db.stanford.edu/ prasen9/rulelang.pdf. Technical report,
Infolab, Stanford University, May 2001.

[15] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for hetero-
geneous data. To appear in Theoretical Computer Science http://osage.inria.fr/verso/PUBLI/all-
bykey.php?mytexte=abiteboul, 2001.

[16] J. Jannink.A Word Nexus for Systematic Interoperation of Semantically Heterogeneous Data Sources.
PhD thesis, Stanford University, 2000.

Valued Sony Customer
 328

A Scalable Framework for the Interoperation of Information Sources

[17] Wordnet - a lexical database for english. http://www.cogsci.princeton.edu/wn/. Technical report, Princeton
University.

[18] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge sources. InProc. of
the 2nd Int. Conf. On Information FUSION’99, 1999.

Valued Sony Customer
 329

Valued Sony Customer
 330

On the Integration of Topic Maps and RDF
Data

Martin S. Lacher and Stefan Decker
Database Group

Stanford University
Stanford, CA 94306

flacher,stefang@db.stanford.edu

Abstract. Topic Maps and RDF are two independently developed paradigms and stan-
dards for the representation, interchange, and exploitation of model-based data on the
web. Each paradigm has established its own user communities. Each of the standards
allows data to be represented as a graph with nodes and labeled arcs which can be
serialized in one or more XML- or SGML-based syntaxes. However, the two data
models have significant conceptual differences. A central goal of both paradigms is
to define an interchangeable format for the exchange of knowledge on the Web. In
order to prevent a partition of the Web into collections of incompatible resources, it is
reasonable to seek ways for integration of Topic Maps with RDF. A first step is made
by representing Topic Map information as RDF information and thus allowing Topic
Map information to be queried by an RDF-aware infrastructure. To achieve this goal,
we map a Topic Map graph model to the RDF graph model. All information from the
Topic Map is preserved, such that the mapping is reversible. The mapping is performed
by modeling the graph features of a Topic Map graph model with an RDF graph. The
result of the mapping is an RDF-based internal representation of Topic Maps data that
can be queried as an RDF source by an RDF-aware query processor.

1 Introduction

Different Communities are currently working on the vision of a Semantic Web: the idea of
having data on the Web defined and linked in a way that it can be used by machines not just for
display purposes, but for automation, integration and reuse of data across various applications.
In order to make this vision a reality for the Web, supporting standards, technologies and
policies must be designed to enable machines to make more sense of the Web, with the result
of making the Web more useful for humans. One issue for the Semantic Web is how to allow
for inter-operable representations of data on the Web. RDF [1] and Topic Maps [2] are two
independently developed standards, which can be used to represent data on the web in an inter-
operable fashion. Both standards have established a large user community and will most likely
be building blocks of the future Semantic Web. To prevent a partition of the Semantic Web
into incompatible subsets, ways for inter-operation of overlapping standards like RDF and
Topic Maps have to be found. By Interoperability, we mean for example that any Topic Map
source of data can be queried with an RDF-aware query infrastructure and vice versa. Both
directions are equally important, as both standards have their advantages and disadvantages
and are equally likely to be used on the future Semantic Web. We chose to begin with the

Administrator
331

approach of making Topic Map sources queriable for an RDF infrastructure. The reason for
this is partly because the RDF community has established a query infrastructure (eg. [9]),
which can be reused for querying Topic Map resources. The Topic Map community is in the
process of standardizing a query language, commmercial packages already offer proprietary
query languages 1. Other approaches that make RDF sources available to Topic Map aware
query infrastructure have been proposed and their relation to this work is presented in Section
6.

Our approach to integration of Topic Maps and RDF data fllows the layered approach to
data interoperability proposed in [12]. This approach splits data models into different layers,
much like the layers in a network protocol stack. This layered model is useful for understanding
complex data model interoperation, since the integration problem complexity is broken into
smaller problem parts. An introduction to the layered approach to data interoperability is
given in Section 2. We make a Topic Map RDF-queriable by performing a mapping between
the two data models on a layer, on which in both of the models, data is represented as a
graph. Thus, in fact, our mapping is a mapping between two types of graphs. The mapping is
performed by modeling the Topic Map graph with an RDF graph. On top of the graph layer,
there may be additional semantics, which we do not consider in this paper. For example, the
graph may be used to represent UML data, DAML+OIL data or Topic Map data. Figure 1
shows an overview of the architecture that we have in mind for the integration of different
sources.

DAML/OIL
semantics
RDF Data

Model

XML Syntax

UML
semantics
RDF Data

Model

XMI Syntax

Topic Map
semantics
RDF Data

Model
SGML
Syntax

serialized
UML
data

serialized
DAML/OIL

data

serialized
Topic Map

data

Query
Execution
Planner

RDF Query

Information Source Information Source

Information Source

Figure 1: Overview of the integration of different data sources.

Each of the data sources in Figure 1 stores persistent data according to a certain serialization
syntax. From each of these persistent data, a memory data model based on RDF as a low-level
object model can be built. This RDF model in all information resources can then be queried by

1See http://k42.empolis.co.uk/tmql.html

Administrator
332

an RDF-aware query infrastructure. This way, information sources with different model-based
data representations can be integrated.

The remainder of this paper is organized as follows: We will first introduce the data
models of RDF and Topic Maps with respect to the layered interoperability approach. General
familiarity with RDF and Topic Maps is assumed. Thereafter, in Section 3, we will present
our integration approach in more detail including two small exemplary mappings. Section 4
presents a real world application example for the joint querying of a Topic Map information
source and an RDF information source. Section 5 shortly describes the implementation of our
mapping approach. Section 6 gives a brief overview of related work. Finally, in Section 7 we
summarize our contributions.

2 Overview of the data models

In this section, we will give a brief overview of the RDF and Topic Map data models with
respect to the layered model introduced in [12].

2.1 The layered interoperability model

The layered model of data interoperability in [12] breaks up the problem of data model
integration into a stack of layers which are quasi-independent from each other. This approach
resembles the ISO protocol stack for network interoperation. The different layers presented
are from bottom to top, the syntax layer, the object layer and the semantic layer. Each of those
layers actually has sublayers, but we do not require such a detailed perspective on the layers
here. The syntax layer is concerned with a serialization syntax for persistent storage of data.
The object layer is concerned with how to assign identity to objects or how binary relations
are represented. The semantic layer is concerned with the interpretation of the objects and
their relationships.

We will not present details on each of the layers and their involvement in the mapping.
The important essence is, that our approach works by performing a graph transformation on
the object layer, which can be performed quasi-independently from the other layers. This
independence is possible, because any semi-structured data model [15] can be represented as
a directed graph, which is also the data model of RDF. Thus, any kind of semi-structured data
model can be represented by RDF on the object layer. How the RDF graph is interpreted on
a higher level can differ again for different data models. In this paper we will not consider
the issue of mapping those higher level semantics. We will only look at RDF as the common
denominator for data representation and query purposes. The Topic Map semantic on a higher
level will thus be conserved with our mapping and only the representation on the object layer
will be mapped to RDF.

2.2 RDF

The Resource Description Framework Model and Syntax Specification [1], which became
a World Wide Web Consortium (W3C) Recommendation in February 1999, defines the
RDF data model and a basic serialization syntax. The RDF Data model is essentially a
directed, labeled graph: it consists of entities, identified by unique identifiers, and binary
relationships between those entities. In RDF, a binary relationship between two specific

Administrator
333

entities is represented by a statement (or triple). An RDF statement can be represented in a
graph as two nodes and a directed arc between the nodes. The node with the outgoing arc
is called subject of the statement, the arc is called property and the node with the incoming
arc is called object of the statement. The RDF data model distinguishes between resources,
which have URI identifiers, and literals, which are just strings. The subject and the predicate
of a statement are always resources, while the object can be a resource or a literal.

Taking the perspective of the layered interoperability model, RDF has several possible
syntaxes on the syntax layer, among which there is one basic and on abbreviated syntax
defined in [1]. On the object layer, the RDF model is a directed graph, as described above.
The semantic layer of RDF is minimal. Together with additional languages like DAML+OIL,
more more complex semantics can be expressed with RDF.

2.3 Topic Maps

Topic Maps [2] have been standardized in 1999. A Topic Map is defined as a collection
of Topic Map documents, which adhere to a certain SGML syntax defined in the standard
document. The SGML Syntax of those documents is described in the standard along with
an informative conceptual model for memory representation of Topic Maps. Topic Maps can
be used as a format for the representation of multi-dimensional subject-based indices for
document collections. Topic Maps can also be used as a format for interoperable knowledge
representation.

The original ISO standard specified an SGML syntax for the exchange of Topic Maps. To
make Topic Maps applicable on the Web, the XML Topic Maps standard has been drafted [3].
XTM defines an XML syntax for Topic Maps and gives a specific, albeit slightly simplified,
data model of a Topic Map. Both the SGML syntax and the XML syntax incorporate syntax
shortcuts for complex data model constructs. The XML syntax presented in [3] has been
appended to [2] after publication.

Several representations on the object layer have been proposed for Topic Maps. We will
adhere to the graph representation described in [6]. This graph representation knows four
different kinds of arcs and three different kinds of arcs. The nodes do not differ in their
properties, but in which arcs they can be connected to. Additionally, each node can have
several subject identity points. Subject identity points serve partly serve as unique identifiers
for the nodes.

The semantics of the graph nodes defined on the object layer is that of subjects, defined
as anything that can be referred to in human discourse. These subjects are divided into topics,
associations and scopes, corresponding to the three different node types. Topics can have
a number of characteristics, which can be bound to them by means of associations. The
processing models described in [7] and [6] state some semantic constraints on the graph,
which have to be enforced in order to produce a consistent Topic Map. Basically, these
constraints ensure that no duplicate topics occur in a consistent Topic Map.

3 Integration Approach

Our general approach is that we model a graph representation of a Topic Map with the means
that an RDF graph gives us. This is an approach that has been termed "modeling the model" in
[13]. In this approach, all information from the source model is preserved and just represented

Administrator
334

in another format. Thus, this transformation can also be seen as a syntax transformation.
We picked this approach because it has an advantage over an approach that would perform a
semantic mapping between representations. A semantic mapping will most likely incur loss of
information and thus make an inverse mapping impossible. The semantic mapping approach
is called “mapping the model”in [13].

3.1 Semi-structured data

Our integration goal is to generate a memory internal representation of a Topic Map, which
can be queried with an RDF query infrastructure. This means that the surface syntax of the
two data models is not of interest for our task. Thus, our approach is applicable for both the
SGML syntax as well as the XML syntax. However, our implementation only considers the
XML (XTM) syntax. We implemented the processing model proposed in [6] to construct a
Topic Map graph model from an XTM document.

RDF is closely related to the concept of semi-structured data, identified in the database
community [11], [15] as a means for data integration [10] [14] and transformation [4].
Any kind of data that can be represented as a graph is called semi-structured data. Thus,
if heterogeneous data sources are transformed into a graph representation in some standard
representation format, all this data can be queried with the same query infrastructure in the
same query. This makes joint queries over multiple data sources possible.

RDF can be used to represent semi-structured data as a graph. This also applies to Topic
Maps data , since there is a graph representation defined for Topic Maps [6]. Topic Maps have
the expressive power of a schema language and can be used to represent ontologies. An RDF
adapter for Topic Maps makes a Topic Map information source RDF queriable.

We will now describe the different aspects of the representation of Topic Maps as RDF
with respect to the layered data model described in [12].

3.2 Object layer

The representation of Topic Maps as RDF is a graph transformation on the object layer of
the layered data model. The object layer describes how object identity is established and how
binary relationships are described in a certain data model.

The RDF Model and Syntax description gives a graph model for RDF. The Topic Maps
standard does not enforce a certain internal representation for a Topic Map. Instead, several
processing models have been proposed, which describe how to deserialize an abbreviated
syntax into a consistent graph-based internal data structure [7], [6]. We use the graph model
presented in [6]. This graph model has the characteristics described in Section 2. Our goal is
to map the Topic Map graph representation onto an RDF graph representation without any
loss of information. We do this by mapping each element of the Topic Map graph described
in [6] to a corresponding construct in RDF.

A prerequisite for the mapping is, that the Topic Map graph is consistent, i.e. there are
no redundant elements in the Topic Map graph [6]. A Topic Map graph tm = (N;A; S)

consists of a set of nodes N , which have the three types a, t and s, a set of arcs A, which
have the different types associationMember, associationScope, associationTemplateand
scopeComponent and a set of resources S which indicate or constitute a subject. The asso-
ciationMember arc has a t-node attached as a role label. Each node has at most one subject

Administrator
335

constituting resource and any number of subject indicating resources attached to it. The
connection with these resources is not part of the graph [6], but taken care of in the imple-
mentation domain. However, for a mapping without loss of information, we need to consider
those resources as well.

An RDF Model graph r = (R;L; ST) consists of a set of resources R, a set of literals L
and a set of statements ST . Our mapping m maps the set of all consistent Topic Maps TM
to the set of all RDF Models R. The set of Nodes N is mapped to the set of resources R in
RDF. The set of arcs A is mapped to the set of statements ST in RDF. The set of subject
indicating/constituting resources S is also mapped to the set of resources R in RDF.We map
the Topic Map graph to an RDF graph by first mapping the graph nodes and then mapping
the arcs.

Each node in the Topic Map graph is mapped to a resource in the RDF model. The ID of
the RDF resource is the ID of one of the subject identity points of the Topic Map node. If
there is no subject identity point for the node, an ID is generated. For the rest of the subject
identity points, statements are generated, which connect the subject identity points to its node
in the RDF graph. An RDF statement is generated, which identifies the type of node that has
been mapped. The Topic Map graph model knows three different kinds of nodes. We make
use of the namespace capability of RDF to define the three types of nodes available in Topic
Maps. The node types are defined as shown in Figure 4. An exemplary mapping of a Topic
Map node to an RDF graph is shown in figure 2.

Topic Map graph

SIR: http://www.stanford.edu/rdftm/denmark.html
SIR: http://www11.in.tum.de/rdftm/denmark.html

RDF graph

...edu/.../
denmark.html

��
��

tms:tRDF:typetms:sir
...de/.../

denmark.html

m

Figure 2: Exemplary mapping of a Topic Map node to an RDF graph

After all the nodes have been mapped, we map the arcs in the Topic Map graph to
statements in the RDF graph. For each arc between two nodes n1 and n2 we generate an
RDF statement. The property of the statement corresponds to the arc type in the Topic Map
graph. The corresponding properties are defined in the schema in Figure 4. Although arcs
in the Topic Map graph are not explicitly directed, they have an implicit directionality given
through the node types at each arc end. Thus, the RDF graph is not more constrained than
the Topic Map graph in that respect. If the mapped arc is an associationMember arc, it has
a role label in the Topic Map graph. To represent this in the RDF graph, we reify the RDF
statement signifying this arc and bind the role label node to this statement with the roleLabel

Administrator
336

property defined in Figure 4. The mapping of an associationMember arc between two nodes
is shown in Figure 3.

SCR: http://www.stanford.edu/
rdftm/denmark.xtm#denmark

Topic Map graph

a

RDF graph

t

t

associationMember

SCR: denmark.xtm#denmarkstring

SCR: http://www.topicmaps.org/
xtm/1.0/psi1.xtm#role-basename

.../
psi1.xtm#role-

basename

��
��

ID2

ID1

��tms:t

RDF:typeRDF:type

denmark.xtm#
denmarkstring

tms:associationMember

��
��tms:

association
Member

RDF:subject RDF:objecttms:roleLabel

RDF:property

m

Figure 3: Exemplary mapping of a Topic Map associationMember arc to an RDF graph

3.3 Semantic layer

RDF can be the basis for an ontology definition language and Topic Maps can be seen as an
ontology definition language. RDF requires additional vocabulary such as DAML+OIL for
ontology definition and RDF itself merely provides the object layer in this data model stack.
Topic Maps on the other side have richer semantics, and provide a number of features of an

Administrator
337

ontology definition language. For a comparison on the semantic layer, DAML+OIL based on
RDF is a more appropriate candidate for a comparison with Topic Maps. However, this will
not be investigated in this paper.

4 Application Example

We will now present an example for the integration of two heterogeneous information sources
for querying. The first source is a Topic Map serialized in XTM [3] based on the CIA World
Fact Book. The second source is the Open Directory2, which is represented in RDF. We
would like to find travel information for countries which have petroleum as a natural resource.
Countries with petroleum as a natural resource can be found in the CIA World Fact Book and
travel information can be found in the Open Directory collection of web pages. First, we will
present how a part of the Topic Map source is mapped to RDF. Then, we will show how the
two information source can be jointly queried.

4.1 Mapping the Topic Map source to RDF

As a first preparatory step for our integration approach, we defined an RDF Schema which
defines the node and arc types of a Topic Map graph. Figure 4 shows the RDF schema
definition.

<rdf:RDF xmlns:rdf="http://www.w3c.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdf="http://www.w3c.org/2000/01/rdf-schema#"
xmlns:tms="http://www-db.stanford.edu/rdftmmapping/tm-schema#"
xmlns="http://www-db.stanford.edu/rdftmmapping/tm-schema#">
<rdfs:Class ID="t"/>
<rdfs:Class ID="a"/>
<rdfs:Class ID="s"/>
<rdf:Property ID="associationMember"/>
<rdf:Property ID="associationScope"/>
<rdf:Property ID="associationTemplate"/>
<rdf:Property ID="scopeComponent"/>
<rdf:Property ID="roleLabel">
<rdf:Property ID=="sir">

</rdf:RDF>

Figure 4: The RDF Schema for an RDF-based Topic Map

For the actual construction of an RDF representation of a Topic Map graph, the next step
is the generation of a graph representation from a (XTM) Topic Map document. For this
purpose we implemented an API for Topic Maps which exposes a graph-based data structure
and allows us to directly operate on the Topic Map constructs for the graph construction. The
API also conforms with the processing model presented in [6], which is required to generate a
valid Topic Map graph from an abbreviated syntax. Figure 5 shows a short snippet of a Topic
Map with information from the CIA World Fact Book in the form of an XTM document.
Processing this XTM document results in the graph shown in Figure 4.1.

After processing the XTM document snippet according to the processing model, the
generated graph for this short XTM document snippet looks like this:

2http://www.dmoz.org/

Administrator
338

<topic id="denmark">
<basename>
<baseNameString>Denmark</baseNameString>

</basename>
</topic>
<association id="denmark-has-petroleum">
<member>
<roleSpec>
<topicRef xlink:href="#country"/>

</roleSpec>
<topicRef xlink:href="#denmark"/>

</member>
<member>
<roleSpec>
<topicRef xlink:href="\#natural-resource">

</roleSpec>
<topicRef xlink:href="petroleum">

</member>
</association>
<topic id="country"/>
<topic id="natural-resource"/>

Figure 5: XTM document subpart

Figure 4.1 shows the Topic Map graph that is generated according to the XTM processing
model. The ellipses represent nodes, the lines represent arcs with different types. The role
labels for association member arcs are connected to the arcs via another arc, the role label arc.
The graph that is induced by the XTM snippet above basically represents a topic node that
represents the subject Denmark. The graph also represents the fact that Denmark has petroleum
as a natural resource. It also shows that the base name "Denmark" has been assigned to the
Denmark topic.

We will now represent this graph as an RDF graph. In fact, the transformation of the graph
is performed during the construction of the Topic Map graph according to the transformation
guidelines presented above. To construct the graph, we generate RDF triples. Figure 7 shows
the mapped RDF graph.

It can be seen in Figure 7 that the graph can be translated in a straightforward manner. The
RDF graph has additional type edges to signify the node types. All nodes in the graph which
have no type edges are assumed to be of type topic in this graph. As IDs of each of the nodes
we used the ID of either the respective XTM element, or generated an ID. The additional
role topics, which are attached to the association member edges in the Topic Map graph, are
modeled by reification of a statement in RDF: The statement that signifies the association
member edge from a topic to an association is reified and becomes the subject in another
statement that has the role topic as an object and the RDF-Schema-defined roleLabel as its
property.

Although the mapping transforms undirected arcs into directed arcs, the mapping between
the two graph representations is still a bijective mapping. The direction of arcs in the Topic
Maps graph model is implicit. For querying purposes, arcs in the RDF graph of a Topic Map
have to be queried in two directions.

By translating all graph constructs mentioned in the XTM processing model to an RDF

Administrator
339

denmark-has-
petroleum

denmark

"Denmark"

core.xtm#role
-topic

core.xtm#role
-basename

psi1.xtm#at-
topic-

basename

country

petroleum

natural-
resource

a-node t-node association template arc association member arc

role
label

Figure 6: The generated Topic Map graph

graph we essentially generated an RDF representation of a Topic Map. We can now query
this RDF graph with an RDF query language. An example for the utility of this will now be
shown.

4.2 Joint querying of the information sources

As an example for the usefulness of our integration approach, consider the following scenario:
We would like to find Web pages about travel in countries, which exploit petroleum as a natural
resource. The available resources include a Topic Map constructed from the CIA world fact
book 3, which includes general resources about countries, but no Web pages about travel. To
retrieve the requested travel pages, we access the Open Directory collection of Web pages. The
Open Directory is a large Web page directory constructed in a collaborative way by a large
number of expert volunteers. The directory structure of the Open Directory is represented
in RDF. With our integration approach, a query processor can now query both information
sources and integrate the results into one query result. The distributed and heterogeneous
nature of the information sources remains transparent to the user.

For our query example, we will assume the existence of a query engine which can query
distributed information resources that are represented in RDF. The basis for such a query
engine can be the query infrastructure and F-Logic syntax presented in [9]. The extension that

3http://www.cia.gov/cia/publications/factbook/

Administrator
340

���
��� "Denmark"

psi1.xtm#at-
topic-

basename

���
���denmark-has-

petroleum

denmark

core.xtm#role
-topic

core.xtm#role
-basename

country

petroleum

natural-
resource

��a-node t-node

tms:roleLabel

��
��

���
���

tms:
association

Member
p

s
o

��
��

tms:
association

Member

��
��

s

p

o

���
���

tms:
association

Member

��
��

o

s

p

���
���

��
��

tms:
association

Member
p

s

o

��
new
rdf

node

tms:associationScope

tms:associationMember

t rdf:type

p rdf:property

rdf:subject

rdf:object

s

o

Figure 7: The generated RDF Topic Map graph

would have to be performed is to alllow to specify information sources to which certain parts
of the query have to be directed. Figure 8 shows an example of a query in F-Logic syntax,
as introduced in [9]. The query uses the assumed capability of the query engine to specify
source with the @ character. The query in Figure 8 can now be posed to query the two above
mentioned information sources.

This example query assumes the existence of a name mapping, which resolves the naming
differences between resources (mapsTo property). Please note also that the query in Figure
8 is simplified in that naming conventions of DMOZ are not considered here. Also, the
Travel_and_Tourism property will have to be constructed from the DMOZCountry
URI.

The query answers queries over two different sources: the CIA World Factbook and the
DMOZ Open Directory. The structure of the query language mimics RDF and is subject
[predicate->object]source. The first part of the query retrieves all countries, which
have petroleum as a natural resource. This part of the query can be answered from the CIA

Administrator
341

FORALL pages <- Country, DMOZCountry, X, Y, Z
Y[tms:roleLabel->country;
rdf:object->Country

]@CIA_WORLD_FACTBOOK
and
X[tms:roleLabel->natural-resource;
rdf:object->petroleum;
rdf:subject->
Z[tms:associationMember->Country
]@CIA_WORLD_FACTBOOK

]@CIA_WORLD_FACTBOOK
and
Country[mapsTo->DMOZCountry]

and
DMOZCountry[Travel_and_Tourism ->
dmozpage[links->pages]

]@DMOZ.

Figure 8: Query in F-Logic Syntax over DMOZ and RDF-based Topic Map

World Factbook Topic Map, in the RDF representation given above. Now we are able to query
the DMOZ data for travel information on this country. The result of the query is a list of web
pages from DMOZ categories like Top/ Regional/ Europe/ Denmark/ Travel, etc.

It can be seen that by representing a Topic Map in RDF, the information source becomes
queriable with an RDF query language. But the actual query also requires a query processor,
which can handle the distributed sources.

5 Implementation

The implementation of our RDF adapter for Topic Maps can handle the XTM syntax of Topic
Maps. Both [2] and [3] constrain their normative part of the standard on the specification of an
exchange syntax for Topic Maps. In order to represent a Topic Map with RDF, a graph model
has to be constructed from a Topic Map document. Our implementation considers the XTM
syntax and constructs a graph representation according to the processing model presented in
[6]. The construction of the graph model is performed through a graph-based API proposed in
[5]. The implementation of this API simplifies the realization of the processing model, since
the underlying data model is the same for both. Along with the creation of the API objects,
an equivalent set of RDF triples is generated.

For parsing the XTM document we use a SAX-based parser, which feeds events to
our implementation of the processing model, which then constructs the RDF graph. After
constructing the graph, the redundancy rules are enforced.

6 Related Work

In [8], a general approach to integration of heterogeneous model-based information has been
presented. It is shown that in principle all model based information can be represented by an
RDF based meta-model. It is shown that this also includes Topic Maps. However, the authors
do not go into details about this specific mapping.

Administrator
342

In [13] two general approaches to the integration have been proposed. The first approach
shows how Topic Maps can be modeled with RDF vocabulary and vice versa. The second
approach shows how a semantic mapping between the two standards can be performed.
Semantic mappings bear the disadvantage that inherently, the transformation is lossy and the
transformation is not bijective. The examples show the general approach of mapping Topic
Maps to RDF.

Also, representing RDF data as Topic Map data is possible, but for the purpose of querying
various sources through one query infrastructure, the inverse direction is the easier solution.
RDF has the simpler data model, allowing more efficient and simpler storage and query
facilities than Topic Maps. Pure syntax transformations have been proposed4, but this approach
disregards the need for a processing model to generate the Topic Map graph from the serialized
syntax.

We have shown that from the point of view of an integrated Semantic Web it is desirable
to be able to query a Topic Map source with an RDF query. This can be achieved if the Topic
Map source itself represents its data as RDF data. The problem of integration of RDF and
Topic Maps has been approached with little success so far. Most Integration approaches have
lead to the conclusion that RDF is not expressive enough to represent Topic Maps. What
we aim to achieve is not to convert a Topic Map document into a number of serialized RDF
statements, which would render the document difficult to read. Instead we aim to generate an
internal representation of a Topic Map, which is really a set of RDF statements. This way, a
data source which stores Topic Map data can be queried as if it was an RDF source. Thus,
what we need to achieve is a mapping of an internal Topic Map representation to an internal
representation of a set of RDF statements.

7 Conclusion

Interoperability is of greatest importance for the future Semantic Web. We suggested a way
to achieve interoperability between Topic Maps and RDF, which enables the joint querying
of RDF and Topic Maps information sources. Our work builds on existing work on general
approaches for the integration of model based information resources. In contrast to those
general approaches we showed a detailed mapping specifically from XTM Topic Maps to
RDF. We achieved this by adopting an internal graph representation for Topic Maps, which
has been published as part of one of the processing models for Topic Maps. We perform a
graph transformation to generate an RDF graph from the Topic Map graph representation.
The Topic Map source can now be queried with an RDF query language together with
RDF information sources. We see this as a first step towards the integration of the many
heterogeneous information sources available on the Web today and in the future.

References

[1] Resource Description Framework (RDF) Model and Syntax Specification, Feb. 1999. W3C Recommen-
dation.

[2] ISO/IEC 13250: Topic Maps, Dec. 1999. ISO/IEC FCD, April 1999.

[3] XML Topic Maps (XTM) 1.0, Mar. 2001. topicmaps.org Specification, http://www.topicmaps.org/xtm/1.0/.

4http://lists.w3.org/Archives/Public/www-rdf-interest/2001Mar/0062.html

Administrator
343

[4] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and Translation for Heterogeneous Data.
In 6th International Conference on Database Theory, 1997.

[5] Khalil Ahmed. Developing a Topic Map Programming Model. In Knowledge Technologies 2001, Mar.
2001.

[6] Michel Biezunski and Steven R. Newcomb. topicmaps.net’s Processing Model for XTM 1.0, version 1.0.1,
May 2001. http://www.topicmaps.net/pmtm4.htm.

[7] Michel Biezunski and Steven R. Newcomb. Xml Topic Maps Processing Model 1.0, Mar 2001.
http://www.topicmaps.org/xtm/1.0/xtmp1.html.

[8] Shawn Bowers and Lois Delcambre. Representing and Transforming Model-Based Information. In
International Workshop on the Semantic Web (SemWeb), in conjunction with ECDL 2000, Sep. 2000.

[9] Stefan Decker, Dan Brickley, Janne Saarela, and Jürgen Angele. A Query and Inference Service for RDF.
In QL ’98 - Query Languages Workshop, Dec. 1998.

[10] Hector Garcia-Molina, Jan Hammer, K. Ireland, Y. Papakonstantinou, Jeff Ullman, and Jennifer Widom.
Integrating and Accessing Heterogeneous Information Sources in TSIMMIS. In AAAI Symposium on
Information Gathering, pages 61–64, Mar. 1995.

[11] Jan Hammer, J. Mc Hugh, and Hector Garcia-Molina. Semistructured Data. In First East-European
Workshop on Advances in Databases and Information Systems - ADBIS ’97, Sep. 1997.

[12] Sergey Melnik and Stefan Decker. A Layered Approach to Information Modeling and Interoperability on
the Web. In ECDL ’00 Workshop on the Semantic Web, Sep. 2000.

[13] Graham D. Moore. RDF and Topic Maps - An Exercise in Convergence. In XML Europe 2001, May 2001.

[14] Y. Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object Exchange Across Heterogeneous
Information Sources. In ICDE ’95, Mar. 1995.

[15] Dan Suciu. An Overview of Semi-Structured Data. SIGACTN: SIGACT News, 29:pp. 28–38, 1998.

Administrator
344

An infrastructure for
formally ensuring interoperability
in a heterogeneous semantic web

Jérôme Euzenat
INRIA Rhône-Alpes

655 avenue de l’Europe, 38330 Montbonnot Saint-Martin (France)
Jerome.Euzenat@inrialpes.fr

Abstract. Because different applications and different communities require different
features, the semantic web might have to face the heterogeneity of the languages for
expressing knowledge. Yet, it will be necessary for many applications to use
knowledge coming from different sources. In such a context, ensuring the correct
understanding of imported knowledge on a semantic ground is very important. We
present here an infrastructure based on the notions of transformations from one
language to another and of properties satisfied by transformations. We show, in the
particular context of semantic properties and description logics markup language,
how it is possible (1) to define properties of transformations, (2) to express, in a
form easily processed by machine, the proof of a property and (3) to construct by
composition a proof of properties satisfied by compound transformations. All these
functions are based on extensions of current web standard languages.

1. Introduction

The idea of a “semantic web” [Berners-Lee 2001] supplies the (informal) web as we
know it with annotations expressed in a machine-processable form and linked together.
Taking advantage of this semantic web will require the manipulation of knowledge
representation formalisms.

There are several reasons why the semantic web could suffer from diversity and
heterogeneity. One main reason is that it depends on content providers and content providers
have diverse goals and focal points that will not lead them to invest on the same area of the
semantic web. Yet these areas of interest will overlap meaningfully and putting part of their
content together will be required for taking advantage of them in unexpected applications
[Wiederhold 1999]. Another reason arises from the observation that the web sites and web
pages are more often generated on demand depending on (1) the device on which they will be
displayed and (2) the preferences of the users. There is no reason why the semantic web
resources would not require the same kind of operations. There are several other reasons for
expecting heterogeneity including legacy knowledge bases and systems, learning curves…

Because we think that nothing better can happen to the semantic web than having well
suited languages for each task while preserving interoperability, we aim at providing a path
toward this goal. This paper is a short description of the technicalities involved in a solution
to interoperability despite diversity.

Imagine a second-hand hardware provider company willing to build a semantic web
support for its business involving repair and printers. Because the company core competence
is neither technical support, nor printers, it will prefer to reuse knowledge models (or
ontologies, which can be quickly described as conceptual schemes of knowledge bases) from
authoritative sources. Additionally, the company has decided to use a particular representation
and deduction formalism for processing knowledge (similar to the SHIQ language for which
the FaCT reasoner can perform subsumption test). This company will find a technical support
ontology written in DAML-ONT and a printer ontology written in OIL that fulfill its
requirements.

Valued Sony Customer
 345

The problem then consist of importing these two ontologies in the SHIQ language in a
semantically valid way (i.e. preserving the consequences they entail). The solution will resort
to transforming each ontology into a common format and transforming this format into a form
compatible with SHIQ. This can be achieved by a homemade transformation or by assembling
transformations available through the web (see Figure 1). Of course, the transformation
system engineer will choose transformations that satisfy the desired properties (consequence
preservation). To that extent, (s)he will refer to the properties advertised for each
transformation. But (s)he has to make sure that the assertions are correct (they can be
erroneous, or valid within a specific context…). There are two basic alternatives to this
problem: trusting or checking.

daml2dlml

oil2dlml

domain2inv

all

oneof2cexl cexcl2not

domain2inv

all p

p < p

<

<
<

<

about

Figure 1 : The complete construction of a transformation, by composing more elementary transformations
gathered from the web, and the proof of consequence preservation by composing lemmas.

Checking is possible if the proofs of the asserted properties are available somewhere. It
will then be possible to check the properties satisfied by the transformations and to deduce
those satisfied by the compound transformations. In order to contribute to the global web of
transformations, the transformation system engineer will publish the new compound
transformation and the proofs of its properties.

The framework presented here is distributed, modular, incremental (i.e. anyone can add a
new transformation, a new assertion or a new proof at any time) and ensure a high level of
safety. In these matters, it is fully adequate for the semantic web.

The remainder presents the building blocks of such an infrastructure. The presentation is
based on the simple example above (the complete example has been implemented in DLML
and XSLT). First, we describe DLML, an XML encoding of knowledge representation
language and the kind of transformations that can be performed on these languages (§2).
Then several consequence-preserving properties are introduced (§3). The proofs of such
properties are expressed in such a way that machines can manipulate them (§4). Last, we

Valued Sony Customer

Valued Sony Customer

Valued Sony Customer
 346

introduce an environment for building, checking, proving and publishing transformation and
proofs by composition (§5).

2. A family of representation languages : DLML

In order to simplify the presentation and to facilitate the transformations, we will restrict
ourselves to a set of languages that act as pivot languages between the actual representation
languages used in the semantic web.

In this presentation, a language L will be a set of expressions. A representation (r) is a set
of expressions in L. In this framework, a model of a set of assertions r⊆ L, is an

interpretation I satisfying all the assertions in r. An expression δ is said to be a consequence

of a set of expression r if it is satisfied by all models of r (this is noted r|=Lδ). A family of
languages is a set L of languages that share constructors having the same interpretation in all
the languages. A family can be structured such that a language L∨ L’, such that any formula

of L or L’ is a formula of L∨ L’, always exists. The “family of languages” approach
[Euzenat 2001c] is an interesting case, because it enables a fast implementation of meaning-
preserving transformations. Using a family of languages makes the representations easier to
understand because the elements have the same meaning across languages. It will enable the
fragmentation of these transformations into unit transformations and the precise
characterization of the transformation properties.

A good example of a family of languages is the description logics for which an extensive
language hierarchy has been defined [Donini 1994]. This presentation will focus on our
“Description Logic Markup Language” (DLML) on which we have carried out experiments.
DLML [Euzenat 2001d] is a modular system of document type descriptions (DTD) encoding
the syntax of many description logics (§2.1). The actual system contains the description of
more than 40 constructors and 25 logics. To DLML is associated a set of transformations
(written in XSLT) enabling the conversion of a representation from one logic to another
(§2.2).

Note that we do not put forth DLML as the standard language of the semantic web but
rather as one of the many languages that can be used for transformation purposes. DLML is
used here as a proof of concept. The general framework, however, will work with other
languages.

2.1 Modular Encoding

Description logics allow the manipulation of two kinds of terms: concepts and roles.
Below are one role description stating that the role inktype has for domain of application the
InkPrinter concept and one concept term description stating that a ColorInkPrinter is an
InkPrinter whose inktype(s) are all instances of the ColorInkType concept.

inktype ≤ (domain InkPrinter)
ColorInkPrinter ≤ (and InkPrinter (all inktype ColorInkType))

Term descriptions are built from sets of atomic concept (resp. role) names and term
constructors. They are constrained by equations of the kind above where two terms are
related by a formula constructor (here ≤). A terminology is a set of such equations.

Concept terms are interpreted as sets of individuals of the domain of interpretation and
roles are sets of pairs of individuals. The interpretation I of the constructors above is :

I((and c 1,… c n)) = I(c 1)∩… I(c n)

I((all r c)) = { x∈ D ; ∀ y ; 〈x,y〉∈ I(r) ⇒ y∈ I(c)}

I((inv r)) = {〈x,y〉 ; <y,x>∈ I(r)}

I((domain c)) = {〈x,y〉 ; x∈ I(c)}

Valued Sony Customer
 347

As usual, a model of a terminology is an interpretation I which satisfies all the assertions
of the terminology.

DLML takes advantage of the modular design of description logics by describing individual
constructors separately. The modular encoding of the description logics is made of three kind
of DTD: atoms (introducing the atomic terms), term constructors (e.g., all, and, not) and
formula constructors (e.g. =, ≤). An arbitrary number of these XML files are put together in
order to form a particular logic.

For instance below is the content of the DTD of the INV (converse of a role) constructor:

<!ELEMENT dl:INV (%dl:RDESC;)>

We have also defined the notion of Document Semantic Description (DSD) which enables
the description of the formal semantics of an XML language (just like the DTD or schemas
express the syntax). To the DTD above is associated a DSD describing the semantics of the
operator (i.e. I((inv r))=(I(r))-1):

<dsd:denotation match="dl:INV">
<mml:eq/>
<mml:apply>

<mml:inverse/> <!-- converse for binary relations -->
<dsd:apply-interpretation select="*[1]"/>

</mml:apply>
</dsd:denotation>

In the experimental DSD language, the XML elements are identified by XPATH
[Clark 1999b] expressions (dl:INV or *[1] standing for any term of constructor INV and
any first argument of the term). The syntax is very similar to that of XSLT [Clark 1999a]
(with denotation, interpretation and apply-interpretation corresponding to
template and apply-template). The remaining expressions are mathematical symbols
expressed in MathML [Carlisle 2001].

The DLML family of languages provides the DTD and DSD of all the covered operators and
can build automatically those of a particular logic from its DLML description. The DLML logic
descriptions are like the following:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE dlml:logic SYSTEM "dlml.dtd">

<dlml:logic name="shiq" version="1.0">
 <dlml:atoms/>

 <dlml:cop name="anything"/>
 <dlml:cop name="nothing"/>
 <dlml:cop name="and"/>
 <dlml:cop name="or"/>
 <dlml:cop name="not"/>
 <dlml:cop name="all"/>
 <dlml:cop name="some"/>
 <dlml:cop name="csome"/>
 <dlml:cop name="catleast"/>
 <dlml:cop name="catmost"/>
 <dlml:rop name="inv"/>
 <dlml:rop name="trans"/>

 <dlml:cint name="cprim"/>
</dlml:logic>

From this description, two XSLT stylesheets can generate the DTD and DSD corresponding
to the language. They can be used for expressing SHIQ terminologies in XML.

Valued Sony Customer
 348

2.2 Transformations

What can such a DTD for description logics be good for? Once a language is encoded in
XML, it is very easy to transform syntactically a representation into another one. A
transformation is an algorithmic manner to generate one representation from another (not
necessarily in the same language). A transformation τ:L→L’, from a representation r of L

generates a representation τ(r) in L’.
More precisely, we take advantage of the XSLT transformation language (“XML Style

Language Transformations” [Clark 1999a]) recommended by W3C, for which we put
forward a compound transformation language (see §5.1).

The first application is the import and export of terminologies from a description logic. In
our example, the representations in OIL and DAML-ONT are imported in DLML through
transformations. Then, the result is exported to SHIQ (the FaCT system [Bechhofer1999a]
has an XML entry point). These transformations are simple XSLT stylesheets.

More elaborate transformations can be developed. The imported representations are then
merged and three successive steps (inspired from those of OIL [Horrocks 2000]) are applied
to the result: the three steps concern the suppression of the DOMAIN constructor with the help
of the ALL and INV constructors (domain2allinv), the suppression of the ONE-OF
constructor with the help of new exclusive concepts (oneof2orcexcl) and the elimination of
the exclusion introducers with the help of the NOT constructor (cexcl2not).

The piece of stylesheet presented below converts a terminology containing the DOMAIN
restrictions on roles (attributes) in a terminology which replaces them by a ALL constraint on
the inverse (INV) of the role applied on the whole universe (ANYTHING). For instance, it will
convert:

inktype ≤ (domain InkPrinter)
into:

AnyThing ≤ (all (inv inktype) InkPrinter)

Both formulas equally say that only InkPrinters can have the inktype attribute.

<xsl:template match="dl:TERMINOLOGY">
<dl:TERMINOLOGY>

<xsl:comment>Introduction of the DOMAIN</xsl:comment>
<dl:CPRIM>

<dl:ANYTHING />
<dl:AND>

<xsl:apply-templates select="dl:RPRIM " mode="gatherdomain" />
</dl:AND>

</dl:CPRIM>
<xsl:comment>The terminology</xsl:comment>
<xsl:apply-templates />

</dl:TERMINOLOGY>
</xsl:template>

<!-- gather domains in role introduction and add this for root -->

<xsl:template match="dl:RPRIM " mode="gatherdomain">
 <dl:ALL>

<dl:INV>
<dl:RATOM><xsl:value-of select="dl:RATOM[1]/text()"/></dl:RATOM>

</dl:INV>
<xsl:apply-templates select="dl:DOMAIN/*" />

 </dl:ALL>
</xsl:template>

<!-- usual processing -->

Valued Sony Customer
 349

<xsl:template match="*|@*|text()">
<xsl:copy><xsl:apply-templates select="*|@*|text()"/></xsl:copy>

</xsl:template>

<xsl:template match="dl:RPRIM">
 <dl:RPRIM>

<dl:RATOM><xsl:value-of select="dl:RATOM[1]/text()"/></dl:RATOM>
<xsl:choose>

<xsl:when test="dl:DOMAIN">
<dl:ANYRELATION/>

</xsl:when>
<xsl:otherwise><xsl:copy-of select="."/></xsl:otherwise>

</xsl:choose>
 </dl:RPRIM>
</xsl:template>

This stylesheet gathers all the DOMAIN constraints of relations in a range (ALL) constraint of
the inverse (INV) of the relation and applies it to ANYTHING. Then, it reproduces the whole
terminology with domain constraints suppressed (i.e. replaced by ANYRELATION) 1.

Such transformations are assembled for transforming terminologies in one logic into
another, equivalent, one. This is what is achieved in our example involving the three
transformations.

3. Properties : consequence preservation

Operationally, the content of the previous section is sufficient for importing a
representation from one language to another. However, it does not provide any idea of what
properties are satisfied by each transformation step, nor by the transformation process as a
whole. In order for the semantic web to be safely used by machines, it is necessary to define
what properties have to be satisfied by the transformations. We focus here on the
consequence preservation property (a semantic property) which is described in §3.1. In the
context of families of languages we have described a set of more precisely characterized
properties that entail consequence preservation. They are presented in the following
subsections (§3.2-3.4).

3.1 Transformation properties

A property is a Boolean predicate about the transformation (e.g., “preserving information”
is such a predicate — it is true or false of a transformation — and is satisfied if there exists
an algorithmic way to recover r from τ(r)). We consider more closely preservation properties
which preserve (or counter-preserve) an order relation between the source representation (r)
and the target representation (τ(r)). There can be many such properties (content or structure
preservation, traceability, and confidentiality…) affecting different aspects of the
representation. They can be roughly classified as:
� Syntactic properties : like the completion (τ(r)<<r, in which << denotes structural

subsumption between representations) ;
� Semantic properties : like consequence preservation (τ(r)⇒ r, i.e. equation 2

below) ;
� Semiotic properties : like interpretation preservation (let σ be the interpretation rules

and |≡i be the interpretation of individual i, ∀δ∈ L, ∀ i,j, r,σ |≡i δ ⇒ τ(r),τ(σ) |≡j

τ(δ)).

1 This transformation is not sufficient to eliminate all occurrences of domain. For instance, (all (domain C)
C’) has to be transformed into (or (not C) (all anyrelation C’)). But this is sufficient for our demonstration.

Valued Sony Customer
 350

In the context of the communication of formal representations, we would like to warrant
the preservation of the meaning of the representations. This can be defined by the two
complementary equations:

∀ r⊆ L, ∀δ∈ L, r|=Lδ ⇒ τ(r) |= L’ τ(δ) (1)
∀ r⊆ L, ∀δ∈ L, τ(r) |= L’ τ(δ) ⇒ r|=Lδ (2)

Generalized interoperability is, of course, out of reach. Consequently we study restricted
cases of these equations. In the context of the “family of languages” approach we identified
several properties presented below which are more precise and entail equation (1).

3.2 Language inclusion

The simplest transformation is the transformation from one logic to a syntactically more
expressive one (i.e. which adds new constructors). The transformation is then trivial, but yet
useful, because the initial representation is valid in the new language; it is thus identity:

∀δ∈ L, r|= Lδ ⇒ r |= L’ δ
This trivial interpretation of semantic interoperability is one strength of the “family of

languages” approach because, in the present situation, nothing has to be done for gathering
knowledge. For this case, one can define the relation between two languages L and L’ as
L<L’ which has to comply with L⊆ L’. We can then define L=L’as equivalent to L<L’ and
L’<L. This defines the syntactic structure of L.

This simple property is satisfied by the merge operation that puts together the two
representations issued from the DAML-ONT translation and the OIL translation.

3.3 Model preservation

If L<L’ does not hold, the transformation is more difficult. The initial representation r can
be restricted to what is (syntactically) expressible in L’: τ<(r). However, this operation (which
is correct) is incomplete because it can happen that a consequence of a representation
expressible in L’ is not a consequence of the expression of that representation in L’:

∃δ∈ L’; τ<(r)|≠L’ δ and r|= L δ
To solve this problem, as stated in [Visser 2000a], it is necessary to deduce from r in L

whatever is expressible in L’. Let τp(r)= τ<(Cn(r)) be this expression. It is such that ∀ r⊆ L,

∀δ∈ L∧ L’, r|= L δ⇒ τp(r)|= L’ δ.
The previous proposal is restricted in the sense that only expressions of the source

language are allowed in the target language, though there exist equivalent non-syntactically
comparable languages. This is the case of the description logic languages ALC and ALUE
which are known to be equivalent while none has all the constructors of the other. For that
purpose, one can define LpL’ if and only if the models are preserved, i.e.

∃τ p; ∀ r⊆ L, ∀ 〈I, D〉; 〈I, D〉|= L’ τp (r) ⇒ 〈 I, D〉|= L r
This property is satisfied by the domain2allinv and cexcl2not transformations.
The τp transformation is not easy to produce (and can generally be computationally

expensive) but we show, in §4.1, how this can be practically achieved.

3.4 Model isomorphism

Another possibility is to define < as the existence of an isomorphism between the models
of r and those of τ<(r) :

∃τ <; ∀〈 I’, D’〉 , ∃〈 I, D〉; ∀ r⊆ L, 〈I’, D’〉|= L’ τ< (r) ⇒ 〈 I, D〉 |= L r
This also ensures that ∀ r⊆ L, ∀δ∈ L, r |= L δ ⇒ τ < (r)|= L’ τ< (δ).

This property is satisfied by the oneof2orcexcl transformation. It can be used in order to
use a prover built for a logic with a logic whose models are isomorphic to it.

Valued Sony Customer
 351

This provides a structure based on semantics to the family of languages L . Summarizing,
the syntactic and semantic structure of a language family provides different semantic
properties characterizing transformations, all of them entailing consequence preservation.

We have considered only transformations that do preserve all information because
languages have at least the same expressivity. It can happen that representations are imported
to a language of lower expressivity. In such a case, consequence preservation cannot be
ensured. Some information must be lost by the transformation. This can be subject to
properties that characterize the kind of information that can be sacrificed.

4. Proofs, annotations and proof-checking

The approach to semantic interoperability defended here is based on transformations and
their properties. Hence, in order to ensure formally the properties of transformations, one
must exhibit a proof of the property. In fact, the proof and the transformation can be strongly
tied together to the extent that they are built together (§4.1). In such a case, the publication of
the proof is as important as the publication of the transformation (§4.2). The proof can be
checked thus providing confidence with the corresponding transformation (§5.2).

4.1 From proofs to transformations

When providing transformations from one language to another, it is useful to prove the
properties that are satisfied by the transformations (e.g. that the transformation terminates or
that it preserves interpretations). For instance, the proof that the domain2allinv
transformation preserves interpretations is as follows (inference rules are in brackets):

r ≤ (domain C) [hypothesis](0)
⇒ I(r) ⊆ I((domain C)) [dsd/syn-to-sem](1)

⇒ I(r) ⊆ {〈x,y〉∈ D2; y∈ I(C)} [dsd/expand-interp](2)

⇒ ∀〈 x,y〉∈ I(r), y∈ I(C) [sets/incl-in](3)

⇒ ∀ x∈ D, ∀ y, 〈x,y〉∈ I(r) ⇒ y∈ I(C) [pc/quant-intro](4)

⇒ ∀ x∈ D, ∀ y 〈x, y〉∈ {〈w,z〉 ; 〈z,w〉∈ I(r)} ⇒ y∈ I(C) [set/in-incl](5)

⇒ D ⊆ {x∈ D, ∀ y; 〈x, y〉∈ {〈w,z〉 ; 〈z,w〉∈ I(r)} ⇒ y ∈ I(C)} [dsd/retract-interp](6)

⇒ D ⊆ {x∈ D; ∀ y; 〈x,y〉∈ I((inv r)) ⇒ y∈ I(C)} [dsd/retract-interp](7)

⇒ I(AnyThing) ⊆ {x∈ D; ∀ y; 〈x,y〉∈ I((inv r)) ⇒ y∈ I(C)} [dsd/retract-interp](8)

⇒ I(AnyThing) ⊆ I((all (inv r) C)) [dsd/retract-interp](9)

⇒ AnyThing ≤ (all (inv r) C) [dsd/sem-to-syn](10)
This proof, like many language equivalence proofs in description logics, shows that

whatever term built from some term constructor (here DOMAIN) is expressible with other term
constructors (here ALL, INV and ANYTHING) though preserving the interpretation of the terms.
One characteristic of such proofs in term-based languages is that they are constructive: they
exhibit a transformation from one language to the other. They can thus be translated into a
transformation (and this results in the XSLT example presented in §2.2).

Another example is the transformation from ALUE to ALC, which is based on the
argument that any NOT constructor can be pushed down the term structure:

(not c) ⇔ (anot c) for c atomic

(not (anot c)) ⇔ c

(not (not c)) ⇔ c

(not (all r c)) ⇔ (csome r (not c))

(not (and c 1,… c n)) ⇔ (or (not c 1)… (not c n))

Valued Sony Customer
 352

(not (some r)) ⇔ (all r Nothing)

This proof can be turned into a transformation, which applies the rules (from left to right)
recursively on the structure of the terms. In DLML, many of the transformations across
languages have been designed together with their proofs. We did this for the above
transformations. This principle, which is the instantiation of the Curry-Howard
correspondence, can be applied to many transformations.

4.2 Proof annotations

If the designers build proofs of some properties, it is desirable, especially in a worldwide
distributed environment, to publish these proofs. It is thus useful to be able to represent
them. The representation of the proof itself can be provided in MathML [Carlisle 2001] and
OMDoc [Kohlhase 2000] a language extending MathML towards the expression of
mathematical macrostructures (e.g., theories, theorems, axioms, and proofs). In this
formalism, the two first steps of the proof above would look like:

<omd:proof id=’domain2allinvpr’ for=’domainelim’ theory=’dlml’>
<omd:hypothesis id=’domain2allinv_0’/>
<omd:derive id=’domain2allinv_1’>

<omd:FMP>
<omd:assumption id=’domain2allinv_0’>

<OMOBJ>
<dl:rprim>

<dl:ratom>r</dl:ratom>
<dl:domain>

<dl:catom>C</dl:catom>
</dl:domain>

</dl:rprim>
</OMOBJ>

</omd:assumption>
<omd:conclusion id=’domain2allinv_1cl’>

<OMOBJ>
<mml:apply><mml:subset/>

<dsd:apply-interpretation>
<dl:ratom>r</dl:ratom>

</dsd:apply-interpretation>
 <dsd:apply-interpretation>

<dl:domain><dl:catom>C</dl:catom></dl:domain>
</dsd:apply-interpretation>

</mml:apply>
</OMOBJ>

</omd:conclusion>
</omd:FMP>
<omd:method><omd:ref theory=’dsd’ name=’syn-to-sem’/></omd:method>
<omd:premise xref=’domain2allinv_0’/>

</omd:derive>
<omd:derive id=’domain2allinv_2’>

<omd:FMP>
<omd:assumption id=’domain2allinv_1cl’/>
<omd:conclusion id=’domain2allinv_2cl’>

<OMOBJ>
<mml:apply><mml:subset/>

<dsd:apply-interpretation>
<dl:ratom>r</dl:ratom>

</dsd:apply-interpretation>
 <dsd:apply-interpretation>

<dl:domain><dl:catom>C</dl:catom></dl:domain>
</dsd:apply-interpretation>

</mml:apply>

Valued Sony Customer
 353

</OMOBJ>
</omd:conclusion>

</omd:FMP>
<omd:method><omd:ref theory=’dsd’ name=’expand-interp’/></omd:method>
<omd:premise xref=’domain2allinv_1cl’/>
<omd:conclusion>

</omd:derive>
…
<omd:derive id=’domain2allinv_10’>

<omd:FMP>
<omd:assumption id=’domain2allinv_9cl’/>
<omd:conclusion id=’domain2allinv_10cl’>

<OMOBJ>
<dl:cprim>

<dl:anything/>
<dl:all>

<dl:inv><dl:ratom>r</dl:ratom></dl:inv>
<dl:catom>C</dl:catom>

</dl:all>
</dl:cprim>

</OMOBJ>
</omd:conclusion>
</omd:FMP>
<!-- this is substitution of interpretation by its definition -->
<omd:method><omd:ref theory=’dlml’ name=’completeness’/></omd:method>
<omd:premise xref=’domain2allinv_9cl >

</omd:derive>
<omd:conclude id=’domain2allinv_10’>

<omd:FMP>
<omd:assumption id=’domain2allinv_9cl’/>
<omd:conclusion id=’domain2allinv_10cl’>

<OMOBJ>
<dl:cprim>

<dl:anything/>
<dl:all>

<dl:inv><dl:ratom>r</dl:ratom></dl:inv>
<dl:catom>C</dl:catom>

</dl:all>
</dl:cprim>

</OMOBJ>
</omd:conclusion>
</omd:FMP>
<!-- this is substitution of interpretation by its definition -->
<omd:method><omd:ref theory=’dlml’ name=’completeness’/></omd:method>

</omd:conclude>
</omd:proof>

The namespace prefix are omd for OMDoc, mml for MathML, dsd for DSD and dl for
DLML. We took some liberty with OMDoc (e.g. instead of OpenMath objects — OMOBJ —
we put MathML expressions, because DSD is based on MathML instead of OpenMath).
However, this is just a matter of syntax: the relevant part is the ability of OMDoc for
representing proofs.

It is also useful to attach the property and the proof to the transformations. One solution
consists of adding it to the transformation structure. There are two problems with this
solution: the XSLT language does not enable this, though Transmorpher does, and this would
prevent people who are not owner of the transformation to claim properties and publish
proofs. Hence the best solution seems to use RDF for annotating the transformations from the
outside.

Valued Sony Customer
 354

5. Composing transformations, composing proofs

In a family of languages, composing transformations can be a very convenient way to
transform from one language to another. This is what has been proposed in the introductory
example. Each elementary transformation can be used in various compound transformations.
We have developed a system, Transmorpher, for dealing with such composition of more
elementary transformations (called transformation flows, §5.1). Transmorpher is an
environment for defining transformations and assembling them, on one hand, annotating
them by properties they satisfy or those they must satisfy and proving the properties of
compound transformations on the other hand. The proof of properties of components can be
gathered from the web and checked (§5.2) and the proof of the compound transformation can
be obtained by composing the properties of the components (§5.3). Once the proofs are
produced, both the transformation and the proof can be exported to the web (§5.4).

5.1 Transmorpher

In order to prove or check the properties of transformations, it is necessary to have a
representation of these transformations. The XSLT language enables the expression of a
transformation in XML but is relatively difficult to analyze. In order to overcome that
problem, we have designed and developed in collaboration with the FluxMedia company, the
Transmorpher environment [Euzenat 2001b]. It is a layer on top of XSLT allowing the
expression of complex transformation flows such as the one of Figure 2 (which is that of the
example). A transformation flow is the composition of elementary transformation instances
whose input/output are connected by channels. A transformation flow is itself a
transformation.

One of the goals of Transmorpher is the encapsulation of XSLT, used for performing the
transformations, such that transformations are easier to analyze through special purpose
syntax and hierarchical decomposition. This should facilitate the description of proofs
through “Lemmas” attached to component transformations.

Transmorpher enables the definition and processing of generic transformations of XML
documents. It provides XSLT extensions for:
� Describing straightforwardly simple transformations (removing elements, replacing

attribute names, merging documents...);
� Composing transformations by connecting their (multiple) input and output;
� Applying transformations until closure;
� Applying regular expression substitution;
� Calling external transformation engines (such as XSLT).
Transmorpher describes the transformation flows in XML. Input/output channels carry the

information, mainly XML, from one transformation to another. Transformations can be other
transformation flows or elementary transformations. Transmorpher provides a set of abstract
elementary transformations (including their execution model) and one default instantiation.
Among elementary transformations are external calls (e.g. XSLT), dispatchers, serializers,
query engines, iterators, mergers, generators and rule sets. Figure 2 presents the
representation of the above transformation flow in Transmorpher graphic format.

Valued Sony Customer
 355

daml2dlml

oil2dlml

domain2inv
all

oneof2cexl cexcl2not

Figure 2 : Transmorpher description of the importation of DAML-ONT and OIL fragments into the DLML
representation of SHIQ.

Transmorpher is mainly a set of documented Java classes (which can be refined or
integrated into other software) and a transformation flow processing engine. A transformation
flow can be expressed by programming in Java or providing an XML description. Figure 2 is
the description of the following transformation flow:

<process name="assemble-onto" in="i1 i2" out="o">
 <apply-external type="xslt" name="daml2dlml" file="daml2ldaml.xsl"

in="i1" out="o1"/>
 <apply-external type="xslt" name="oil2dlml" file="oil2loil.xsl"

in="i2" out="o2"/>
 <merge type="concat" name="ldaml+ldaml" in="o1 o2" out="o3"/>
 <apply-external type="xslt" name="domain2allinv"

file="domain2allinv.xsl" in="o3" out="o4"/>
 <apply-external type="xslt" name="oneof2cexclor" file="oneof2or.xsl"

in="o4" out="o5"/>
<apply-external type="xslt" name="cexcl2not" file="cexcl2not.xsl"

in="o5" out="o"/>
</process>

An extension of Transmorpher consists of attaching assertions to the transformations in a
transformation flow in order to tell if a property is assumed, proved or to be checked. This
will allow real experimentation of proving properties of compound transformations.

5.2 Towards proof checking

Proof-carrying code [Necula 1998] is an infrastructure in which a program is provided
with the proof of the properties that it satisfies. A client system that wants to run the former
program will check the proof against this program in order to ensure that it can do it safely.
These principles can be applied to the verification of the transformations and their properties
as soon as a representation of the proof is available.

In order to be able to check proofs of semantic properties such as (1) or (2), it is necessary
to have (a) the representation of the transformation which is provided by XSLT or by
Transmorpher, (b) the semantics of the transformation language, (c) the representation of the
semantics of the logics provided by their DSD and (d) the representation of the proof like the
one described above. Of these elements, the only missing one is the representation of the
semantics of XSLT. There are several attempts, however, to provide a semantics for XSLT
fragments that can be used [Wadler 2000, Bex 2000]. Another path consists of defining a

Valued Sony Customer
 356

transformation language simpler than XSLT but with a clean semantics. This is partly the case
of Transmorpher.

Checking is the opposite of trusting. Both approaches have different advantages: trusting
does not require to spend time checking the arguments while checking does not require to
maintain a heavy model of trust and is independent of who provides the arguments. Proof-
carrying code can be applied to untrusted items. So if someone needs particular
transformations satisfying particular properties, she can try to find such transformations and
proof of properties on the web and check them.

Unlike watermarking, proof-carrying code does not require any encoding of the
transformation because it checks the proof against the program. The program can have been
modified, if the checker finds that the proof is still valid, then this is all that is required. It is
not even required that the proofs are provided with the program. In fact, someone can publish
an automatic proof of the termination of the above transformation web site not connected to
the DLML one and the proof-checker must be able to decide if the proof is valid or not.

5.3 Proof by composition

Once the properties of elementary transformations are available, either by checking,
trusting or proving, an interesting point is the elaboration of the proof of properties for
transformation flows.

If each of these more elementary transformations is annotated by the assertion of the
properties it satisfies, the property concerning the compound transformation remains to be
computed. A very simple example is the termination property on finite input that is preserved
through composition, but not by iteration until saturation. Model preservation for its part is
preserved through both composition and iteration.

This can be exemplified with the properties that have been considered in §3. It is possible
to establish the properties of the composition of two transformations given their own
properties. This yields (the very simple) Table 1.

Table 1 : Composition table for the semantic relations on transformations (≤ is consequence preservation).

Table 1 shows that the transformation flow above, that assembles all transformations of
the example, is indeed consequence preserving.

5.4 Safe transformation development cycle

The techniques presented here provide a framework in which transformations from one
representation language to another are available from the network and proofs of various
properties of these transformations are attached to them. It is noteworthy that transformations
and proofs do not have to come from the same origin. They can even be produced by the
application.

The transformation system engineer can gather these transformations and their proofs,
check the proofs before importing them in the transformation development environment. She
will then be able to create a new transformation flow and generate the proofs of the required

< p < ≤ Ø

< < p < ≤ Ø

p p p < ≤ Ø

< < < < ≤ Ø

≤ ≤ ≤ ≤ ≤ Ø

Ø Ø Ø Ø Ø Ø

Valued Sony Customer
 357

properties. Finally, she will be able to publish on the network the transformation and its
proof.

Given two languages with their semantics, in order to transform representations in one
language into representations in the other that satisfy some properties, the following
transformation edition process (see Figure 1) can be attempted:
1. Fetching transformations that can help performing part of the task ;
2. Fetching assertions and proofs about these transformations ;
3. Checking the proof or trusting the assertions of properties about the transformations ;
4. Composing transformations into a global transformation that is supposed to do the

transformation;
5. Proving that this composition preserves the properties that are required by the global

transformation ;
6. Publishing transformation, assertions and proofs for others to use it.

Then, the problem proposed in introduction will be reduced to: gather available
ontologies, create a safe transformation flow for importing them in the current knowledge
processing environment and apply the transformation flow. The transformation flow can be
applied at any time for updating the compound ontology and its properties will remain valid
as long as the languages remain the same.

6. Conclusion

We have presented a framework for formally ensuring semantic interoperability in the
semantic web. Interoperability is assured by transformations that have to satisfy some client-
defined properties. The proof of properties are encoded in a machine-readable way so that the
client can check them. Transmorpher enables the composition of these transformations into a
more elaborate one whose proof of properties can be facilitated by simple composition of the
properties of its components (either proof-checked or trusted).

If enough actors are interested in sharing transformations safely instead of developing
again and again the same transformation, here is an architecture enabling its formal and
modular realization. We strongly believe that there will be a strong interest in such a
framework in the context of the growing use of XML and XML transformations inside and
across companies. In fact, if semantic properties are more related to the semantic web, many
other properties of general interest can be taken into account by this framework.

The main strength of the framework is not its sophistication, but rather its relative
simplicity. Its distributed, modular and incremental characteristics make it adapted to the web.
No doubt that it will not be practical in all cases, but it works for cases like the one presented.

This framework is very close to that of proof-carrying code [Necula 1998] of which it is
an instantiation on particular programs and properties. Moreover it is fully based on widely
available XML technologies (XML, XPATH, XSLT, MATHML, OMDOC, RDF) or local
extensions (DLML, DSD, Transmorpher). For a description of complementary work on the
topic of semantic interoperability (e.g. [Masolo 1999, Chalupsky 2000, Ciocoiu 2000]),
see [Euzenat 2001a].

This infrastructure is a prospective framework for which many pieces are already available
and several of them linked together. The main part of it, with the notable exception of proof-
checking, has already been implemented as a proof of concept. The DLML framework is
operational and several experiments have been made with XSLT transformations.
Transmorpher is an ongoing work whose basic functions are operational. The OMDoc and
DSD languages are available.

We have some examples of proof (mainly of model preservation or model isomorphism)
in description logics that should be a very good first testbed for the application of these
concepts. We also have examples of transformations between heterogeneous representations
(e.g. description logics and syllogistic).

The proof-checker is the difficult point because we will need one that can interface easily
with the kind of proofs required by the framework. There are two issues to be solved next :
generalization and scalability.

Valued Sony Customer
 358

Generalization requires a lot of fundamental work about topics such as generalizing from
DLML to other representation languages (we have superficially investigated syllogisms and
considered DAML-ONT as a description logic language), generalizing semantics properties,
generalizing to other (e.g. structural, semiotic) properties, generalizing the kind of proofs
required. We are currently committed to investigate the semantic properties more thoroughly.

Robustification and scalability will be required in order to consider the workability of the
whole system. Positive elements are the intrinsic distribution of our framework and the fact
that any element can be replaced by another with similar interface.

Acknowledgements

The author is indebted to Heiner Stuckenschmidt who proposed the introductory example
for presentation of the “family of languages” approach. Anonymous reviewers are thanked
for suggesting several improvements of the paper.

References

[Berners-Lee 2001] Tim Berners-Lee, James Hendler, Ora Lassila, The semantic web,
Scientific american 279(5):35-43, 2001,
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html

[Bechhofer 1999] Sean Bechhofer, Ian Horrocks, Peter Patel-Schneider, Sergio
Tessaris, A proposal for a description logic interface, Proc. int. workshop on description
logics, Linköping (SE), CEUR-WS-22, 1999 http://SunSITE.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS/Vol-22/bechhofer.ps

[Bex 2000] Geert Jan Bex, Sebastian Maneth, Frank Neveu, A formal model for an
expressive fragment of XSLT, Lecture notes in computer science 1861:1137-1151, 2000

[Carlisle 2001] David Carlisle, Patrick Ion, Robert Miner, Nico Poppelier (eds.),
Mathematical markup language (MATHML) version 2.0, Recommendation, W3C, 2001
http://www.w3.org/TR/MathML2

[Chalupsky 2000] Hans Chalupsky, OntoMorph: a translation system for symbolic
knowledge, Proceedings of 7th international conference on knowledge representation and
reasoning (KR), Breckenridge, (CO US), pp471-482, 2000

[Clark 1999a] James Clark (ed.), XSL transformations (XSLT) version 1.0,
Recommendation, W3C, 1999 http://www.w3.org/TR/xslt

[Clark 1999b] James Clark, Stephen DeRose (eds.), XML path language (XPath) version
1.0, Recommendation, W3C, 1999. http://www.w3.org/TR/xpath

[Ciocoiu 2000] Mihai Ciocoiu and Dana Nau, Ontology-based semantics, Proceedings of 7th
international conference on knowledge representation and reasoning (KR), Breckenridge,
(CO US), pp539-546, 2000 http://www.cs.umd.edu/~nau/papers/KR-2000.pdf

[Donini 1994] Francesco Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf,
Deduction in concept languages: from subsumption to instance checking, Journal of logic
and computation 4(4):423-452, 1994

[Euzenat 2001a] Jérôme Euzenat, Towards a principled approach to semantic
interoperability, Proc. IJCAI workshop on Ontologies and information sharing, Seattle
(WA US), 2001 to appear

[Euzenat 2001b] Jérôme Euzenat, Laurent Tardif, XML transformation flow processing,
Proc. 2nd Extreme markup languages, Montréal (CA), 2001, to appear,
http://transmorpher.inrialpes.fr/paper

[Euzenat 2001c] Jérôme Euzenat, Heiner Stuckenschmidt, The 'family of languages'
approach to semantic interoperability, submitted, 2001

[Euzenat 2001d] Jérôme Euzenat, Preserving modularity in XML encoding of description
logics, Proc. 13th description logic workshop, Stanford (CA US), 2001 to appear

[Horrocks 2000] Ian Horrocks, A denotational semantics for Standard OIL and Instance
OIL, 2000, http://www.ontoknowledge.org/oil/downl/semantics.pdf

Valued Sony Customer
 359

[Kohlhase 2000] Michael Kohlhase, OMDoc : an open markup format for mathematical
documents, SEKI report SR-00-02, Universität des Saarlandes, Saarebrucken (DE), 2000
http://www.mathweb.org/src/mathweb/omdoc/doc/omdoc/omdoc.ps

[Masolo 2000] Claudio Masolo, Criteri di confronto e costruzione di teorie assiomatiche per
la rappresentazione della conoscenza: ontologie dello spazio e del tempo, Tesi di dottorato,
Università di Padova, Padova (IT), 2000

[Necula 1998] George Necula, Compiling with proofs, PhD thesis, Carnegie Mellon
university, Pittsburgh (PA US), 1998

[Visser 2000a] Ubbo Visser, Heiner Stuckenschmidt, G. Schuster, Thomas Vögele,
Ontologies for Geographic Information Processing, Computers in Geosciences, 2001, to
appear http://www.tzi.de/buster/papers/Ontologies.pdf

[Wadler 2000] Philip Wadler, A formal semantics of patterns in XSLT, Markup technologies,
1999 http://www.cs.bell-labs.com/who/wadler/papers/xsl-semantics/xsl-
semantics.pdf

[Wiederhold 1999] Gio Wiederhold, Jan Janninck, Composing diverse ontologies, Proc. 8th

IFIP working group on databases working conference on database semantics, Rotorua
(NZ), 1999 http://www-db.stanford.edu/SKC/publications/ifip99.html

Valued Sony Customer
 360

Describing Computation within RDF

Chris Goad
The Behavior Engine Company

10 Sixth Street, Suite 108
Astoria, OR 97103

cg@behaviorengine.com

Abstract. A programming language is described which is built within RDF. Its code,
functions, and classes are formalized as RDF resources. Programs may be expressed
directly using standard RDF syntax, or via a conventional JavaScript–based syntax.
RDF constitutes not only the means of expression, but also the subject matter of
programs: the native objects and classes of the language are RDF resources and
DAML+OIL classes, respectively. The formalization of computation within RDF allows
active content to be integrated seamlessly into RDF repositories, and provides a
programming environment which simplifies the manipulation of RDF when compared to
use of a conventional language via an API. The name of the language is "Fabl".

1. Introduction

Fabl1 is a programming language which is built within RDF[1]. The constituents of the
language - its code, functions, and classes - are formalized as RDF resources, as is the data
over which computation takes place. This means that programs reside within the world of RDF
content rather than being relegated to a separate realm connected to RDF via an API. The
starting point for the formalization is DAML+OIL[2].

The language provides an efficient imperative programming framework for the RDF
domain. Programs may be expressed as RDF objects using standard RDF syntax, or via a
conventional syntax which might be described as JavaScript2 enhanced with types and
qualified property names. The language is designed to be easy to learn for programmers
familiar with the conventional JavaScript/HTML/XML/DOM web–programming model. In
fact, the conceptual cleanliness of RDF makes the language and its semantics far simpler than
this conventional model. The initial implementation is similar in runtime efficiency to other
scripting environments.

As a computational formalism for RDF, the neighboring points of comparison for Fabl are
the RDF APIs (eg [3], [4]), in which computation is expressed in conventional ways, but the
subject matter of the computation is expressed in RDF. Fabl has several advantages over APIs:

1. Simplicity of programming.
2. Functions and programs can be managed, inspected, manipulated, and annotated in the
same manner as any other RDF resources; they are first–class citizens of the RDF world.

Valued Sony Customer
 361

3. Fabl's type system exploits the RDF property–centric style. This yields a system of a kind
different, and in some ways more expressive and flexible, than those found in the main thread
of object–oriented type systems running from Simula through C++, Java, C#, and Curl.
4. Fabl programs are formalized within RDF in a manner that provides an open framework
for extension of the language. The implementation of Fabl is, with the exception of a few low
level utilities, written in Fabl itself. Further, the process by which programs are analyzed and
converted into an efficiently executable form can be extended by addition of new RDF content.
This means that extension of Fabl to include new language facilities, such as new control
structures, new syntax, or new typing systems built on different principles can all be carried
out in the RDF style: by extending the base of RDF files which describe the language.

Although Fabl defines a particular (albeit, extensible) textual format for programs on the
one hand, and implements a particular byte–code and virtual machine for interpretation on the
other, the core of the design is its formalism for describing imperative computation as RDF.
This integrates computation into the RDF realm of distributed semantic description, decoupled
from any particular source language and from any particular execution technique. Concretely,
active entities, from simple spreadsheets to complex simulations, can be formalized in RDF,
and made available to any agent that has a use for them, independent of the language (or
graphical interface) from which they were created.

Whether or not the particular formalism introduced here is the right one, RDF can and
should be used as a vehicle for standardizing computation as well as passive content. If nothing
else, Fabl shows the practicality of this idea.

2. Application Scenarios

Close integration of computation with RDF can benefit both sides of the integration. Most
trivially, RDF mechanisms can be used to annotate programs - for example by using the
Dublin Core[5] to assert information about date, author, and publisher of code. With the
development of simple computational ontologies, metadata about code of the sort useful to
software engineeers can be asserted in RDF; examples include call trees, traces, and
performance information. The openness of RDF, which allows continually evolving
vocabularies and tools to be applied to preexisting data, should benefit the realm of
programming as much as any other domain.

Beyond annotation, the formalization of functions and code as RDF resources is the first
step in integrating algorithmic computation and inference in an RDF setting. The combination
of inference and algorithmic computation might be applied to automatic assembly of programs
from available components, and to problem solving which mixes inference and algorithmic
computation (when a subproblem is inferred to be solvable by an available algorithm, the
algorithm is invoked). This direction of work requires more complex computational ontologies
which formalize the kinds of statements about computational objects needed to support useful
inference.

Going in the other direction, thorough integration of computation with RDF facilitates the
development of active RDF content. The initial application to which we are appying Fabl
provides an example. We have defined relatively simple ontologies for geography (themed
maps, as in GIS), and for events located in a geographical context. This geographical and
historical information is depicted by interactive web-delivered maps in the Macromedia Flash
format (see our web site[6] for examples). The active aspect of our RDF repository consists

Valued Sony Customer
 362

primarily of handlers which generate interactive maps from the underlying geographical and
historical information, and which maintain consistency between the data and its depiction as
changes are made. The handlers are RDF resources and their relationship to other data is
expressed by RDF statements. Regularities (eg all resources in this class have that handler) are
asserted by DAML+OIL restrictions.

This application provides a template for a wide range of possible applications, wherein
complex situations are represented in RDF, and where consistency constraints are
automatically maintained by associated constraint propogation mechanisms which are at least
partly algorithmic (rather than strictly deductive) in nature. The kind of complete integration
proposed here is not the only possible approach to this kind of application, but we would argue
that first-class status for computational entities in the RDF world removes a layer of
indirectness and complexity that would otherwise be necessary.

3. An Example

Consider the the simplest of data structures, a point on the plane with two coordinates,
which can be expressed in Java by:

public class Point {
double xc;
double yc;

}

Here is an extract from a Fabl RDF file at http://purl.oclc.org/net/fabl/examples/geom
defining the same structure:

<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:fabl="http://purl.oclc.org/net/nurl/fabl/"
xmlns:nurl="http://purl.oclc.org/net/nurl/"

>
<daml:DatatypeProperty rdf:ID="xc"/>
<daml:DatatypeProperty rdf:ID="yc"/>

<rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#xc"/>
 <daml:toClass

rdf:resource="http://www.w3.org/2000/10/XMLSchema#double"/>
 <daml:cardinality>1</daml:cardinality>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#yc"/>
 <daml:toClass

rdf:resource="http://www.w3.org/2000/10/XMLSchema#double"/>
 <daml:cardinality>1</daml:cardinality>
 </daml:Restriction>
</rdfs:Class>

Valued Sony Customer
 363

The Fabl type system makes use of the March, 2001 version of DAML+OIL. The above
RDF asserts that every member of Point has xc and yc properties, and that these properties
each have exactly one value of type double. All of the examples in this paper use the name
space declarations given just above, which will be abreviated in what follows by [standard–
namespace–declarations]. Here is vector addition for points:

<rdf:RDF
[standard–namespace–declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"

>

<fabl:code>
geom:Point function plus(geom:Point x,y)
 {
var geom:Point rs;
rs = new(geom:Point);
rs . geom:xc = x.geom:xc + y.geom:xc;
rs . geom:yc = x.geom:yc + y.geom:yc;
return rs;

 }
</fabl:code>
</rdf:RDF>

The above text is not, of course, legal RDF. Rather, it represents the contents of a file
intended for analysis by the Fabl processor, which converts it into RDF triples. The pseudo–
tag <fabl:code> encloses Fabl source code; everything not enclosed by the tag should be legal
RDF.

Note that the syntax resembles that of JavaScript, except that variables and functions are
typed. Fabl types are RDF classes, and are named using XML qualified[7] or unqualified
names (details below).

Here are the contents of the file http://purl.oclc.org/net/fabl/examples/color:

<rdf:RDF
[standard–namespace–declarations]>

<daml:Class rdf:ID="Color"/>
<Color rdf:ID="yellow"/>
<Color rdf:ID="blue"/>
<rdf:Property rdf:ID="colorOf">
 <rdfs:range rdf:resource="#Color"/>
<rdf:/Property>

The following fragment assigns a color to an existing Point: yellow if its x coordinate is
positive, and blue otherwise:

<rdf:RDF
[standard–namespace–declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"
xmlns:color="http://purl.oclc.org/net/fabl/examples/color#"

>

Valued Sony Customer
 364

<fabl:code>
fabl:void function setColor(geom:Point x)
 {
if (x . geom:xc > 0) x.color:colorOf = color:yellow;
else x.color:colorOf = color:blue;

 }
</fabl:code>

The expression fabl:void may only be used in a context where the return type of a function
is indicated. It signifies that the function in question does not return a value. Note that
fabl:void is not a class, and in particular is should not be identified with daml:Nothing. A
function with return type daml:Nothing would indicate that the function returns a value
belonging to daml:Nothing - an impossibility.

The setColor example illustrates the central difference between an RDF class and its
counterparts in the object–oriented programming tradition. An RDF class is an assertion about
properties possessed by a resource, which does not preclude the resource from having
additional properties not mentioned in the class, nor from belonging to other classes, nor even
from aquiring new properties and class memberships as time goes on. The progression of data
types in programming languages exhibits growing freedom of type members: C or Pascal types
exactly determine the structure of their members; C++ and Java classes determine the structure
of members to a degree, but allow extension by subclasses; the RDF model leaves the structure
of members free except as explicitly limited by the class definition.

Unless a property has been explicitly constrained to have only one value, Fabl interprets the
value of a property selection:

x.P

as a bag. In the following example, the first function returns the number of colors assigned
to an object, and the latter returns its unique color if it has only one, and a nul value otherwise.

xsd:int function numColors(daml:Thing x)
{

return cardinality(x.color:colorOf);
}

color:Color function theColorOf(daml:Thing x)
{

var BagOf(color:Color) cls;
cls = x.color:colorOf;
if (cardinality(cls)==1) return cls[0];
else return fabl:undefined;

}

fabl:undefined is a special identifier which denotes no RDF value, but rather indicates the
absence of any RDF value in the contexts where it appears.

4. RDF Computation in Fabl

RDF syntax and semantics can be viewed as having three layers: (1) a layer which assigns
concrete syntax (usually XML) to RDF assertions, (2) the data model layer, in which RDF
content is represented as a set of triples over URIs and literals, and (3) a semantic model,
consisting of the objects and properties to which RDF assertions refer. DAML+OIL specifies

Valued Sony Customer
 365

semantics[8] constraining the relationship between the data model and the semantic model.
The proper level of description for computation over RDF is the data model; the state of an

RDF computation is a set of triples <subject,predicate,object>. This triple set in turn can be
construed as a directed labeled graph whose nodes are URIs and literals, and whose arcs are
labeled by the URIs of properties.

Fabl is executed by a virtual machine. An invocation of the Fabl VM creates an initial RDF
graph which is in effect Fabl's own self description: the graph contains nodes for the basic
functions and constants making up the Fabl language. Subsequent activity modifies the RDF
graph maintained by the VM, called the "active graph". The Fabl interpreter can accept input
from a command shell, or can be configured as a server in a manner appropriate to the
application.

The universe of RDF files on the web plays the role of the persistent store for Fabl. The
command

loadRdf(U)

adds the triple set described in the RDF file at URL U to the active graph.
The active graph is partitioned into pages. The data defining a page includes: (1) the

external URL (if any) from which the page was loaded, (2) the set of RDF triples which the
page contains, (3) a dictionary which maps the ids appearing in the page (as values assigned to
the rdf:ID attribute) to the resources which they identify, and (4) a set of namespace definitions
(bindings of URIs to namespace prefixes). Many pages are the internal representations of
external RDF pages, but new pages can be created which are not yet stored externally.

saveRdf(x,U)

saves the page upon which x lies at the file U. The current implementation interacts with the
external world of RDF via simple loading and saving of pages, but there are interesting
additional possibilities involving distributed computation, which are outlined in a later section

A global variable or constant X with value V is represented by a daml:UniqueProperty
named X whose value on the URI fabl:global is V. (It doesn't matter what values the property
assumes when applied to other resources, nor does fabl:global play any other role.) For
example, the following fragment defines the global pi:

<daml:DatatypeProperty rdf:ID="pi">
 <rdf:type

rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#double"/>
</daml:DatatypeProperty>

<daml:Class rdf:about="http://purl.oclc.org/net/nurl/fabl/global">
 <pi>3.14159265358979323846 </pi>
</daml:Class>

The values of global properties can be referred to directly by name in Fabl. For example,
since http://purl.oclc.org/net/fabl/examples/geom includes the lines above defining pi, the
following fragment illustrates reference to pi as a global:

<rdf:RDF
[standard–namespace–declarations]
xmlns:geom="http://purl.oclc.org/net/fabl/examples/geom#"

>

Valued Sony Customer
 366

<fabl:code>
xsd:double function timesPi(xsd:double x){return x * geom:pi}
</fabl:code>

As indicated in the initial example above, basic manipulation of the active graph is
accomplished via conventional property access syntax: If P is the qualified name of a property,
and x evaluates to an object, then

x.P

returns a bag of the known values of P on x, that is, the set of values V such that the triple
<x,P,V> is present in the active graph. However, if P is asserted to be univalued - if it was
introduced as a UniqueProperty, or has a cardinality restriction to one value - then

x.P

evaluates to the unique value instead. The assigment

x.P = E

for an expression E adds the triple <x,P,value(E)> to the active graph, unless P has been
asserted to be a univalued, in which case the new triple replaces the previous triple (if any)
which assigned a value to P on x. The command:

var Type name;

is equivalent to:

<daml:UniqueProperty rdf:ID="name">
 <rdfs:range rdf:resource="Type"/>
</daml:UniqueProperty>

The function:

new(Type)

creates a new node N in the active graph, and adds the triple <N,rdf:type,Type>. Initially,
nodes created with the new operator lack an associated URI. However, Fabl allows URIs to be
accessed and set as if they were properties, via the pseudo–property uri.

x.uri

is the current URI of x if it has one, and fabl:undefined if not.

x.uri = newURI;

assigns a new URI to x. If newURI is already assigned to another node y in the active
graph, x is merged with y. The merged node will possess the union of the properties possessed
by x and y prior to the merge.

Valued Sony Customer
 367

5. RDF Computation Via an API: A Comparison

The Java code below uses the Jena API[4] to implement the function presented at the
beginning of section 3: vector addition of points. This sample is included to give the reader a
concrete sense of the difference between Fabl code, which expresses elementary RDF
operations directly as basic operations of the language, and code using an API, in which the
same elementary operations must be expressed as explicit manipulations of a representation of
RDF content in the host language (here, Java). This is the only purpose of the sample, and the
details are not relevant to anything that appears later in this paper. Also, the points made here
apply equally to other RDF APIs.

import com.hp.hpl.mesa.rdf.jena.mem.ModelMem;
import com.hp.hpl.mesa.rdf.jena.model.*;
import com.hp.hpl.mesa.rdf.jena.vocabulary.*;

// The class GeomResources initializes variables
// xc, yc, and Point to RDF resources of the right kind.
public class GeomResources {

protected static final String URI =
"http://purl.oclc.org/net/fabl/examples/geom#";

public static String getURI(){return URI;}
public static Property xc = null;
public static Property yc = null;
public static Resource Point = null;
static {

try {
xc = new PropertyImpl(URI, "xc");
yc = new PropertyImpl(URI, "yc");

 Point = new ResourceImpl(URI+"Point");
 } catch (Exception e) {

System.out.println("exception: " + e);
 }
 }
}

public class GeomFunctions {
// PointPlus is vector addition

public static Resource PointPlus(Resource x,Resource y) {
 Resource rs = x.getModel().createResource();

rs.addProperty(RDF.type, GeomResources.Point);
rs.addProperty(GeomResources.xc,

x.getProperty(GeomResources.xc).getDouble() +
y.getProperty(GeomResources.xc).getDouble());

rs.addProperty(GeomResources.yc,
x.getProperty(GeomResources.yc).getDouble() +
y.getProperty(GeomResources.yc).getDouble());

return rs;
 }
}

The Fabl implementation, we would argue, is easier to understand and easier to code. The
difference is not due to any defect of the Jena API, but to the inherent indirectness of the API
approach. Further, the direct expression of RDF primitives in Fabl is less than half the story

Valued Sony Customer
 368

with regards to ease of use. More significant is the fact that Fabl types are DAML+OIL
classes, and type checking and polymorphism at the RDF level are implemented within the
language. When using an API, type checking at the RDF level is the user's responsibility. For
example, Java will not complain at compile time (nor run time) if the method
GeomFunctions.PointPlus is applied to resources which are not members of
GeomResources.Point.

6. Nurls

In normal RDF usage, locators (that is URLs) are often used as URIs whether or not the
entities they denote exist on the web. However, nothing prevents the use of URIs which are
completely unrelated to any web location, for example:

<rdf:Description rdf:about= "my_green_sedan">

Identifying an entity in a manner which does not make use of a WWW locator has two
advantages. First, the question of where to find information about the entity is decoupled from
naming the entity, which allows all of the different varieties of information about the entity to
evolve without disturbing the manner in which the entity is named. Among other things, this
simplifies the versioning of RDF data. Second, use of non–locating URIs frees up the content
of the URI for expressing hierarchy information about the entities described.

In the Fabl implementation, the triple

<X,fabl:describedBy,U>

means that U denotes an RDF file which provides information about X.
(rdfs:isDefinedBy[9] has a closely related, but not quite identical intent; descriptions need not
always qualify as definitions). U is also taken as relevant to any subject Y whose URI
(regarded as a pathname, with "." and "/" as delimiters) extends that of X. For example, if
my_green_sedan is described by U, then so are my_green_sedan.engine, and
my_green_sedan/engine but not my_green_sedan_attenna. The Fabl command:

getRdf(Y);

loads the files known to describe the resource Y; that is those files F for which the triple
<X,fabl:describedBy,F> is present in the active graph,and Y is an extension of X. A typical
Fabl initialization sequence involves first loading a configuration file containing
fabl:describedBy statements which indicate where to find information about basic resources.
Then, as additional resources become relevant to computation, invocations of getRdf bring the
needed data into the active graph. In future, lazy strategies may be implemented in which, for
example, getRdf(X) is automatically invoked on the first access to a property of X. Also,
nothing precludes future development of complex discovery technology for finding relevant
RDF, rather than relying only on the simple describedBy mechanism.

It is desirable that non–locating URIs not conflict with URLs. For Fabl applications, we
have reserved the URI http://purl.oclc.org/net/nurl/ as a root URI whose descendants will never
serve as locators. This line appears in our standard namespace declaration:

xmlns:nurl=”http://purl.olc.org/net/nurl”

Valued Sony Customer
 369

Nurl stands for "Not a URL". The following fragment tells the Fabl VM where to find the
description of the Fabl language, and illustrates the points just made:

<rdf:Description about= "http://purl.oclc.org/net/nurl/fabl">
 <fabl:describedBy

rdf:resource="http://purl.oclc.org/net/fabl/languageV0"/>
</rdf:Description>

To access a future release of the language which resides at .../languageV1, only the
configuration file need change; RDF which mentions language primitives via the namespace
prefix "fabl:" may be left unchanged.

If U is the source URL of a page in the active graph, and the triple
<X,fabl:describedBy,U> is present in the active graph, then X is said to be a subject of the
page. That is, the page has as its subject matter the part of the hierarchical URI name space
rooted at X. A page may have more than one subject. When a new triple <A,P,B> is created in
the course of computation, and the URI of A is an extension of the subject of a page, the new
triple is allocated to that page. (Slightly more complex rules - not covered here - govern the
case where the subjects of pages overlap.)

7. Identifiers

Identifiers in Fabl represent XML qualified or unqualified names. However, since the "."
character is reserved for property selection, "." is replaced by "\" when an XML name is
transcribed into Fabl. For example:

fablex:automobiles\ford

is the Fabl identifier which would have been rendered as

fablex:automobiles.ford

in XML. The interpretation of unqualified names is governed by the path and the home
namespace. The path is a sequence of namespaces. When an unqualified name U is
encountered, the Fabl interpreter searches through the path for a namespace N such that N:U
represents a node already present in the active graph. When a new unqualified name U is
encountered, it is interpreted as H:U, where H is the home namespace. Normally, the "fabl:"
and "xsd:" namespaces are included in the path, enabling unqualified reference to Fabl
language primitives and XML Schema datatypes[10].

8. Types

Any RDF type is a legal Fabl type.

X.rdf:type = T;

asserts that X belongs to the type T; that is it adds the triple <X,rdf:type,T> to the active
graph. (This statement is legal only if T is a daml:Class, not an XML Schema datatype). Of
course, a value may have many types.

Valued Sony Customer
 370

Fabl also includes its own primitives for constructing new types, that is, for introducing new
resources whose type is rdfs:Class. The following lines of Fabl introduce the type Point
which was discussed earlier.

class('Point');
var xsd:double geom:xc;
var xsd:double geom:yc;
endClass();

The constructors BagOf(T), ListOf(T), SeqOf(T), and Function(O,I0,...,IN) generate
parametric types denoting the set of all bags (resp. lists,sequences) with members in type T,
and of all functions from input types I0,.... IN to output type O, respectively.

Except for the parametric types, any Fabl statement which introduces a type is equivalent to
a set of DAML+OIL statements about the type. This was illustrated by the definition of Point
which appeared earlier. Only a part of the DAML+OIL formalism is used for this purpose. A
new Fabl class can be introduced by subclassing a daml:Restriction. Within the
daml:Restriction, properties may be restricted either (1) by daml:hasValue, or (2) by
daml:toClass with an optional daml:maxCardinality or daml:cardinality restriction with
value 1. The effect is that properties may be assigned values, or may be assigned types. If a
property is assigned a type, it may optionally be restricted to have either exactly one, or at
most one value of that type. A new class may also be introduced as a daml:intersectionOf
existing classes. Any DAML+OIL class may appear as a legal Fabl type, because any RDF
type at all can so appear, but Fabl syntax will only generate types in the subset just described,
and Fabl's type deduction mechanisms will not fully exploit available information in types
outside the subset. Coverage of more of DAML+OIL can be implemented in future extensions
of Fabl without disturbing the correctness of code written for the current subset.

Here are the details. A Fabl class definition starts with

class('classname');

and ends with

endClass();

Within the definition, statements of the form

var pathname = expression;

called an assignment and

var [qualifier] [type] pathname;

called an assertion may appear. The possible values of the optional qualifier are exists,
optional, and multivalued (exists is the default). A pathname is a sequence of names of
properties, separated by dots ("."). and represents sequential selection of the values of
properties along the path. The assertion:

var [qualifier] type pathname;

Valued Sony Customer
 371

means that, for all elements X of the class being defined, if v is a value of X.pathname,
then v belongs to type. The qualifier exists (resp. optional, multivalued) means that
X.pathname must have exactly one value (resp. at most one value, any number of values).

var [qualifier] pathname;

makes no claim about the type of X.pathname, only about the cardinality of the set of
values which it assumes (depending on the qualifier).

The assignment

var pathname = expression;

means that the value of the slot denoted by the pathname is initialized to the value of the
expression at the time when the member X is created, or when the class is installed (see
below). Here are examples:

class('Rectangle');
var Point geom:center;
var geom:width; //already declared to be a xsd:double in geom:
var geom:height; //already declared to be a xsd:double in geom:
endClass();

class('RedObject');
var color:color = color:red;
endClass();

class('RedRectangleCenteredOnXaxis');
var Rectangle && RedObject this;
var geom:center.geom:xc = 0.0;
endClass();

In the last example, The && operator denotes conjunction, and the pathname this refers to
members of the class being defined, so that

var class this;

means that the class within whose definition the statement appears is a subclass of class.
The translation of Fabl class definitions into DAML+OIL RDF is straightforward.

Assertions translate into toClass restrictions, and their qualifiers to cardinality or
maxCardinality restrictions. Assignments translate into hasValue restrictions. The only
minor complication is that, when pathnames of length greater than one appear, helper classes
are automatically generated which express the constraints on intermediate values in path
traversal (details ommitted).

9. Dynamic Installation of Classes

Recall that

x.rdf:type = C;

asserts that x belongs to daml:Class C. Such statements can be executed at any time,
thereby dynamically adding class memberships. The effect of the statement is not just to add

Valued Sony Customer
 372

the triple asserting class membership, but also to apply the constraints which C imposes on its
members. Consider, for example:

var rect = new(Rectangle);

rect.rdf:type = RedRectangleCenteredOnXaxis;

Recall that RedRectangleCenteredOnXaxis asserts constant values for slots
geom:center.geom:xc and color:color. Consequently, after the assertion that x belongs to this
class, the following triples are added to the graph:

<x,rdf:type,RedRectangleCenteredOnXaxis>
<x,color:colorOf,color:red>,
<x,geom:center,center–uri>,
<center–uri,rdf:type,geom:Point>
<center–uri,geom:xc,0.0>

Here, center–uri represents an anonymous node which has been created to represent the
value of the geom:center property of x.

10. Implementation of Parametric Types

Here is the definition of BagOf:

class('BagOf');
var daml:Class this;
var memberType;
endClass();

daml:Class function BagOf(rdfs:Class tp)
{
var BagOf rs;
rs = new(BagOf);
rs . memberType = tp;
rs . uri = 'nurl:fablParametricTypes/' + 'BagOf(' + uriEncode(tp.uri) +

')';
return rs;

}

This definition appears within the Fabl language definition, where memberType has
already been declared to be a UniqueProperty of type rdfs:Class. The operator uriEncode
encodes reserved characters (such as ":" and "/") as described in the URI standard[11]. Note
that BagOf implements a one–to–one map from the URIs of types T to the URIs of BagOf(T).
The implementation of the other parametric types ListOF, SeqOf, and Function are
analogous. Fabl programmers can introduce their own parametric types using the same
strategy.

11. Types of Fabl Expressions

Fabl is not just a language in which types may be created and manipulated, but a typed
language in the more usual sense that each Fabl expression E is assigned an rdfs:Class. Of

Valued Sony Customer
 373

course, any particular Fabl value (ie node in the active graph) may have arbitrarily many types,
but a Fabl expression is assigned one of the types which the values of the expression is
expected to assume. Types of function applications are deduced in the usual way. If a Fabl
function f is defined by

O function f(I0 a0,... IN aN)
{
...
}

then the type of f(i0,...iN) is O if i0,...iN have types I0 ... IN. Range assertions are exploited in
type deduction concerning property selections. If the triple

<P,rdfs:range,T>

is present in the active graph for property P, the expression

x.P;

is given type BagOf(T), unless P is asserted to be univalued, in which case the type of x.P
is T. (If more than one range type is assigned to P, this is equivalent to assigning the
conjunction of the range types.)

E ~ T

performs a type cast of the expression E to type T. Type casts are checked at runtime: if the
value of E does not lie in T when E~T is executed, an error is thrown. Simple coercion rules
are also implemented; for example ints coerce to doubles, and conjunctions coerce to their
conjuncts.

12. Functions and Methods

A function definition:

O function fname (I0 a0,... IN aN))
{
...
}

adds a function to the active graph under the decorated name

'f’+hash(uri_encode(I0.uri),...uri_encode(IN.uri),fname)+'_'+fname;

The purpose of decoration is to support polymorphism by assigning different URIs to
functions whose input types differ. If the function definition appears within the scope of a class
definition, the function is added beneath the URI of the class, and is invoked in the usual
manner of methods: <object>.fname(...). If preceded by the optional keyword final a method
cannot be overridden. The effect of a Java abstract method is obtained by including a property
of functional type in a class definition. Overriding of methods takes place as a side effect of
class installation when the class being installed assigns values to functional properties. This
simple treatment of method overriding is more flexible than conventional treatments; for

Valued Sony Customer
 374

example, dynamic installation of classes may change the set of methods installed in an object
at any time, not only at object-creation time as in Java or C++. These points are illustrated by
examples just below. The Fabl expression:

f[I0,...In]

denotes the variant of f with the given input types. For example,twice[SeqOf(xsd:int)]
denotes the variant of twice which takes sequences of ints as input. The Fabl operator:

supplyArguments(functionalValue,a 0,...aN)

returns the function which results from fixing the first N arguments to functionalValue at
the values of a0,...aN. Now, consider the following code:

class('Displayable');
var Function(fabl:void) Displayable\display;
...
endClass();

Note that by giving Displayable\display as the name of the functional property, we have
allocated a URI for that property in the hierarchy beneath the URI for Displayable. This
technique can be used in any context where a property which pertains to only one class is
wanted. Consider also a concrete variant which displays rectangles:

fabl:void function display(Rectangle r)
{
....
}

Then, with

class('DisplayableRectangle');
var Displayable && Rectangle this;
var Displayable\display = supplyArguments(display[Rectangle],this);
endClass();

a class is defined which is a subclass of both Rectangle and Displayable, and which
assigns concrete functions to the corresponding functional properties in the latter class. This is
similar to what happens when a C++ or Java class contains a virtual method which is
implemented by a method defined in a subclass. As noted earlier, the wiring of virtual methods
to their implementations can only take place at object creation time in Java or C++, and cannot
be undone thereafter, whereas Fabl allows wiring of functional properties to their
implementations to take place at any time during a computation, via, for example

someRectanglePreviouslyUndisplayable.rdf :type = DisplayableRectangle;

Fabl supports assertion of constraints as part of class definitions - constraints which are
applied to members at class installation time, and maintained thereafter by a constraint
propagation mechanism. The constraint facility is beyond the scope of this paper.

Valued Sony Customer
 375

13. Code as RDF

The foregoing discussion has described how Fabl data and types are rendered as sets of
RDF triples. The remaining variety of Fabl entity which needs expression in RDF is code.

Code is represented by elements of the class fabl:Xob (Xob = "eXecutable object"). Xob
has subclasses for representing the atoms of code (global variables, local variables, and
constants), and for the supported control structures (blocks, if–else, loops, etc). Here is the
class Xob:

class('Xob');
//atomic Xob classes such as Xlocal do not require flattening
var optional Function(Xob,Xob) Xob\flatten;
var rdfs:Class Xob\valueType;
endClass();

Subclasses of Xob include:

class('Xconstant'); //Constant appearing in code
var Xob this;
var Xconstant\value;
endClass();

class('Xlocal'); //Local variable
var Xob this;
var xsd:string Xlocal\name;
endClass();

class('Xif');
var Xob this;
var Xob Xif\condition;
var Xob Xif\true;
var optional Xob Xif\false;
endClass();

class('Xapply'); //application of a function to arguments
var Xob this;
var AnyFunction Xapply\function;
var SeqOf(Xob) Xapply\arguments;
endClass();

(The type AnyFunction represents the union of all of the function types
Function(O,I0...IN)) The Fabl statement

if (test(x)) action(2);

translates to the Xob given by this RDF:

Valued Sony Customer
 376

<fabl:Xif>
 <fabl:Xif.condition>
 <fabl:Xapply>
 <fabl:Xapply.function rdf:resource="#f001a0e6f_test"/>
 <fabl:Xapply.arguments>
 <rdf:seq>
 <rdf:li>
 <fabl:Xlocal>
 <fabl:Xlocal.name>x</fabl:Xlocal.name>
 </fabl:Xlocal>
 </rdf:li>
 </rdf:seq>
 </fabl:Xapply.arguments>
 </fabl:Xapply>
 </fabl:Xif.condition>

<fabl:Xif.true>
 <fabl:Xapply>
 <fabl:Xapply.function rdf:resource="#f001a0e6f_action"/>
 <fabl:Xapply.arguments>
 <rdf:seq>
 <rdf:li>
 <fabl:Xconstant Xconstant.value=2/>
 </rdf:li>
 </rdf:seq>
 </fabl:Xapply.arguments>
 </fabl:Xapply>
 </fabl:Xif.true>
<fabl:Xif>

f001a0e6f_action is the decorated name of the variant of action which takes an xsd:int as
input. Verbose as this is, it omits the Xob properties. Correcting this omission for the Xlocal
would add the following lines in the scope of the Xlocal element:

<rdf:type rdf:resource = "http://purl.oclc.org/net/nurl/fabl/Xob"/>
<fabl:Xob.valueType rdf:resource =
"http://www.w3.org/2000/10/XMLSchema:int"/>

(The Xob\flatten property does not appear because Xlocals do not require flattening). A
full exposition of the set of all Xob classes is beyond the scope of this paper, but the above
examples should indicate the simple and direct approach taken. The class

class('Xfunction');
var xsd:string Xfunction\name;
var rdfs:Class Xfunction\returnType;
var SeqOf(Xlocal) Xfunction\parameters;
var SeqOf(Xlocal) Xfunction\localVariables;
var Xob Xfunction\code;
var SeqOf(xsd:byte) Xfunction\byteCode;
endClass();

defines an implementation of a function. When a Fabl function is defined, the code is
analyzed, producing an Xfunction as result. This Xfunction is assigned as the value of the
decorated name of the function.

The following steps are involved in translating the source code of a Fabl function or
command into an Xfunction:

Valued Sony Customer
 377

Source code [Parser] ->
Parse tree [Analyzer] ->
Type–analyzed form (Xob) [Flattener]->
Flattened form (Xob) [Assembler] ->
Byte Code (executed by the Fabl virtual machine)

All of these steps are implemented in Fabl. The parse tree is a hierarchical list structure in
the Lisp tradition whose leaves are tokens; a token in turn is a literal annotated by its syntactic
category. A flat Xob is one in which all control structures have been unwound, resulting in a
flat block of code whose only control primitives are conditional and unconditional jumps.
Separating out flattening as a separate step in analysis supports extensibility by new control
structures, as will be seen in a moment.

The analysis step is table driven: it is implemented by an extensible collection of
constructors for individual tokens. The constructor property of a token is a function of type
Function(Xob,daml:List) which, when supplied with a parse tree whose operator is the token,
returns the analysis of that tree. Here is the code for the constructor for if. The parse of an if
statement is a list of the form (if <condition> <action>).

Xob function if_tf(daml:List x)
 {
var Xob cnd,ift,Xif rs;
cnd = analyze(x[1]); //the condition
if (cnd.Xob\valueType!=xsd:boolean) error('Test in IF not boolean');
ift = analyze(x[2]);
rs = new(Xif);
rs . Xif\condition = cnd;
rs . Xif\true = ift; //no value need be assigned for Xif\false
return rs;

 }

x[N] selects the Nth element of the list. Then, the statement

ifToken.constructor = if_tf[daml:List];

assigns this function as the constructor for the if token. More than one constructor may be
assigned to a token; each is tried in turn until one succeeds.

The Xif class, like other non–primitive control structures, includes a method for flattening
away occurences of the class into a pattern of jumps and gotos (details omitted). Constructors
and flattening methods rely on a library of utilities for manipulating Xobs, such as the function
metaApply, which constructs an application of a function to arguments, and metaCast which
yields a Xob with a different type, but representing the same computation, as its argument.

This simple architecture implements the whole of the Fabl language. The crucial aspect of
the architecture is that it is fully open to extension within RDF. New control structures, type
constructors, parametrically polymophic operators, annotations for purposes such as aspect–
oriented programming[12], and other varieties of language features can all be introduced by
loading RDF files containing their descriptions. The core Fabl implementation itself comes
into being when the default configuration file loads the relevant RDF; a different configuration
file drawing on a different supply of RDF would yield another variant of the language. This is
the sense in which the implementation provides an open framework for describing computation
in RDF, rather than a fixed language.

Valued Sony Customer
 378

Finally, note once again that Xobs provide a formalism for representing computation in
RDF which does not depend for its definition on any particular source language nor on any
particular method for execution. That is, it formalizes computation within RDF, as promised
by the title of the paper, and can yield the benefits sketched in the introduction.

14. Implementation

The practicality of an RDF–based computational formalism is a central issue for this paper,
so size and performance data for our initial implementation are relevant.

The implementation consists of a small kernel written in C. The size of the kernel as a
WinTel executable is 120 kilobytes. The kernel includes the byte–code interpreter, a
generation–scavenging garbage collector, and a loader for our binary format for RDF. The
remainder of the implementation consists of Fabl's RDF self description, which consumes 700
kilobytes in our RDF binary format. A compressed self–installing version of the
implementation, which includes the Fabl self description, consumes 310 kilobytes. Startup
time (that is, load of the Fabl self description) is about one third of a second on a 400MHZ
Pentium II. Primitive benchmarks show performance similar to scripting languages such as
JavaScript (as implemented in Internet Explorer 5.0 by Jscript) and Python. However, further
work on performance should yield much better results, since the language is strongly typed,
and amenable to many of the same performance techniques as Java.

The full value of formalizing computation within RDF will be realized only by an open
standard. We regard Fabl as a proof–of–concept for such a formalization. In the context of a
standards effort, we would be willing to contribute as Open Source whatever part of Fabl's
implementation is found to be relevant.

15. Future Work

The current Fabl implementation treats the external RDF world as a store of RDF triple sets,
which are activated explicitly via loadRdf or getRdf. However, an interesting direction for
future work is the definition of a remote invocation mechanism for RDF–based computation.
Here is an outline of one possibility.

Values of the fabl:describedBy property might include URLs which denote servers as well
as RDF pages. In this case, getRdf(U) would not load any RDF. Instead, a connection would
be made to the server (or servers) S designated by the value(s) of fabl:describedBy on U. In
this scenario, the responsibility of S is to evaluate properties, globals, and functions in the URI
hierarchy rooted at U. Whenever a property E.P, a global G, or a function application F(x) is
evaluated in the client C, and the URI of E, G, or F is an extension of U, a request is
forwarded to the server S, which performs the needed computation, and returns the result. The
communication protocol would itself be RDF–based, along the lines proposed on the www–
rdf–interest mailing list[13]. Such an approach would provide simple and transparent access to
distributed computational resources to the programmer, while retaining full decoupling of
description of computation in RDF from choices about source language and implementation.

Valued Sony Customer
 379

16. Other XML Descriptions of Computation

Imperative computational constructs appear in several XML languages. Two prominent
examples are SMIL[14] and XSLT[15], in which, for example, conditional execution of
statements is represented by the <switch> and <xsl:if> tags, respectively. The aims of these
formalizations are limited to specialized varieties of computation which the languages target.
Scripting languages encoded in XML include XML Script[16] and XFA Script[17].

Footnotes

1. FablTM is a trademark of The Behavior Engine Company, and is pronounced "fable".
2. The standardization of JavaScript is ECMAscript[18]

References

[1] W3C RDF Model and Syntax Working Group. Resource Description Framework (RDF) Model and Syntax
Specification, http://www.w3.org/TR/REC–rdf–syntax/, February 1999
[2] Ian Horrocks, Frank van Harmelen, Peter Patel–Schneider, eds. DAML+OIL (March 2001),
http://www.daml.org/2001/03/daml+oil–index, March 2001
[3] Chris Waterson. RDF: back–end architecture,
http://www.mozilla.org/rdf/back–end–architecture.html, August 1999
[4] Brian McBride. Jena - A Java API for RDF,
http://www–uk.hpl.hp.com/people/bwm/rdf/jena/index.htm, May 2001 (last update)
[5] Tim Bray, Dave Hollander, Andrew Layman, eds. Namespaces in XML,
http://www.w3.org/TR/REC–xml–names/, January, 1999
[6] The Dublin Core Metadata Initiative, http://dublincore.org, July 2001 (last update)
[7] The Behavior Engine Company, http://www.behaviorengine.com, July 2001 (last update)
[8] Ian Horrocks, Frank van Harmelen, Peter Patel–Schneider, eds. A Model–Theoretic Semantics for
DAML+OIL (March 2001),
http://www.daml.org/2001/03/model–theoretic–semantics.html, March 2001
[9] Dan Brickley, R. V. Guha, eds. Resource Description Framework (RDF) Schema Specification 1.0,
http://www.w3.org/TR/2000/CR–rdf–schema–20000327/, March 2000
[10]Paul V. Biron, Ashok Malhotra, eds. XML Schema Part 2: Datatypes,
http://www.w3.org/TR/2001/REC–xmlschema–2–20010502/, May 2001
[11] T. Berners–Lee. Uniform Resource Identifiers (URI): Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt,
August 1998
[12] Gregor Kiczales, John Lamping, Anurag Mendhekar and Chris Maeda, Cristina Lopes, Jean–Marc Loingtier
and John Irwin. Aspect–Oriented Programming , 11th European Conference on Object–Oriented Programming,
LNCS, vol. 1241, Springer Verlag, 1997
[13] Ken MacLeod, and respondents. Toying with an idea: RDF Protocol,
http://lists.w3.org/Archives/Public/www–rdf–interest/2001Mar/0196.html, March 2001
[14] Jeff Ayars et al, eds. Synchronized Multimedia Integration Language (SMIL 2.0) Specification,
http://www.w3.org/TR/2001/WD–smil20–20010301/, March 2001
[15] James Clark, ed. XSL Transformations (XSLT), http://www.w3.org/TR/xslt, November 1999
[16] DecisionSoft Limited, XML Script, http://www.xmlscript.org/ May 2001
[17] XML For All, Inc. XFA Script, http://www.xmlforall.com/cgi/xfa?XFAScript, May 2001
[18] ECMA. Standard ECMA–262 – ECMAScript Language Specification,
http://www.ecma.ch/ecma1/stand/ecma–262.htm, December 1999

Valued Sony Customer
 380

 Design Rationale of RuleML:
A Markup Language for Semantic Web Rules

 Harold Boley1, Said Tabet2 and Gerd Wagner3
 1. DFKI GmbH, Erwin-Schrödinger-Straße D-67663 Kaiserslautern Germany

2. Nisus, Inc. 180, Turnpike Road Westboro, MA 01581 USA
3. Faculty of Technology Management Eindhoven University of Technology P.O. Box 513

5600 MB Eindhoven The Netherlands
boley@dfki.de, stabet@nisusinc.com, G.Wagner@tm.tue.nl

Abstract. This paper lays out the design rationale of RuleML, a rule markup language for the Semantic Web.
We give an overview of the RuleML Initiative as a Web ontology effort. Subsequently, the modular syntax
and semantics of RuleML and the current RuleML 0.8 DTDs are presented (focusing on the Datalog and
URI sublanguages). Then we discuss negation handling, priorities/evidences, as well as agents and RuleML.
We next proceed to RuleML implementations via XSLT and rule engines. In our conclusions, we continue to
explore the bigger picture of ontologies and discuss some requirements for a future RuleML. An appendix
shows our Semantic Web scenario in the insurance industry.

1. Introduction

 Rules have traditionally been used in theoretical computer science, compiler technology,
databases, logic programming, and AI. The Semantic Web tries to represent information in
the World Wide Web such that it can be used by machines not just for display purposes, but
for automation, integration, and reuse across applications; it has recently advanced to a W3C
Activity. Rule Markup for the Semantic Web has been a hot topic since rules were identified
as one of its Design Issues.
However, Semantic Web rules have been less systematically studied than the
corresponding ontology (actually, taxonomy) markup. The Rule Markup Initiative tries to
fill the gap by exploring rule systems (e.g., extended Horn logics) suitable for the Web,
their (XML and RDF) syntax, semantics, tractability/efficiency, and transformation and
compilation. Both derivation rules (which may be evaluated bottom-up as in deductive
databases, top-down as in logic programming, or by tabled resolution as in XSB) (10) and
reaction rules (also called "ECA" -- "event-condition-action" -- or "trigger" rules), as well
as possible combinations, are being considered.
In the context of the Semantic Web, rules may be built on F-logic for RDF inference, as
pioneered by SiLRI (4). This work has recently been extended for rules with expressive
bodies (full FOL syntax) in TRIPLE (5). Rules may also be used to enhance the content of
Web pages and XML documents in various ways. E.g., derivation rules allow the dynamic
inclusion of derived facts, while reaction rules allow the specification of behavior in
response to browser events.
RuleML started on the basis of pre-existing rule markup languages and has already
inspired further rule-markup projects. As examples, we just sketch our RFML, URML, and
AORML languages here, but refer readers to http://www.dfki.unikl.de/ruleml/#Participants
for the complete picture:

• RFML (Relational-Functional Markup Language) is a (Web-)output format for
relational-functional knowledge bases and computations implemented as part of the

Valued Sony Customer
 381

Relfun system. The (Web-)input translation of RFML markup into Relfun's Prolog-
like syntax is implemented via an XSLT stylesheet.

• URML was initially a project to Webize the ART and ARTScript Rule Language
(11). URML is pushing the effort further to integrate Object Oriented Rule-based
programming with XML and provide a basis for the implementation of Web objects
and their manipulation in rules.

• AORML is a project to define a markup language for agent-oriented business rules
in the context of Agent Object Relationship (AOR) models.

 Participants in the RuleML Initiative have expressed an urgent need for a standard rule
markup language, with translators in and out along with further tools. This need provided
the impetus for the RuleML effort.
 This paper lays out the design rationale of the Rule Markup Language (RuleML), the
Initiative's evolving markup language for the Semantic Web. To accommodate the various
(Web) rule-user communities from Knowledge-Based Systems to Intelligent Agents to E-
Commerce, a modular hierarchy of sublanguages will be discussed. Rule extensions will
concern first-class URIs, Web-suited negations, labelings, certainties/priorities, and
packages. The Initiative also examines where current description methods and
implementation techniques (e.g., XML DTDs vs. Schemas and C vs. Java-based rule
engines) are sufficient for such rule markup and where they would need revisions and
extensions.
This paper further attempts to contribute to some open issues of Notation 3 (N3) and
DAML-Rules in relation to RuleML. Finally, by studying issues of combining rules and
taxonomies via sorted logics, description logics, or frame systems, the paper also touches
on the US-European proposal DAML+OIL.

2. The RuleML Initiative as a Web Ontology Effort

 The RuleML Initiative started in August 2000 during the Pacific Rim International
Conference on Artificial Intelligence (PRICAI 2000). It has brought together expert teams
from several countries, including leaders in Knowledge Representation and Markup
Languages, from both academia and industry. The RuleML Initiative is developing an
open, vendor neutral XML/RDF-based rule language. This will allow for the exchange of
rules between various systems including distributed software components on the Web,
heterogeneous client-server systems found within large corporations, etc. The RuleML
language offers XML syntax for rules Knowledge Representation, interoperable among
major commercial and non-commercial rules systems.
 Among our industrial participants are rules engine vendors, Web technology vendors,
XML/RDF tools vendors and also technology users such as financial corporations, telecom
companies and some of the major Web portals and ASPs. The RuleML Initiative is
collaborating with numerous related efforts such as the complementary Java Rules Engine
API specification, the W3C RDF working group, the DAML group, W3C P3P Activity,
PMML, and many others. This collaboration will enable RuleML to share mechanisms and
provide a rules language to existing and emerging industry standards such as the Semantic
Web and RDF, P3P, CC/PP and EDI (Electronic Data Interchange). The scenario in
Appendix 1 exemplifies some inferential and metadata uses of RuleML for the Semantic
Web.

Valued Sony Customer
 382

 Since RuleML participants organized a Birds Of a Feather (BOF) session at W3C's
Technical Plenary and WG Meeting Event in February/March 2001, the Initiative has been
discussing with W3C about possibilities of a working group devoted to Web rules (axioms)
or to a combination of Web-ontology efforts as expressed by the 'equation' ontology =
taxonomy + axioms. This would create the chance of a uniform ontology language with a
description-logic taxonomy and Horn-logic-like rules.
 In particular, large-scale RuleML rulebase exchange will require a taxonomy of the
relations defined in the rulebase, where a relation with its arguments becomes a class with
its slots. Participants in a rulebase exchange could then align each other's relation
hierarchies to detect incompatibilities prior to merging and firing their rule definitions.
 Conversely, large-scale DAML+OIL taxonomies will require a rule system to derive/use
certain implicit information that is not captured by the taxonomy alone. The required rules
could be marked up according to the suitable RuleML expressive class. DAML+OIL
taxonomies and RuleML axioms should be expressed in compatible ways, ideally in one
unified language. To achieve this, the current RuleML 0.8 and DAML+OIL markups could
be co-developed in the Web Ontology Group towards a common version 1.0.
 The fact that combined ontology systems quickly become undecidable is not a big issue
since the higher RuleML expressive classes, e.g. Horn logic, are already undecidable. A big
issue of the collaboration between DAML+OIL and RuleML, however, is the development
of an interleaved layered system whose decidable taxonomy expressive classes interact
well with the decidable or undecidable axiom expressive classes.
 Initially, the possible combinations of taxonomies and axioms should be systematically
compared w.r.t. criteria such as naturalness vs. formality, expressiveness vs. efficiency, DL
terms as types for Horn variables vs. DL terms as Horn premises (or even conclusions), etc.
On the taxonomy side, this comparison should span the range from order-sorted logics
(which can be regarded as a degenerate description logic without slots, i.e. only the class
lattice) to expressive decidable description logics such as ALLNR. On the axioms side, we
should study the range from versions of Datalog, to Horn logic, to full first-order logic, and
conservative extensions (e.g., restricted higher-order syntax). The question then is which of
these respective subclasses go together well w.r.t. our criteria.
 For example, it is well-known that order-sorted logics go together well with Horn logic
and even with full first-order logic, as, e.g., shown by solutions to Schubert's Steamroller
Problem such as (3): the combination reduces the search space. On the other hand, as
shown by (9), only versions of Datalog seem to go together well with expressive
description logics such as ALLNR: the combination enlarges the search space. If we allow
free variations of both the taxonomy and axioms expressive classes, there are also many
possible combinations in between. However, if a user community can state their
requirements w.r.t. expressiveness of the taxonomy, the axioms, or both, it will be easier to
fix the remaining degrees of freedom.
 When building real Web ontologies it seems wise to start with less expressive classes on
both the taxonomy and axioms sides, since a builder community cannot anticipate the
requirements of future user communities. The ontological content should be packaged in an
as lightweight ontology language as possible to make it available to a maximum number of
users. The RuleML Initiative tried to prepare such a methodology through the bottom-up
construction of a system of sublanguages from RDF-like triples to labeled Horn logic with
equations plus URI individuals and relations. This could be complemented by a bottom-up
taxonomy-language (re-)construction, and brought together through joint work on ontology
layering.

Valued Sony Customer
 383

3. The Modular Syntax and Semantics of RuleML

 The modular RuleML design is described in this section. RuleML encompasses a
hierarchy of rules, from reaction rules (event-condition-action rules), via integrity-
constraint rules (consistency-maintenance rules) and derivation rules (implicational-
inference rules), to facts (premiseless derivation rules). Till now, we have been mostly
working on derivation rules and facts (cf. appendix 2).
 The RuleML hierarchy of rules constitutes a partial order rooted in reaction rules. Its
second main layer consists of, next to each other, integrity-constraint rules and derivation
rules. The third layer just specializes derivation rules to facts. Thus, the global RuleML
picture looks as shown in Figure 1.

 Reaction Rules

 1. 2.

Integrity Constraints Derivation Rules

 3.

 Facts

Figure 1: The RuleML hierarchy top-level.

 Let us discuss the hierarchy's numbered specialization links in turn. (For a more fine-
grained discussion of derivation rules, facts, and their further specialization to RDF triples
see Figure 2.)

• Integrity constraints are considered as "denials" or special reaction rules whose only
possible kind of action is to signal inconsistency when certain conditions are
fulfilled.

• Derivation rules are considered as special reaction rules whose action happens to
only add or 'assert' a conclusion when certain conditions (premises) are fulfilled.
This asserting of conclusions can be regarded as a purely declarative step, as used
for model generation and fixpoint semantics. Such rules can thus also be applied
backward for proving a conclusion from premises.

• Facts are considered as special derivation rules that happen to have an empty
(hence, 'true') conjunction of premises.

 We can now make more precise our views regarding the application direction for the four
rule categories:

• General reaction rules can only be applied in the forward direction in a natural
fashion, observing/checking events/conditions and performing an action if and
when all events/conditions have been perceived/fulfilled.

• Integrity constraints are usually also forward-oriented, i.e. triggered by updates,
mainly for efficiency reasons.

Valued Sony Customer
 384

• Derivation rules, on the other hand, can be applied in the forward direction as well
as in a backward direction, the latter reducing the proof of a goal (conclusion) to
proofs of all its subgoals (premises). Since in different situations different
application directions of derivation rules may be optimal (forward, backward, or
mixed), RuleML does not prescribe any one of these.

• For facts or 'unit clauses' it makes little sense to talk of an application direction.

 While reaction rules, as the all-encompassing rule category, could implement all other
ones, in RuleML we are introducing tailored special-purpose syntaxes for each of these
categories. The following markup syntax only serves for our preliminary distinction of the
four categories (for instance, we plan to permit and/or nestings besides flat conjunctions as
premises):

• Reaction rules: <rule> <_body> <and> prem1 ... premN </and> </_body> <_head>
action </_head> </rule>

• Integrity constraints: <ic> <_body> <and> prem1 ... premN </and> </_body> </ic>
implemented by <rule> <_body> <and> prem1 ... premN </and> </_body> <_head>
<signal> inconsistency </signal> </_head> </rule>

• Derivation rules: <imp> <_head> conc </_head> <_body> <and> prem1 ... premN
</and> </_body> </imp> implemented by <rule> <_body> <and> prem1 ... premN
</and> </_body> <_head> <assert> conc </assert> </_head> </rule>

• Facts: <fact> <_head> conc </_head> </fact> implemented by <imp> <_head> conc
</_head> <_body> <and> </and> </_body> </imp>

 Let us now elaborate on RuleML's derivation rules. Because of the infinity of possible
rule-markup syntaxes and the rich previous work on semantics of rule-system classes,
RuleML has attempted the following separation of concerns:

• The sublanguage hierarchy. Figure 2 shows the 12 sublanguages that together
constitute the modularized basic RuleML definition. All sublanguages except the
'UR' (URL/URI) group correspond to well-known rule systems, where each
sublanguage has a corresponding semantic (model- and proof-theoretic)
characterization. Current work concerns a more precise URL/URI/URN semantics,
as discussed in section The RuleML 0.8 DTDs. Sections Negation Handling in
RuleML and Priorities/Evidences in RuleML prepare modular extensions of this
basis for negations and priorities, respectively.

• The concrete markup. In recent months, the RuleML 0.7 DTDs have been
developed into the RuleML 0.8 DTDs without affecting the above semantics. The
new markup uses XML in RDF's 'explicit role-markup' style, relativizing XML's
positionality to places where RDF's Seq containers or DAML+OIL lists would be
needed. RuleML 0.8 is still being developed in DTDs, but will also be delivered
(via translators) in XML Schemas. In the next section it will be illustrated with an
earlier RuleML example, upgraded from 0.7 to 0.8.

Valued Sony Customer
 385

Figure 2: The RuleML hierarchy with 12 derivation-rule sublanguages.

4. The RuleML 0.8 DTDs

 The upper layer of the RuleML hierarchy of rules is discussed in section The Modular
Syntax and Semantics of RuleML. In that terminology, the system of RuleML DTDs
presented here only covers derivation rules, not reaction rules.
 This is because we think it is important to start with a subset of simple rules, test and
refine our principal strategy using these, and then work 'up' to the more general categories
of rules in the hierarchy. For this we choose Datalog, a language corresponding to
relational databases (ground facts without complex domains or 'constructors') augmented
by views (possibly recursive rules), and work a few steps upwards to further declarative
rules from (equational) Horn logic. We also work upwards from a URL/URI language
corresponding to simple objects. The join of both of these branches then permits inferences
over RDF-like 'resources' and can be re-specialized to RDF triples.
 Regarding the concrete markup syntax, we have been experimenting with several DTDs
prior to the current, still preliminary, version. The rationale for our current tags is as
follows.

• Rather than leaving conjunction implicit, an explicit tag pair <and> ... </and> with a
sequence of N conjuncts is used (this would preferably be a set of conjuncts),
preparing the unavoidable explicit markup of other boolean connectives (mainly
<or> ... </or>) and their nesting.

• As a result of previous discussions, RuleML now uses an XML-RDF-unified data
model with "Order-Labeled (OrdLab) Trees" (exemplified in appendix 3) as its
notational base (2).

• In particular, we conventionally mark up RDF-like predicates, here called 'roles', by
"_"-prefixed tags in XML (if all class-like 'type' tags would start with an upper-case

Valued Sony Customer
 386

letter, then 'role' tags could also be distinguished, Java-like, by having them start
with a lower-case letter, as in The FRODO rdf2java Tool).

• Using an atom (for a single premise) or an and (for a conjunction of premises) in the
role of the body and an atomic conclusion in the role of the head, rules aggregate
two commutative roles; in particular, our Horn-like implication rules equivalently
become <imp> <_body> <and> prem1 ... premN </and> </_body> <_head> conc
</_head> </imp> or become <imp> <_head> conc </_head> <_body> <and> prem1 ...
premN </and> </_body> </imp> (thus unifying KIF's "implication" and "reverse
implication" syntaxes).

• The main advantage of roles is that of feature-term or object-centered modeling: If
some extra information is to be added to an element such as a priority factor to the
imp element, then it is easy to attach, RDF-like, a new _priority role with a float-type
value; on the other hand the insertion, XML-like, of the float-type value directly into
the child sequence would (be harder to read and) cause all subsequent children to
assume a new position in the element (a problem for processing via XSLT etc.).

• In the new data model an element can have "mixed content" in the new sense of
having both 'role' and 'type' children (see the atom examples below whose content
consists of one _opr-role child and _1, _2, ... var-type children): while the 'type'
children form an ordered sequence as in XML, without need for RDF's Sequence
container, (1) the 'role' children are commutative as in RDF (treating an ordered
sequence as a unit, as if it was reified into a Sequence container).

 Appendix 2 contains a preliminary DTD for a Datalog subset of RuleML 0.8. Appendix 3
shows a simple example rule base that conforms to that DTD.
 As indicated in Figure 2, besides the sublanguages towering above the Datalog DTD,
there is another major RuleML branch consisting of the sublanguages on top of 'UR'-object
(URL/URI) DTD. In RuleML we try to build on existing W3C work whenever possible.
Hence, Uniform Resource Identifiers (URIs) are used to locate, describe and access
resources and services such as classes, objects, software agents, Web components, Web
services, etc. The representation of objects as URIs in RuleML will also facilitate the
integration with related work on ontologies. Web objects and services use a URL/URI as
their unique object identifier (cf. SHOE, RDF, URML) and the point of access to the Web
(and in some cases standalone or intranet) resource or software agent. URLs/URIs can be
embedded in facts, rule conditions and rule actions.
 The RuleML language thus offers support for URIs in its system of DTDs starting from
the 'UR' sublanguage. For example, in UR-Datalog, names can be assigned to individuals
and relations using content markup and/or an URI attribute. The content markup need not
be unique while the URI attribute is unique. The modular design of RuleML will allow us
to extend URIs to a number of other addressing schemes.
 As a simple Datalog example consider the facts in appendix 3, which use content markup
to name, perhaps not uniquely, an individual book. Alternatively, in UR-Datalog the first of
these facts, say, can use a URI under an href attribute of the empty ind element as follows:

Valued Sony Customer
 387

<fact>

<_head>
<atom>

<_opr><rel>sell</rel></_opr>
<ind>John</ind>
<ind>Mary</ind>
<ind href="http://www.ibiblio.org/xml/books/bible2"/>

</atom>
</_head>

</fact>

 Moreover, the second of these facts, say, can now combine the original content markup
with the URI attribute as follows:
<fact>

<_head>
<atom>

<_opr><rel>keep</rel></_opr>
<ind>Mary</ind>
<ind href="http://www.ibiblio.org/xml/books/bible2">XMLBible</ind>

</atom>
</_head>

</fact>

 It should be noted that, content markup not being unique, a given URI can be combined
with different content markups in different elements. Thus, the second fact, say, could also
use the same URI with this time an extended PCDATA New XMLBible. Conversely, of
course, two different URIs can be combined with the same content markup.

5. Negation Handling in RuleML

 In natural language, and in practical knowledge representation systems, such as the IBM
business rule system CommonRules (6) that is based on the formalism of extended logic
programs, there are two kinds of negation: a weak negation expressing non-truth (in the
sense of "I don't like snow"), and a strong negation expressing explicit falsity (in the sense
of "I dislike snow"). In RuleML, the weak negation connective is denoted by 'not' and the
strong negation connective by 'neg'. In the case of a complete predicate, such as being an
odd number, both negations collapse: 'not odd(x)' is equivalent to 'neg odd(x)', or in other
words, the non-truth of the atom 'odd(x)' amounts to its falsity. In the case of an incomplete
predicate, such as 'like', we only have that the strong negation implies the weak negation:
'neg like(I,snow)' implies 'not like(I,snow)', but not conversely. Also, while the double
negation form 'neg not' collapses (according to partial logic, see [Wag98]), the double
negation form 'not neg' does not collapse: not disliking snow does not amount to liking
snow.
 Using two kinds of negation in derivation rules has been proposed independently in (7)
and (12). Rules with weak negation, or with other non-persistent connectives, lead to
nonmonotonic inference. It is well-known that the semantics of nonmonotonic knowledge
systems is not based on all models of a knowledge base but solely on the set of all intended
models. E.g., for relational databases, which can be viewed as the most fundamental case
of a knowledge system, the intended models are the minimal ones. The model-theoretic
semantics of nonmonotonic rules is based on the concept of stable (generated) models in

Valued Sony Customer
 388

classical and partial logic (see 7, 8 and 9). Notice that classical logic can be viewed as the
degenerate case of partial logic when all predicates are total.
 Under the preferential semantics of stable (generated) models, the weak negation 'not'
corresponds to negation-as-failure in Prolog and to the EXCEPT operator in SQL in the
following way: a query expression "give me all objects x such that 'p(x) and not q(x)'"
corresponds to the SQL expression 'P EXCEPT Q' where P and Q denote the tables that
represent the extensions of the predicates p and q. Since SQL tables were not intended to
be able to represent incomplete predicates, SQL does not contain a strong negation
operator.

 Because in many computational domains predicates are assumed to be complete
(according to the Closed-World Assumption), 'not' is used more frequently than 'neg'. An
example of a rule that defines a derived attribute of a certain class in a UML class model is
the following: A car is available for rental if it is physically present, is not assigned to any
rental order, is not scheduled for service, and does not require service. This rule defines the
derived Boolean attribute 'isAvailable' of the class 'RentalCar' by means of the stored
Boolean attributes 'isPresent', 'requiresService', 'isScheduledForService', and an association
'isAssignedTo' between cars and rental orders, here called 'isAssignedToRentalOrder'.
The association is shown more explicitly in the UML class model of Figure 3.
<imp>

<_head>
<atom>

<_opr><rel>isAvailable</rel></_opr>
<var>Car</var>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>isPresent</rel></_opr>
<var>Car</var>

</atom>
<not>

<atom>
<_opr><rel>isAssignedToRentalOrder</rel></_opr>
<var>Car</var>

</atom>
</not>
<not>

<atom>
<_opr><rel>isScheduledForService</rel></_opr>
<var>Car</var>

</atom>
</not>
<not>

<atom>
<_opr><rel>requiresService</rel></_opr>
<var>Car</var>

</atom>
</not>

</and>
</_body>

</imp>

Valued Sony Customer
 389

Figure 3: A UML model of the class RentalCar with the derived Boolean attribute /isAvailable.

 The strong negation is an "open world" negation, since in an open world such as the
Web, the non-truth (or failure) of a statement does not imply its falsity. By combining weak
and strong negation, one can express default rules (in the sense of Reiter's default logic) in
a natural way. An example of this is the rule "a document that is not classified as being
official has normally to be treated as an unofficial document". Such a rule could, for
instance, supplement an ontology about enterprise documents and help answering queries
about unofficial documents. Let us assume that EEEBizz classifies documents by means of
a 'full'/'partial'/'open'-valued Approval property, while EEEComm classifies documents
with the help of a 'yes'/'no'-valued Released property. Then, we may want to use a rule that
allows to conclude a strongly negated atom on the basis of either of two weakly negated
atoms (the or in the _body could be eliminated via separate rules for the disjuncts):
<imp>

<_head>
<neg>

<atom>
<_opr><rel>isOfficialDocument</rel></_opr>
<var>DocumentName</var>

</atom>
</neg>

</_head>
<_body><or>

<not>
<atom>

<_opr>
 <rel href="http://www.eeebizz.com/rdf sch#Approval"/>
 </_opr>

<var>DocumentName</var>
<ind>full</ind>

</atom>
</not>
<not>

<atom>
<_opr>

 <rel href="http://www.eeecomm.net/rdf-voc#Released"/>
 </_opr>

<var>DocumentName</var>
<ind>yes</ind>

</atom>
</not>

</or></_body>
</imp>

 Notice that this rule allows to conclude that a document is unofficial unless the contrary
is known. Therefore, it would provide the conclusion that a certain document is unofficial
even if it suggests to be official (at its own URI) but is not classified properly (at the
metadata's URI). This rule cannot be applied if there is an explicit 'full Approval'

Valued Sony Customer
 390

classification and an explicit 'yes, Released' classification of the document (according to
the respective definitions of EEEBizz and EEEComm).
 For example, suppose the metadata consist only of the following 'full Approval' fact, an
RDF triple (according to the URC-bin-data-ground-fact DTD of RuleML, cf. Figure 2)
about a joint-mission document:
<fact>

<_head>
<atom>

<_opr><rel href="http://www.eeebizz.com/rdf-sch#Approval"/></_opr>
<ind href="http://www.eeebico.org/docs/joint-mission.html"/>
<ind>full</ind>

</atom>
</_head>

</fact>

 The first disjunct is false since its 'Approval' atom unifies with the fact (via the binding of
<var>DocumentName</var> to <ind href="http://www.eeebico.org/docs/joint-mission.html"/>); but
the second disjunct is true for lack of a corresponding 'yes, Released' fact; so the default
rule classifies the document as unofficial.

6. Priorities/Evidences in RuleML

 The following is an example using an auto insurance scenario. This example involves
two conflicting rules, shown below. The first rule, which applies to drivers under 25 years
of age, states that after the accident, the premium will increase by 40%. On the other hand,
in the second rule, because the customer is on the family plan, his or her premium will not
increase after the first accident. This example is treated in more detail in appendix 1.
The first rule, applicable to drivers under 25:
<imp>

<_rlab><ind>beginners</ind></_rlab>
<_spriority><ind>0.75</ind></_spriority>
<_head>

.......
</_head>
<_body>

<and>
...

<atom>
<_opr><rel>customerUnder25</rel></_opr>
<var>customer</var>

</atom>
</and>

</_body>
</imp>

The second rule, applicable to drivers with a family plan:
<imp>

<_rlab><ind>family</ind> </_rlab>
<_spriority><ind>0.9</ind> </_spriority>
<_head>

.......
</_head>
<_body>

<and>
<atom>

<_opr><rel>FamilyAutoPlan</rel></_opr>
<var>customer</var>
<var>familyauto</var>

</atom>
</and>

</_body>
</imp>

Valued Sony Customer
 391

 Both research prototypes and commercial rules engines offer a facility for controlling rule
execution and conflict resolution. In RuleML, one can define either quantitative priorities
declaring a numerical Priority property for rules or qualitative priorities using Overrides
facts over rule labels.
 A quantitative priority is a numerical value indicating the salience (or the evidence) of a
rule. We consider supporting both static and dynamic salience. A static priority value can
be represented by a constant or a variable. A dynamic salience is represented using a
variable or a function or relation call: the numerical value is calculated at runtime from the
current binding environment.
 Qualitative priorities are represented using facts comparing rule labels. This approach is
influenced by the rules conflict handling in BRML, based on partially-ordered
prioritization information (6). Qualitative priorities using the Overrides fact can be
generated from numerical saliences. For example, in the auto insurance example above,
since rule labeled 'family' (salience 0.9) is higher priority than rule labeled 'beginners'
(salience 0.75), we can generate the following qualitative priority fact: Overrides(family,
beginners), which means that rule family will always win if it enters in a conflict with rule
beginners.

7. Agents and RuleML

 Biological and artificial systems that interact with their (natural or virtual) environment
on the basis of their mental state, and exhibit some degree of autonomy, are called
"agents". The most basic mental components of an agent are its perceptions of events (in
the form of incoming messages) and its beliefs (or knowledge). Further important
components are

• memory about past events and actions,
• commitments towards other agents to perform certain actions,
• claims against other agents,
• goals in the form of state conditions to be achieved by means of planning and plan

execution, and
• intentions in the form of action plans that have been chosen to be executed.

 A sophisticated software agent may be specified by
• an RDFS-based taxononmy for defining the schema of its mental state,
• a set of RDF facts for specifying its factual (extensional) knowledge,
• a set of RuleML integrity constraints for excluding non-admissible mental states,
• a set of RuleML derivation rules for specifying its terminological and heuristic

(intensional) knowledge, and
• a set of RuleML reaction rules for specifying its behavior in response to

communication and environment events.
 Thus, it will be possible to completely specify a software agent using RDF/RDFS and
RuleML. Executing such an agent specification requires a combination of a knowledge
subsystem (including an inference and an update operation), a perception (or incoming
message handling) subsystem and an action (or outgoing message handling) subsystem.
 Michael Sintek has recently implemented a much simpler first example of a RuleML
querying agent. This is a servlet (running in Tomcat) that receives RuleML rulebases in an

Valued Sony Customer
 392

RDF-based RuleML syntax (since it uses The FRODO rdf2java Tool) together with some
queries, evaluates them with XSB Prolog (in auto-tabling mode, which should be
equivalent to bottom-up evaluation), and returns the result as an HTML page containing
the bindings as facts of instantiated queries. A future version must, of course, return a
RuleML file. It can be tried at this URL: Click on 'example' and paste the RDF RuleML
popping up into the input window (note that pasting XML/RDF cannot be directly done in
IE, only in Netscape; use "view source" in IE). Alternatively, you can use the Prolog parser
and RDF translator to generate the RDF RuleML. Since it cannot be guaranteed that the
above URLs will always work (server reboots etc.), this picture shows the agent in action.

8. RuleML Implementations via XSLT and Rule Engines

 XSLT can itself be regarded as a rule-based programming language operating on XML
elements. These elements can also be other rules expressed in XML. The RuleML Initiative
has been implementing the translation between various rules systems using XSLT
stylesheets. The first XSLT stylesheet from RuleML to another system demonstrated the
translation of RuleML 0.7 to RDF; it can be seen as a preparation of our transition towards
the current more RDF-oriented RuleML 0.8.
 One of the most popular (reaction) rule engines currently available free for non-
commercial use is JESS (Java Expert System Shell). Jess is implemented in the Java
language. It was originally inspired by the CLIPS expert system shell, but has grown into a
complete, distinct rule-based tool of its own. CLIPS is a development environment for
rule-based and object oriented expert systems. CLIPS is being used by government
agencies, research laboratories and universities as well as a number of companies around
the world.
 Following the release of RuleML 0.8, we will provide an XSLT style sheet that produces
Jess code. A style sheet already exists for RuleML 0.7, compatible with Jess 60a5.
 The example below shows a RuleML 0.8 rule originally authored using RuleML 0.7 and
translated into Jess using an XSLT stylesheet. This kind of process can be automated easily
in a Web-based platform using existing XML and XSLT tools and APIs. The same rule is
translated into Prolog. This demonstrates the flexibility and the power of the rules
exchange mechanism offered in RuleML.
The Rule written in RuleML:
<rulebase label="myRules">

<imp>
<_head><atom>

<rel>likes</rel>
<ind>John</ind>
<var>x</var>

</atom></_head>
<_body><atom>

<rel>likes</rel>
<var>x</var>
<ind>wine</ind>

</atom></_body>
</imp>

</rulebase>

The transformation to Jess gives the following Jess (and CLIPS) rule:
(defrule myRules-1

"This rule has been generated from RuleML"
(likes ?x wine)

=>
(likes John ?x))

Valued Sony Customer
 393

and the transformation to Prolog returns the rule:
likes(John, X) :- likes(X, Wine).

 With GEDCOM, Mike Dean created the first operational RuleML (0.7) rulebase, where
rules on family relationships (child, spouse, etc.) are run via XSLT translators to the XSB,
JESS, and n3/cwm engines. Besides indirectly, via translators, RuleML implementations
should also be done directly, via rule engines.
 With Mandarax RuleML, Jens Dietrich has implemented the first complete input-
processing-output environment for RuleML (0.8). For a RuleML 0.8 engine we also
cooperate with the CommonRules, Euler, and TRIPLE projects and hope to also join forces
with W3C's N3 and NILE efforts, and with further interested companies.

9. Conclusions

 Looking at the bigger picture of "ontologies", we will now discuss three related
requirements for future RuleML versions.

1) Following our earlier 'taxonomy-plus-axioms' notion of "ontology", RuleML, together
with DAML-Rules and Euler, can be seen as the "axioms part" working on the "taxonomy
part" developed by some other effort such as DAML+OIL. Derivation rules are normally
used in the context of an information model, such as a UML class model, an RDFS-based
taxonomy (as used in DAML+OIL ontologies), or a predicate logic signature. The
underlying information model defines a language for expressing logical statements that can
play the role of an assertion, of a query, or of a condition. It should be possible to include a
RuleML rulebase (or a reference to a RuleML document) within an XML-based version of
an information model (such as a UMI document or a RDFS-based taxononmy). Vice versa,
it should be possible to include (a reference to) such an information model within the
XML-based RuleML rulebase. Ideally, a 'taxonomy-plus-axioms' ontology should include
both parts on the same level, as pioneered by SHOE and N3.

Implied requirement for RuleML: A RuleML rulebase can either be embedded in an
information model, or its top-level element ("rulebase") can have an attribute that specifies
its context by refering to a respective XML document.

2) We could link to UML classes via RuleML variables: <var> could have an attribute
giving the class constraining it. Also, a DAML+OIL taxonomy could be linked in such a
"sorted logic" manner. We could additionally allow to plug in some other atom-defining
formalism as an option. The "atoms" used in the premise and conclusion of a derivation
rule in the context of a UML class model would then be expressed in OCL. The "atoms"
used in the premise and conclusion of a derivation rule in the context of a DAML+OIL
taxononmy would then be expressed in DAML+OIL RDF.

Implied requirement for RuleML: A separation of concerns: the proper rule language is
more concerned with sentential connectives and rule keywords, than with the language of
"atoms". The language of "atoms" can be called the content language of a RuleML
rulebase. It consists of two layered sublanguages: 1) the predefined constructs of the
chosen metamodel (like UML or RDFS), and 2) the terms defined by the chosen
model/taxononmy.

3) Derivation rules operate on facts that are typically represented in a database, or in an
XML or RDF document.

Valued Sony Customer
 394

Implied requirement for RuleML: It should be possible to include a RuleML rulebase (or
a reference to a RuleML document) within an XML or RDF document. Technically, it is
easy to mix RuleML and other XML namespaces (like for, say, MathML), incl. RDF(S)
namespaces. For this we assume a ruleml: namespace prefix.

Acknowledgements
 Benjamin Grosof, MIT Sloan School of Management, continues to make significant
contributions to RuleML, in particular to its DTDs. Michael Sintek, DFKI, provided a lot
of help and devised the first RuleML querying agent. We acknowledge the remarks of the
SWWS reviewers, which have helped us to improve this paper. Thanks go also to the EU
for funding Harold Boley's research on collaborative Web technologies within the
Clockwork project. The RuleML Initiative has been supported in part by Nisus, Inc. and
DFKI who funded Said Tabet's and Harold Boley's active participation and the inception of
the RuleML effort.

References

 [1] Harold Boley. Relationships Between Logic Programming and RDF. Proc. 1st Pacific Rim
International Workshop on Intelligent Information Agents (PRIIA 2000), University of Melbourne,
Australia, 2000; LNAI volume to be published.

[2] Harold Boley. A Web Data Model Unifying XML and RDF. Working Draft, DFKI Kaiserslautern, July
2001.

[3] A.G. Cohn. On the Solution of Schubert's Steamroller in Many Sorted Logic. IJCAI-85, pages 1169--
1174, 1985.

[4] Stefan Decker and Dan Brickley and Janne Saarela and Juergen Angele. A Query and Inference Service
for RDF. QL'98 - The Query Languages Workshop, World Wide Web Consortium, 1998.

[5] Stefan Decker and Michael Sintek. Triple. RDF Interest Group: Face to face meeting, World Wide
Web Consortium, 2001.

[6] B.N. Grosof. Prioritized Conflict Handling for Logic Programs. Proc. of the Int. Symposium on Logic
Programming (ILPS-97), edited by Jan Maluszynski, MIT Press, Cambridge, MA, USA, 1997.

[7] M. Gelfond and V. Lifschitz. Logic Programs with Classical Negation. Proc. of Int. Conf. on Logic
Programming (ICLP'90), MIT Press, 1990.

[8] H. Herre and G. Wagner. Stable Models are Generated by a Stable Chain. J. of Logic Programming
30:2 (1997), pages 165-177.

[9] A. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics in CARIN. Artificial
Intelligence Journal 104, September 1998.

[10] K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order Stratified Logic
Programs. ACM Transactions on Programming Languages and Systems 20:3, pages 586-634, May
1998.

[11] S. Tabet, P. Bhogaraju and D. Ash. Using XML as a Language Interface for AI Applications.
Proceedings of the Symposium on the Application of Artificial Intelligence in Industry, pages 133-142,
Sixth Pacific Rim International Conference on Artificial Intelligence, Melbourne, Australia, August,
2000.

[12] G. Wagner. A Database Needs Two Kinds of Negation. In B. Thalheim and H.-D. Gerhardt (eds.),
Proc. of the 3rd Symp. on Mathematical Fundamentals of Database and Knowledge Base Systems
(MFDBS'91), LNCS 495, pages 357-371, Springer-Verlag, 1991.

[13] G. Wagner. Foundations of Knowledge Systems - with Applications to Databases and Agents. Kluwer
Acadamic Publishers, 1998.

Valued Sony Customer
 395

Appendix 1: A Semantic Web Scenario in the Insurance Industry

 In this appendix, we provide a Semantic Web scenario applying RuleML in a common
pragmatic situation. After a car accident, one of the questions people are facing is: how
much will my premiums increase and how does this accident affect my insurance policy?
Not all insurance companies follow the same rules or apply the same formula. In the USA
this results in premium increases that can vary from hundreds of dollars to over a thousand.
Many companies follow the Insurance Services Office (ISO) standard of increasing your
premium by 40 percent of their "base rate" after your first at-fault accident. A base rate is
the average amount of all claims paid, plus the insurance company's processing fee. For
example, if your company's base rate is $600, your premium after the accident will go up
by $240.

 In our scenario, Olivia is a teenager who unfortunately has just had her first car accident.
She is insured on her mother's premium family insurance plan. This situation involves two
conflicting rules, as formalized in RuleML below. The first rule, which applies to drivers
under 25 years of age, states that after the accident, Olivia's premium will increase by 40%.
On the other hand, the second rule, applying to drivers on a family plan, states that her
premium will not increase at all after her first accident.

The first rule, applicable to drivers under 25:
<imp>

<_rlab><ind>beginners</ind></_rlab>
<_spriority><ind>0.75</ind></_spriority>
<_head>

<atom>
<_opr><rel>calculatePremium</rel></_opr>
<var>customer</var>
<ind>40</ind>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<var>customer</var>
<var>insurance</var>

</atom>
<atom>

<_opr><rel>lifeEvent</rel></_opr>
<var>customer</var>
<ind>accident</ind>
<var>report</var>

</atom>
<atom>

<_opr><rel>customerUnder25</rel></_opr>
<var>customer</var>

</atom>
</and>

</_body>
</imp>

Valued Sony Customer
 396

The second rule, applicable to drivers with a family plan:
<imp>

<_rlab><ind>family</ind></_rlab>
<_spriority><ind>0.9</ind></_spriority>
<_head>

<atom>
<_opr><rel>calculatePremium</rel></_opr>
<var>customer</var>
<ind>0</ind>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<var>customer</var>
<var>insurance</var>

</atom>
<atom>

<_opr><rel>lifeEvent</rel></_opr>
<var>customer</var>
<ind>accident</ind>
<var>report</var>

</atom>
<atom>

<_opr><rel>FamilyAutoPlan</rel></_opr>
<var>customer</var>
<var>familyauto</var>

</atom>
</and>

</_body>
</imp>

Let us now turn to formalizing the relevant facts.

Olivia is under 25:
<fact>

<_head>
<atom>

<_opr><rel>customerUnder25</rel></_opr>
<ind>Olivia</ind>

</atom>
</_head>

</fact>

The following RDF-like RuleML facts permit to prove further premises of the above rules
and also provide metadata descriptions for the required documents referenced and retrieved
by URIs.

Olivia has an insurance policy and this document has link .../IMA-0835:
<fact>

<_head>
<atom>

<_opr><rel>InsurancePolicy</rel></_opr>
<ind>Olivia</ind>
<ind href="http://www.BostonInsurance.com/policy/IMA-0835"/>

</atom>
</_head>

</fact>

Valued Sony Customer
 397

Olivia is in a family auto plan and this document has link .../FMA-0142:

<fact>
<_head>

<atom>
<_opr><rel>FamilyAutoPlan</rel></_opr>
<ind>Olivia</ind>
<ind href="http://www.BostonInsurance.com/plan/FMA-0142"/>

</atom>
</_head>

</fact>

Olivia's accident report is available at TrafficReport.biz:

<fact>
<_head>

<atom>
<_opr><rel>lifeEvent</rel></_opr>
<ind>Olivia</ind>
<ind>accident</ind>
<ind href="http://www.TrafficReport.biz/MA/report0712"/>

</atom>
</_head>

</fact>

The 'metafact' below is used to resolve the conflict between rule beginners and rule family
(cf. section Priorities/Evidences in RuleML):

<fact>
<_head>

<atom>
<_opr><rel>Overrides</rel></_opr>
<ind>family</ind>
<ind>beginners</ind>

</atom>
</_head>

</fact>

 The rulebase presented in this example illustrates the use of Web-based documents in
rules for matching and inferencing. In this example, we also show how priorities can be
applied to rules. The Overrides fact above will allow rule family to fire as a higher priority
rule and save Olivia a good amount of money: her premium will not increase.

Valued Sony Customer
 398

Appendix 2: DTD for a Datalog Subset of RuleML

<!-- An XML DTD for a Datalog RuleML Sublanguage: Monolith Version -->
<!-- Last Modification: 2001-07-07 -->

<!-- ELEMENT Declarations -->

<!-- 'rulebase' root element uses 'imp' rules and 'fact' assertions on top-level -->
<!ELEMENT rulebase ((imp | fact)*)>

<!-- 'imp' rules are usable as general implications on the top-level -->
<!-- 'imp' element uses a conclusion role _head before a premise role _body, or -->
<!-- uses a premise role _body before a conclusion role _head -->
<!ELEMENT imp ((_head, _body) | (_body, _head))>

<!-- 'fact' assertions are usable as degenerate rules on the top-level -->
<!-- 'fact' element uses just a conclusion role _head -->
<!-- "<fact>_head</fact>" stands for "_head is implied by true" -->
<!ELEMENT fact (_head) >

<!-- _head role is usable within 'imp' rules and 'fact' assertions -->
<!-- _body role is usable within 'imp' rules -->
<!-- _head uses an atomic formula -->
<!-- _body uses an atomic formula or an 'and' -->
<!ELEMENT _head (atom)>
<!ELEMENT _body (atom | and)>

<!-- an 'and' is usable within _body's -->
<!-- 'and' uses zero or more atomic formulas -->
<!-- "<and>atom</and>" is equivalent to "atom"-->
<!-- "<and></and>" is equivalent to "true"-->
<!ELEMENT and (atom*)>

<!-- atomic formulas are usable within _head's, _body's, and 'and's -->
<!-- atom element uses an: -->
<!-- _opr ("operator of relations") role followed by zero or more arguments, or -->
<!-- one or more argument followed by an _opr role -->
<!-- the arguments may be ind(ividual)s or var(iable)s -->
<!ELEMENT atom ((_opr, (ind | var)*) | ((ind | var)+, _opr))>

<!-- _opr is usable within atoms -->
<!-- _opr uses rel(ation) symbol -->
<!ELEMENT _opr (rel)>

<!-- there is one kind of fixed argument -->
<!-- individual constant, as in predicate logic -->
<!ELEMENT ind (#PCDATA)>

<!-- there is one kind of variable argument -->
<!-- logical variable, as in logic programming -->
<!ELEMENT var (#PCDATA)>

<!-- there are only fixed (first-order) relations -->
<!-- relation or predicate symbol -->

<!ELEMENT rel (#PCDATA)>

Valued Sony Customer
 399

Appendix 3: Example RuleML Document: A Rulebase own.ruleml

<?xml version="1.0" standalone="no"?>
<!DOCTYPE rulebase SYSTEM "http://www.dfki.de/ruleml/dtd/0.8/ruleml-datalog-monolith.dtd">
<rulebase>

<!-- start XML comment ...
This example rulebase contains four rules. The first and second rules are implications; the third and
fourth ones are facts.

The first rule implies that a person owns an object if that person buys the object from a merchant and
the person keeps the object.

As an OrdLab Tree:

imp
|

--
* *

head * body *
* *
* *

atom and
| |

------------- ------------------------------
* | | | |

opr * | | | |
* | | | |

rel var var atom atom
. . . | |
. . . --------------------- --------------
. . . * | | | * | |
. . . opr * | | | opr * | |
. . . * | | | * | |

own person object rel var var var rel var var
.
.
.

buy person merchant object keep person object

... end XML comment -->

<imp>
 <_head>
 <atom>
 <_opr><rel>own</rel></_opr>
 <var>person</var>
 <var>object</var>
 </atom>
 </_head>
 <_body>
 <!-- explicit 'and' -->
 <and>
 <atom>
 <_opr><rel>buy</rel></_opr>
 <var>person</var>
 <var>merchant</var>
 <var>object</var>
 </atom>
 <atom>
 <_opr><rel>keep</rel></_opr>
 <var>person</var>
 <var>object</var>
 </atom>
 </and>

Valued Sony Customer
 400

 </_body>
</imp>

<!-- The second rule implies that a person buys an object from a merchant
if the merchant sells the object to the person. -->

<imp>
 <_head>
 <atom>
 <_opr><rel>buy</rel></_opr>
 <var>person</var>
 <var>merchant</var>
 <var>object</var>
 </atom>
 </_head>
 <_body>
 <atom>
 <_opr><rel>sell</rel></_opr>
 <var>merchant</var>
 <var>person</var>
 <var>object</var>
 </atom>
 </_body>
</imp>

<!-- The third rule is a fact that asserts that John sells XMLBible to Mary. -->

<fact>
 <_head>
 <atom>
 <_opr><rel>sell</rel></_opr>
 <ind>John</ind>
 <ind>Mary</ind>
 <ind>XMLBible</ind>
 </atom>
 </_head>
</fact>

<!-- The fourth rule is a fact that asserts that Mary keeps XMLBible.

Observe that this fact is binary - i.e., there are two arguments for the relation. RDF viewed as a logical
knowledge representation is, likewise, binary, although its arguments have type restrictions,
e.g., the first must be a resource (basically, a URI). Some of the DTD's on the RuleML website handle
URL's/URI's (UR's); see especially urc-datalog.dtd for inferencing with RDF-like facts

-->

<fact>
 <_head>
 <atom>
 <_opr><rel>keep</rel></_opr>
 <ind>Mary</ind>
 <ind>XMLBible</ind>
 </atom>
 </_head>
</fact>
</rulebase>

Valued Sony Customer
 401

Valued Sony Customer
 402

Enabling Semantic Web Programming by
Integrating RDF and Common Lisp

Ora Lassila

Nokia Research Center, 5 Wayside Road, Burlington, Massachusetts, USA

Abstract: This paper introduces “Wilbur”, an RDF and DAML toolkit implemented in

Common Lisp. Wilbur exposes the RDF data model as a frame-based representation system;
an object-oriented view of frames is adopted, and RDF data is integrated with the host lan-

guage by addressing issues of input/output, data structure compatibility, and error signaling.
Through seamless integration we have achieved a programming system well suited for

building “Semantic Web” applications.

1. Introduction

Common Lisp [24] is a programming language that has enjoyed great popularity in the AI
community. Despite its somewhat waning use, it can still be considered one of the most exp-
ressive mainstream programming languages. Because of its somewhat unique integration of

rich data structures with the language itself, Common Lisp offers the interesting possibility of
integrating RDF [18, 19] and DAML [10, 11] data with a programming language, therefore
making it easier to build software that takes advantage of the “Semantic Web” [3].

This paper will discuss “Wilbur”, a Common Lisp -based open source toolkit for RDF and
DAML. Wilbur includes an API (Application Programming Interface) which allows the un-
derlying RDF data to be treated as a frame system, essentially providing an object-oriented
view of the data. The relationship between frame-based representation, object-oriented model-
ing, and RDF is straightforward [20], but an even more interesting aspect is the synergistic po-
tential of integrating a programming language with a frame system [15]. Many frame systems
have offered some type of programming support such as access-oriented behavior [e.g., 13,
pp.30-32] or some other type of “slot daemons” (for example, both CRL and KEE allowed a

Lisp function to be invoked when certain operations were being performed on a slot). Tight in-
tegration, however, would in practice have to involve not only integration of the frame system's
and the programming language's type systems, but also leveraging the programming language's
native programming model and facilities (such as method invocation).

2. RDF Toolkits

RDF data consists of nodes and attached attribute/value pairs. Nodes can be any Web re-
sources, including other RDF nodes. Attributes are named properties of nodes, and their values
are either atomic (text strings) or other nodes. The essence of RDF is this model of nodes,
properties and their values. In addition to the node-centric view the RDF model can be seen as

Valued Sony Customer
 403

directed, labeled graphs (DLGs). The nodes are the vertices of a graph, and the properties name
the edges. Therefore, if X has a property Y with the value Z, we can think of X and Z linked by
an edge labeled Y, pointing from X to Z.

To make construction of “RDF-savvy” software easier, a number of RDF toolkits have recently
appeared, offering functionality that goes beyond mere parsing. Examples of these toolkits are

Redland [2], Jena [21], and the ICS-FORTH RDFSuite [1]. These toolkits are typically imple-
mented in either Java or C/C++.

“Wilbur” is Nokia Research Center's open source toolkit for RDF and DAML, written in
Common Lisp. Like other RDF toolkits, it offers an API for manipulating RDF data (graphs,
nodes, etc.) as well as parsing functionality (parsers not only for XML-encoded RDF and
DAML but also for “plain” XML [5] since one written in Common Lisp did not exist when the
Wilbur project was started1; it also offers a simple HTTP client API for accessing remote URLs
for the same reason). Wilbur also offers a frame system API on top of the RDF data API, in-
cluding a simple query language. Wilbur strives for tight integration of RDF data with the in-
trinsic features of Common Lisp.

Generally, Wilbur implements the RDF data model by providing four abstract interfaces (and

their concrete implementations):

1. The class node represents nodes of an RDF graph. Each node may have a URI (Univer-
sal Resource Identifier) string associated with it, in which case we consider the node to
be named; nodes without a URI are called anonymous (the reader is referred to the dis-
cussion of URIs and their printed representation below).

2. A mapping from URI strings to nodes is provided by the class dictionary. The sys-
tem uses a single default dictionary where all named nodes are placed. The unique
mapping from URI strings to node instances allows us to implement strict read/print

correspondence for nodes (described below).

3. The class triple represents labeled arcs of an RDF graph. A triple consists of a sub-

ject (a node instance), a predicate (also a node instance), and an object (either a node

instance or a string, although in the current implementation any Common Lisp object
can be used); each triple also has an associated source (also a node instance), desig-
nating the file or HTTP URL from which the triple was originally parsed.

4. Collections of triples are stored in databases (instances of class db). The upper level
API of the system assumes a single default database, but also exposes a lower-level API
where the database can be specified explicitly (allowing software to be constructed
which makes use of multiple databases). Simple query functionality is provided for se-

1 Wilbur’s XML parser (written in Common Lisp) has an interface similar to SAX 1 [22]. The parser was written

with RDF’s needs in mind and does not, for example, support DTDs (except for entity declarations).

Valued Sony Customer
 404

lecting triples from a database, similar to the “find” interface of the Stanford RDF API
[23] (not to be confused with the Wilbur frame query language described later).

For debugging purposes, the object inspector of the Macintosh Common Lisp was extended to
allow easy browsing of RDF graphs.2

3. Integration Issues

Our two previous frame systems, BEEF [12, 16] and PORK [17], both addressed the issue of
integrating object-oriented programming with frame-based representation. BEEF (which pre-
dated practical implementations of the Common Lisp Object System) added object-oriented
programming features to a frame system, whereas PORK approached the issue from the oppo-
site direction by taking an object-oriented programming language and adding features of frame-
based representation to it; PORK used the Common Lisp metaobject protocol [14] to extend the
Common Lisp Object System (CLOS).

Wilbur, as a frame system API overlaid on RDF, takes a lower-level approach to integration, by
allowing manipulation of RDF graphs. Future development may still address programming is-
sues taking either the “BEEF-approach” (adding programming features to a frame system) or
the “PORK-approach” (adding frame features to a programming language). In Wilbur, the

RDF/CLOS integration focuses on the following areas:

• ease of use of Common Lisp data structures with RDF,

• issues of input and output of RDF data in a “Common Lisp -friendly” manner, and

• the use of the Common Lisp condition mechanism for signaling unexpected situations.

3.1. Reading and Printing RDF Data

To be able to use RDF data seamlessly in an interactive Common Lisp environment, this data
must have a printed representation which can be read back into a Common Lisp system. Com-
mon Lisp defines this quality, known as read/print correspondence [24, p.509], as follows:

“Ideally, one could print a LISP object and then read the printed representation back in,
and so obtain the same identical object. In practice this is difficult and for some pur-
poses not even desirable. Instead, reading a printed representation produces an object

that is (with obscure technical exceptions) equal3 to the originally printed object.”

The former approach is called “strict read/print correspondence” and the latter “non-strict”;
many Common Lisp data structures (such as lists and strings) are non-strict, whereas some
(such as symbols) are strict. Wilbur provides strict read/print correspondence for nodes.

2 Similar to BBN’s DAML Viewer [7]

3 equal is a Common Lisp predicate for structural similarity.

Valued Sony Customer
 405

URIs are used internally throughout Wilbur: they give unique identity to nodes. In order to
avoid having to write (and read) full URIs, which typically are rather long, the system provides
an abbreviated syntax, based on the idea of namespace-qualified names in XML [4]. For exam-
ple, if we introduce a mapping for the prefix “foo” as follows:

"foo" → "http://foo.com/schema#"

then we have

"foo:bar" → "http://foo.com/schema#bar"

Although the XML namespace specification does not specifically define concatenating the ex-
panded form of the prefix with the name part, Wilbur adopts the RDF convention of turning
each qualified name into a single (concatenated) URI string.

Wilbur uses the Common Lisp read macro mechanism to incorporate the expansion of abbrevi-
ated URIs into the reader (i.e., the Common Lisp parser). Any expression of the form
!foo:bar is turned into an instance of Wilbur's node class and placed into a dictionary which
maps URI strings to node instances. This allows references to nodes to be embedded in Com-

mon Lisp source files, thus enabling one to embed RDF Data in compiled (binary) files. Wilbur
uses the notion of a “forward reference” to a node in cases where the abbreviated URI could
not be resolved. When a missing prefix-to-URI mapping is introduced, the system updates the
affected nodes by resolving the URIs. This approach is similar to the forward reference model
of PORK which allowed one to easily construct circular data structures without having to worry
about the order in which named objects were introduced [17].

For printing data structures, Common Lisp defines [24, p.510] that

“When print produces a printed representation, it must choose arbitrarily from among
many printed representations. It attempts to choose one that is readable.”

The print-object method for the Wilbur node class uses any existing prefix-to-URI map-
ping to determine a possible abbreviated form of a node's URI, and subsequently produces a

printed representation which can be read in if necessary.

The Wilbur toolkit has two separate parsers, one conforming to the RDF Model and Syntax
specification [19] and another conforming to the DAML+OIL reference description [11]. The
RDF parser supports all features4 of the specification, including reification of complete de-
scriptions, reification of individual statements, and the attribute namespace ambiguity. The
parser is “near-streaming” and is internally based on a state machine where SAX-like parsing
events serve as transition inputs.

4 Except “rdf:aboutEachPrefix” which probably no-one supports.

Valued Sony Customer
 406

The DAML parser (class daml-parser) is implemented as an extension of the RDF parser
(i.e., as a subclass of rdf-parser) and adds support for the DAML collection syntax specified
using rdf:parseType="daml:collection".

3.2. Integrating Data Structures

The Wilbur frame API itself is quite simple, basically offering functions for creating frames,

for adding values to a slot, for deleting values from a slot, and for reading a slot’s values.
Frames in Wilbur form graphs when slot values are other frames. Wilbur introduces a query
language for selecting subgraphs from these graphs (in other words selecting sets of nodes from
RDF graphs). Query expressions are patterns expressed as regular expressions with arc labels
(slots, i.e., RDF properties) as atoms, using the following operators and “pseudo-labels”:

• Sequence: the operator :seq matches a sequence of n steps in the graph, consisting of
subexpressions e1,e2,...,en; the operator :seq+ is similar except any sequence e1,e2,...,ek

for k in [1...n] will match.

• Disjunction: the operator :or matches any one of n subexpressions e1,e2,...,en.

• Repetition: the operator :rep* matches the transitive closure of subexpression e; the
operator :rep+ is the same as (:seq e (:rep* e)).

• Inverse: satisfaction of (:inv e) requires the path defined by the subexpression e to
be matched in reverse direction.

• Container membership: the atom :members will match any of the rdf:_1, rdf:_2,
rdf:_3, etc. container membership properties.

• Wildcard: the atom :any will match any label.

The Wilbur query language is similar to the BEEF path grammar [16] which, in turn, was a
simplification of the CRL path grammar [8, 9]. Given a “root” node (i.e., a search start point)
and a path (a query expression), Wilbur provides functions for retrieving either the first reach-
able node or all reachable nodes, and for determining whether a path exists between two speci-
fied nodes. These functions make it easy to turn RDF graphs into Common Lisp list structures.
For example, given a DAML collection (constructed as a “dotted-pair” list using the properties
daml:first and daml:rest), the following query expression will turn it into a Common
Lisp list:

(:seq (:rep* !daml:rest) !daml:first)

As mentioned before, the Wilbur DAML parser supports the DAML collection syntax and cor-
rectly generates dotted-pair lists.

3.3. Dealing with Unexpected Situations

The Common Lisp condition system is a powerful mechanism for raising signals when unex-
pected situations are encountered. When a condition is signaled, instead of reporting an error,

Valued Sony Customer
 407

the calling program may choose to catch the signal and allow the execution to continue on from
the point where the signal was raised (or caught). Wilbur defines a rich taxonomy of classes for
various types of unexpected conditions, and takes full advantage of the condition system’s
ability to “ignore” errors. The following figure illustrates this taxonomy (note that condition
classes in the “nox” package are generated by the XML parser):

nox:xml-error

nox:syntax-error

nox:pi-termination-problem

nox:dtd-termination-problem

nox:unexpected-end-tag

nox:unknown-declaration

nox:unknown-character-reference

nox:malformed-url

nox:feature-not-supported

nox:missing-definition
nox:missing-entity-definition

nox:missing-namespace-definition

rdf-error

feature-not-supported

about-and-id-both-present

unknown-parsetype

illegal-character-content

container-required

out-of-sequence-index

duplicate-namespace-prefix

cannot-merge

As a general rule, all errors of the XML parser are signaled as “non-continuable” (i.e., they
abort parsing) whereas all errors of the RDF and DAML parsers are signaled as “continuable”

(using the Common Lisp function cerror) and allow parsing to continue if the user or the
calling program so chooses. The rich taxonomy allows fine-grained mapping of errors to reme-
dial behaviors.

4. Future Work

Several additional features of the toolkit are currently at an experimental stage. These include
an RDF serializer, capable of producing textual XML from triple databases, and a schema vali-

dator, capable of checking triple database consistency against the constraints defined by the
RDF Schema specification [6].

Both the serializer and the validator make extensive use of the query language. For example, in
order to find out whether a slot value (here denoted by x) satisfies the (disjunctive) range con-
straints of a property (here denoted by p), the following query can be executed:

Valued Sony Customer
 408

(relatedp x
 '(:seq !rdf:type
 (:rep* !rdfs:subClassOf)
 (:inv !rdfs:range)
 (:rep* (:inv !rdfs:subPropertyOf)))
 p)

Note that the call (relatedp A B C) determines whether node C can be reached from node
A via path B.

In addition to RDF 1.0 and DAML+OIL, Wilbur will have “plug-in” parsers for the “RDF-like”
DMoz Open Directory format and for the alternate RDF syntax “N3”.

Other future work will focus on DAML and supporting requirements of the DAML community
(for example, we are working on an OKBC interface to the Wilbur frame system), as well as
supporting changes introduced by the W3C RDF Core Working Group for the next version of
RDF.

5. Conclusions

The Wilbur toolkit attempts to create a programming environment for RDF and DAML by
closely integrating some of the representational features with the programming features pro-

vided by Common Lisp and CLOS. Issues in integrating input and output of RDF data are ad-
dressed, as well as compatibility of RDF and Common Lisp data structures. A query language
is introduced to make it easier to select parts of RDF graphs and convert them to Common Lisp
data structures.

Exposing RDF as a frame system and allowing programmers to use the full power of Common
Lisp makes it easier to create “Semantic Web” applications. Using the frame paradigm also
makes it easier to understand RDF (and data models expressed using RDF).

References
[1] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, and Karsten Tolle: “The ICS-

FORTH RDFSuite: Managing Voluminous RDF Description Bases”, in: S.Staab et al (eds.): “Proceedings of the Sec-

ond International Workshop on the Semantic Web”, May 2001

[2] David Beckett: “The Design and Implementation of the Redland RDF Application Framework”, in: Proceedings of the
Tenth International World Wide Web Conference, WWW10, May 2001

[3] Tim Berners-Lee, James Hendler, and Ora Lassila: “The Semantic Web”, Scientific American, May 2001

[4] Tim Bray, Dave Hollander, and Andrew Layman: "Namespaces in XML", W3C Recommendation, World Wide Web
Consortium, January 1999

[5] Tim Bray, Jean Paoli, C.M.Sperberg-McQueen, and Eve Maler: "Extensible Markup Language (XML) 1.0 (Second
Edition)", W3C Recommendation, World Wide Web Consortium, October 2000

[6] Dan Brickley & R.V.Guha: "Resource Description Framework (RDF) Schema Specification 1.0", W3C Candidate
Recommendation, World Wide Web Consortium, March 2000

[7] Mike Dean & Kelly Barber: “DAML Viewer”, www.daml.org/viewer/

Valued Sony Customer
 409

[8] Mark S. Fox: “Knowledge Representation for Decision Support”, in: L.B.Methlie & R.H.Sprague (eds.): “Knowledge
Representation for Decision Support Systems”, Elsevier, 1985

[9] Mark S. Fox, J.Wright, and D.Adam: “Experiences with SRL: An analysis of a frame-based knowledge representation”,
in: Expert Database Systems, Benjamin/Cummings, 1985

[10] James Hendler & Deborah L. McGuinness: “DARPA Agent Markup Language”, IEEE Intelligent Systems 15(6):72-73

[11] Frank van Harmelen, Peter F. Patel-Schneider and Ian Horrocks (eds.): "Reference description of the DAML+OIL
(March 2001) ontology markup language", working document of the DARPA Agent Markup Language program,

March 2001

[12] Juha Hynynen & Ora Lassila: “On the Use of Object-Oriented Paradigm in a Distributed Problem Solver”, AI Commu-
nications 2(3):142-151, 1989

[13] Peter D. Karp: “The design space of frame knowledge representation systems”, Technical Report 520, SRI International
AI Center, 1992

[14] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow: “The Art of the Metaobject Protocol”, MIT Press, 1991

[15] Ora Lassila: “Frames or Objects, or Both?”, Workshop Notes from the Eight National Conference on Artificial Intelli-
gence (AAAI-90): Object-Oriented Programming in AI, American Association for Artificial Intelligence, July 1990

(also Report HTKK-TKO-B67, Department of Computer Science, Helsinki University of Technology, 1990)

[16] Ora Lassila: “BEEF Reference Manual - A Programmer's Guide to the BEEF Frame System”, Second Version, Report
HTKK-TKO-C46, Department of Computer Science, Helsinki University of Technology, 1991

[17] Ora Lassila: "PORK Object System Programmer's Guide", Report CMU-RI-TR-95-12, The Robotics Institute, Carne-
gie Mellon University, 1995

[18] Ora Lassila: “Web Metadata: A Matter of Semantics”, IEEE Internet Computing 2(4):30-37

[19] Ora Lassila & Ralph R. Sw ick: "Resource Description Framework (RDF) Model and Syntax Specification", W3C
Recommendation, World Wide Web Consortium, February 1999

[20] Ora Lassila & Deborah L. McGuinness: "The Role of Frame-Based Representation on the Semantic Web", Report
KSL-01-02, Knowledge Systems Laboratory, Stanford University, 2001

[21] Brian McBride: “Jena: Implementing the RDF Model and Syntax Specification”, in: Steffen Staab et al (eds.): “Pro-
ceedings of the Second International Workshop on the Semantic Web - SemWeb'2001”, May 2001

[22] David Megginson: “SAX 1.0: The Simple API for XML”, www.megginson.com/SAX/SAX1/

[23] Sergey Melnik: "RDF API Draft", working document, Stanford University, 1999

[24] Guy L. Steele, Jr: “Common Lisp - the Language, 2nd ed.”, Digital Press, 1990

Acknowledgements

The author would like to thank the following individuals for their advice during the Wilbur

project and during the preparation of this article: Jessica Jenkins, Marcia Lassila and Louis
Theran, as well as the three anonymous reviewers whose suggestions proved invaluable.

Although portable to any Common Lisp platform, the Wilbur toolkit was developed entirely
using Digitool’s “Macintosh Common Lisp” (which the author considers to be a fantastic soft-
ware development environment).

Wilbur is an open source software project. More information about the project is available at
http://purl.org/NET/wilbur/.

Valued Sony Customer
 410

DAML-S: Semantic Markup For Web Services

The DAML Services Coalition:
Anupriya Ankolekar� , Mark Burstein� , Jerry R. Hobbs�, Ora Lassila�,

David L. Martin�, Sheila A. McIlraith�, Srini Narayanan� , Massimo Paolucci�,
Terry Payne�, Katia Sycara�, Honglei Zeng���

Abstract.
The Semantic Web should enable greater access not only to content but also

to services on the Web. Users and software agents should be able to discover,
invoke, compose, and monitor Web resources offering particular services and
having particular properties. As part of the DARPA Agent Markup Language
program, we have begun to develop an ontology of services, called DAML-
S, that will make these functionalities possible. In this paper we describe the
overall structure of the ontology, the service profile for advertising services,
and the process model for the detailed description of the operation of services.
We also compare DAML-S with several industry efforts to define standards for
characterizing services on the Web.

1 Introduction: Services on the Semantic Web

Efforts toward the creation of the Semantic Web are gaining momentum [2]. Soon it will be possible to
access Web resources by content rather than just by keywords. A significant force in this movement is
the development of DAML—the DARPA Agent Markup Language [10]. DAML enables the creation of
ontologies for any domain and the instantiation of these ontologies in the description of specific Web sites.

Among the most important Web resources are those that provide services. By “service” we mean Web
sites that do not merely provide static information but allow one to effect some action or change in the
world, such as the sale of a product or the control of a physical device. The Semantic Web should enable
users to locate, select, employ, compose, and monitor Web-based services automatically.

To make use of a Web service, a software agent needs a computer-interpretable description of the
service, and the means by which it is accessed. An important goal for DAML, then, is to establish a
framework within which these descriptions are made and shared. Web sites should be able to employ
a set of basic classes and properties for declaring and describing services, and the ontology structuring
mechanisms of DAML provide the appropriate framework within which to do this.

This paper describes a collaborative effort by BBN Technologies, Carnegie Mellon University, Nokia,
Stanford University, and SRI International to define just such an ontology. We call this language DAML-S.
We first motivate our effort with some sample tasks. In the central part of the paper we describe the upper
ontology for services that we have developed, including the ontologies for profiles, processes, and time,
and thoughts toward a future ontology of process control. We then compare DAML-S with a number of
recent industrial efforts to standardize a markup language for services.

�The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
�BBN Technologies, Cambridge, Massachusetts
�Artificial Intelligence Center, SRI International, Menlo Park, California
�Nokia Research Center, Burlington, Massachusetts
�Knowledge Systems Laboratory, Stanford University, Stanford, California
�Authors’ names are in alphabetical order.

Valued Sony Customer
 411

2 Some Motivating Tasks

Services can be simple or primitive in the sense that they invoke only a single Web-accessible computer
program, sensor, or device that does not rely upon another Web service, and there is no ongoing interaction
between the user and the service, beyond a simple response. For example, a service that returns a postal
code or the longitude and latitude when given an address would be in this category. Alternately, services
can be complex, composed of multiple primitive services, often requiring an interaction or conversation
between the user and the services, so that the user can make choices and provide information condition-
ally. One’s interaction with www.amazon.com to buy a book is like this; the user searches for books by
various criteria, perhaps reads reviews, may or may not decide to buy, and gives credit card and mailing
information. DAML-S is meant to support both categories of services, but complex services have provided
the primary motivations for the features of the language. The following four sample tasks will give the
reader an idea of the kinds of tasks we expect DAML-S to enable [13, 14].

1. Automatic Web service discovery. Automatic Web service discovery involves the automatic loca-
tion of Web services that provide a particular service and that adhere to requested constraints. For
example, the user may want to find a service that sells airline tickets between two given cities and
accepts a particular credit card. Currently, this task must be performed by a human who might use
a search engine to find a service, read the Web page, and execute the service manually, to determine
if it satisfies the constraints. With DAML-S markup of services, the information necessary for Web
service discovery could be specified as computer-interpretable semantic markup at the service Web
sites, and a service registry or ontology-enhanced search engine could be used to locate the services
automatically. Alternatively, a server could proactively advertise itself in DAML-S with a service
registry, also called middle agent [4, 24, 12], so that requesters can find it when they query the reg-
istry. Thus, DAML-S must provide declarative advertisements of service properties and capabilities
that can be used for automatic service discovery.

2. Automatic Web service invocation. Automatic Web service invocation involves the automatic
execution of an identified Web service by a computer program or agent. For example, the user could
request the purchase of an airline ticket from a particular site on a particular flight. Currently, a user
must go to the Web site offering that service, fill out a form, and click on a button to execute the
service. Alternately the user might send an HTTP request directly to the service with the appropriate
parameters in HTML. In either case, a human in the loop is necessary. Execution of a Web service
can be thought of as a collection of function calls. DAML-S markup of Web services provides a
declarative, computer-interpretable API for executing these function calls. A software agent should
be able to interpret the markup to understand what input is necessary to the service call, what
information will be returned, and how to execute the service automatically. Thus, DAML-S should
provide declarative APIs for Web services that are necessary for automated Web service execution.

3. Automatic Web service composition and interoperation. This task involves the automatic se-
lection, composition and interoperation of Web services to perform some task, given a high-level
description of an objective. For example, the user may want to make all the travel arrangements
for a trip to a conference. Currently, the user must select the Web services, specify the composition
manually, and make sure that any software needed for the interoperation is custom-created. With
DAML-S markup of Web services, the information necessary to select and compose services will
be encoded at the service Web sites. Software can be written to manipulate these representations,
together with a specification of the objectives of the task, to achieve the task automatically. Thus,
DAML-S must provide declarative specifications of the prerequisites and consequences of individ-
ual service use that are necessary for automatic service composition and interoperation.

Valued Sony Customer
 412

4. Automatic Web service execution monitoring. Individual services and, even more, compositions
of services, will often require some time to execute completely. Users may want to know during this
period what the status of their request is, or their plans may have changed requiring alterations in the
actions the software agent takes. For example, users may want to make sure their hotel reservation
has already been made. For these purposes, it would be good to have the ability to find out where
in the process the request is and whether any unanticipated glitches have appeared. Thus, DAML-S
should provide descriptors for the execution of services. This part of DAML-S is a goal of ours, but
it has not yet been defined.

Any Web-accessible program/sensor/device that is declared as a service will be regarded as a service.
DAML-S does not preclude declaring simple, static Web pages to be services. But our primary motivation
in defining DAML-S has been to support more complex tasks like those described above.

3 An Upper Ontology for Services

The class Service stands at the top of a taxonomy of services, and its properties are the properties normally
associated with all kinds of services. The upper ontology for services is silent as to what the particular
subclasses of Service should be, or even the conceptual basis for structuring this taxonomy, but it is
expected that the taxonomy will be structured according to functional and domain differences and market
needs. For example, one might imagine a broad subclass, B2C-transaction, which would encompass
services for purchasing items from retail Web sites, tracking purchase status, establishing and maintaining
accounts with the sites, and so on.

Our structuring of the ontology of services is motivated by the need to provide three essential types of
knowledge about a service (shown in figure 1), each characterized by the question it answers:

� What does the service require of the user(s), or other agents, and provide for them? The answer to
this question is given in the “profile7.” Thus, the class Service presents a ServiceProfile

� How does it work? The answer to this question is given in the “model.” Thus, the class Service is
describedBy a ServiceModel

� How is it used? The answer to this question is given in the “grounding.” Thus, the class Service
supports a ServiceGrounding

The properties presents, describedBy, and supports are properties of Service. The classes ServicePro-
file, ServiceModel, and ServiceGrounding are the respective ranges of those properties. We expect that
each descendant class of Service, such as B2C-transaction, will present a descendant class of Service-
Profile, be describedBy a descendant class of ServiceModel, and support a descendant class of Service-
Grounding. The details of profiles, models, and groundings may vary widely from one type of service to
another—that is, from one descendant class of Service to another. But each of these three classes provides
an essential type of information about the service, as characterized in the rest of the paper.

The service profile tells “what the service does”; that is, it gives the type of information needed by
a service-seeking agent to determine whether the service meets its needs (typically such things as input
and output types, preconditions and postconditions, and binding patterns). In future versions, we will
use logical rules or their equivalent in such a specification for expressing interactions among parameters.
For instance, a rule might say that if a particular input argument is bound in a certain way, certain other
input arguments may not be needed, or may be provided by the service itself. As DAML and DAML-S

�A service profile has also been called service capability advertisement [20].

Valued Sony Customer
 413

ppreresese
nentsts

supupppportrt

(how to
cce

ses

w at it doeses)

ib

dbyby

ow
it workrks)

ServiceModel

ServiceGrounding

ServiceProfile
Resource

Service

ppr v eses

Figure 1: Top level of the service ontology

and their applications evolve, logical rules and inferential approaches enabled by them are likely to play
an increasingly important role in models and groundings, as well as in profiles. See [5] for additional
examples.

The service model tells “how the service works”; that is, it describes what happens when the service is
carried out. For non-trivial services (those composed of several steps over time), this description may be
used by a service-seeking agent in at least four different ways: (1) to perform a more in-depth analysis of
whether the service meets its needs; (2) to compose service descriptions from multiple services to perform
a specific task; (3) during the course of the service enactment, to coordinate the activities of the different
participants; (4) to monitor the execution of the service. For non-trivial services, the first two tasks require
a model of action and process, the last two involve, in addition, an execution model.

A service grounding (“grounding” for short) specifies the details of how an agent can access a service.
Typically a grounding will specify a communications protocol (e.g., RPC, HTTP-FORM, CORBA IDL,
SOAP, Java RMI, OAA ACL [12]), and service-specific details such as port numbers used in contacting
the service. In addition, the grounding must specify, for each abstract type specified in the ServiceModel,
an unambiguous way of exchanging data elements of that type with the service (that is, the marshal-
ing/serialization techniques employed). The likelihood is that a relatively small set of groundings will
come to be widely used in conjunction with DAML services. Groundings will be specified at various
well-known URIs.

Generally speaking, the ServiceProfile provides the information needed for an agent to discover a
service. Taken together, the ServiceModel and ServiceGrounding objects associated with a service provide
enough information for an agent to make use of a service.

The upper ontology for services deliberately does not specify any cardinalities for the properties
presents, describedBy, and supports. Although, in principle, a service needs all three properties to be
fully characterized, it is possible to imagine situations in which a partial characterization could be use-
ful. Hence, there is no specification of a minimum cardinality. Further, it should certainly be possible
for a service to offer multiple profiles, multiple models, and/or multiple groundings. Hence, there is no
specification of a maximum cardinality.

In general, there need not exist a one-to-one correspondence between profiles, models, and/or ground-
ings. The only constraint among these three characterizations that might appropriately be expressed at the
upper level ontology is that for each model, there must be at least one supporting grounding.

In the following two sections we discuss the service profile and the service model in greater detail

Valued Sony Customer
 414

(Service groundings are not discussed further, but will be covered in greater depth in a subsequent publi-
cation.)

4 Service Profiles

A service profile provides a high-level description of a service and its provider [21, 20]; it is used to
request or advertise services with discovery/location registries. Service profiles consist of three types of
information: a human readable description of the service; a specification of the functionalities that are
provided by the service; and a host of functional attributes which provide additional information and
requirements about the service that assist when reasoning about several services with similar capabilities.
Service functionalities are represented as a transformation from the inputs required by the service to the
outputs produced. For example, a news reporting service would advertise itself as a service that, given a
date, will return the news reported on that date. Functional attributes specify additional information about
the service, such as what guarantees of response time or accuracy it provides, or the cost of the service.

While service providers use the service profile to advertise their services, service requesters use the
profile to specify what services they need and what they expect from such a service. For instance, a
requester may look for a news service that reports stock quotes with no delay with respect to the market.
The role of the registries is to match the request against the profiles advertised by other services and
identify which services provide the best match.

Implicitly, the service profiles specify the intended purpose of the service, because they specify only
those functionalities that are publicly provided. A book-selling service may involve two different func-
tionalities: it allows other services to browse its site to find books of interest, and it allows them to buy
the books they found. The book-seller has the choice of advertising just the book-buying service or both
the browsing functionality and the buying functionality. In the latter case the service makes public that it
can provide browsing services, and it allows everybody to browse its registry without buying a book. In
contrast, by advertising only the book-selling functionality, but not the browsing, the agent discourages
browsing by requesters that do not intend to buy. The decision as to which functionalities to advertise
determines how the service will be used: a requester that intends to browse but not to buy would select a
service that advertises both buying and browsing capabilities, but not one that advertises buying only.

The service profile contains only the information that allows registries to decide which advertisements
are matched by a request. To this extent, the information in the profile is a summary of the information in
the process model and service grounding. Where, as in the above example, the service does not advertise
some of its functionalities, they will not be part of the service profile. But they are part of the service
model to the extent that they are needed for achieving the advertised services. For example, looking for
a book is an essential prerequisite for buying it, so it would be specified in the process model, but not
necessarily in the profile. Similarly, information about shipping may appear within the process model but
not the profile.

4.1 Description

Information about the service, such as its provenance or a text summary, is provided within the profile.
This is primarily for use by human users, although these properties are considered when locating requested
services.

4.2 Functionality Description

An essential component of the profile is the specification of what the service provides and the specification
of the conditions that have to be satisfied for a successful result. In addition, the profile specifies what

Valued Sony Customer
 415

conditions result from the service including the expected and unexpected results of the service activity.
The service is represented by input and output properties of the profile. The input property speci-

fies the information that the service requires to proceed with the computation. For example, a book-selling
service could require the credit-card number and bibliographical information of the book to sell. The out-
puts specify the result of the operation of the service. For the book-selling agent the output could be a
receipt that acknowledges the sale.

<rdf:Property rdf:ID="input">
<rdfs:comment>

Property describing the inputs of a service in the Service Profile
</rdfs:comment>
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:subPropertyOf rdf:resource="#parameter"/>

</rdf:Property>

While inputs and outputs represent the service, they are not the only things affected by the operations
of the service. For example, to complete the sale the book-selling service requires that the credit card
is valid and not overdrawn or expired. In addition, the result of the sale is not only that the buyer owns
the book (as specified by the outputs), but that the book is physically transferred from the the warehouse
of the seller to the house of the buyer. These conditions are specified by precondition and effect
properties of the profile. Preconditions present one or more logical conditions that should be satisfied prior
to the service being requested. These conditions should have associated explicit effects that may occur as
a result of the service being performed. Effects are events that are caused by the successful execution of a
service.

<rdf:Property rdf:ID="precondition">
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

The service profile also provides a specific type of precondition called an accessCondition, that
is expected to be true for the service to succeed, but is not modified by the activity of the service. Access
conditions are used when the access to the service is restricted to only some users: as, for example, services
that are restricted to users affiliated to some organization. For instance, to access a classified news service a
user needs to have some level of clearance, details about it would be specified as an accessCondition.

Finally, the profile allows the specification of what domainResources are affected by the use of the
service. These domain resources may include computational resources such as bandwidth or disk space
as well as more material resources consumed when the service controls some machinery. This type of
resource may include fuel, or materials modified by the machine.

4.3 Functional Attributes

In the previous section we introduced the functional description of services. Yet there are other aspects
of services that the users should be aware of. While a service may be accessed from anywhere on the
Internet, it may only be applicable to a specific audience. For instance, although it is possible to order
food for delivery from a Pittsburgh-based restaurant Web site in general, one cannot reasonably expect
to do this from California. Functional attributes address the problem that there are properties that can be
used to describe a service other than as a functional process. These properties are described below.

geographicRadius The geographic radius refers to the geographic scope of the service. This may be at
the global or national scale (e.g. for e-commerce) or at a local scale (e.g. pizza delivery).

Valued Sony Customer
 416

degreeOfQuality This property provides qualifications for the service. For example, the following two
sub-properties are examples of different degrees of quality, and could be defined within some addi-
tional ontology.

serviceParameter An expandable list of properties that may accompany a profile description.

communicationThru This property provides a high-level summary of how a service may communicate,
such as what agent communication language (ACL) is used (e.g., FIPA, KQML, SOAP). This sum-
marizes the descriptions provided by the service grounding and are used when matching services;
but is not intended to replace the detail provided by the service grounding.

serviceType The service type refers to a high-level classification of the service, for example B2B, B2C
etc.

serviceCategory The service category refers to an ontology of services that may be on offer. High-level
services could include Products as well as Problem-Solving Capabilities, Commercial Services,
Information and so on.

qualityGuarantees These are guarantees that the service promises to deliver, such as guaranteeing to
provide the lowest possible interest rate, or a response within 3 minutes, etc.

qualityRating The quality rating property represents an expandable list of rating properties that may
accompany a service profile. These ratings refer to industry accepted ratings, such as the Dun and
Bradstreet Rating for businesses, or the Star rating for Hotels. For example:

<!-- Dun and Bradstreet Rating -->
<rdf:Property rdf:ID="dAndBRating">

<rdfs:subPropertyOf rdf:resource="#qualityRating" />
</rdf:Property>

As a result of the service profile, the user, be it a human, a program or another service, would be able
to identify what the service provides, what conditions result from the service and whether the service is
available, accessible and how it compares with other functionally equivalent services.

5 Modeling Services as Processes

A more detailed perspective on services is that a service can be viewed as a process. We have defined a
particular subclass of ServiceModel, the ProcessModel (as shown in figure 2), which draws upon well-
established work in a variety of fields, such as AI planning and workflow automation, and which we
believe will support the representational needs of a very broad array of services on the Web.

The two chief components of a process model are the process model, which describes a service in terms
of its component actions or processes, and enables planning, composition and agent/service interoperation;
and the process control model, which allows agents to monitor the execution of a service request. We will
refer to the first part as the Process Ontology and the second as the Process Control Ontology. Only the
former has been defined in the current version of DAML-S, but below we briefly describe our intentions
with regard to the latter. We have defined a simple ontology of time, described below; in subsequent
versions this will be elaborated. We also expect in a future version to provide an ontology of resources.

Valued Sony Customer
 417

ServiceModel

ProcessControl

ProcessModel

CompositeProcess

RepeatUntilSplitSequence

eexxex andd

co

a seee

di iprecondition

parameterp

ffeffect

subPropertiesOf (parameter)bPropertiesOf (paraubbPropertiesOf (parsuubbPropertiesOf (pa
- input
- output
- participant

Process

Figure 2: Top level of process modeling ontology

5.1 The Process Ontology

We expect our process ontology to serve as the basis for specifying a wide array of services. In developing
the ontology, we drew from a variety of sources, including work in AI on standardizations of planning
languages [9], work in programming languages and distributed systems [16, 15], emerging standards in
process modeling and workflow technology such as the NIST’s Process Specification Language (PSL)
[19] and the Workflow Management Coalition effort (http://www.aiim.org/wfmc), work on modeling verb
semantics and event structure [17], previous work on action-inspired Web service markup [14], work in
AI on modeling complex actions [11], and work in agent communication languages [12, 8].

The primary kind of entity in the Process Ontology is, unsurprisingly, a “process”.8 A process can
have any number of inputs, representing the information that is, under some conditions, required for the
execution of the process. It can have any number of outputs, the information that the process provides,
conditionally, after its execution. Participants and other parameters may be specified; for example, the
participants may include the roles in the event frame, such as the agents, patient, and instrument, whereas
other parameters, especially for physical devices, might be rates, forces, and knob-settings. There can
be any number of preconditions, which must all hold in order for the process to be invoked. Finally, the
process can have any number of effects.

A process can often be viewed either as a primitive, undecomposable process or as a composite process,
decomposable into other primitive or composite processes. Either perspective may be the more useful in
some given context. Thus, a top-level PROCESS class has, as its sole subclass, COMPOSITEPROCESS,
which in turn is subclassed by a variety of control structures.

�This term was chosen over the terms “event” and “action”, in part because it is more suggestive of internal
structure than “event” and because it does not necessarily presume an agent executing the process and thus is more
general than “action”. Ultimately, however, the choice is arbitrary. It is modeled after computational procedures or
planning operators.

Valued Sony Customer
 418

More precisely, in DAML-S:

� Process

<rdfs:Class rdf:ID="Process">
<rdfs:comment> Top-level class for describing how a service works
</rdfs:comment>

</rdfs:Class>

Class PROCESS has related properties parameter, input, output, participant, precondition, and (con-
ditional) effect. Each of these properties ranges over a DAML object, which, at the upper ontology
level, is not restricted at all. The properties input, output, and participant are categorized as sub-
properties of parameter. Subclasses of PROCESS for specific domains can use DAML language
elements to indicate more specific range restrictions, as well as cardinality restrictions for each of
these properties.
The following is an example of a property definition:

<rdf:Property rdf:ID="parameter">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource=""http://www.daml.org/2001/03/daml+oil#Thing"/>

</rdf:Property>

In addition to its action-related properties, a PROCESS has a number of bookkeeping properties such
as name(rdf:literal), address (URI), documentsread (URI), documentsupdated (URI), and so on.

� CompositeProcess

<daml:Class rdf:ID="CompositeProcess">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Restriction daml:minCardinality="1">
<daml:onProperty rdf:resource="#components"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<rdf:Property rdf:ID="components">
<rdfs:comment>

Holds the specific arrangement of subprocesses.
</rdfs:comment>
<rdfs:domain rdf:resource="#CompositeProcess"/>

</rdf:Property>

Composite processes are processes that have additional properties called components to indicate the
ordering and conditional execution of the subprocesses from which they are composed. For instance,
the composite process, SEQUENCE, has a components property that ranges over a PROCESSLIST (a
list whose items are restricted to be simple or composite processes). In the process “upper ontology”,
we have attempted to come up with a minimal set of process classes that can be specialized to
describe a variety of Web services. This minimal set consists of Sequence, Split, Split + Join,
Choice, Unordered, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until.

Note that while a composite process is a process, and thus has slots for preconditions and effects,
there may be no easy way to compute these values for an arbitrary composite process, given its
component sub-processes.

Valued Sony Customer
 419

There are two fundamental relations between processes and composite processes. The EXPAND

relation associates a Process with the CompositeProcess describing its component subprocesses,
while its inverse, the COLLAPSE relation represents the association of the CompositeProcess to its
atomic Process form. Expanding is intended to provide a “glassbox” and collapsing a “blackbox”
view of the process. The expanded version is likely to be used for service composition (both off-line
and runtime) and the collapsed version for service execution.

The minimal set of composition templates (subclasses of CompositeProcess) is as follows:

Sequence : A list of Processes to be done in order. We use a DAML restriction to restrict the
components of a Sequence process to be a List of subprocesses (simple and/or composite).

<rdfs:Class rdf:ID="Sequence">
<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class> rdf:about="#Process" </rdfs:Class>
<daml:Restriction>
<daml:onProperty rdf:resource="#components"/>
<daml:toClass rdf:resource="#ProcessList"/>

</daml:Restriction>
<daml:intersectionOf>

</rdfs:Class>

Split : The components of a Split process are a bag of sub-processes to be executed concurrently.
No further specification about waiting or synchronization is made at this level.

<rdfs:Class rdf:ID="Split">
<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class> rdf:about ="#Process" </rdfs:Class>
<daml:Restriction>
<daml:onProperty rdf:resource="#components"/>
<daml:toClass rdf:resource="#ProcessBag"/>

</daml:Restriction>
<daml:intersectionOf>

</rdfs:Class>

Split is similar to other ontologies’ use of Fork, Concurrent, or Parallel. We use the DAML
sameClassAs feature to accommodate the different standards for specifying this.

Unordered : Here a bag of processes can be executed in any order. No further constraints are
specified. All processes must be executed.

Split+Join : Here the process consists of concurrent execution of a bunch of sub-processes with
barrier synchronization. With Split and Split and Join, we can define processes that have partial
synchronization (e.g., split all and join some sub-bag).

Choice : Choice is a composite process with additional properties “chosen” and “chooseFrom”.
These properties can be used both for process and execution control (e.g., choose from “choose-
From” and do “chosen” in sequence, or choose from “chooseFrom” and do “chosen” in paral-
lel) as well for constructing new subclasses like “choose at least n from m”, “choose exactly n
from m”, “choose at most n from m” 9, and so on.

Condition : Conditions are composite processes with an output property (conditionValue) whose
range is a binary value. Conditions usually correspond to test actions, but they may be world
states, resource levels, timeouts or other things affecting the evolution of processes.

	This can be obtained by restricting the size of the Process Bag that corresponds to the “components” of the
chosen and chooseFrom subprocesses using cardinality, min-cardinality, max-cardinality to get choose(n, m)(� �
� � �������������	����
������ � � � �������������	������).

Valued Sony Customer
 420

If-Then-Else : The If-Then-Else class is a composite process that has properties “ifCondition”,
“then” and “else” holding different aspects of the If-Then-Else composite process. Its seman-
tics is intended as “Test If-condition; if True do Then, if False do Else.”

<rdf:Property rdf:ID="ifCondition">
<rdfs:comment> The if condition of an if-then-else </rdfs:comment>
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range> rdf:resource ="#Condition" </rdfs:range>

</rdf:Property>

<rdf:Property rdf:ID="then">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#CompositeProcess"/>

</rdf:Property>

<rdf:Property rdf:ID="else">
<rdfs:domain rdf:resource="#If-Then-Else"/>
<rdfs:range rdf:resource="#CompositeProcess"/>

</rdf:Property>

Iterate : Iterate is a composite process whose next process property has the same value as the
current process. Repeat is defined as a synonym of the iterate class. The repeat/iterate pro-
cess makes no assumption about how many iterations are made or when to initiate, terminate
or resume. The initiation, termination or maintainance condition could be specified with a
whileCondition or an untilCondition as below.10

Repeat-Until : The Repeat-Until class is similar to the Repeat-While class in that specializes the
If-Then-Else class where the “ifCondition” is the same as the untilCondition and different
from the Repeat-While class in that the “else” (compared to “then”) property is the repeated
process. Thus the process repeats till the untilCondition becomes true.

5.2 Process Control Ontology

A process instantiation represents a complex process that is executing in the world. To monitor and
control the execution of a process, an agent needs a model to interpret process instantiations with three
characteristics:

1. It should provide the mapping rules for the various input state properties (inputs, preconditions) to
the corresponding output state properties.

2. It should provide a model of the temporal or state dependencies described by the sequence, split,
split+join, etc constructs.

3. It should provide representations for messages about the execution state of atomic and composite
processes sufficient to do execution monitoring. This allows an agent to keep track of the status of
executions, including successful, failed and interrupted processes, and to respond to each appropri-
ately.

We have not defined a process control ontology in the current version of DAML-S, but we plan to in a
future version.

�
Another possible extension is to ability to define counters and use their values as termination conditions. This
could be part of an extended process control and execution monitoring ontology.

Valued Sony Customer
 421

5.3 Time

For the initial version of DAML-S we have defined a very simple upper ontology for time. There are two
classes of entities—instants and intervals. Each is a subclass of temporal-entity.

There are three relations that may obtain between an instant and an interval, defined as DAML-S
properties:

1. The Start-of property whose domain is the Interval class and whose range is an Instant.

2. The End-of property whose domain is the Interval class and whose range is an Instant.

3. The Inside property whose domain is the Interval class and whose range is an Instant.

No assumption is made that intervals consist of instants.
There are two possible relations that may obtain between a process and one of the temporal objects.

A process may be in an at-time relation to an instant or in a during relation to an interval. Whether
a particular process is viewed as instantaneous or as occuring over an interval is a granularity decision
that may vary according to the context of use. These relations are defined in DAML-S as properties of
processes.

1. The At-time property: its domain is the Process class and its range is an Instant.

2. The During property: its domain is the Process class and its range is an Interval.

Viewed as intervals, processes could have properties such as startTime and endTime which are syn-
onymous (daml:samePropertyAs) with the Start-Of and End-Of relation that obtains between intervals and
instants.

One further relation can hold between two temporal entities—the before relation. The intended se-
mantics is that for an instant or interval to be before another instant or interval, there can be no overlap
or abutment between the former and the latter. In DAML-S the Before property whose domain is the
Temporal-entity class and whose range is a Temporal-entity.

Different communities have different ways of representing the times and durations of states and events
(processes). For example, states and events can both have durations, and at least events can be instan-
taneous; or events can only be instantaneous and only states can have durations. Events that one might
consider as having duration (e.g., heating water) are modeled as a state of the system that is initiated and
terminated by instantaneous events. That is, there is the instantaneous event of the start of the heating
at the start of an interval, that transitions the system into a state in which the water is heating. The state
continues until another instantaneous event occurs—the stopping of the event at the end of the interval.
These two perspectives on events are straightforwardly interdefinable in terms of the ontology we have
provided. Thus, DAML-S supports both.

The various relations between intervals defined in Allen’s temporal interval calculus [1] can be defined
in a straightforward fashion in terms of before and identity on the start and end points. For example, two
intervals meet when the end of one is identical to the start of the other. Thus, in the near future, when
DAML is augmented with the capability of defining logical rules, it will be easy to incorporate the interval
calculus into DAML-S. In addition, in future versions of DAML-S we will define primitives for measuring
durations and for specifying clock and calendar time.

Valued Sony Customer
 422

6 Example Walk-Through

To illustrate the concepts described in this paper, we have developed an example of a fictitious book-
buying service offered by the Web service provider, Congo Inc. Congo has a suite of programs that
they are making accessible on the Web. Congo wishes to compose these individual programs into Web
services that it offers to its users. We focus here on the Web service of buying a book, CongoBuy. In the
DAML-S release, we present a walk-through that steps through the process of creating DAML-S markup
for Congo11.

We take the perspective of the typical Web service provider and consider three automation tasks that
a Web service provider might wish to enable with DAML-S: 1) automatic Web service discovery, 2)
automatic Web service invocation, and 3) automatic Web service composition and interoperation. For the
purposes of this paper, we limit our discussion to the second and third tasks.

6.1 Web Service Invocation

To automate Web Service Invocation, DAML-S markup must tell a program how to automatically construct
an (http) call to execute or invoke a Web service, and what output(s) may be returned from the service. To
enable such functionality, the process ontology in DAML-S provides markup to describe individual and
composite Web-accessible programs as either simple or composite processes.

6.1.1 Define the Service as a Process

Congo Inc. provides the CongoBuy Web service to its customers. We view the CongoBuy Web service as
a Process, i.e., it is a subclass of the class Process in the process ontology.

<rdfs:Class rdf:ID="CongoBuy">
<rdfs:subClassOf rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#Process"/>

</rdfs:Class>

Although the CongoBuy service is actually a predetermined composition of several of Congo’s Web-
accessible programs, it is useful to initially view it as a black-box process. The black-box process, Con-
goBuy has a variety of invocation-relevant properties, including input, (conditional) output and parameter.
For example, input to the CongoBuy book-buying service includes the name of the book (bookName), the
customer’s credit card number, and their account number and password. If the service being described is
simple in that it is not the composition of other services or programs, then the service inputs are simply the
set of inputs that must be provided in the service invocation. The outputs are the outputs returned from the
service invocation. Note that these outputs may be conditional. For example the output of a book-buying
service will vary depending upon whether the book is in or out of stock.

In contrast, if the service is composed of other services, as is the case with CongoBuy, then the rationale
for specification of the inputs, outputs and parameters is more difficult, and the utility of these properties
is limited. In the simplest case, the inputs and outputs of the black-box process can be defined to be the
composition of all the possible inputs and all the possible (conditional) outputs of the simple services that
the black-box process may invoke, taking every possible path through the composition of simple services.
Note however that this is not a very exacting specification. In particular, the collection of outputs may
be contradictory (e.g., one path of CongoBuy may lead to confirmation of a purchase, while another may
lead to confirmation of no purchase). The conditions under which inputs and outputs arise are encoded
exactly in the expand of this black-box process, and can be retrieved from the expanded process. The
inputs, outputs and parameters for the black-box process are designed to be a useful shorthand. Thus, it

��The Congo example can be found at http://www.daml.org/services/daml-s/2001/05/Congo.daml.

Valued Sony Customer
 423

could be argued that the inputs and outputs should describe the most likely inputs and outputs through the
system. However, in some cases, even this is difficult to define. For now, DAML-S leaves this decision up
to the Web service provider.

The following is an example of one input to CongoBuy. Note that it is a subproperty of the property
input of Process, from the process model.

<rdf:Property rdf:ID="bookName">
<rdfs:subPropertyOf rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#input"/>

<rdfs:domain rdf:resource="#CongoBuy"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/>

</rdf:Property>

An output can similarly be defined as a subproperty of the property output of Process. In a real book-
buying service, this output would likely be conditioned on the book being in stock, or the customer’s
credit card being valid, but to simplify our example, we assume Congo has an infinite supply of books,
and infinite generosity.

<rdf:Property rdf:ID="eReceiptOutput">
<rdfs:subPropertyOf rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#output"/>

<rdfs:range rdf:resource="#EReceipt"/>
</rdf:Property>

In addition to input and output properties, each service has parameter properties. A parameter is
something that affects the outcome of the process, but which is not an input provided by the invoker of
the process. It may be known by the service, or retrieved by the service from elsewhere. For example, the
fact that the customer’s credit card is valid, is a parameter in our CongoBuy process, and is relevant when
considering the use of the CongoBuy, but it is not an input or output of CongoBuy.

<rdf:Property rdf:ID="creditCardValidity">
<rdfs:subPropertyOf rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#parameter"/>

<rdfs:range rdf:resource="#ValidityType"/>
</rdf:Property>

6.1.2 Define the Process as a Composition of Processes

Given the variability in the specification of inputs, outputs and parameters, it is generally insufficient to
simply specify a service as a black-box process, if the objective is to automate service invocation. We
must expand the black-box service to describe its composite processes. This is achieved by first defining
the individual processes and then defining their composition as a composite process.

Define the Individual Processes
We first define each of the simple services in CongoBuy, i.e., LocateBook, PutInCart, etc.12

<rdfs:Class rdf:ID="LocateBook">
<rdfs:subClassOf rdf:resource="#CongoBuy"/>

</rdfs:Class>

Valued Sony Customer
 424

<rdfs:Class rdf:ID="PutInCart">
<rdfs:subClassOf rdf:resource="#CongoBuy"/>

</rdfs:Class>

<rdf:Property rdf:ID="bookSelected">
<rdfs:subPropertyOf rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#input"/>

<rdfs:domain rdf:resource="#PutInCart"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/>

</rdf:Property>

Define the Composition of the Individual Processes
The composition of each of our simple services can be defined by using the composition constructs

created in the process ontology, i.e., Sequence, Split, Split + Join, Unordered, Condition, If-Then-Else,
Repeat-While, Repeat-Until. We first create an expand class and then construct the overall expand class
recursively in a top- down manner.

<process:expand>
<rdfs:Class> rdfs:about ="#CongoBuy"</rdfs:Class>
<rdfs:Class> rdfs:about ="#ExpandedCongoBuy"</rdfs:Class>

</process:expand>

Each process has a property called components (itself a bag of processes). The processes in the bag
may be other simple or composite processes. As such, they recursively define the composition of simple
processes that defines the black-box process CongoBuy.

The expanded CongoBuy process (ExpandedCongoBuy) is comprised of a sequence of two processes,
a simple process that locates a book (LocateBook), and a complex process that buys the book (CongoB-
uyBook). We define them as follows13:

<rdfs:Class rdf:ID="ExpandedCongoBuy">
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about=

"http://www.daml.org/services/daml-s/2001/05/Process.daml#Sequence"/>
<daml:Restriction>

<daml:onProperty rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#components"/>

<daml:toClass>
<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource=

"http://www.daml.org/services/daml-s/2001/05/Process.daml#firstItem"/>
<daml:toClass rdf:resource ="#LocateBook"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource=
"http://www.daml.org/services/daml-s/2001/05/Process.daml#secondItem"/>

<daml:toClass rdf:resource ="#CongoBuyBook"/>
</daml:Restriction>

</daml:intersectionOf>
</daml:Class>

</daml:toClass>
</daml:Restriction>

</daml:intersectionOf>
</rdfs:Class>

��See http://www.daml.org/services/daml-s/2001/05/Congo.daml. Additional DAML code is needed here to
specify the relationship between the bookName property of CongoBuy and the bookSelected property of PutInCart.
As of this writing, discussions are underway to determine the best way to indicate this relationship in DAML+OIL.

Valued Sony Customer
 425

In the full Congo.daml example, CongoBuyBook is a composite process that is further decomposed,
eventually terminating in a composition of simple processes. With this markup we complete our markup
to enable automated service invocation.

6.1.3 Automated Service Composition and Interoperation

The DAML-S markup required to automate service composition and interoperation builds directly on the
markup for service invocation. In order to automate service composition and interoperation, we must also
encode the effects a service has upon the world, and the preconditions for performing that service. For
example, when a human being goes to www.congo.com and successfully executes the CongoBuy service,
the human knows that they have purchased a book, that their credit card will be debited, and that they will
receive a book at the address they provided. Such consequences of Web service execution are not part of
the input/output markup we created for automating service invocation.

The process ontology provides precondition and effect properties of a process to encode this infor-
mation. As with our markup for automated service invocation, we define preconditions and effects both
for the black-box process CongoBuy and for each of the simple processes that define its composition,
and as with defining inputs and outputs, it is easiest to define the preconditions and effects for each of
the simple processes first, and then to aggregate them into preconditions and effects for CongoBuy. The
markup is analogous to the markup for input and (conditional) output, but is with respect to the properties
precondition and (conditional) effect, instead.

7 Related Efforts

Industry efforts to develop standards for electronic commerce, and in particular for the description of
Web-based services currently revolve around UDDI, WSDL, and ebXML [23]. There have also been
company-specific initiatives to define architectures for e-commerce, most notably E-speak from Hewlett-
Packard.

Nevertheless, we believe that DAML-S provides functionality that the other efforts do not. In com-
parison to the DAML-S characterization of services, the industry standards mostly focus on presenting a
ServiceProfile and a ServiceGrounding of services (to use DAML-S terminology). ServiceGroundings are
supported by all the standards. However, they are limited with respect to DAML-S profiles in that they
cannot express logical statements, e.g. preconditions and postconditions, or rules to describe dependen-
cies between the profile elements. Input and output types are supported to varying extents. Furthermore,
DAML-S supports the description of certain functional attributes of services, which are not covered in the
other standards, such as qualityGuarantees and serviceType.

With respect to the four tasks of automatic Web service discovery, automatic Web service invocation,
automatic Web service interoperation and composition, and automatic Web service execution monitoring
that DAML-S is meant to support, the standards primarily enable the first and the second tasks to a certain
extent. These standards are still evolving and it is unclear at present to what extent composition will be
addressed. At the moment, the standards do not consider the ServiceModel of a service and thus, they also
do not support execution monitoring, as defined in this paper.

In the following sections, we look in greater detail at each of these technologies in turn and compare
them to DAML-S.

��firstItem and secondItem are easily defined.

Valued Sony Customer
 426

7.1 UDDI

UDDI (Universal Description, Discovery and Integration) is an initiative proposed by Microsoft, IBM and
Ariba to develop a standard for an online registry, and to enable the publishing and dynamic discovery
of Web services offered by businesses [22]. UDDI allows programmers and other representatives of a
business to locate potential business partners and form business relationships on the basis of the services
they provide. It thus facilitates the creation of new business relationships.

The primary target of UDDI seems to be integration and at least semi-automation of business transac-
tions in B2B e-commerce applications. It provides a registry for registering businesses and the services
they offer. These are described according to an XML schema defined by the UDDI specification. A Web
service provider registers its advertisements along with keywords for categorisation. A Web services user
retrieves advertisements out of the registry based on keyword search. The UDDI search mechanism relies
on pre-defined categorisation through keywords and does not refer to the semantic content of the adver-
tisements. The registry is supposed to function in a fashion similar to white pages or yellow pages, where
businesses can be looked up by name or by a standard service taxonomy as is already used within the in-
dustry. UDDI attempts to cover all kinds of services offered by businesses, including those that are offered
by phone or e-mail and similar means; in principle, DAML-S could do this, but it has not been our focus.

Technically speaking, each business description in UDDI consists of a businessEntity element, akin
to a White Pages element describing the contact information for a business. A businessEntity describes
a business by name, a key value, categorisation, services offered (businessService elements) and contact
information for the business. A businessService element describes a service using a name, key value, cat-
egorisation and multiple “bindingTemplate” elements. This can be considered to be analogous to a Yellow
Pages element that categorises a business. A bindingTemplate element in turn describes the kind of access
the service requires (phone, mailto, http, ftp, fax etc.), key values and tModelInstances. tModelInstances
are used to describe the protocols, interchange formats that the service comprehends, that is, the technical
information required to access the service. It is also used to describe the “namespaces” for the classifica-
tions used in categorisation. Many of the elements are optional, including most of the ones that would be
required for matchmaking or service composition purposes.

UDDI aims to facilitate the discovery of potential business partners and the discovery of services and
their groundings that are offered by known business partners. This may or may not be done automatically.
When this discovery occurs, programmers affiliated with the business partners program their own systems
to interact with the services discovered. This is also the model generally followed by ebXML. DAML-S
enables more flexible discovery by allowing searches to take place on almost any attribute of the Service-
Profile. UDDI, in contrast, allows technical searches only on tModelKeys, references to tModelInstances,
which represent full specifications of a kind of service.

UDDI does not support semantic descriptions of services. Thus, depending on the functionality offered
by the content language, although agents can search the UDDI registry and retrieve service descriptions,
a human needs to be involved in the loop to make sense of the descriptions, and to program the access
interface.

Currently, UDDI does not provide or specify content languages for advertisement. Although WSDL is
most closely associated with UDDI as a content language, the specification refers to ebXML and XML/edi
also as potential candidates. Content languages could be a possible bridge between UDDI and DAML-S.
DAML-S is also a suitable candidate for a content language and in this sense, DAML-S and UDDI are
complementary. A higher-level service or standard defined on top of UDDI could take advantage of the
additional richness of content DAML-S has to offer within the UDDI registries.

Valued Sony Customer
 427

7.2 WSDL

WSDL (Web Services Description Language) is an XML format, closely associated with UDDI as the
language for describing interfaces to business services registered with a UDDI database. Thus, it is closer
to DAML-S in terms of functionality than UDDI. Like DAML-S, it attempts to separate services, defined in
abstract terms, from the concrete data formats and protocols used for implementation, and defines bindings
between the abstract description and its specific realization [3]. However, the abstraction of services is at
a lower level than in DAML-S.

Services are defined as sets of ports, i.e. network addresses associated with certain protocols and data
format specifications. The abstract nature of a service arises from the abstract nature of the messages and
operations mapped to a port and define its port type. Port types are reusable and can be bound to multiple
ports [18]. There are four basic types of operations in WSDL: a one-way, a (two-way) request-response, a
(two-way) solicit-response and a (one-way) notification message. A message itself is defined abstractly as
a request, a response or even a parameter of a request or response and its type, as defined in a type system
like XSD. They can be broken into parts to define the logical break-down of a message.

Messages and operations are defined abstractly and are thus reusable and extensible and correspond
roughly to the DAML-S ServiceProfile. The service element itself incorporates both a ServiceProfile and
ServiceGrounding information. WSDL service descriptions are not as expressive as DAML-S profiles.
Preconditions, postconditions and effects of service access cannot be expressed within WSDL.

Like UDDI, WSDL does not support semantic description of services. WSDL focuses on the ground-
ing of services and although it has a concept of input and output types as defined by XSD, it does not
support the definition of logical constraints between its input and output parameters. Thus its support for
discovery and invocation of services is less versatile than that of DAML-S.

7.3 E-speak

Hewlett-Packard is collaborating with the UDDI consortium to bring E-speak technology to the UDDI
standard. E-speak and UDDI have similar goals in that they both facilitate the advertisement and discovery
of services. E-speak is also comparable to WSDL in that it supports the description of service and data
types [6]. It has a matching service that compares service requests with service descriptions, primarily on
the basis of input-output and service type matching.

E-speak describes services (known as “Resources”) as a set of attributes within several “Vocabular-
ies”. Vocabularies are sets of attributes common to a logical group of services. E-speak matches lookup
requests against service descriptions with respect to these attributes. Attributes take common value types
such as String, Int, Boolean and Double. There is a base vocabulary which defines basic attributes such
as Name, Type (of value String only), Description, Keywords and Version. Currently, there is no semantic
meaning attached to any of the attributes. Any matching which takes place is done over the service de-
scription attributes which does not distinguish between any further subtypes. DAML-S had a much richer
set of attributes; in DAML-S terminology, the input/output parameters, effects and additional functional
attributes. In addition, dependencies between attributes and logical constraints on them are not expressible
within E-speak.

Unlike UDDI, which was intended to be an open standard from the beginning, e-speak scores relatively
low on interoperability. It requires that an e-speak engine be run on all participating client machines.
Furthermore, although e-speak is designed to be a full platform for Web services and could potentially
expose a execution monitoring interface, service processes remain a black-box for the e-speak platform
and consequently no execution monitoring can be done.

Valued Sony Customer
 428

7.4 ebXML

ebXML, being developed primarily by OASIS and the United Nations, approaches the problem from a
workflow perspective. ebXML uses two views to describe business interactions, a Business Operational
View (BOV) and a Functional Service View (FSV) [7] [23]. The BOV deals with the semantics of business
data transactions, which include operational conventions, agreements, mutual obligations and the like be-
tween businesses. The FSV deals with the supporting services: their capabilities, interfaces and protocols.
Although ebXML does not concentrate on only Web services, the focus of this view is essentially the same
as that of the current DAML-S effort.

It has the concept of a Collaboration Protocol Profile (CPP) “which allows a Trading Partner to ex-
press their supported Business Processes and Business Service Interface requirements [such that they are
understood] by other ebXML compliant Trading Partners”, in effect a specification of the services offered
by the Trading Partner. A Business Process is a set of business document exchanges between the Trading
Partners. CPPs contain industry classification, contact information, supported Business Processes, inter-
face requirements etc. They are registered within an ebXML registry, in which there is discovery of other
Trading Partners and the Business Processes they support. In this respect, UDDI has some similarities
with ebXML. However, ebXML’s scope does not extend to the manner in which the business documents
are specified. This is left to the Trading Partners to agree upon a priori by the creation of a Collaboration
Protocol Agreement.

In conclusion, the kind of functionality, interoperability and dynamic matchmaking capabilities pro-
vided by DAML-S is only partially supported, as the standards are currently positioned, by WSDL and
UDDI. UDDI may become more sophisticated as it incorporates e-speak-like functionalities, but it will
not allow automatic service interoperability until it incorporates the information provided by DAML-S.

8 Summary and Current Status

DAML-S is an attempt to provide an ontology, within the framework of the DARPA Agent Markup Lan-
guage, for describing Web services. It will enable users and software agents to automatically discover,
invoke, compose, and monitor Web resources offering services, under specified constraints. We have
released an initial version of DAML-S. It can be found at the URL: http://www.daml.org/services/daml-s

We expect to enhance it in the future in ways that we have indicated in the paper, and in response to
users’ experience with it. We believe it will help make the Semantic Web a place where people can not
only find out information but also get things done.

Acknowledgments

The authors have profited from discussions about this work with Ron Fadel, Richard Fikes, Jessica Jenk-
ins, James Hendler, Mark Neighbors, Tran Cao Son, and Richard Waldinger. The research was funded
by the Defense Advanced Research Projects Agency as part of the DARPA Agent Markup Language
(DAML) program under Air Force Research Laboratory contract F30602-00-C-0168 to SRI International,
F30602-00-2-0579-P00001 to Stanford University, and F30601-00-2-0592 to Carnegie Mellon University.
Additional funding was provided by Nokia Research Center.

References

[1] J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In J. R. Hobbs and R. C. Moore,
editors, Formal Theories of the Commonsense World, pages 251–268. Ablex Publishing Corp., 1985.

Valued Sony Customer
 429

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43,
2001.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[4] K. Decker, K. Sycara, and M. Williamson. Middle-Agents for the Internet. In IJCAI97, 1997.

[5] G. Denker, J. Hobbs, D. Martin, S. Narayanan, and R. Waldinger. Accessing information and services
on the daml-enabled web. In Proc. Second Int’l Workshop Semantic Web (SemWeb’2001), 2001.

[6] E-Speak. E-Speak Architectural Specification Release A.0. http://www.e-speak.hp.com/media/
a0/architecturea0.pdf, 2001.

[7] ebXML. ebXML Web Site. http://www.ebXML.org/, 2000.

[8] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In J. Bradshaw,
editor, Software Agents. MIT Press, Cambridge, 1997.

[9] M. Ghallab et. al. Pddl-the planning domain definition language v. 2. Technical Report, report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[10] J. Hendler and D. L. McGuinness. Darpa agent markup language. IEEE Intelligent Systems,
15(6):72–73, 2001.

[11] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A Logic programming
language for dynamic domains. Journal of Logic Programming, 31(1-3):59–84, April-June 1997.

[12] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: A Framework for Building
Distributed Software Systems. Applied Artificial Intelligence, 13(1-2):92–128, 1999.

[13] S. McIlraith, T. C. Son, and H. Zeng. Mobilizing the web with daml-enabled web service. In Proc.
Second Int’l Workshop Semantic Web (SemWeb’2001), 2001.

[14] S. McIlraith, T. C. Son, and H. Zeng. Semantic web service. IEEE Intelligent Systems, 16(2):46–53,
2001.

[15] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[16] R. Milner. Communicating with Mobile Agents: The pi-Calculus. Cambridge University Press,
Cambridge, 1999.

[17] S. Narayanan. Reasoning about actions in narrative understanding. In Proc. International Joint
Conference on Artifical Intelligence (IJCAI’1999), pages 350–357. Morgan Kaufman Press, San
Francisco, 1999.

[18] U. Ogbuji. Using WSDL in SOAP applications: An introduction to WSDL for SOAP programmers.
http://www-106.ibm.com/developerworks/library/ws-soap/?dwzone=ws, 2001.

[19] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee. The Process Specification Lan-
guage (PSL): Overview and version 1.0 specification. NISTIR 6459, National Institute of Standards
and Technology, Gaithersburg, MD., 2000.

[20] K. Sycara and M. Klusch. Brokering and matchmaking for coordination of agent societies: A survey.
In A. e. a. Omicini, editor, Coordination of Internet Agents. Springer, 2001.

[21] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking among agents in open
information environments. ACM SIGMOD Record (Special Issue on Semantic Interoperability in
Global Information Systems), 28(1):47–53, 1999.

[22] UDDI. The UDDI Technical White Paper. http://www.uddi.org/, 2000.

[23] D. Webber and A. Dutton. Understanding ebXML, UDDI and XML/edi. http://www.xml.org/fea-
ture articles/2000 1107 miller.shtml, 2000.

[24] H.-C. Wong and K. Sycara. A Taxonomy of Middle-agents for the Internet. In ICMAS’2000, 2000.

Valued Sony Customer
 430

Searching for Services on the Semantic Web
Using Process Ontologies

Mark Klein
Center for Coordination Science

Massachusetts Institute of Technology
m_klein@mit.edu

Abraham Bernstein
Stern School of Business

New York University
bernstein@stern.nyu.edu

Abstract. The ability to rapidly locate useful on-line services (e.g. software
applications, software components, process models, or service organizations), as
opposed to simply useful documents, is becoming increasingly critical in many
domains. As the sheer number of such services increases it will become increasingly
more important to provide tools that allow people (and software) to quickly find the
services they need, while minimizing the burden for those who wish to list their
services with these search engines. This can be viewed as a critical enabler of the
‘friction-free’ markets of the ‘new economy’. Current service retrieval technology
is, however, seriously deficient in this regard. The information retrieval community
has focused on the retrieval of documents, not services per se, and has as a result
emphasized keyword-based approaches. Those approaches achieve fairly high recall
but low precision. The software agents and distributed computing communities have
developed simple ‘frame-based’ approaches for ‘matchmaking’ between tasks and
on-line services increasing precision at the substantial cost of requiring all services
to be modeled as frames and only supporting perfect matches. This paper proposes a
novel, ontology-based approach that employs the characteristics of a process-
taxonomy to increase recall without sacrificing precision and computational
complexity of the service retrieval process.

1 The Challenge

Increasingly, the Semantic Web will be called upon to provide access not just to static
documents that collect useful information, but also to services that provide useful behavior.
Potential examples of such services abound:

♦ Software applications (e.g. for engineering, finance, meeting planning, or word processing)
that can invoked remotely by people or software

♦ Software components that can be downloaded for use when creating new applications
♦ Process models that describe how to achieve some goal (e.g. eCommerce business models,

material transformation processes, etc)
♦ Individuals or organizations who can perform particular functions, e.g. as currently brokered

using such web sites as guru.com, elance.com and freeagent.com.

As the sheer number of such services increase it will become increasingly important to
provide tools that allow people (and software) to quickly find the services they need, while

Valued Sony Customer
 431

minimizing the burden for those who wish to list their services with these search engines [1].
This paper describes a set of ideas, based on the sophisticated use of process ontologies, for
creating improved service retrieval technologies.

2 Contributions and Limitations of Current Technology

Current service retrieval approaches have serious limitations with respect to meeting the
challenges described above. They either perform relatively poorly or make unrealistic demands
of those who wish to index or retrieve services. We review these approaches below.

Service retrieval technology has emerged from several communities. The information
retrieval community has focused on the retrieval of documents, not services per se, and has as a
result emphasized keyword-based approaches. The software agents and distributed computing
communities have developed simple ‘frame-based’ approaches for ‘matchmaking’ between tasks
and on-line services. The software engineering community has developed by far the richest set of
techniques for service retrieval [2]. We can get a good idea of the relative merits of these
approaches by placing them in a precision/recall space (Figure 1):

p
re

ci
si

o
n

high

hi
gh

deductive
retrieval

frames

keywords with
TFIDF

keywords

recall

enumerated
vocabulary

semanticnetworks
Legend

method

improvement
technique

imprecisematching

Figure 1: The state of the art in service retrieval.

Recall is the extent to which a search engine retrieves all of the items that one is interested in
(i.e. avoiding false negatives) while precision is the extent to which the tool retrieves only the
items that one is interested in (i.e. avoiding false positives).

Most search engines look for items (e.g. web pages) that contain the keywords in the query.
More sophisticated variants (based on the technique known as TFIDF) look for items in which
the searched-for keywords are more common than usual, thereby increasing precision [3].
Typically, no manual effort is needed to list items with such search engines, and queries can be
specified without needing to know a specialized query language. Keyword-based approaches are,
however, notoriously prone to both low precision and imperfect recall. Many completely

Valued Sony Customer
 432

irrelevant items may include the keywords in the query, leading to low precision. It is also
possible that the query keywords are semantically equivalent but syntactically different from the
words in the searched items, leading to reduced recall. Imagine , for example, that we are
searching for a service that can offer a loan to cover a $100,000 house addition. Entering the
keywords “loan house 100000” into google.com (a keyword-based search service), for example,
returns 2,390 documents. While the first two results are promising (a loan calculator and a
mortgage calculator somewhat connected to a loan granting organization), the third hit points to
a report of a campaign against arms trade, and the fourth shows a junior high-school math-
project on how to calculate mortgages. If we enter the same query in altavista.com (which uses
TFIDF) we get 24,168,519 ‘hits’. While the first few hits talk about loans, they do not all provide
a loan service. Most of them point to classes that discuss loan calculation techniques and provide
some sort of a mortgage calculator.

It is of course somewhat misleading to use web-search engines to assess the likely
performance of a keyword-based service retrieval engine. The web contains much more then
services. Many documents (like the loan calculation classes mentioned above) have nothing to do
with the provision of services. Nevertheless we can take the poor precision of those queries as an
indicator of what would happen in a system that relies solely on these techniques for retrieving
services. A mortgage calculator is a useful instrument in itself. It does not, however, provide the
service of creditworthiness analysis or loan provision. We can, therefore, assume that systems
using these techniques would still show low precision.

Several techniques have been developed to address these problems. One is to require that
items and queries be described using the same, pre-enumerated, vocabulary [4]. This increases
the probability that the same terms will be used in the query and desired items, thereby
increasing recall. Another approach is to use semantic nets (e.g. WordNet [5]) that capture the
semantic relationships between words (e.g. synonym, antonym, hypernym and hyponym) to
increase the breadth of the query and thereby increase recall [6] but this potentially can reduce
precision and can result in suboptimal recall because these networks focus on purely linguistic
relationships. Search engines like google.com [7] prioritize retrieved documents according to
whether they are linked to documents that also contain the searched-for keywords, as a way of
increasing precision. Finally, most text-based search engines allow for imprecise matching (e.g.
retrieving items that contain some but not all of the query keywords), potentially increasing
recall but again at the cost of reduced precision.

We can see then that keyword-based approaches can achieve fairly high recall but at the cost
of low precision. The key underlying problem is that keywords are a poor way to capture the
semantics of a query or item. If this semantics could be captured more accurately then precision
would increase. Frame-based approaches [8] [9] [10] [11] [12] have emerged as a way of doing
this. A frame consists of attribute value pairs describing the properties of an item. Figure 2 for
example shows a frame for an integer averaging service:

Both items and queries are described using frames: matches represent items whose (textual)
property values match those in the query. All the commercial service search technologies we are
aware of (e.g. Jini, eSpeak, Salutation, UDDI [13]) use the frame-based approach, typically with
an at least partially pre-enumerated vocabulary of service types and properties. The more
sophisticated search tools emerging from the research community (e.g. LARKS [14]) also make
limited use of semantic nets, e.g. returning a match if the input type of a service is equal to or a
generalization of the input type specified in the query. Frame-based approaches thus do increase
precision at the (fairly modest) cost of requiring that all services be modeled as frames.

Valued Sony Customer
 433

Description a service to find the average of a list of integers
Input integers
Output real
Execution Time number of inputs * 0.1 msec

Figure 2: A frame-based description of an integer sorting service.

The frame-based approach is taken one step further in the deductive retrieval approach [15]
[16] [17] wherein service properties (e.g. inputs, outputs, function, and performance) are
expressed formally using logic (Figure 3):

Name: set-insert
Syntax: set-insert(Elem, Old, New)
Input-types: (Elem:Any), (Old:SET)
Output-types: (New: SET)
Semantics:

Precond:),(OldElemmember¬

Postcond:

)),((),((

),(),((

),(

ElemyoldymemberNewymembery

NewxmemberOldxmemberx

NewElemmember

=∨→∀∧
→∀∧

Figure 3: A service description for deductive retrieval [15]

Retrieval then consists of finding the items that can be proved to achieve the functionality
described in the query. If we assume a non-redundant pre-enumerated vocabulary of logical
predicates and a complete formalization of all relevant service and query properties, then
deductive retrieval can in theory achieve both perfect precision and perfect recall. This approach,
however, faces two very serious practical difficulties. First of all, it can be prohibitively difficult
to model the semantics of non-trivial queries and services using formal logic. Even the simple
set-insert function shown above in Figure 3is non-trivial to formalize correctly: imagine trying to
formally model the behavior of Microsoft Word or an accounting package! The second difficulty
is that the proof process implicit in this kind of search can have a high computational
complexity, making it extremely slow [15]. Our belief is that these limitations, especially the
first one, make deductive retrieval unrealistic as a scalable general purpose service search
approach.

Other approaches do exist, but they apply only to specialized applications. One is execution-
based retrieval, wherein software components are selected by comparing their actual I/O
behavior with the desired I/O behavior. This is approach is suitable only for contexts where
observing a few selected samples of I/O behavior are sufficient to prune the service set [18] [19]
[20].

Valued Sony Customer
 434

3 Our Approach: Exploiting Process Ontologies

Our challenge, as we have seen, can be framed as being able to capture enough service and query
semantics to substantively increase precision without reducing recall or making it unrealistically
difficult for people to express these semantics. Our central claim is that these goals can be
achieved through the sophisticated use of process ontologies. We begin by capturing the
function(s) of a service as a process model. The service model is then indexed (to facilitate its
subsequent retrieval) by placing it and all its components (subtasks and so on) into the
appropriate sections of the ontology. Queries are also expressed as (partial) process models. The
matching algorithm then finds all the services whose process models match that of the query,
using the semantic relationships encoded in the process ontology. Our approach can thus be
viewed as having the following functional architecture:

index service

define
process
ontology

define query

find matches

Figure 4: Functional architecture of our proposed service retrieval technology.

We will consider each element of the functional architecture in the sections below.

3.1 Define Process Ontology

Our approach differs from previous efforts in that it is based on highly expressive process
models arranged into a fully-typed process ontology. The key concepts underlying this ontology
are an extension of those developed by the MIT Process Handbook project. The Handbook is a
process knowledge repository which has been under development at the Center for Coordination
Science (CCS) for the past eight years [21] [22]. The Handbook is under active use and
development by a highly distributed group of more than 40 scientists, teachers, students and
sponsors for such diverse purposes as adding new process descriptions, teaching classes, and
business process re-design. We believe the current Handbook process ontology represents an
excellent starting point for indexing on-line services because it is focused on business processes
which is what a high proportion of on-line services are likely to address.

The Handbook takes advantage of several simple but powerful concepts to capture and
organize process knowledge: attributes, ports, decomposition, dependencies, exceptions and
specialization.

Process Attributes: Like most process modeling techniques, the Handbook allows
processes to be annotated with attributes that capture such information as a textual

Valued Sony Customer
 435

description, typical performance values (e.g. how long a process takes to execute), as
well as pre-, post- and during- conditions.

Decomposition: Also like most process modeling techniques, the Handbook uses the
notion of decomposition: a process is modeled as a collection of activities that can in turn
be broken down (“decomposed”) into subactivities.

Ports: Ports describe the I/O-behavior of an activity. They describe the types of resources
the activity uses and produces, and are as a result important for assessing the match
between a service specification and a query.

Dependencies: Another key concept we use is that coordination can be viewed as the
management of dependencies between activities [21]. Every dependency can include an
associated coordination mechanism, which is simply the process that manages the
resource flow and thereby coordinates the activities connected by the dependency. Task
inputs and outputs are represented as ports on those tasks. A key advantage of
representing processes using these concepts is that they allow us to highlight the ‘core’
activities of a process and abstract away details about how they coordinate with each
other, allowing more compact service descriptions without sacrificing significant content.

Exceptions: Processes typically have characteristic ways they can fail and, in at least
some cases, associated schemes for anticipating and avoiding or detecting and resolving
them. This is captured in our approach by annotating processes with their characteristic
‘exceptions’, and mapping these exceptions to processes describing how these exceptions
can be handled [23].

Specialization: The final key concept is that processes and all their key elements (ports,
resources, attributes, and exceptions) appear in type taxonomies, with very generic
classes at one extreme and increasingly specialized ones at the other, so process models
are fully typed. The taxonomies place items with similar semantics (e.g. processes with
similar purposes) close to each other, the way books with similar subjects appear close to
each other in a library: Processes that vary along some identifiable dimension can be
grouped into bundles; where processes can appear in more than one bundle. Bundles
subsume the notion of ‘faceted’ classification [4], well-known in the software component
retrieval community, because bundles, unlike facets, can include a whole ontology branch
as opposed to simply a flat set of keywords, allowing varying abstraction levels and the
use of synonyms.

As shown in Figure 5, an activity is thus defined by specifying its decomposition (i.e., the
activities it contains), its interface (as defined by the ports it contains), the dependencies between
its sub-activities, and the attributes defined for each of those entities (not shown). Each activity
can be linked to the kinds of exceptions it can face, and these exceptions can be linked in turn to
the processes if any used to handle (anticipate and avoid, or detect and resolve) them.

Valued Sony Customer
 436

Process Dependency

is
coordinated by

contains

connects

contains

Port
contains

contains

contains

Legend

has 1:1 relation

has
1:n relation

specializes

specializes

specializes

Exception

raises is handled by

Figure 5: Partial meta-model for our process ontology (attributes not shown).

Every type of entity has its own specialization hierarchy into which it can be placed, making
this a fully-typed process description approach. There is thus a specialization hierarchy for
processes, resources, exceptions and so on. The “Sell loan” process, for example, is a
specialization of the more general “Sell financial service” process. It, furthermore, specializes
into more specific processes such as “Sell reserve credit,” “Sell Credit Card,” and “Sell
mortgage” (Figure 6):

Sell Financial Service
Sell Payroll Management

Sell Account Management Services
Sell Escrow Management

Sell IOLTA Management

Sell Foreign Exchange Services

Sell Merchant Credit Card Services

Sell ATM-Access

Sell Telephone Acess

Sell Online/Computer Access

Sell Night Deposit

Sell Loan

Sell Savings and Investment Service

Sell Management Service

Sell Account Access Services

Activity

specialization

Sell Account

Sell Certificate of Deposit

Sell Retirement Plan

Sell Mutual Funds

Sell Credit Card

Sell Installment Loan

Sell Letter of Credit

Sell Mortgage

Sell Credit Line

Sell Reserve Credit

Figure 6: Specialization hierarchy for grant loan

Each of the elements of the “Sell loan” process is also a member of the overall specialization
hierarchy. “Analyze credit-worthiness,” for example, is a specialization of the more general

Valued Sony Customer
 437

“Perform financial analysis” and specializes to more specific processes such as “Analyze
creditworthiness using scoring” and “Analyze creditworthiness using PE-ratio,” etc.

This process representation has equal or greater formal expressiveness than other full-fledged
process modeling languages (e.g. IDEF [24], PIF [25], PSL [26] or CIMOSA [27]) as well as
greater expressiveness than the frame-based languages used in previous service retrieval efforts,
by virtue of adding such important concepts as full typing, resource dependencies, ports, task
decompositions, and exceptions.

The growing Handbook database currently includes over 5000 process descriptions ranging
from specific (e.g. for a university purchasing department) to generic (e.g. for resource allocation
and multi-criteria decision making). A subset of this database (containing a representative
selection of process models but no exception-related information) is accessible over the Web at
http://ccs.mit.edu/eph/

3.2 Index Services

Services are indexed into the process ontology so that they may be retrieved readily later on.
Indexing a service in our approach comes down to placing the associated process model, and all
of its components (attributes, ports, dependencies, subtasks and exceptions) in the appropriate
place in the ontology. The fact that a substantial process ontology exists in the Process Handbook
means that parties wishing to index a service can construct their service specification from
already existing elements in the ontology, and then customizing them as necessary.

Imagine for example that we want to index a service that sells mortgages. The Handbook
ontology already includes a general ‘sell loan’ process (Figure 7):

Grant Loan

Execute loan
contract

Establish
loan

conditions Obtain
commitments

Analyze
credit-

worthiness

amount

collaterals

customer
information

default loan payment

Legend

Port
exception Exception

Connector

Grant
Loan Activity

Figure 7: The loan selling service process model.

The ‘sell loan’ process model includes most of the requisite elements, including key sub-
activities such as analyzing creditworthiness, establishing the loan’s conditions, obtaining the
commitments, and “executing” the loan contract. It also includes ports describing the process
inputs (e.g. the size of the loan (“amount”), the collateral provided for the loan, information
about the customer) and outputs (the loan itself).1 The mortgage provider, therefore, need only
create a specialization of the ‘sell loan’ process and make the few changes specific to mortgage
loans, e.g. further specifying the types of customer information it wishes and type of
creditworthiness analysis performed, elements that can also be defined by specializing existing
elements in the process ontology. (Figure 8):

1 To simplify this example we omitted dependencies and exceptions.

Valued Sony Customer
 438

Grant Mortgage

Execute
mortgage
contract

Establish
mortgage
conditions Obtain

commitments

Analyze real-
estate value

amount

description
of

real-estate

customer
information

default mortgage payment

Legend

Port
exception Exception

Connector

Grant
Loan Activity

Figure 8: The mortgage selling service process model.

The Handbook project has developed sophisticated Windows-based tools for process
indexing, based on this define-by-specialization principle, that have been refined over nearly
eight years of daily use. Using these tools, most process models can indexed in a matter of
minutes.

Note that when modeling a service, one needs in theory to account for all the possible uses the
service may be put to. What to some users may be a side effect of a service may be a key
attribute for others. To pick a homely example, a dog-walking service may be desired as a way to
provide the dog exercise, or simply as a way to make sure the dog is cared for while the owner is
out on an errand. This would suggest that a process model needs to be indexed under
specializations representing all of its possible uses, which is difficult at best. As we shall see
below, however, we can define query algorithms that, using query mutation operators, can
potentially retrieve processes not explicitly indexed as serving a given purpose, thereby reducing
the service-indexing burden.

We can, however, take the manual indexing approach described above one important step
further. A key criterion for a successful service retrieval approach is minimizing the manual
effort involved in listing new services with the search engine. Ideally services can be classified
automatically. Automatic classification is predicated on having a similarity metric so one can
place a process under the class it is most similar to. Previous efforts for automatic service
classification have used similarity metrics based on either:

♦ Automatically calculated word frequency statistics for the natural language documentation of
the service [28] [29] [30]

♦ Manually developed frame-based models of the service [9]

The first approach is more scalable because no manual effort is needed, but the latter
approach results in higher retrieval precision because frame-based models, as we have seen,
better capture service semantics. We can use a ontology-based approach to improve on these
approaches by developing tools for [semi-] automated classification of process models. Process
models, in the form of flowcharts for example, are typically created as part of standard
programming practice, so in many if not most cases the services we want to index will already
have process models defined for them. These models may even in some cases already be
classified into some kind of process ontology. The greater expressiveness of process models as
compared to standard frame-based service models (process models often include task
decomposition information, for example, but frame-based models do not) means that we can

Valued Sony Customer
 439

define similarity metrics that are more accurate than those that have been used previously. These
metrics can use word frequency statistics augmented with semantic networks to compute
similarity of natural language elements, combined with taxonomic reasoning and graph-theoretic
similarity measures to assess structural and type similarities. At the least, we believe that this
technique should greatly speed manual service indexing by providing the human user with a
short list of possible locations for a service. Ideally, it will allow a human user to be taken out of
the loop entirely. If fully automated indexing turns out to be feasible, then we can imagine on-
line services being indexed using Internet “worms” analogous to those currently used by
keyword-based search tools.

3.3 Define Queries

It is of course possible that we can do without query definition entirely once services have
been indexed into a process ontology. In theory one can simply browse the ontology to find the
services that one is interested in, as in [31]. Our own experience with the Process Handbook
suggests however that browsing can be slow and difficult for all except the most experienced
human users, because of the size of the process ontology. This problem is likely to be
exacerbated when, as with online services, the space of services is large and dynamic.

To address this challenge we have begun to define a query language called PQL (the Process
Query Language) designed specifically for retrieving full-fledged process models from a process
ontology [32]. Process models can be straightforwardly viewed as entity-relationship diagrams
made up of entities like tasks connected by relationships like ‘has-subtask’. PQL queries are built
up as combinations of two types of clauses that check for given entities and relationships:

Entity <entity> isa <entity type> :test <predicate>
Relationship <source entity> <relationship type> <target entity> :test <predicate>

The first clause type matches any entity of a given type. The second primitive matches any
relationship of a given type between two entities. Any bracketed item <> can be replaced by a
variable (with the format ?<string>) that is bound to the matching entity and passed to
subsequent query clauses. The predicates do further pruning of what constitutes a match.

Let us consider some simple examples. Imagine we are searching for a loan service that
accepts real estate as collateral (which includes mortgages), as follows:

Valued Sony Customer
440

Entity ?proc isa sell-loan // finds a specialization of “Sell loan”

Relationship ?proc has-port ?port1 // looks for a port that accepts real-
Entity ?port1 isa input-port // estate as a collateral
Relationship ?port1 propagates-resource ?res1
Entity ?res1 isa real-estate
Entity ?port1 has-attribute ?attr1
Entity ?attr1 isa name
Relationship ?attr1 has-value ?val :test (= ?val “collateral”)

Relationship ?proc has-port ?port2 // looks for a port that “produces”
Entity ?port2 isa output-port // money
Relationship ?port2 propagates-resource ?res2
Entity ?res2 isa money

Query 1: A query for mortgage services.

This type of query is imaginably within the capabilities of frame-based query languages,
especially if enhanced with a semantic network such as WordNet [5], since it references only the
type and I/O for a service. Existing linguistically-oriented semantic networks do not, however,
include a service-oriented process taxonomy like that incorporated in the Handbook, so we can
expect that recall will be less than optimal using this approach.

We can go substantially further, however, using an ontology-based approach. Query 2 below,
for example, retrieves a financing solution that has at least one internet-based step:

Entity ?proc isa sell-loan // finds a specialization of “Sell loan”

Relationship ?proc has-subtask ?sub // has sub-process that is internet
Entity ?sub isa internet-process // based

Relationship ?proc has-port ?port1 // looks for a port that accepts real-
Entity ?port1 isa input-port // estate as a collateral
Relationship ?port1 propagates-resource ?res1
Entity ?res1 isa real-estate
Entity ?port1 has-attribute ?attr1
Entity ?attr1 isa name
Relationship ?attr1 has-value ?val :test(= ?val “collateral”)

Relationship ?proc has-port ?port2 // looks for a port that “produces”
Entity ?port2 isa output-port // money
Relationship ?port2 propagates-resource ?res2
Entity ?res2 isa money

Query 2: A query for internet-based financing services.

This useful capability – searching for services based on how they achieve their purpose – can not
be achieved using frame-based languages since they do not capture process decompositions.

Valued Sony Customer
 441

Another novel and powerful feature of the ontology-based approach is the ability to search
based on how the service handles exceptions. Query 2 could be refined, for example, by adding a
clause that searches for loan processes that provide insurance for handling payment defaults:

Entity ?proc isa sell-loan
…
Relationship ?proc has-exception ?exc
Entity ?exc isa payment-default
Relationship ?exc is-handled-by ?proc2
Entity ?proc2 isa insurance-process

Query 3: A query refinement that searches for payment default insurance.

Searching based on a services’ exception handling processes is also not well-supported by frame-
based techniques. We can see, in short, that an ontology-based approach offers substantively
greater query expressiveness than keyword or frame-based approaches, by virtue of having a
substantive process taxonomy, and by being able to represent process decompositions and
exception handling.

PQL, like any query language, is fairly verbose and requires that users be familiar with its
syntax. More intuitive interfaces suitable for human users are possible. One approach exploits
the process ontology. It is straightforward to translate any process model into a PQL query that
looks for a service with that function. Users can thus use the Handbook process modeling tools
to express a query as a combination and refinement of existing elements in the process ontology,
in much the same way new services are indexed. An advantage of specifying a query in this way
is that the elements in the process ontology can give the user additional ideas concerning what to
look for. Someone looking for a mortgage service, for example, might not initially think to check
for whether or not that service provides mortgage insurance. If they define the query as a
specialization of the generic ‘sell loan’ process, however, they may note that that process has a
possible ‘payment default’ exception, and they mya as a result be inspired to search for mortgage
services that handle that exception in a way the user prefers.

Other possibilities exist. One can reduce the query definition burden by allowing users to
enter queries using a restricted subset of English (an approach that has been applied successfully
to traditional database access). Substantial progress has also been made in defining graphical
metaphors for query definition (e.g. see [33]). These approaches can of course be combined, so
that for example a simple natural language query returns some candidates classes that are
selected from and refined to define the final, more complete, query.

3.4 Find Matches

The algorithm for retrieving matches given a PQL query is straightforward. The clauses in the
PQL query are tried in order, each clause executed in the variable binding environment
accumulated from the previous clauses. The sets of bindings that survive to the end represent the
matching services. There is one key problem, however, that has to be accounted for; what we can
call modeling differences. It is likely that in at least some cases a service may be modeled in a
way that is semantically equivalent to but nevertheless does not syntactically match a given PQL
query. The service model may, for example, include a given subtask several levels down the
process decomposition, while in the query that subtask may be just one level down. The service

Valued Sony Customer
 442

model may express using several resource flows what is captured in the query as a single more
abstract resource flow. The service model may simply be missing some type or resource flow
information tested for in the query. This problem is exacerbated by the possibility of multiple
service ontologies. As has been pointed out in [34], while we can expect the increasing
prevalence of on-line ontologies to structure all kinds of knowledge including service
descriptions, there will almost certainly be many partially-mapped ontologies as opposed to a
single universally adopted one. This will likely increase the potential for modeling differences,
e.g. if queries and services are defined using different ontologies. In order to avoid false
negatives we must therefore provide a retrieval scheme that is tolerant of such modeling
differences.

We can explore for this purpose the use of semantics-preserving query mutation operators.
Imagine we have a library of operators that can syntactically mutate a given PQL query in a way
that (largely) preserves its semantics. Some examples of such operators include:

(a) allow a type specification to be more general
(b) allow a subtask to be any number of levels down the task decomposition hierarchy
(c) allow ‘siblings’ or ‘cousins’ of a task to constitute a match
(d) relax the constraints on a parameter value
(e) remove a subtask

One can use mutation operators to broaden a search to allow for the discovery of novel
alternatives. One could for example apply mutation operator (a) to Query 4 above so that it
searches for “Sell” processes, not just “Sell loan” processes. This would result in additional hits
like “Sell real-estate,” a service which would sell the property to raise money, or “Sell real-estate
lease,” which would lease the property to generate funds. Assuming a homeowner would want to
raise money for an extension, the first of those two additional options would not be desirable, as
the property would be sold off. The second option, though, is often used. The key point to be
made here is that the mutation operation broadened the search in a way that was semantically
motivated, thereby avoiding the precipitous decline in precision typical of other imprecise
matching techniques.

A second important potential use of mutation operators is to address the incomplete indexing
issue described in section 3.2. It will often be the case that a user may be searching for all
processes that serve a purpose not represented by any single element in the process ontology. For
example, one may be searching for all the ways to raise money, but the different options may not
all share a single generalization. One can address this issue by using mutation operators to define
a query that searches for processes with similar substeps, regardless of what part of the process
ontology they are indexed in. So we can, for example, search for all processes that offer money
given some kind of collateral. This would return such options as services for getting a mortgage,
raising money on the stock market, and so on.

4 Contributions of this Work

This paper has described a set of ideas that exploit the use of process model representations of
service semantics, plus process ontologies, to improve service retrieval. These ideas offer the
potential for the following important benefits:

Valued Sony Customer
 443

Increased Precision: Our approach differs from previous efforts in that it models service
semantics more fully than keyword or frame-based approaches, without imposing the
unrealistic modeling burden implied by deductive retrieval approaches. This translates
into greater retrieval precision.

Increased Recall: Modeling differences between queries and service descriptions can
reduce recall, but this can be addressed in a novel way through the use of semantics-
preserving query mutation operators.

While query definition and service indexing using process models is potentially more
burdensome than simply entering a few keywords, we believe that existing “define-by-
specialization” process modeling techniques developed in the Handbook project, coupled with
our proposed advances in search algorithms and automated process model classification, should
result in an acceptable increase in the query definition and service indexing burden when traded
off against the increase in retrieval precision and recall.

To date we have developed an initial version of a PQL interpreter as well as a small set of
semantics-preserving query mutation operators [31], which has demonstrated the viability of the
query-by-process-model concept. While we have not yet evaluated PQL’s performance in detail
yet, it is clear that its primitive query elements have low computational complexity. Query
performance can in addition be increased by using such well-known techniques as query clause
re-ordering. Our future efforts will involve comparing the precision and recall of our approach
with other search engines, refining the query definition and mutation schemes, and implementing
and evaluating automated process classification techniques.

5 References

1. Bakos, J.Y., Reducing Buyer Search Costs: Implications for Electronic Marketplaces.
Management Science, 1997. 43.

2. Mili, H., F. Mili, and A. Mili, Reusing software: issues and research directions. IEEE
Transactions on Software Engineering, 1995. 21(6): p. 528-62.

3. Salton, G. and M.J. McGill, Introduction to modern information retrieval. McGraw-Hill
computer science series. 1983, New York: McGraw-Hill. xv, 448.

4. Prieto-Diaz, R., Implementing faceted classification for software reuse. 12th International
Conference on Software Engineering, 1990. 9: p. 300-4.

5. Magnini, B., Use of a lexical knowledge base for information access systems.
International Journal of Theoretical & Applied Issues in Specialized Communication,
1999. 5(2): p. 203-228.

6. Brin, S. and L. Page. The anatomy of a large-scale hypertextual Web search engine. in
Computer Networks & ISDN System. 1998. Netherlands: Elsevier.

7. Henninger, S., Information access tools for software reuse. Journal of Systems &
Software, 1995. 30(3): p. 231-47.

8. Fernandez-Chamizo, C., et al., Case-based retrieval of software components. Expert
Systems with Applications, 1995. 9(3): p. 397-421.

9. Fugini, M.G. and S. Faustle. Retrieval of reusable components in a development
information system. in Second International Workshop on Software Reusability. 1993:
IEEE Press.

Valued Sony Customer
 444

10. Devanbu, P., et al., LaSSIE: a knowledge-based software information system.
Communications of the ACM, 1991. 34(5): p. 34-49.

11. ESPEAK, Hewlett Packard's Service Framework Specification. 2000, HP Inc.
12. Richard, G.G., Service advertisement and discovery: enabling universal device

cooperation. IEEE Internet Computing, 2000. 4(5): p. 18-26.
13. Sycara, K., et al. Matchmaking Among Heterogeneous Agents on the Internet. in AAAI

Symposium on Intelligent Agents in Cyberspace. 1999: AAAI Press.
14. Meggendorfer, S. and P. Manhart. A Knowledge And Deduction Based Software Retrieval

Tool. in 6th Annual Knowledge-Based Software Engineering Conference. 1991: IEEE
Press.

15. Chen, P., R. Hennicker, and M. Jarke. On the retrieval of reusable software components.
in Proceedings Advances in Software Reuse. Selected Papers from the Second
International Workshop on Software Reusability. 1993.

16. Kuokka, D.R. and L.T. Harada, Issues and extensions for information matchmaking
protocols. International Journal of Cooperative Information Systems, 1996. 5: p. 2-3.

17. Podgurski, A. and L. Pierce, Retrieving reusable software by sampling behavior. ACM
Transactions on Software Engineering & Methodology, 1993. 2(3): p. 286-303.

18. Hall, R.j. Generalized behavior-based retrieval (from a software reuse library). in 15th
International Conference on Software Engineering. 1993.

19. Park, Y., Software retrieval by samples using concept analysis. Journal of Systems &
Software, 2000. 54(3): p. 179-83.

20. Malone, T.W. and K.G. Crowston, The interdisciplinary study of Coordination. ACM
Computing Surveys, 1994. 26(1): p. 87-119.

21. Malone, T.W., et al., Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science, 1999. 45(3): p. 425-443.

22. Klein, M. and C. Dellarocas, A Knowledge-Based Approach to Handling Exceptions in
Workflow Systems. Journal of Computer-Supported Collaborative Work. Special Issue on
Adaptive Workflow Systems., 2000. 9(3/4).

23. NIST, Integrated Definition for Function Modeling (IDEF0). 1993, National Institute of
Standards and Technology.

24. Lee, J., et al. The PIF Process Interchange Format and Framework Version 1.1. in
European Conference on AI (ECAI) Workshop on Ontological Engineering. 1996.
Budapest, Hungary.

25. Schlenoff, C., et al., The essence of the process specification language. Transactions of
the Society for Computer Simulation, 1999. 16(4): p. 204-16.

26. Kosanke, K., CIMOSA: Open System Architecture for CIM. 1993: Springer Verlag.
27. Frakes, W.b. and B.a. Nejmeh, Software reuse through information retrieval.

Proceedings of the Twentieth Hawaii International Conference on System Sciences,
1987. 2: p. 6-9.

28. Maarek, Y.s., D.M. Berry, and G.e. Kaiser, An information retrieval approach for
automatically constructing software libraries. IEEE Transactions on Software
Engineering, 1991. 17(8): p. 800-13.

29. Girardi, M.R. and B. Ibrahim, Using English to retrieve software. Journal of Systems &
Software, 1995. 30(3): p. 249-70.

Valued Sony Customer
 445

30. Latour, L. and E. Johnson. Seer: a graphical retrieval system for reusable Ada software
modules. in Third International IEEE Conference on Ada Applications and
Environments. 1988: IEEE Comput. Soc. Press.

31. Klein, M. An Exception Handling Approach to Enhancing Consistency, Completeness
and Correctness in Collaborative Requirements Capture. 1996.

32. Hendler, J., Agents on the Semantic Web. 2001.

Valued Sony Customer
 446

A Semantic Web Approach to Service
Description for Matchmaking of Services

David Trastour, Claudio Bartolini and Javier Gonzalez-Castillo
david_trastour@hp.com, claudio_bartolini@hp.com, javgon@hplb.hpl.hp.com

HP Labs, Filton Road, Bristol BS34 8QZ, UK

Abstract. Matchmaking is an important aspect of e-commerce interactions.
Advanced matchmaking services require rich and flexible metadata that are not
supported by currently available industry standard frameworks for e-commerce
such as UDDI and ebXML. The semantic web initiative at W3C is gaining
momentum and generating technologies and tools that might help bridge the gap
between the current standard solutions and the requirement for advanced
matchmaking services.
In this paper we examine the problem of matchmaking, highlighting the features
that a matchmaking service should exhibit and deriving requirements on metadata
for description of services from a matchmaking point of view. We then assess a
couple of standard frameworks for e-commerce against these requirements.
Finally, we report on our experience of developing a semantic web based
matchmaking prototype. In particular, we present our views on usefulness,
adequacy, maturity and tool support of semantic web related technologies such as
RDF and DAML.

Keywords. Semantic Web; E-Commerce; Matchmaking Services; Automated
Negotiation; Electronic Marketplaces; Ontology.

1. Introduction

E-commerce is done faster, on a global scale, and with fewer human interventions
than traditional trade. Electronic interactions are increasing the efficiency of purchasing,
and are allowing increased reach across a global market. With the proliferation of offers
comes the problem of finding and selecting potential counterparts for service
provision/consumption to engage in negotiation with them.

In the business-to-business (B2B) e-commerce arena, the last couple of years have
seen a continuous flourishing of E-marketplaces. E-marketplaces aggregate buyers and
sellers in a single virtual location to create dynamic trading exchanges. In doing so, they
somehow simplify the problem of discovering potential counterparts for business. Still
businesses come together based on the services they require or provide, and matchmaking
- i.e. the process of matching service offers with service requests - might be a difficult
task depending on the degree of flexibility and expressiveness of the service descriptions.

By analysing the features that we would like an advanced matchmaking service to
have, we derived requirements for a language for service descriptions in the context of

Valued Sony Customer
 447

matchmaking. These requirements are: high degree of flexibility and expressiveness;
ability to express semi-structured data; support for type and subsumption; ability to
express constraints over ranges of possible values as well as definite values of a
specification.

We have studied industry standard frameworks for e-commerce such as UDDI and
ebXML, to see whether the solutions they propose meet our requirements. We found that
their main shortcoming is that they do not allow much flexibility and expressiveness in
the service descriptions.

After looking at the industry standards, to develop our prototype of an advanced
matchmaker, we have taken an approach to service matchmaking based on semantic web
technologies. Our approach aims at providing a richer service description, while making
use of existing ontologies and the ways of combining and extending them. In this paper,
we report about our experience in applying semantic web related technologies to the
service description problem. In particular, we investigate the use of RDF as a basis for a
service description language1, and we discuss how well it meets our requirements. In
addition, we discuss our experience with some semantic web tools.

The remainder of the paper is structured as follows. In section 2 we describe the
features of the matchmaking service; in section 3 we derive the requirements for a
language to express descriptions of advertisements and queries to be used in
matchmaking; in section 4 we assess current industry standards e-commerce frameworks,
such as UDDI and ebXML against the requirements; in section 5 we describe our
experience in applying semantic web technologies to the development of a matchmaking
service prototype; in section 6 we present related work and in section 7 our future work
intentions, to conclude in section 8.

2. Matchmaking

Matchmaking is the process by which parties that are interested in having exchange
of economic value are put in contact with potential counterparts.

The matchmaking process is carried out by matching together features that are
required by one party and provided by another. In the traditional way of doing business,
this process is executed either through brokers, by actively seeking counterparts in
directory services such as the yellow pages, or by looking at advertisements on media.

With the possibilities opened by e-commerce, the number of potential counterparts is
multiplied. Therefore, who is seeking for a business counterpart is faced with the problem
of filtering out relevant from irrelevant information.

2.1. Advertising, querying and browsing

The minimal functionalities that a matchmaking service provides are the features of
advertising a service, and browsing or querying a repository of advertised services.

1 The descriptions that we consider in this work do not involve behavioural aspects of a service, as these are not
necessarily required for matchmaking. Therefore, “service description language” here and in the rest of the paper is
shorthand for “language to express service parameters”.

Valued Sony Customer
 448

2.1.1. Advertising

A party describes the features of the service or product that it is providing or
requesting. Such description is published in an advertisement in the matchmaking service.

An advertisement defines a space of possible realizations of a service. The level of
detail used to describe the service is completely up to the advertiser. It is even possible to
advertise more specific and more general descriptions for analogous services at the same
time.

The advertiser will add contact details to the advertisement to make it possible for a
potential counterpart to follow up. Along with the service features and contact
information, corollary information might be expressed on negotiable terms and condition
as well as the rules of engagement for the negotiation process. Moreover, the advertiser
can also specify visibility rules for the advertisement. The matchmaking services will
take them into account when delivering information to interested parties that are browsing
or querying the repository.

2.1.2. Querying

To find out a relevant advertisement among the currently available ones, a party can
submit a query. The query expresses constraints over aspects of advertised services that
the submitter is interested in. The query expression will be use to filter out the existing
advertisements that are not important to the submitter.

2.1.3. Browsing

The matchmaker offers the possibility of browsing the currently available
advertisements. The matchmaker maintains an advertisement repository, where posted
advertisements are stored. In finding out about advertised services, browsing parties can
make use of this information to tune the adverts that they will submit in turn, so as to
maximize the likelihood of matching.

To facilitate browsing, the matchmaking services may provide a classification of
adverts and of the terms used in them. Many current catalogue-based marketplaces
organise products in predefined hierarchical categories, making this classification often
too rigid.

2.2. Information in Advertisements and Queries

Functional aspects apart, descriptions of advertisements and queries have much in
common. Both usually contain constraint expressions over the structure and the value of
the attributes in the service descriptions.

We present an example to give a flavour of what information is contained through
advertisements and queries. Let us consider a typical advertisement for the services of
sale, shipping and insurance of a given good in a B2B marketplace. The advertisement
has to contain parameters to describe aspects of all the services. For the sale itself, it is
necessary to have a description of the good touching on its characteristic attributes. For
instance, in a B2B marketplace for flowers, prospective sellers sort their offering by

Valued Sony Customer
 449

variety, stem length, colour, region of provenience and price. Furthermore, product
ratings provided by the growers themselves can be present, along with photos and
descriptions for most products.

When services such as payment and shipping are provided together with the sale,
descriptions are further complicated. The advertisement may then present aspects such as
delivery date and location, or form of payment. Finally, for complex business
interactions, a behavioural specification of the collaborative business process that
includes definition of roles (e.g. payer, payee, insurer or shipper) and their interactions
[14] could be included. An analysis of that is beyond the scope of this paper.

2.3. Use Cases for a Matchmaking Service

In this section, we sketch a short list of very simple use cases to make progress
towards the definition of the features of a matchmaking service. In all use cases, the result
is that the party requesting the matchmaking service obtain information on published
advertisements. The party is then responsible for following up by getting in contact with
the publisher of the advertisement.

2.3.1. Use Case 1: Browsing

Party browses the advertisement repository. Party manually finds what it wants by
drilling down through the categories.

2.3.2. Use Case 2: Volatile query

Party submits a query to the matchmaker (advertisements repository). The
matchmaker immediately returns matching advertisements that are currently present in
the repository.

2.3.3. Use Case 3: Persistent query

Party submits a persistent query to the matchmaker (advertisements repository). The
persistent query is a query that will remain valid for a length of time defined by the party
itself. The matchmaker immediately returns matching advertisements that are currently
present in the repository. Within the validity period of the query, whenever an
advertisement is added or updated that matches the query, the matchmaker will notify the
party. The party can decide to remove the persistent query from the matchmaker before
the validity period is ended.

2.3.4. Use Case 4: Advertisement

Party posts an advertisement to the matchmaker. This advertisement describes what
the party requires or provides and is publicly available to all parties. As with the
persistent query, the advertisement is persistent and has a validity period. The
matchmaker returns all matching advertisements that are currently present in the
repository. Within the validity period of the advertisement, whenever an advertisement is

Valued Sony Customer
 450

added or updated that matches the query, the matchmaker will notify the party. The party
can decide to remove the advertisement from the matchmaker before the validity period is
ended.

2.3.5. Use Case 5: Advertisement with visibility rules

Same as the previous case, except that the party adds visibility rules to the
advertisement. These visibility rules define who can see the advertisement based on
publicly available attributes of the requestor such as identity or business category.

2.4. How the Matchmaking Service Operates over Advertisements and Queries

As it is apparent from the use cases, the job of the matchmaker is to match together
compatible advertisements and return advertisements that satisfy a query. To clarify this
point it is worth specifying that:

• = Two advertisements are compatible when there exists a realization of a service
that has all the characteristics expressed in both service. The matchmaking service
will match service requests with compatible service offers.

• = An advertisement satisfies a query when there exists a realization of a service that
satisfies all the constraints that are expressed in the query.

The job of the matchmaker is therefore to perform operations over the language
constructs. In the following section, we start to investigate what are the properties that
such a language should possess.

3. Requirements

From the analysis carried out in section 2, we derive a set of requirements for a
language to express service descriptions in the context of a matchmaking service.

The first observation that we can make is about the potential complexity of the
descriptions. While some aspects of the description can be expressed with simple
attribute-value pairs, some others might require more structuring. Levels of specifications
can be nested so to form grouping and tree/graph structures. This requires a flexible and
expressive metadata model.

Requirement 1: High degree of flexibility and expressiveness

As it happens in traditional business, advertisements are very often under-specified to

leave open some aspects of the service to a successive stage of negotiation. Moreover,
advertisers should be allowed not to mention some details of the service they provide or
require, because they might not have the information, they might not want to disclose it,
or simply might not be interested in it.

Requirement 2: Ability to express semi-structured data

When publishing advertisements or submitting queries, it is essential to be able to

work at different levels of generality. When querying the repository for services of a
certain type, we need to make sure that all the instances of service types that are

Valued Sony Customer
 451

subsumed by the requested type are retrieved. As an example, when we require flowers,
we expect be matched with anyone providing roses.

Requirement 3: Support for types and subsumption

In querying and advertising, it is usually the case that what is expressed is not a
single instance of a service, but rather a conceptual definition of the acceptable instances.
A natural way of describing this is by expressing constraints over the parameters of the
service.

Requirement 4: Ability to express constraints

As an aside, we note that the descriptions must be understandable by all the

participants. This is difficult because the participants can potentially use their own
formats to internally represent their products or services. In order for them to interoperate
and to provide a powerful subsumption mechanism there is a need for using ontologies.
An ontology goes beyond the simple specification of a set of terms; it also expresses
relationships between them. There are many ontology efforts, either reference ontologies
such as WordNet [8], or domain ontologies, i.e. developed for vertical industries (see
TranXML [20] for the transportation as an example). To design an ontology is beyond the
scope of our work. We only require descriptions to refer to an ontology in order to
mediate between diverse information sources.

In the remainder of this paper, we take into consideration existing language for
knowledge representation both from industry standard framework for e-commerce and
from the W3C semantic web initiative.

4. Standard Frameworks for E-Commerce

In this section, we assess some industry standard frameworks for e-commerce with
respect to the requirements that we identified in the previous section. The standards we
considered were UDDI and ebXML.

4.1. Universal Description Discovery and Integration (UDDI)

UDDI is a cross-industry effort driven by a set of major platform and software
providers, as well as marketplace operators and e-business leaders. The aim of UDDI is to
create a global, platform-independent, open framework to enable businesses to discover
each other, define how they interact over the Internet, and share information in a global
registry that will more rapidly accelerate the global adoption of B2B e-commerce [4].

When trying to implement a matchmaking service based on UDDI, we incurred in the
following problems:

• = there is no classification or organisation of UDDI data structures, the tModels
(cf. Req. 3);

• = tModels only provide a tagging mechanism. UDDI is only intended to provide a
first level filter. Further discrimination is done in direct communication with the
service provider (cf. Req. 2);

Valued Sony Customer
 452

• = searching is only done by string equality matching on some fields such as name,
location or URL (cf. Req. 3 and 4);

• = the description schemata are not extensible (cf. Req. 1 and 2).

4.2. E-Business eXtensible Markup Language (ebXML)

ebXML is a set of specifications that together aim to enable a modular electronic
business framework. ebXML specifications have XML messaging as a common basis.
ebXML is a joint initiative of the United Nations (UN/CEFACT) and OASIS, developed
with global participation for global usage.

We briefly considered ebXML as a platform for our matchmaking service. ebXML
defines core components like name, address and suchlike information. However, ebXML
is very focussed on defining business processes definition and business documents
payload. The data model of the Core Component vocabulary does not look very rich and
they do not provide support for semi-structured data (cf. Req. 1), inheritance (cf. Req. 3)
and constraints (cf. Req. 4).

4.3. Other e-commerce frameworks

In terms of requirements for discovery and matchmaking, none of the other
frameworks for e-commerce that we looked at (RosettaNet [17], eCo [6], BizTalk [12])
seemed to provide anything beyond a basic ontology definition.

5. Semantic Web Technologies

As we argued in the previous section, the metadata models used by the main industry
standards do not meet the requirements that we stated. Therefore, for the development of
a prototype of an advanced matchmaking service, we turned our attention to the semantic
web initiative at the W3C consortium.

5.1. Semantic Web

The Semantic Web is a vision: the idea of having data on the Web defined and
linked in a way that it can be used by machines not just for display purposes, but

for automation, integration and reuse of data across various applications.
[From the Semantic Web activity statement]

The Semantic Web vision from the semantic web activity statement [18] fits well

with the context that we set for our matchmaker. Moreover the efforts currently underway
to develop metadata tools and languages promise to offer appropriate responses to the
problem that arise in the development of a prototype matchmaker. This becomes evident
when comparing the requirements that we collated in section 2 with some of the W3C
specifications, namely the Resource Description Framework (RDF) and the Darpa Agent
Markup Language (DAML). We have experimented with both RDF and DAML as well

Valued Sony Customer
 453

as with some of the related tools currently available or even in course of development,
and here we report on our experience with them.

5.2. RDF

RDF is a general-purpose knowledge representation language, and its flexible data
model seems to fulfil our needs.

5.2.1. Expression of the service parameters in RDF

The basic RDF data model [10] consists of three object types: resource, property and
statements. Resources are the central concept of RDF. They are used to describe
anything, from web pages to people. Properties express specific aspects, characteristics,
attributes, or relations used to describe a resource. Statements are composed of a specific
resource together with a named property and the value of that property for that resource.
The value can be a resource in turn. Alternatively, the value can be a literal, a primitive
term that is not evaluated by an RDF processor. RDF models consist of a bag of
statements and are represented as directed labelled graphs, as in the example in Figure 1.

Figure 1: An RDF statement

Since RDF is about neutrally representing knowledge rather than associating specific
semantic to a representation, we need to state what interpretation we are going to attach to
the representation that we use. The interpretation will depend on the context. For
example, let us consider the RDF statement in Figure 1. If it appears in an advertisement
for the sale of roses, our matchmaker would interpret it as stating that the colour of the
roses for sale is red. The same statement in an advertisement for the purchase of roses
would be interpreted as stating that the colour of the roses is required to be red.

As one would expect, the matchmaker considers the two advertisements as
compatible.

5.2.2. Ontology

As we hinted at in section 3, the terms that are expressed in the advertisements have
to be defined in an ontology. The design of such an ontology is beyond the scope of this
paper. However, we will just underline here that RDF models are typically enriched by an
RDF Schema (RDFS) [5]. The RDFS Specification describes how to use RDF itself to
define vocabularies of RDF terms. During the development of the matchmaking
prototype we made the assumption that there exists some ontology description in RDFS.
Our schema borrowed from various ontologies to express concepts such as delivery
services or descriptions of flowers. In our example of the B2B flowers marketplace, the
ontology describes concepts such as flower type, stem length, region, colour quality, as

Valued Sony Customer
 454

well as service related concepts such as delivery date and location. It could also include
rules of engagement for the negotiation of other terms and conditions of the service. The
automatic – or semi-automatic - merging of ontologies is a difficult problem [13], which
we do not take into consideration in this work.

As an aside, it is worth noting that the ontology might import or include information
from UDDI yellow or white pages or ebXML registries. In this way, we get the best of
the two worlds: extended reach thanks to the industry standard frameworks and
expressiveness from the semantic web.

5.2.3. Advertisements in RDF

We describe an advertisement as an RDF graph that defines a space of possible
realizations of one or more services, not by expressing a particular realization of the
service(s). Therefore, some of the aspects of the advertisement need to be expressed
through constraints (cf. Req 4 in the previous section).

Figure 2 represents an example of an advertisement. Together with the advertisement,
terms are represented that belong to the ontologies and would be shared by the different
parties involved in a matchmaking session. For the sake of our example, we have
modelled the services of sale and delivery. The service of sale defines a set of items, the
total price of the sale and whether the intention of the advertiser is to buy or to sell. The
product can specify a quantity. In turn, the quantity is expressed by a measure that can be
either volume or weight. The delivery service defines charge, delivery date, origin and
destination locations.

Each advertisement is represented as an RDF resource of type Advertisement
and as a result has its own URI. It designates the root node of the description. Properties
from this resource will characterize the types of services that are required or provided. By
using our example ontologies, it is possible to add further details and form a full RDF
advertisement. In Figure 22, the RDF sub-graph representing the advertisement is
highlighted in colour. The advertisement is for the wholesale purchase and delivery of
100 kg roses. The root of the advertisement is the myAdvert resource. Navigating the
graph from myAdvert, all the relevant information is reachable. For instance, the
desired quantity and colour of the item for sale can be read as properties of the
redRoses node.

As we argued above, advertisements express constraints over the possible realizations
of a service. RDF is useful in dealing with two kinds of constraints. Typing constraints
are used to say that a node must be of a certain type, or any subtype or supertype of it. We
express them by using the rdf:type relation. In our example, the node redRoses
expresses that a potential matching advert needs to have a node of type Rose, or a
subclass of it. Equality constraints on values are obtained by specifying a value for a
literal. In our example, the buyer is only interested in buying exactly 100 kg of flowers.

2 Obtained with the Protégé ontology editor [19].

Valued Sony Customer
 455

Figure 2: An advertisement enriched with ontologies

5.2.4. Matching

With the design decisions that we made, matching of advertisements is reduced to
matching of RDF graphs. We have implemented a matching algorithm, based on the
visitor pattern [7]. The algorithm is implemented in Java and based on the Jena RDF
API [11]. Advertisements match when their root nodes (that must be instances of
Advertisement) match, and all their respective sub-nodes do too.

Following the visitor pattern, we have defined a default matching rules and a
mechanism for it to be overridden for nodes of particular types. The association of

Valued Sony Customer
 456

overriding matching rule with a node type is done by annotating the RDFS schema.
Precisely, a matchingRule property is added to the node representing a Class
resource. The value of the property is a literal that expresses the fully qualified name of
the java class that implements the matching rules for the resources of that type.

The default matching rule is presented in Figure 3. The main idea is to traverse
simultaneously two advertisements by finding recursively the nodes that share a common
type and making sure there are no incompatibilities between the advertisements. In the
following algorithm description, we ignore the possibility of cycles, for simplicity of
explanation.

Two Advertisements match when:

Their root node match.

Two nodes match when:
One of them is a subtype of the other.
AND

IF
A matching rule is defined for the most specialised common type
between the two nodes, the matching rule is evaluated positive.

ELSE (default matching rule)
FOR each property p1 that appears in one node such that there
exists p2 in the other node where p1 = p2 or p2 is a sub-
property of p1,

The two object nodes from p1 and p2 match.

 Figure 3: Matching algorithm for two RDF graphs

Let us go back to our flower advertisement (presented without the related ontologies
in figure 4) and examine it in light of the matching algorithm. Our buyer is interested in
having her advertisement matched against compatible advertisements from sellers. In the
rest of this sub-section, we show some advertisement that would match our buyer’s and
some that would not. Our buyer advertised for the purchase of 100 kg of red roses.

Among the published advertisements in the matchmaking repository we consider the
following:

Table 1: Matching of Advertisements

Sale and delivery of Result Justification
flowers Hit Rose is a subclass of Flower
roses Hit No problem
100 kg of blue roses Miss Mismatch on the colour property
daffodils Miss Daffodil is a subclass of Flower but is disjoint

with Rose: mismatch on the types
100 kg of long stem
centifolia roses

Hit Centifolia is a subclass of Rose

100 kg of short stem
alba roses

Hit Alba is a subclass of Rose3

Up to 300 kg of roses Hit Compatible constraint. See discussion

3 Actually it should be a miss because Alba is variety of white roses. It is a limitation of the design of our ontology. See

the discussion subsection.

Valued Sony Customer
 457

Figure 4: Buyer's advertisement

The first six examples are easily expressed by the syntax illustrated so far. However,
for the last advertisement, we need to devise some mechanism to express and resolve the
constraint expression that appears in the seller’s advertisement.

In our first prototype of a matchmaker, we have designed a proprietary syntax to
express the constraints directly in the value slot of the instance. In our example, to
express an advertisement for the sale of a quantity of roses up to 300 kg, we set the literal
corresponding to the rdf:value to be the literal “LessOrEqualThan 300”. The
matching algorithm parses the value string and interprets the constraint. The drawback
with this approach is that is based on sole syntax. To overcome this problem, we envisage
to design a constraint ontology that will allow us to annotate nodes in the
Advertisement graph as representing an instance of a particular kind of constraint
(such as LessOrEqualThan 300 in the example). We expect this to have a minimal
impact on the design and implementation of the matching algorithm.

The discussion so far has been focussed on advertisements only. As we observed in
section 2, advertisement and queries have much in common. Our bias is that they can and
should use the same filtering mechanism and possibly be expressed through the same
language constructs. The constraint system we have just introduced provides this filtering
mechanism. The last example could be seen as both an advertisement and a query.

5.3. Discussion

At the end of section 3, we listed the following requirements for a description
language to be used in matchmaking services:
• = high degree of flexibility and expressiveness;
• = ability to express semi-structured data;
• = support for types and subsumption;
• = support for constraints.

Valued Sony Customer
 458

Based on our experience, RDF is offers valuable support to meeting the first three.
On the other hand, we find that it falls short on our requirement 4: support for constraints.
To overcome this problem we had to design a proprietary mechanism. One of the
problems we had to express advertisements in RDF is the one raised in the Alba example
in the previous sub-section. Alba is a variety of roses that comes in white colour only. If a
seller advertises the sale of Alba roses, his advertisement should not be matched with the
one proposing to purchase red roses. Our matching algorithm would mistakenly match
the two advertisements because the ontology does not express the restriction of the colour
property of Alba class to be white. We found this difficult to express in RDFS, as it does
not seem possible to restrict the range of a property for a subset of its original domain

5.3.1. DAML

More recently, we started to look at DAML+OIL [9] to enrich our RDF descriptions.
DAML+OIL looks promising to overcome both of the hurdles that we encountered with
RDF. We have started to experiment and express the concepts of a service description as
DAML+OIL classes. The service description is defined as the boolean combination –
intersection, disjunction or complement – of a set of restrictions over datatypes and
abstract properties. These restrictions are expressed either through DAML+OIL
restrictions or through XML Schema restrictions.

On the constraint support side, DAML+OIL allows us to define concepts using
restrictions, for instance existential qualifiers, universal qualifiers or cardinality over
properties. Rich datatype definitions can also be used in these restrictions and are defined
in XML Schema, leaving us in particular the possibility to express ranges.

Because DAML+OIL classes can be restricted on the target value/class of a property,
it is possible to create richer ontologies. Our example ontology for flower could be more
complete by adding the fact that Alba is a sort of Rose whose colour is always white.

5.3.2. RDF Tools

RDF tools that provide an interesting set of features start to become available. There
are many APIs allowing to manipulate RDF models, either providing a low-level triple-
store abstraction or a providing a higher graph abstraction. We chose the second type of
implementation, and more particularly Jena, as we felt it would be more suited to our
problem.

Protégé [19] is a very good tool to design ontologies in RDF, even though it does not
support all the features of RDF (the absence of multi-class membership is an example).
Protégé also provides some interesting features not present in RDF that look very
promising for some future DAML support.

6. Related work

RDFSuite [1] and KRAFT [15] are highly relevant to our present work. For a
discussion on how they relate, see the section on future work.

Valued Sony Customer
 459

Reynolds [16] presented an RDF framework for resource discovery. In the context of
his framework, the directed graph query language (DGQL) is a simple query language for
RDF based on graph matching. However, now DGQL can only perform equality and
indifference tests. What we propose to do is based on a wider array of possibilities for
constraint matching.

7. Future work

As we highlighted in the discussion in section 5.3, an important part of follow up
work for our matchmaker will be the design of a constraint ontology and the
implementation of a mechanism to integrate constraint solving with the current matching
algorithm. We envisage that RDFPath - or approaches of its kind - will be useful to apply
the visitor pattern to the task of matching sub-graphs.

We also would like to extend this work and enlarge its scope from matchmaking to
other phases of the e-commerce process. In particular, because constraints expressed in
matchmaking advertisements may be similarly useful in expressing negotiation
proposals [2], we intend to extend our matching algorithm and metadata model to cope
with automated negotiation. In this framework, negotiation proposals are expressed as
service descriptions the same way advertisements are.

Matchmaking does not necessarily require expressing behavioural aspects of a
service. However, in the B2B environment, collaborative business processes are a
fundamental concept. Therefore, we plan to extend our work to include aspects of service
behaviour.

We follow with interest the work on RDFSuite and RQL in particular [1]. RDFSuite
provides a suite of tools for RDF storage and querying. They manage to achieve good
results in scalability because of their use of database technology. When we will tackle the
problem of persistence of the advertisements repository, we plan to investigate the use of
RDFSuite.

KRAFT [15] is an architecture for supporting virtual organization that uses
constraints as a knowledge exchange medium. KRAFT is highly relevant to our work,
especially as we move onto defining an ontology of constraints.

8. Conclusion

Our experience in prototyping an advanced matchmaking service made us to realize
that there is a gap between what standard frameworks for e-commerce provide today and
what could be achieved through the usage of semantic web technologies. We believe that
in the near future automated matchmaking and negotiation will achieve results at a level
of complexity far beyond what is possible today. And semantic web tools and
technologies will play a primary role in making that happen.

Valued Sony Customer
 460

9. References

[1] Alexaki, V; et al. The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases,
Proceedings of the Second International Workshop on the Semantic Web (SemWeb’2001), May 2001.

[2] Bartolini, C; Priest, C. A Framework for Automated Negotiation. HP Labs, Technical Report. 2001.
[3] Bechhofer, S; Gobbe, C. Delivering Terminological Services. University of Manchester.
[4] Boubez, T; et al. UDDI Data Structure Reference V1.0, UDDI Open Draft Specification, Sep 2000.
[5] Brickley, D; Guha, R.V. Resource Description Framework (RDF) Schema Specification 1.0, W3C

Candidate Recommendation, Mar 2000; available at http://www.w3.org/TR/rdf-schema/.
[6] CommerceNet, Inc. eCo Architecture for Electronic Commerce Interoperability, 1999.
[7] Gamma, E; Helm, R; Johnson, R; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented

Software. Reading MA: Addison-Wesley, 1995.
[8] Fellbaum, C. WordNet: An electronic lexical database. The MIT Press. 1998.
[9] Hendler, J; McGuinness, D.L. The DARPA Agent Markup Language, IEEE Intelligent Systems, vol.

16, no. 6, Jan./Feb., 2000, pp. 67–73.
[10] Lassila, O; Swick, R. 1999. Resource Description Framework (RDF) Model and Syntax Specification,

W3C Recommendation, Feb 1999; available at http://www.w3.org/TR/REC-rdf-syntax/.
[11] Mc Bride, B. Jena: Implementating the RDF Model and Syntax Specification, Proceedings of the

Second International Workshop on the Semantic Web (SemWeb’2001), May 2001.
[12] Microsoft. BizTalk Framework 2.0: Document and Message Specification, MSDN Online, Jun 2000.
[13] Omelayenko B., Syntactic-Level Ontology Integration Rules for E-commerce, Proceedings of The 14th

International FLAIRS Conference (FLAIRS-2001), May 2001.
[14] Piccinelli, G., Mokrushin L. Dynamic Service Aggregation in Electronic Marketplaces. Special Issue

on Electronic Business Systems of the Computer Networks journal. HP Labs, Technical Report. 2001.
[15] Preece, A; et al. KRAFT: Supporting Virtual Organisations thought Knowledge Fusion, AAAI-99

Workshop on Artificial Intelligence for Electronic Commerce, 1999.
[16] Reynolds, F. An RDF Framework for Resource Discovery, Proceedings of the Second International

Workshop on the Semantic Web (SemWeb’2001), May 2001.
[17] RosettaNet Organization. http://www.rosettanet.org, 2001
[18] Semantic Web Activity. http://www.w3.org/2001/sw/, 2001.
[19] Stanford Medical Informatics. The Protégé Project. http://protege.standford.edu, 2001

[20] Transentric. TranXML: the Common Vocabulary for Transportation Data Exchange. 2001.

Valued Sony Customer
 461

Valued Sony Customer
 462

The Briefing Associate:
A Role for COTS applications in the Semantic

Web

Marcelo TALLIS
mtallis@teknowledge.com

Neil M. GOLDMAN
ngoldman@teknowledge.com

Robert M. BALZER
bbalzer@teknowledge.com

Teknowledge Corporation, 4640 Admiralty Way, Suite 231,
 Marina del Rey, CA, U.S.A.

Abstract. This paper identifies a set of semantic markup capabilities designed to
benefit the author rather than the consumer of manually composed documents. By
doing so it addresses one of the major challenges facing the semantic web vision –
the generation of ontologically encoded descriptions of the content of manually
produced documents. It also presents a novel approach to eliminating the currently
large and tedious overhead required to produce such markup by augmenting the
COTS tools that users already use to produce these documents so that the semantic
markup is derived as a byproduct of composing the document. These ideas are
currently being implemented in a tool called the Briefing Associate that augments
Microsoft’s PowerPoint to support the authoring of semantically grounded
briefings.

1. Introduction

The semantic web promises to expand the services of the existing web by enabling
software agents to automate procedures currently performed manually and by
introducing new applications that are infeasible today. The enabling factor to
materialize this vision is the availability of web documents containing ontologically
encoded information that software agents and tools can accurately and reliably
interpret. A major challenge facing the semantic web vision is the generation of this
encoding, especially for encoding or summarizing the content of documents
composed by people. The mark-up of such documents is currently a tedious and
sometimes complex activity. Because the benefits of these markups accrue most
immediately to the agent-assisted consumers of the web content, content producers
are not highly motivated to undertake this extra effort.

Although there has been considerable technical progress in supporting other
portions of the semantic web lifecycle, there has been little progress in the markup
of manually composed documents. The prevalent approach is to create specialized
tools that specifically support the association of semantic markups with the content
of existing documents [1],[2]. These tools provide a GUI that permits an author to
browse ontologies, find appropriate terms, generate syntactically correct markups,

Valued Sony Customer
 463

and associate them with (portions of) the document’s content. This activity remains
an “extra” effort that does not directly reward to the person performing it.

We are experimenting with a different approach. Rather than add ontological
encoding to completed documents, we propose to augment the COTS tools that
users already use to produce these documents to produce the ontological encoding
as a byproduct of document composition. The intent of such augmentation is to
(nearly) eliminate any cost of producing ontologically encoded documents beyond
the costs inherent in producing the equivalent semantics-free version. We are also
exploring the incorporation of analysis and synthesis tools that utilize these
semantic markups during document composition to improve the resulting
document’s accuracy, quality, and/or speed of production. Authors themselves will
thus reap a direct benefit from creating documents with associated ontological
encoding. Integrating this functionality into the COTS tools that authors already
use, without restricting their use of the tools’ existing functionality, obviously
simplifies the transition to this paradigm.

This paper describes the Briefing Associate, an application of this approach
tailored to the creation of briefings using Microsoft PowerPoint. The Briefing
Associate augments PowerPoint’s native GUI with graphics that represent concepts
and relations imported from an ontology. The concepts and relations from the
ontology also define a set of attributes authors can fill in through popup dialog
boxes. The author builds a briefing in PowerPoint using a combination of these
ontology-related shapes and connectors and native PowerPoint elements. As a
byproduct of building the briefing the author is also describing the relationships
among concept instances. Each ontology-related graphic represents an instance of a
concept. The ontology-related connectors between graphics stand for relations
between the associated instances. The ontological encoding created as a result of
using the augmented GUI is stored persistently within the PowerPoint document.

As a briefing is being composed, this evolving semantic model of instances,
relations, and attribute values is shared (through Microsoft COM interfaces) with
external tools called analyzers. These tools can process the semantic model to
determine whether it is consistent and complete, perform an analysis to determine
derived properties, or augment it with additional information. The Briefing
Associate provides a mechanism for these external analyzers to add visual
annotations (e.g., highlights) to the graphics that stand for model elements to
provide feedback to the author. It also provides a synthesis mechanism to these
tools for augmenting the author’s semantic markups.

These analyzers can be general or domain specific and can be individually
activated or deactivated by the author through the Briefing Associate’s enhanced
GUI. One particular generic analyzer is a publisher that exports the semantic
content (i.e. the markup) of the briefing in the DAML+OIL language [3]. Using a
generic briefing ontology, it also exports the briefing meta-information (author,
date, size, etc) and all titles and text appearing in the briefing.

We are also implementing a generic analyzer that imports the ontological
encoding resulting from a semantic web query into a briefing and renders it
graphically. It will persistently associate the query with the resulting model
elements, allowing the query to be reused in the future to keep the briefing up to
date.

Valued Sony Customer
 464

In the following sections we describe the Briefing Associate and how the
ontologically encoded descriptions are introduced into a briefing, how the Briefing
Associate interacts with external analyzers, and the current implementation of these
ideas.

2. Briefing Associate

The Briefing Associate (BA) facilitates the composition and publication of
semantically grounded briefings. The briefings contain markups that describe the
domain-specific content matter of the briefing and are linked at a fine granularity to
units of visual content in the briefing. A briefing may contain both original and
imported semantic content. The BA generates DAML descriptions of a briefing’s
original content as a byproduct of creating that content’s visual depiction. The
creation of DAML markup for original content is mediated by visually annotated
DAML ontologies (VAOs) from which authors select ontologically defined objects
as predefined graphic shapes or icons to include in their briefing. These visually
annotated ontologies are demand-loaded into the BA to specialize it to a particular
subject-matter domain. They also permit the BA to generate graphical depictions of
imported semantic content. Content imported from agents will be marked with the
source agent and query used to obtain the content, permitting the BA to obtain, on
request, an updated version of that content from the same agent.

The BA is implemented as an extension of Microsoft PowerPoint. Briefing
authors familiar with that product can continue to rely on the native user interface
tools, menus, and direct-manipulation actions to edit visual content. Extended
interpretation of these tools and actions, and additional tools created from the
ontology annotations, simplify the creation of new content, while simultaneously
creating DAML markup. Figure 1 depicts the BA’s architecture and major
information flows.

The Briefing Associate augments PowerPoint with graphics-bearing ontological
categories. These graphics represent instances of domain concepts, attributes

Figure 1 Briefing Associate Software Architecture

Valued Sony Customer
 465

(primitive data typed properties), and their relationships. The author, while
composing a briefing using these graphics is indirectly constructing a semantic
description of the briefing content. Besides supporting the construction of
semantically grounded briefings, the Briefing Associate also exposes the briefing’s
emerging semantic descriptions to external modules called analyzers that perform
specialized services or analyzes for the author. These analyses can provide
feedback to the author, can extend or modify the briefing, or can produce external
documents. One particular generic analyzer is a publisher that generates the
semantic markups that describe the briefing content. The Briefing Associate
extends the PowerPoint GUI with tools, menus, and gestures for instantiating the
semantically annotated graphics, assigning attribute values to the instances and
relations represented by these graphics, invoking analyses, importing and updating
the graphic representations of imported semantic descriptions, and annotating
domain ontology concepts and relations with their visual representations. The
following subsections describe the components that achieve these added services.

3. Ontology-Aware Briefing Editor

The Ontology-Aware Briefing Editor allows a briefing author to create original
content and to import and edit externally produced content. Visually annotated
ontologies, discussed below, provide the means to relate DAML descriptions from
a given ontology to a visual model.

Ontology-aware editing takes place through a combination of standard
PowerPoint interface actions, additional GUI elements added by the BA, and
extended interpretation of native controls and direct-manipulation actions. The
entire native PowerPoint user interface continues to be functional. User-preference
tailoring of that interface is preserved.

Figure 2 Ontology aware briefing editor GUI – satellite communications

Valued Sony Customer
 466

A visually annotated ontology is the key to creating original content as well as to
automatically depicting imported content. A new toolbar is added to the
PowerPoint GUI for the ontology. For each concept and relation in the ontology, an
instantiation tool is added to the toolbar. Our current implementation lays these
tools out in a single list. We also plan to offer these tools in a cascading interface,
mirroring the class inheritance of the ontology. Clicking on one of these tools, like
PowerPoint’s native autoshape tools, allows the author to insert a copy of the
graphic template anywhere in his briefing. Domain relations defined in the
Ontology are graphically depicted by arrows (more precisely PowerPoint
connectors) whose ends are attached to the concept instances related by that
relation. These instantiation tools simultaneously create the internal semantic
representation for that concept or relation instance as defined by the ontology
(including any default attribute values).

The Ontology-aware briefing editor also allows the author to edit these domain
attribute values through a dialog box interface that is activated from the context
menu of the graphic representing that instance in the briefing. A tabbed dialog is
created for the selected instance with a tab for each attribute applicable to that
instance. Each tab provides an interface, specific to the attribute type, for viewing
and setting the value of that attribute.

We plan to augment this textual interface with a graphical one that enables some
of an object’s attributes to be modified by direct manipulation of the object’s
graphics (e.g. changing the size of an object might modify some aggregate value
such as the length of a queue, and changing its color from a list of alternatives
might modify some enumerated type such as its state). The correspondence of these
direct manipulations to the attribute affected will be defined by additional visual
annotations of the ontology.

Figure 2 is a screen shot of the ontology-aware briefing editor in a “satellite
communications” domain. Everything in the figure is part of the GUI with the
exception of the callouts highlighting specific elements.

In the central canvas is the depiction of a “satellite communications”
configuration. The various labeled shapes represent instances of satellites,
terminals, switches, processors, and users – the domain concepts defined in the
ontology. They are connected by arrows representing communication links – the
only (non data-typed) domain relation in this ontology.

The author created the preponderance of this briefing through the instantiation
tools on the domain toolbar, on the right side of the second row of docked toolbars
at the top of the figure. To the immediate left of these instantiation tools in the

Figure 3 Property value dialog

Valued Sony Customer
 467

domain toolbar is a drop-down list box displaying the name of the current ontology
(“Satellite Com”). When a briefing author starts a new briefing, this box allows him
to choose an ontology. This triggers the creation and display of the appropriate
domain toolbar for that ontology. Manipulation of the concept and property
instances on the briefing – positioning, resizing, selecting, attaching/detaching
links– is carried out through PowerPoint’s native mouse gestures and/or keyboard
shortcuts.

In Figure 2 the user has requested a “topology” analysis, one of the analyses in
the “Designer Studies” group. The results of this analysis are displayed in a separate
window, visible at the upper left of the canvas in Figure 2. The window displays a
list of reports. In this example, there was just one report. Its explanation reads “User
U3 is directly connected to user U2.” When the user selects one of these reports, its
associated markups are displayed as highlights. In this case, the only markup called
for highlighting the communication link between U2 and U3. That is why that link
has an appearance (a thin red arrow) different from the others. The effect of this
highlighting is reversed when the report is deselected or the analysis window is
closed.

Attribute values are viewed and assigned through dialogs, displayed on demand
from the graphic instance’s context menus. Figure 3 exhibits the dialog for a sensor
satellite. The dialog contains a “tab” for each attribute associated with that concept
in the ontology. The details of a tab depend on the value type of the attribute and on
the concept specification.

Identical dialogs are used to gather the parameter values for parameterized
analyses.

4. Visual-Annotation Ontology Editor

The Briefing Associate is not limited to any particular ontology--any DAML
ontology can be annotated. Multiple annotated versions of a single ontology may be
created, so that briefings can be tailored easily to different audiences with different

Figure 4 Visually annotated ontology – satellite communication

Valued Sony Customer
 468

conventions for the visual representation of information. However, any single
briefing will be based on a single visually annotated ontology.

The Visual-Annotation Ontology Editor provides an interactive means to
establish a mapping between the concepts of an ontology and their visual
representation. When an ontology O is imported into the VAO editor, the editor
lays out O’s concepts and properties depicting their hierarchical relationships (i.e.,
the subclass and subproperty properties). The user can assign graphic
representations to these concepts and properties and assign icons to be used in the
ontology tool bar used for briefings to be associated with O. The user also indicates
the analyses that briefing authors will be able to invoke from the ontology-aware
briefing editor through its GUI.

The VAO editor is actually a specialization of the ontology-aware briefing editor
that uses the visual annotations defined for the ontology domain. These visual
annotations allow the object and relation types in an ontology to be defined
graphically. These ontology annotations are thus just briefings in this ontology
domain and are saved as a PowerPoint presentation. They are loaded on demand by
the Semantic Content Import and Update and Ontology-Aware Briefing Editor
components. Importing an ontology is thus a case of content import, while adding
visual annotations is a case of original content creation.

Figure 4 shows the Satellite Communications visually annotated ontology used in
the example of Figure 2. The (green) rectangles labeled “Comsat”, “Sensor”,
“User” , etc. represent the leaf domain concepts. The cross shapes attached to them
by dashed connections are their graphic templates. This determines the appearance
of an instance of that concept. Any of PowerPoint’s native autoshapes, formatted as
desired, may be used as a graphic template. Alternatively, an image may be chosen
as a graphic template.

A concept may be connected (via a curved solid connector) to an image that
serves as the tool icon for that concept in the instantiation toolbar. Tool icons, like
graphic templates, may be selected from a shape library or may be imported. If no
tool icon is specified, a scaled version of the graphic template is used as the tool
icon.

The (light green) clouds labeled “Satellite”, etc. represent the non-leaf concepts.
The (gold) arrow shape labeled “Link” defines the sole relationship type in this
domain. The dashed, double-headed arrow attached to it is the graphic template for
the “Link” relationship type. The user tailors the color, dashing and arrowhead
styles of a relationship template in the graphic domain specification just as he
tailors component type templates.

Any concept or relationship type may have initial attribute values specified
through a property-editing dialog, identical to the ones used by the ontology-aware
briefing editor. The default values are assigned when new instances of the type are
created.

Figure 4 contains the specification of two analysis groups, “Designer Studies”
and “Path Studies”, and eight analyses in those analysis groups. The color and
styling of the border of an analysis specify the means used to highlight components
and relationships identified in reports in the feedback from the corresponding
analyzers. For instance, the “U2-U3” connection in Figure 2 was highlighted as a
thin red line because the border of the “Topology” analysis is a thin red line.
Analogously, the text characteristics – font, face, size, color – of the label of an

Valued Sony Customer
 469

analysis specify the textual characteristics of any markup text found in feedback
from the analysis.

5. Semantic Content Import and Update

At the time this paper was written no generic semantic content import and update
component suitable for any arbitrary ontology has been implemented. Instead a
series of ontology-specific semantic content import and update components tailored
to a particular domain have been created. The following is a description of the
generic component we plan to implement.

The Semantic Content Import and Update component will allow the author of a
PowerPoint presentation to contact DAML-aware agents, including search agents,
and post queries to those agents. It will accept, as DAML descriptions, the results of
those queries. The queries as well as the imported descriptions and meta-
information will be incorporated as a persistent part of the presentation.

The component will determine how these objects should appear (i.e. be rendered)
within the briefing, as specified in the respective ontology annotations to represent
the imported DAML content. To do so, it will size, color, label, and place graphic
renditions of these objects and interconnect them with one another. These graphic
renditions will become a persistent part of the presentation, associated with the
specific description units that they depict. The author will generally need to adjust
the sizes and positions of these graphics to produce acceptable layouts.

The component will also provide information update capabilities, allowing
information updates on demand through a menu item added to the PowerPoint user
interface. Using the retained queries, the component will re-query the source
agent(s) to retrieve updated content and generate an updated version. At the
author’s discretion, the component will visually correlate the two versions. The
author may choose to incorporate the updated version as a whole, or to selectively
incorporate changed information.

The author will also be able to request that any manual customization of the
graphic rendition of imported content be reapplied to updates of that imported
content so that it doesn’t have to be reapplied manually.

6. Briefing Associate - analyzer interaction

Analyzers are external executable modules that process the internal semantic
descriptions of the briefing content to provide an analysis, a synthesis, or some
other service. An analyzer can be implemented so as to execute within the
PowerPoint process, as a separate process on the same machine, or (via DCOM) on
a different workstation. Analyses are associated with a particular domain and this
association is indicated in the VAO and they are invoked through the BA editor
menu for that domain. When an author requests an analysis, the BA creates a
connection to the module implementing that analysis and passes it a reference to the
briefing to be analyzed, together with any author-provided parameters for the
analysis. That analyzer is subsequently expected to send the BA a set of reports

Valued Sony Customer
 470

describing the analysis performed, the synthesis done, or the service rendered. The
BA then presents the report(s) to the author.

For a snapshot analysis, the analyzer’s responsibility ends with transmission of
the reports detailing that analysis. An incremental analysis, however, is expected to
send updates to its reports as the author continues to modify the briefing, until the
author closes either the analysis or the briefing. To support incremental analyses,
the briefing reference handed to the analyzer by the BA provides not only direct
access to the content of the briefing, but to events representing changes to that
content.

A transaction grouping is imposed on top of events. It is these transactions, not
primitive events, that represent the unit of change to which an incremental analyzer
commits to respond with updated analysis reports. Because the responses are
permitted to be asynchronous, they are accompanied by the transaction id of the
transaction that triggered them. This allows the BA to understand, and reflect in its
GUI, whether a displayed set of analysis reports is up-to-date.

Although the briefing reference provided to an analyzer can be used to gain direct
access to PowerPoint’s detailed graphic model of a briefing, analyzers are typically
interested in the ontology-based model information that is being automatically
generated when content is imported from the semantic web or created through tools
associated with the VAO. For each ontology, a COM type library is automatically
generated. This type library reflects a straightforward mapping between classes and
properties of the ontologies and the corresponding modeling concepts (classes,
interfaces, and properties) of COM. Most, if not all, widely-used programming
language IDEs for the Windows platform provide a declarative way to import such
a type library, automatically building the client-side code needed to program
directly in terms of the objects exposed by the library.

7. Implementation

The Briefing Associate is a descendent of the Design Editor [4], an application for
producing visual domain-specific design environments. The Briefing Associate,
like the Design Editor, is implemented as an extension of Microsoft PowerPoint.
We regard this choice not as an implementation detail, but as central to this
research. First, PowerPoint provides us as implementers with a far higher-level
platform for building a briefing tool than generic middleware, such as
COM/CORBA and GUI widget libraries. It provides an extensive ontology for
representing the visual content of briefings, and support for making models that use
that ontology persistent. Furthermore, it provides an extensive WYSIWYG user
interface for viewing and editing the visual content of a briefing. This interface
requires some extension, but no redesign or reimplementation, to accommodate
DAML-aware briefings. Second, PowerPoint is the most widely used product for
authoring briefings and hence it facilitates the adoption of the BA by briefing
authors.

The BA is programmed primarily in Visual Basic. For PowerPoint 2000, this
extension is a COM addin that receives “events” as the user creates, opens, closed,
and modifies briefings. As a client of PowerPoint, this module can navigate through
a briefing and paint analysis feedback directly onto it. For efficiency reasons, this

Valued Sony Customer
 471

module runs entirely as an “in-process” component. This means it is incorporated
into the PowerPoint process itself. Method calls are extremely efficient when both
client and server are part of a single operating system process. Greater efficiency
could be achieved by implementing the BA in C++, but the performance of the
Visual Basic code has been acceptable to date.

PowerPoint’s native extension mechanisms include a general, albeit low-level,
ability to add arbitrary non-graphic information to a presentation and retain that
information in the presentation’s persistent file format. The BA implementation
relies on this mechanism to retain all ontology-related information about a
presentation across editing sessions – it does not attempt to infer ontological
information on the basis of graphic attributes of existing graphic objects.

8. Rewarding the Briefing Associate Adopter

The Briefing Associate’s authoring environment is an enhanced PowerPoint, the
same environment most briefing authors already use. The enhancements do not
remove capabilities, do not necessitate the use of new means for accomplishing old
goals, do not alter the visual appearance of the ultimate product, and do not impose
perceivable delays in processing speed. Thus, the Briefing Associate doesn’t
impose any extra impediments or costs on producing briefings with the standard
tools in the standard way.

But we need to motivate the briefing author to use the Briefing Associate’s
markup tools. The biggest benefits of such markup will obviously accrue to the
consumers of these briefings who will be able to quickly and accurately find
specific content in those briefings because they have been semantically annotated.
Realistically, we should never expect people to incur significant costs, whether in
time, retraining, or reduced product quality, on the basis that some benefit might
accrue in the future, especially when that potential benefit accrues to others.

We have therefore added several enhancements to the Briefing Associate that
provide immediate benefit to the briefing author to motivate the use of the Briefing
Associate’s semantic markup capabilities:

- The Briefing Associate simplifies the construction of the briefings
because authors will have readily available the graphic templates that they
repeatedly use to represent objects of the domain.

- Ontology-based descriptions of a briefing’s content are generated as a
side-effect of briefing composition. The extent and value of such
descriptions, however, depends on the extent to which the author makes
use of the extensions offered by the BA.

- Generic and domain specific analyzer tools exploit the semantics of the
briefing content to provide an analysis, synthesis, or other service for the
author while the briefing is being created. Although such analyzers are not
inherently tied to the semantic web, their implementations might well
make use of web-based agents that consume the content of a briefing and
provide feedback to the author.

- Ontology-based descriptions of briefing meta-data and textual content are
produced at no cost and independent of the use of any extensions.

Valued Sony Customer
 472

- The BA’s extensions for importing and visualizing semantically marked-
up content could be a significant time-saver in constructing certain classes
of briefing. Since these facilities are designed to rely on queries posted to
the semantic web, however, they server to leverage, rather than to
bootstrap, the semantic web vision.

- The BA will automate the update of content that originated in the
semantic web. Like import and visualization, this is a leveraging rather
than a bootstrapping relationship of the BA to the semantic web.

These BA author-enhancements just embed the semantic web lifecycle into the
briefing creation process so that briefing authors themselves can enjoy (some of)
the benefits of semantic markup.

Ontology-based annotations will turn briefings into reusable resources. New
content as well as novel aggregations of imported content will be published in a
form accessible to DAML-enabled agents. Linking the graphic content to the
semantic content in the published briefing will foster reuse of the visual as well as
the semantic material.

The automated content update facilities of BA will transform briefings from
information snapshots, whose value declines as the information in those snapshots
becomes dated and obsolete, into renewable resources whose information can be
automatically updated as needed.

The automatic generation of visual depictions for imported material, and
ontology-specific interface editing extensions may actually reduce the effort needed
to compose the visual content of a briefing, even though briefings will contain non-
visual semantic content as well as traditional graphic content.

9. Related Work

Several initiatives aiming to establish a global semantic markup scheme for the web
are currently being undertaken. The oldest and most widely adopted is the Dublin
Core Metadata Initiative (DCMI) [5]. The DCMI has the goal of facilitating the
discovery of electronic resources in the web. Its primary offering is the Dublin
Core Metadata Element Set, a set of fifteen elements like Title, Creator, Subject,
and Date that is used to describe web resources. The Dublin Core Metadata
Element Set is the de facto worldwide standard for the description of information
resources across disciplines and languages and has already been translated into 25
languages.

Newer undertakings like the European Community sponsored Ontobroker [6], its
successor OntoWeb [7], and the DARPA sponsored DAML [8], go beyond the
DCMI goals. Rather than annotating electronic resources to merely facilitate their
discovery, these projects aim to describe electronic and real world entities using a
machine understandable language that enables autonomous software agents to
accurately understand and process their content [9]. Our BA is being developed
under the DAML program.

There are two dimensions along which we can state requirements over semantic
markup generator tools. The first dimension is the granularity of a description unit.
This dimension ranges from coarse descriptions that relate a whole document with

Valued Sony Customer
 473

a set of predefined conceptual categories to detailed descriptions of a document’s
content. The second dimension is the degree of regularity of the generated
descriptions. This dimension ranges from highly regular data usually supported in
relational databases to descriptions of highly unstructured and irregular information
like the content of newspaper articles. The BA is aimed at detailed descriptions of
irregular and unstructured documents.

The above dimensions are useful for comparing the BA with other tools for
generating semantic markups. One kind of metadata generator tool is The Nordic
DC metadata creator [10]. The Nordic DC metadata creator is a metadata editor for
the Dublin Core Metadata Initiative. It consists in a Java applet that displays a form
where users can fill in the values corresponding to the Dublin Core Metadata
Element Set. The Nordic DC metadata creator generates a syntactically correct
encoding of these values that a user can attach to the described document. This tool
corresponds to the less elaborated form of semantic markups: Coarse descriptions
based in a predefined set of conceptual categories. Another kind of tool is
represented by Klarity [11], a metadata generator tool that supports the Dublin Core
Metadata Element Set. Klarity is a tool that can automatically generate metadata for
HTML pages based on the concepts found in the text. It uses statistic methods to
allocate values based on the concepts it has identified from the 'seed' or exemplar
documents that are significant to the concept in question. Klarity is another
example of a tool that generates coarse metadata descriptions of documents.

A different approach for metadata generation is represented by ITTALKS [12].
ITTALKS is a portal for announcements about talks, seminars and colloquia related
to Information Technology that is part of the DAML program. Although not its
main focus, ITTALKS is able to generate DAML descriptions from the talks
contained in its database. In this sense, ITTALKS is an example of a tool that
generates descriptions from highly structured data.

Closer to the scope of the BA are the Annotation Tool of the KA2 initiative
(under the Ontobroker project) [1] and the Knowledge Annotator of the Shoe
project [2]. These tools offer a GUI for authoring and attaching semantic
annotations to web documents. They make available context sensitive instances and
ontology browsers that facilitate the authoring of semantic descriptions. A second
incarnation of the KA2 annotation tool can also generate annotations semi-
automatically from lexical analysis of text plus a vast word and domain lexicon.

These approaches contrast with the Briefing Associate in that the BA generates
these markups as a byproduct of constructing the document and hence do not
require the users to perform any extra activity. Additionally, because the semantic
annotations are embedded in the original document (instead of being inserted in a
second step using a different tool) modifying the original document does not lose
the existing annotations. In the other hand, the BA approach might not be adequate
for marking up existing documents that do not use the BA conventions for
representing ontological relationships, and for documents whose type is not
supported by the underlying COTS product.

Although the semiautomatic markup generation feature of the KA2 annotation
tool simplifies the production of semantic annotations, it stills constitutes an extra
activity because the users need to check and revise the generated annotations.
Furthermore, this approach is limited to textual documents that contain enough
information as required to infer their semantic relationships. This limitation might

Valued Sony Customer
 474

certainly exclude briefing documents because they usually contain diagrams that are
not self-explained within the text.

10. Conclusions

The overload incurred in annotating documents with semantic markups should be
kept to a minimum. With this goal in mind we have developed a new paradigm for
facilitating the generation of semantic descriptions of the document content. Our
approach consists in augmenting the same COTS products that users normally use
to compose these documents with natural representations of domain ontology
entities. By using these representations in composing a document, the user is
simultaneously generating a semantic description of its content. We also suggest
that in order to motivate document author’s transition to this paradigm, these added
semantic descriptions should be exploited by author-oriented tools that help
improve the resulting document’s accuracy, quality, and/or speed of production. It
should be noted that this is just embedding the semantic web lifecycle into the
document creation process so that document authors can enjoy (some of) the
benefits of semantic markup.

We have implemented these ideas in the Briefing Associate, an extension to the
Microsoft PowerPoint that reflects an internal semantic model of a briefing from its
graphic representations of domain instances and their relationships. The Briefing
Associate can produce DAML descriptions of a briefing content as a byproduct of
creating the graphic content of that briefing. That semantic content can be analyzed
for consistency and completeness to improve the briefings accuracy, quality, and
speed of production. In addition, the Briefing Associate can automatically create
graphic depictions from imported DAML descriptions, and these graphic depictions
can be updated on demand to reflect changes in the imported DAML content.

References

[1] Erdmann, M., Maedche, A., Scnurr, H.-P., and Staab, S. From Manual to Semi-automatic
Semantic Annotation: About Ontology-based Text Annotation Tools. To appear in the
Linköping Electronic Articles in Computer and Information Science.
http://www.ida.liu.se/ext/epa/cis/2001/002/tcover.html. 30.December, 2001

[2] Heffin, J, Hendler, J., Luke, S. SHOE: A prototype Language fro the Semantic Web. To appear
in the Linköping Electronic Articles in Computer and Information Science.
http://www.ida.liu.se/ext/epa/cis/2001/003/tcover.html.10.March.2001

[3] DAML+OIL (March 2001). http://www.daml.org/2001/03/daml+oil.daml
[4] Goldman, N. and Balzer, R. The ISI Visual Design Editor Generator, Proceedings of the 1999

IEEE Symposium on Visual Languages, Tokyo, Japan, September 13-16, 1999, IEEE
Computer Society Press, pp. 20-27.

[5] Dublin Core Metadata Initiative. http://dublincore.org
[6] OntoBroker & Ontology Related Initiatives for the Semantic Web.

http://ontobroker.semanticweb.org
[7] OntoWeb. http://www.ontoweb.org
[8] The DARPA Agent Markup Language Homepage. http://www.daml.org
[9] Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web. Scientific American.

May 2001. http://www.sciam.com/2001/0501issue/0501berners-lee.html
[10] Dublin Core Metadata Template. http://www.lub.lu.se/cgi-bin/nmdc.pl
[11] Klarity.http://www.klarity.com.au
[12] ITTALKS. http://ittalks.org

Valued Sony Customer
 475

Valued Sony Customer
 476

ITTALKS: A Case Study in the Semantic
Web and DAML

R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Ian Soboroff,
Harry Chen, Lalana Kagal, Filip Perich, Youyong Zou, Sovrin Tolia

Laboratory for Advanced Information Technology
University of Maryland Baltimore County

{cost,finin,ajoshi,ypeng,nicholas,ian,hchen4,lkagal1,fperic1,yzou1,stolia1}@csee.umbc.edu

Abstract. Effective use of the vast quantity of information now available on the web
will require the use of “Semantic Web” markup languages such as the DARPA Agent
Markup Language (DAML). Such languages will enable the automated gathering and
processing of much information that is currently available but insufficiently utilized.
Effectively, such languages will facilitate the integration of multi-agent systems with
the existing information infrastructure. As part of our exploration of Semantic Web
technology, and DAML in particular, we have constructed ITTALKS, a web-based
system for automatic and intelligent notification of information technology talks. In
this paper, we describe the ITTALKS system, and discuss the numerous ways in which
the use of Semantic Web concepts and DAML extend its ability to provide an intelligent
online service to both the human community and the agents assisting them.

1 Introduction

With the vast quantity of information now available on the Internet, there is a need to man-
age this information by marking it up with a semantic language, such as DARPA Agent
Markup Language (DAML) [14, 23], and using intelligent search engines, in conjunction with
ontology-based matching, to provide more efficient and accurate information search results.
The aim of the Semantic Web is to make the present web more machine-readable, in order to
allow intelligent agents to retrieve and manipulate pertinent information. The key goal of the
DAML program is to develop a Semantic Web markup language that provides sufficient rules
for ontology development [20] and that is sufficiently rich to support intelligent agents and
other applications [22, 36]. Today’s agents are not tightly integrated into the web infrastructure.
If our goal is to have agents acting upon and conversing about web objects, they will have to
be seamlessly integrated with the web, and take advantage of existing infrastructure whenever
possible (e.g., message sending, security, authentication, directory services, and application
service frameworks). We believe that DAML will be central to the realization of this goal.

In support of this claim, we have constructed a real, fielded application, ITTALKS, which
supports user and agent interaction in the domain of talk discovery. It also provides a simple
web-driven infrastructure for agent interaction. In addition, ITTALKS serves as a platform for
designing and prototyping the software components required to enable developers to create in-
telligent software agents capable of understanding and processing information and knowledge
encoded in DAML and other semantically rich markup languages. To date, we have focused
on developing the support and infrastructure required for intelligent agents to integrate into an

Valued Sony Customer
 477

Unicode URI

XML + NS + XML Schema

RDF + RDF Schema

Ontology Vocabulary

Logic

Proof

Trust

D
ig

ita
l

Si
gn

at
ur

e

Rules

Self-
desc.
doc.

Data

Data

Figure 1: Tim Berners-Lee’s vision of the Semantic Web is founded on a base that includes URIs, XML and
RDF.

environment of web browsers, servers, application server platforms, and associated supporting
languages (e.g., WEB/SQL, WEBL), protocols (e.g., SSL, S/MIME, WAP, eSpeak), services
(e.g., LDAP) and underlying technologies (e.g., Java, Jini, PKI).

On the surface, ITTALKS is a web portal offering access to information about talks,
seminars and colloquia related to information technology (IT). It is organized around do-
mains, which typically represent event hosting organizations such as universities, research
laboratories or professional groups, and which are represented by independent web sites.
ITTALKS utilizes DAML for its knowledge base representation, reasoning, and agent com-
munication. DAML is used to markup all the information in the knowledge base to provide
additional reasoning capabilities otherwise unavailable. With information denoted in a se-
mantically machine-understandable format, the computer can deduce additional information,
a task which is difficult in a traditional database system. For example, if both ITTALKS and
the user agree on a common semantics, the ITTALKS web portal can provide not only the
talks that correspond to the user’s profile in terms of interest, time, and location constraints,
but can further filter the IT events based on information about the user’s personal schedule,
inferred location at the time of the talk, distance and current traffic patterns, etc. ITTALKS
can also dynamically update the user’s profile with incremental learning of the user’s usage
patterns.

ITTALKS demonstrates the power of markup languages such as DAML for the Semantic
Web, drawing on its ability to represent ontologies, agent content languages and its ability to
improve the functionality of agents on the web. We have developed DAML-encoded ontologies
for describing event, temporal, spatial, personal, and conversational information, which enable
us to represent all required knowledge in a DAML-encoded format. Moreover, these ontologies
enable us to execute a computer understandable conversation. In addition, we have created
several DAML-encoded classification ontologies, which provide us with additional reasoning
capabilities in order to find the best matching IT talks for a particular user. Furthermore, in
the ITTALKS application, any web page presented on the ITTALKS web sites contains the
necessary information for an agent to retrieve the DAML-encoded description of this page
as well as the contact information of a responsible agent in order to provide more effective
conversation. ITTALKS thus provides each agent with the capability to retrieve and manipulate
any ITTALKS-related information via a web site interface or through a direct agent-to-agent
conversation. Hence, by combining the features of currently existing web applications with
the DAML-based knowledge and reasoning capabilities, ITTALKS presents a true Semantic
Web application.

Valued Sony Customer
 478

<daml:class rdf:ID="Animal">
 <rdfs:label>Animal</rdfs:label>
 <rdfs:comment>An Example</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="Male">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</daml:Class>

<daml:class rdf:ID="Female">
 <rdfs:subClassOf rdf:resource="#Animal" />
 <daml:disjointWith rdf:resource="#Male" />
</daml:Class>

<daml:Class rdf:ID="Man">
 <rdfs:subClassOf rdf:resource="#Person" />
 <rdfs:subClassOf rdf:resource="#Male" />
</daml:Class>

Figure 2: An example of DAML-encoded knowledge.

2 Background

The Semantic Web [4, 3] is a vision in which web pages are augmented with information and
data that is expressed in a way that facilitates its understanding my machines. The current
human-centered web is still largely encoded in HTML, which focuses largely on how text
and images would be rendered for human viewing. Over the past few years we have seen a
rapid increase in he use of XML as an alternative encoding, one that is intended primarily for
machine processing. The machine which process XML documents can be the end consumers
of the information or they can be used to transform the information into a form appropriate for
human understanding (e.g., as HTML, graphics, synthesized speech, etc.) As a representation
language, XML provides essentially a mechanism to declare and use simple data structures and
thus leave much to be desired as a language in which to express complex knowledge. Recent
enhancements to basic XML, such as XML Scheme, address some of the shortcomings, but
still do not result in an adequate language for representing and reasoning about the kind of
knowledge essential to realizing the Semantic Web vision.

RDF (Resource Description Framework) [40] and RDFS (RDF Schema) [41] attempt to
address these deficiencies by building on top of XML. They provide representation frame-
works that are roughly the equivalent to semantic networks in the case of RDF and very simple
frame languages in the case of RDFS. However, RDFS is still quite limited as a knowledge rep-
resentation language, lacking support for variables, general quantification, rules, etc. DAML
is one attempt to build on XML, RDF and RDFS and produce a language that is well suited
for building the Semantic Web.

The goal of the DAML program (http://www.daml.org/), which officially began in August
2000, is to develop a universal Semantic Web markup language that is sufficiently rich to
support intelligent agents and other applications. DAML can dramatically improve traditional
ad hoc information retrieval because its semantics will improve the quality of retrieval results.
Also, it will allow the intelligent agents of tomorrow to retrieve and manipulate the information
on the semantic web.

3 ITTALKS

As part of UMBC’s role in the DAML Program, we have developed ITTALKS; a web portal that
offers access to information about talks, seminars, colloquia, and other information technology
(IT) related events. ITTALKS provides users with numerous details describing the IT events,
including location, speaker, hosting organization, and talk topic. More importantly, ITTALKS
also provides agents with the ability to retrieve and manipulate information stored in the
ITTALKS knowledge base. Below, we discuss various aspects of the system in more detail.

Valued Sony Customer
 479

Unlike other web services, ITTALKS employs DAML for knowledge base representa-
tion, reasoning, and agent communication. The use of DAML to represent information in its
knowledge base, in conjunction with its use for interchangeable type ontologies as described
in Section 5.5, enables more sophisticated reasoning than would otherwise be available. For
example, a simpler representation scheme might be able to provide the user with talks based on
interest, time and location. When both ITTALKS and the user agree on a common semantics,
the ITTALKS web portal will be able to perform further filtering, based on more sophisticated
inference. In addition to enhancing knowledge representation and reasoning, DAML is used
for all communication, including simple messages and queries, using the ITTALKS defined
ontology. Moreover, ITTALKS offers the capability for each user to use his/her personal agent
to communicate with ITTALKS on his/her behalf and provide a higher level of service.

3.1 Users

ITTALKS can be used anonymously, or, more effectively, with personalized user accounts.
Users have the option to register with ITTALKS either by entering information manually via
web forms, or by providing the location (URL) of a universally accessible DAMLized personal
profile, which includes information such as the users location, his/her interests and contact
details, as well as a schedule. This schedule might be as rudimentary as a list of available time
periods for given days, or could even include a detailed schedule for each day. Subsequently,
this information is used to provide each user with a personalized view of the site, displaying
only talks that match the user’s interests and/or schedule.

Since DAML is not yet in widespread use, ITTALKS provides a tool for creating a DAML
personal profile. Currently, the tool constructs a profile containing only items used by the
ITTALKS system. However, we believe that the profile, in one form or another, will ultimately
provide a unique and universal point for obtaining personal information about the user, not
just for ITTALKS, but for all information needs, and will include any sort of information the
user would like to share. In the future, all services that require personal information about the
user should access the same user profile, eliminating the need for the user to repeatedly enter
the same information for a multitude of services. We believe that the new standard for XML
Signature and Encryption under development may provide a mechanism by which users can
have some control over access to parts of their profile.

3.2 Domains

To support our vision of a universal resource for the international IT research community,
ITTALKS is organized around domains, which typically represent event hosting organization
such as universities, research laboratories or professional groups. Each domain is represented
by a separate web site and is independently maintained by a moderator who can, among other
things, define the scope of the domain and delegate to other registered users the ability to
edit talk entries. For example, the stanford.ittalks.org domain might be config-
ured to include only talks hosted at Stanford University. On the other hand, another domain,
sri.ittalks.org, might be configured to include not only talks about Semantic Web
topics that are held at SRI, but also those at Stanford, as well as any talks within 15 mile range
of the SRI facility in Palo Alto.

Valued Sony Customer
 480

Figure 3: A screenshot depicting the main page of the ITTALKS system.

3.3 Access

The ITTALKS system is accessible either to users directly via the web, or to agents acting on
their behalf. The web portal provides numerous features, including registration, search, entry
and domain administration. An agent-based interface allows interaction with user agents or
other services.

3.3.1 Human Interface

The web portal allows a user to browse desired information in a variety of formats, to provide
the highest degree of interoperability. It permits a user to retrieve information in DAML,
standard HTML format, which includes a short DAML annotation for DAML-enabled web
crawlers, or WML [42] format, which supports WAP enabled phones. The ITTALKS web
portal also has the ability to generate RDF Site Summary (RSS) [37] files for certain queries.
These RSS files can then be used for various external purposes, such as displaying upcoming
talks on a departmental web site for some particular university or domain.

3.3.2 Agent Interface

To provide access for agent based services, ITTALKS makes use of Jackal [12], a commu-
nication infrastructure for Java-based agents developed by our research group at UMBC.
Jackal is a Java package, which provides a comprehensive communications infrastructure
while maintaining maximum flexibility and ease of integration. The heart of Jackal is a simple
conversation system, serving to maintain context for concurrent threads of conversation while
providing a guide for judging behavioral correctness and modeling the actions of other agents.
Jackal provides facilities for creating and manipulating user-defined conversation structures of
arbitrary extent. Jackal has a very modular, loosely coupled architecture, designed to support
maximal concurrency among components, accomplished with the use of multiple threads and
buffered interfaces between subsystems. Its concise API allows for comprehensive specifica-

Valued Sony Customer
 481

Web
server

+ Java
servlet

s

DAML
reasoning

<
d
a

<
d <

d

DAML files

DAML speaking agents

ITtalks
database

People

RDB
MS

DB

Email, HTML, SMS, WAP

HTTP, KQML,
DAML

SQL

HTTP, KQML, DAML,
Prolog

Web services HTTP

HTTP,
WebScraping

Figure 4: The architecture for ITTALKS is built around a web server backed by a relational database. Interfaces
are provided to human users, software agents and web services.

tion of message requests, and for blocking or non-blocking message retrieval. Currently, it
facilitates the use of KQML agent communication language [18] and employs a sophisticated
protocol for agent naming, addressing and identity (KNS). Additionally, it is in the process of
adapting to the FIPA standards [19, 2]. In addition, our research group, in cooperation with
other universities, is developing a DAML ontology for the necessary conversation protocols.

3.4 Agents

In order to extend the capabilities of the system, we have defined a number of agents that
support the operation of ITTALKS. Some can be seen as supporting services (such as external
information services), while others we assume will exist in the general environment in the
future.

3.4.1 ITTALKS Agent

The ITTALKS agent is a front-end for the ITTALKS system. It interacts with ITTALKS
through the same web-based interface as human users, but communicates via an ACL with
other agents on the web, extending the system’s accessibility. At present, the agent does not
support any advanced functionality, but acts primarily as a gateway for agent access.

3.4.2 User Agents

One longtime goal of agent research is that users will be represented online by agents that can
service queries and filter information for them. While ITTALKS does not require that such
agents exist, we recognize the added power that could be gained by the use of such agents.
Therefore, ITTALKS supports interaction with User Agents as well as their human counter-
parts. The User Agent that we have developed understands DAML, supports sophisticated
reasoning, and communicates via a standard agent communication language. Reasoning is
accomplished with the use of the XSB, a logic programming and deductive database system
for Unix and Windows developed at SUNY Stony Brook.

Valued Sony Customer
 482

Su p erT op ic

T op ic

dam l:dom ain

dam l:range

Su bT op ic

dam l:dom ain

dam l:range

K eyw ord s

dam l:range

d am l:
L itera l

dam l:dom ain

R ela ted to

dam l:dom ain

dam l:range

H a rdw a re

A C M T opicdam l:C lass

S uperT opic

S ubT opic

. . .

S oftw a re
S uperT opic

S ubT opic

M em ory
S tru ctu res

S uperT opic

S ubT opic

. . .

In teg ra ted
C ircu itsS uperT opic

S ubT opic

Figure 5: The Ontologies used by ITTALKS are relatively simple, such as the topics ontology used to describe
talk topics and user interests.

3.4.3 Classifier Agent

ITTALKS uses a Classifier (or recommender) Agent that is invoked when a user is entering
a new talk. Based on the talk’s abstract, the Classifier returns ACM Classification Hierar-
chy Classification numbers along with a rank, in descending order. Using a local table of
classification numbers and names, ITTALKS suggests to the user ten possible topics.

3.4.4 MapQuest Agent

The MapQuest Agent is a wrapper agent that allows ITTALKS to make use of external services.
It interacts directly with agents (e.g. the ITTALKS agent, User Agents), and accepts requests for
information such as the distance between two known locations. It then phrases an appropriate
request to the MapQuest system [33], parses the results, and generates an appropriate response.
Note that this agent could be generically named a Distance Agent, and make use of any external
service (or combination of several, as needed).

3.5 Ontologies

The ITTALKS system is based on a set of Ontologies 1 that are used to describe talks and the
things associated with them, e.g., people, places, topics and interests, schedules, etc. Figure 6
shows some of the dependencies that exist among these ontologies. The ontologies are used in
the representation and processing of DAML descriptions and also as “conceptual schemata”
against which the database and various software APIs are built.

We have developed a general ontology for describing the topics of arbitrary talks and
papers. Using this, we have implemented an ontology to describe IT related talks based on the
ACM’s Computer Classification System. In addition, we currently are developing a DAML
ontology for IT talks based on a portion of the Open Directory, and are considering additional
classification ontologies. Figure 5 sketches some of the major classes and properties in these
ontologies. These topic ontologies are used to describe talks as well as the users’ interests
throughout the system. This includes an automated talk classification, for which we have
obtained a training collection for the ACM CCS and are also generating an Open Directory
training collection to develop the necessary components. In addition, the DAML ontologies

1See http://daml.umbc.edu/ontologies.

Valued Sony Customer
 483

ACM Ontology

Open Directory
Ontology

Topic Ontology

Personal
Profile

Ontology

Conversation
Ontology

Calendar
Ontology

Talk Ontology

Figure 6: The relationships among the various ontologies used by the ITTALKS system.

will give a user the ability to add additional assertions in DAML to further characterize their
interests. Lastly, we are also in the process of developing a component that can map topics in
one ontology into topics in another, by taking advantage of the fact that nodes in each ontology
have an associated collection of text as well as DAML information.

3.6 Data Entry

Currently ITTALKS requires that information about talks be manually entered via a web form
interface, or be available in a DAML description available at a given URL. Although we have
made this process as simple as possible (e.g., by supporting automatic form completion using
information from the knowledge base and the user’s DAML profile) it is still a time consuming
process. Therefore, we are developing a focused web spider to collect talk announcements
from open sources on the web. This spider will identify key information items using a text
extraction system, and will automatically add information to the ITTALKS knowledge base.
We are working with the Lockheed-Martin research group on the above task, and will use their
AeroText information extraction system [1].

3.7 Architecture

The current implementation of ITTALKS uses a relational database, in combination with a
web server, to provide user access to the system. To enable agents to access the system, the
ITTALKS provides an interface for agent-based communication.

3.7.1 Database

The main software packages that are used in the ITTALKS system are the MySQL relational
database software and a combination of Apache and Tomcat as the web portal servers. The
contents of the ITTALKS knowledge base are stored in a database whose schema is closely
mapped to our ontologies describing events, people, topics and locations. We have chosen
MySQL because of its known reliability, and because we required software with a license that
allows us to make the ITTALKS package available to additional academic and commercial
institutions.

Valued Sony Customer
 484

3.7.2 Web Server

As stated above, for our web, we have chosen a combination of Apache and Tomcat. This
enables us to present the IT talk descriptions to the user using Java servlets and JSP files,
which dynamically generate requested information in DAML, XML, HTML, RSS, and WML
formats. The current ITTALKS implementation can provide information suitable for viewing
on either a standard, computer-based or a WAP-enabled cellular phone.

3.7.3 Extensions

In addition, we are currently employing the Jackal agent communication infrastructure devel-
oped at UMBC and the Lockheed-Martin’s AeroText information extraction system in order to
facilitate ITTALKS-user agent interaction and the automated text extraction, respectively. We
are in the process of modifying Jackal to provide support for FIPA ACL interoperability. Also,
we are considering the possible replacement of MySQL with native XML database software
such as dbXML.

4 Scenarios

We describe here a couple of typical interactions that illustrate some of the features of
ITTALKS. The first involves direct use by a human user, and the second, advanced features
provided through the use of agents.

4.1 Human Interaction

In this first scenario, a user, Jim, learns from his colleagues about the existence of the ITTALKS
web portal as a source of IT related events in his area; Jim is affiliated with Stanford University.

Jim directs his browser to the www.ittalks.orgmain page. Seeing a link to a Stanford
ITTALKS domain (stanford.ittalks.org), he selects it, and is presented with a new
page listing upcoming talks that are scheduled at Stanford, SRI and other locations within a
15-mile radius (the default distance for the Stanford domain).

Jim browses the web site, viewing announcements for various talks matching his interests
and preferred locations (as provided in his explicit search queries). He is impressed that he can
see the talk information not only in HTML, but also in DAML, RSS and WML formats. Finding
a talk of potential interest to a colleague, Jim takes advantage of the invitation feature, which
allows him to send an invitational e-mail to any of his friends for any of the listed talks. Finally,
using the personalize link on the bottom of the page, Jim creates his own ittalks.org main page,
by providing the URL of his DAML-encoded profile. This customized page, listing talks based
on his preferences, will be Jim’s entrance to the ITTALKS site whenever her returns.

4.2 Agent Interaction

This scenario assumes that user Jim has already registered with ITTALKS, and has left in-
structions with the system to be notified of the occurrence of certain types of talks.

In the course of operation, ITTALKS discovers that there is an upcoming talk that may
interest Jim, and of which Jim has not been notified. Based on information in Jim’s preferences,
which have been obtained from his online, DAML-encoded profile and from information

Valued Sony Customer
 485

ITTALKS
ITTALKS

Agent
User Agent

MapQuest
Agent

Calendar
Agent

talk event
talk event of

interest?

Distance from my
user?

is my user free?

25 miles

that time slot is clear

my user
will attendevent accepted

is my user free added the travel time?

that time slot is still clear

Figure 7: Interactions between the various agents described in the ITTALKS/Agent scenario.

entered directly, ITTALKS opts to notify Jim’s User Agent directly. This is done via ITTALKS
own agent, which forwards the message using an ACL.

Upon receiving this information, Jim’s User Agent needs to know more; it consults with
Jim’s Calendar agent to determine his availability, and with the MapQuest agent to find the
distance from Jim’s predicted location at the time of the talk. Some more sophisticated inter-
actions might take place at this time; for example, the Calendar and User agents may decide
to alter Jim’s schedule, and proceed to contact the User agent of some other individual. In
addition, the User agent may request more information about the speaker and the event by
contacting other agents or web sites, such as CiteSeer-based agent [8, 34, 9], to obtain more
information necessary to make a decision. Finally, after making this decision, the User Agent
will send a notification back to the ITTALKS agent indicating that Jim will/will not plan to
attend. The ITTALKS agent will make the appropriate adjustments at the ITTALKS site.

5 Benefits of DAML

We believe that ITTALKS benefits significantly from its use of a semantic markup language
such as DAML. DAML is used to specify ontologies that we use extensively in our system. It is
also used for personal profiles, and as an agent content language. Without DAML, specifying
schedules, interests and assertions about topics would be very difficult. In ITTALKS, a user can
specify that from his/her perspective, two or more topics are equivalent, related, dissimilar, etc.
This will allow ITTALKS to tailor the searching of talks to the users needs. As an agent content
language, DAML provides more flexible semantics than KIF or other content languages that
currently provide syntax only. The ultimate benefit of using DAML then lies in the ability
of ITTALKS to independently interact with any DAML-capable agent without the need of
a human supervision. Consequently, all these benefits, which are described in further details
below, enable more efficient interaction between the system and its users, be they humans or
software agents.

5.1 Interoperability Standard

As an interoperability layer, DAML allows the content of ITTALKS to be easily shared with
other applications and agents. For example, a Centaurus room manager agent [26] could watch

Valued Sony Customer
 486

ITTALKS for events happening in a room for which it is responsible in order to enable better
scheduling. DAML also acts as an interoperability standard allowing other sites to make their
talks available for inclusion in ITTALKS by publishing announcements marked up in our
ontology.

5.2 Distributed Trust and Belief

Agents face a difficult problem of knowing what information sources (e.g. documents, web
pages, agents) to believe and trust in an open, distributed and dynamic world, and how to inte-
grate and fuse potentially contradictory information. DAML can be used to support distributed
trust and reputation management [25, 31, 32]. This will form the basis of a logic for distributed
belief transfer that will enable more sophisticated, semantically-driven rule-based techniques
for information integration and fusion. We are making use of DAML’s expressiveness and
employing it to describe security policies, credentials and trust relationships, which form the
basis of trust management. These policies contain more semantic meaning, allowing different
policies to be integrated and conflicts to be resolved relatively easily. Also, it will be possible
for other applications to interpret the agent’s credentials, e.g. authorization certificates, cor-
rectly, making these credentials universal. Similarly, describing beliefs and associating levels
of trust with these beliefs is more straightforward and the deduction of belief is uniform by
different applications and services.

Authorization in a distributed system is quite different from that in a centralized system.
Various schemes for decentralized security have been suggested, like Access Control Lists,
Role based Access Control [38, 24], PolicyMaker [6, 5], etc. Although the above mentioned
mechanisms are powerful, individually they are unable to meet all the requirements of trust
management. Generally, security systems should not only authenticate users, but also allow
them to delegate their rights and beliefs to other users securely, and have a flexible mechanism
for this delegation. Most schemes either support only authentication, ignoring delegation
altogether, or they support delegation to some extent without providing the required flexibility,
or they provide insufficient restrictions on delegation of rights.

We have tried to solve this problem through the application of a chain of trust, using rights
and delegations. In this system, we model permissions as the rights of an agent and associate
rights with actions, so that possession of a right permits the corresponding agent to perform a
certain action. These permissions can be extended by delegation from an authorized agent. We
are also working with obligations, entitlements, and prohibitions and the delegation of these
propositions.

Our work on distributed trust represented actions, privileges, delegations and security
policy as horn clauses encoded in Prolog. In order to develop a approach that is better suited
to sharing information in an open environment, we are recasting this work in DAML. We have
defined an initial ontology 2 that covers the basic concepts including actions, agents, roles,
privileges, prohibitions, obligations, security policies and other key classes and their properties.
In applying our framework, one must extend the initial ontology by defining domain specific
class of actions, permissions, etc. and creating appropriate individuals. A simple example of
a delegation is given in Figure 8.

We hope to use this approach to distributed trust in ITTALKS to express the security
policies which govern who can create, delete and edit talk announcements and who can further

2http://daml.umbc.edu/ontologies/trust-ont.daml

Valued Sony Customer
 487

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"
xmlns = "http://daml.umbc.edu/ontologies/trust-ont#" >

<delegation rdf:ID="Delegation1">
<from>susan-agent</from>
<to>marty-agent</to>
<permission>

<from>susan-agent</from>
<to>marty-agent</to>
<starttime>2001:8:1:10:00</starttime>
<endtime>2001:8:5:24:00</endtime>
<readfileaccess>

<name>ReadFileAccess</name>
<description >

Accessing a file in read mode
</description>
<actor>umbc-agent</actor>
<objects>susan-files</objects>
<redelegatable>

<permission>
<readfileaccess>

<actor>umbc-agent</actor>
<objects>file123.txt</objects>

</readfileaccess>
</permission>

</redelegatable>
<precondition>

<request>
<readfileaccess>

<objects>susan-files</objects>
</readfileaccess>

</request>
</precondition>

</readfileaccess>
</permission>

</delegation>

Figure 8: This DAML expression represents a delegation from susan to marty, allowing marty to access in read
mode all susan’s files marty is also given the ability to redelegate readfileaccess to file123.txt to all agents from
UMBC.

redelegate these privileges to others. The host ITTALKS system might have a base policy that
specified, for example, the initial privileges and obligations that the root user of each ITTALKS
domain would have and any constraints on their delegation (e.g., that privileges could only
be delegated to registered ITTALKS users). One of the privileges that a root user could have
would be to extend the security policy for his domain through delegations. As root of the
umbc.ittalks.org domain, I might delegate to all department faculty the right to create new talk
announcements and the right to re-delegate this privileges to individual graduate students. I
might further delegate the right to edit or delete a talk announcement to the agent who initially
created it.

5.3 Data Entry Support

ITTALKS supports intelligent form filling, making it easier for users to enter and edit informa-
tion in their profiles, and also to enter and edit talk announcements and other basic information.
In addition, we provide automatic form filling when an editor tries to enter information about

Valued Sony Customer
 488

an entity (e.g. a talk, person, room) that is already present in the knowledge base.

5.3.1 Entering Talks

In order to make ITTALKS successful, we need to make it as easy as possible for new talk
descriptions to be entered into the system. We are addressing this problem using three com-
plimentary approaches: an enhanced web interface, accepting marked up announcements, and
automated text extraction. DAML plays a key role in the first two and is the target represen-
tation for the third.

5.3.2 Enhancing the Web Interface

We have used several techniques to enhance the web form interface for entering talk announce-
ments. One of the simplest and most effective is to recognize then some of the information
being entered about an object such as a person, a room or an organization has already been
entered into the ITTALKS system and to “pre-fill” the remaining parts of the form from our
stored information. For example, most talks at an organization are given in a small number of
rooms. Once the complete information about a particular room (e.g., room number, building,
address, seating capacity, longitude and latitude, A/V equipment, networking connection, etc.)
has been entered for one talk, it need not be entered again.

Although the current implementation of this does not directly use DAML, its use can
support a more generalized version of a web form-filling assistant. The approach depends on
two ideas: (i) tagging web form widgets with DAML descriptions of what they represent and
(ii) capturing dependencies among data items in DAML and (iii) compiling these dependencies
into an appropriate execution form (e.g., JavaScript procedures) that can drive the web form
interface.

5.3.3 Text Classification

In order for ITTALKS to filter talk announcements on topic matches, it needs to know the
appropriate topics for each talk. Initially, we required that users manually select appropriate
topic categories from a web interface to the ACM CCS hierarchy. This turns out to be a
daunting task requiring the user to navigate in a hierarchy of nearly 300 topics, many of which
about whose meaning he will not be sure. Some users will face a similar problem in trying
to select topics to characterize their own interests. Ultimately we would like to use more that
one topic hierarchy to classify both talk topics and user interests (e.g., ACM CCS and Open
Directory nodes), which makes the problem even more difficult for our users.

To address this problem, we have built an automatic text classifier that can suggest terms
in a hierarchy that are appropriate for classifying a talk based on its title and abstract. The
classifier package used was from the Bag Of Words (BOW) toolkit [35] by Andrew McCallum
at CMU. This library provides support for a wide variety of text classification and retrieval
algorithms. We used the Naive Bayes algorithm, which is widely used in the classification
literature, fairly effective, and quick to learn the 285 classes in our test collection. We plan to
use the same classification agent to suggest interest terms for users based on the text found by
searching their web pages.

Valued Sony Customer
 489

5.3.4 Accepting Marked Up Announcements

One of the simplest ways to enter new talk announcements is to provide them as a document
that is already marked up. The current ITTALKS interface allows one to enter a URL for a
talk announcement that is assumed to be marked up in ontologies that ITTALKS understands.
Currently, these are just the “native” ontologies that we have built for this application. In gen-
eral, if some talk announcements were available with semantic markup using other ontologies,
it might be possible to provide rules and transformation that could map or partially map the
information into the ITTALKS ontologies. We expect that, as the Semantic Web develops, it
will be more and more likely that talk announcements with some meaningful mark up will be
found on the web.

5.3.5 Automated Information Extraction from Text

We would like to be able to process talk announcements in plain text or HTML and auto-
matically identify and extract the key information required by ITTALKS. This would allow
us to fill the ITTALKS database with information obtained from announcements delivered
via email lists or found on the web. The problem of recognizing and extracting information
from talk announcements has been studied before [16, 11] mostly in the context of using it as
a machine learning application. We are developing an information extraction tool using the
AeroText [1, 10] system that can identify and extract the information found in a typical talk
announcement and use this to automatically produce a version marked up in DAML which
can then be entered in the ITTALKS database.

5.4 User Profiles

We use personal profiles to help ITTALKS meet the requirements of individual users. A profile
is a widely accessible source of information about the user, marked DAML, to which other
services and individuals can refer. In the future, such a profile may be used by all web-based
services that the user wants to access. The profile will ultimately provide a unique and universal
point for obtaining personal information about the user for all services, preventing the need
for duplication and potential inconsistencies. This profile can be easily shared, and with the
use of DAML, will allow more expressive content for schedules, preferences and interests.
The notion of a personal profile and a user agent are closely linked; a user might have one
or the other, or both. The profile would likely express much of the information that might
be encoded in a user agent’s knowledge base. Conversely, an agent would likely be able to
answer queries about information contained in a profile.

5.5 Modularity

With the use of DAML, we can define several ontologies for topics and switch between them
with ease. Furthermore, to restrict the retrieval results, a user can perform the search with
respect to a certain set of ontologies, such as the ACM or Open Directory Classification.

Valued Sony Customer
 490

5.6 Application Scalability Support

As ITTALKS becomes the central repository of IT related information for various research
institutes the ITTALKS knowledge base will be distributed among numerous, and possibly
apriori-unknown, locations in order to provide a higher scalability and reliability support.
Yet, it will be imperative that users and agents not be required to interact with all locations
in order to find or manipulate the desired information. Instead, we envision that each user
agent will interact with only one ITTALKS agent, which in turn will be able to efficiently
locate and manage the distributed ITTALKS information. For this, we believe that a system
of DAML-enabled agents can act as an intermediate between the distributed databases.

5.7 Agent Communication Language

DAML and ACLs can be successfully integrated. DAML documents will be the objects of
discourse for agents that will create, access, modify, enrich and manage DAML documents as
a way to disseminate and share knowledge. Agents will need to communicate with one another
not only to exchange DAML documents but also to exchange informational attitudes about
DAML documents. Using an Agent Communication Languages (ACL) agents can “talk” about
DAML documents. Integrating ACL work and concepts with a universe of DAML content
is our first goal. Using DAML as an agent content language will add more meaning to the
message.

6 Current Status/Observations

We have currently implemented the web site and display normal HTML with embedded
DAML. There is an option for viewing only DAML content for a certain page, talk, or user.
All requests are made via HTTP. We also provide a form-based interface to add/modify the
database, including talks and users. We have a two level moderation, with the root being the
highest. The root can delegate rights to certain users, making them editors and allowing them
to edit a particular domain. We also offer tools to generate personal profiles. We allow users to
filter talks by interest and location. We also have a MapQuest agent that calculates the distance
between a user’s location and a talk.

7 Future Directions

Since most users do not currently have personal agents, we have been developing one that
can be used with this system. It is our goal, however, that ITTALKS be able to interact with
external agents of any type. The agent we are developing reasons about the user’s interests,
schedules, assertions and uses the MapQuest agent to figure out if the user will be able to
attend an interesting talk on a certain date.

We are developing a framework to use DAML in distributed trust and belief. DAML
expressions on a web page that encodes a statement or other speech act by an agent are signed
to provide authentication and integrity. We are working on an ontology to describe permissions,
obligations and policies in DAML and allow agents to make statements about and delegate
them.

Valued Sony Customer
 491

Currently we use only HTTP, but plan to move to Jackal for agent communication. Jackal
currently supports KQML and we are in the process of adapting it to the FIPA standards. In
addition, our research group, in cooperation with other universities, is developing a DAML
ontology for the necessary conversation protocols.

In order to make the process of data entry more efficient, we are developing a focused web
spider, which will collect talk announcements from open sources on the web and to identify
the key information in these announcements using a text extraction system. The spider will
add all found and relevant information to the ITTALKS knowledge base.

8 Conclusion

Effective use of the vast quantity of information now available on the web necessitates se-
mantic markup such as DAML. With the use of such a tool, we can enable the automated or
machine-facilitated gathering and processing of much information that is currently ‘lost’ to us.
ITTALKS, our system for automatic and intelligent notification of Information Technology
talks, demonstrates the value of DAML in a variety of ways. DAML is used throughout the
ITTALKS system, from basic knowledge representation, to inter-agent communication.

DAML is intended to significantly enhance the usability of web content in a number of
ways. It is expected that such an advance will have some cost; with DAML, this is largely
in complexity. DAML-marked text is difficult for human users to read or construct. Unlike
languages like HTML, which, with some small learning curve, can be used by hand, DAML
requires the use of mechanized assistance. We encountered this in a number of places in the
construction of ITTALKS; in the need for a classifier and other tools for using DAML-marked
ontologies, in the automatic construction of a DAML user profile, in the hiding of DAML
markup in general from the user in the presentation of data.

This first point leads to a second problem, which is the duplicate representation of data
in multiple modes. Using a simpler markup-language, it is possible to use a single, common
representation which may be used by both humans and machines. With a more complex markup
such as DAML, there are good reasons to prefer the separation of data into different, paired
documents. While this has some advantages, it leads to greater problems of synchronization.
Note that presently, ITTALKS uses an internal relation database representation, and markup is
applied to output data, so synchronization in this case is not a problem. Were multiple modes
used, however, it would still be necessary for a user referencing one document to be able to
identify and acquire the corresponding alternate documents.

These aspects of DAML are a necessary result of its increased expressive power. It is not
necessarily the case that simpler is better - in fact, the reason DAML has been advanced is
that existing markup frameworks are not sufficient to support the kind of sophisticated use of
information on the web that we would like. But they are difficulties that must be addressed in
order to encourage DAML’s widespread acceptance.

Another point to bear in mind is that DAML’s success is largely dependent on the success
of efforts at constructing, representing, and merging/reconciling ontologies, something which
is not always immediately obvious. Although many systems can easily make use of a language
such as DAML internally in a number of ways (e.g. for representation, communication), their
integration with systems in the community at large still depends on advances in our use of
ontologies.

Valued Sony Customer
 492

9 Acknowledgments

This work was supported in part by the Defense Advanced Research Projects Agency under
contract F30602-00-2-0 591 AO K528 as part of the DAML program (http://daml.org/).

References

[1] AeroText. AeroText web site. http://mds.external.lmco.com/Products_Services/aero/.

[2] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi agent systems with a fipa-
compliant agent framework. Software - Practice And Experience, (3), 2001.

[3] Tim Berners-Lee and Mark Fischetti. Weaving the web: The original design and ultimate destiny of the
world wide web by its inventor. Harper, San Francisco, 2001.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, May 2001.

[5] M. Blaze, J. Feigenbaum, A. Keromytis, and J. Ioannidis. The keynote trust-management system, 1998.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. IEEE Proceedings of the 17th
Symposium, 1996.

[7] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust management in distributed
systems security. In Secure Internet Programming, pages 185–210, 1999.

[8] Kurt D. Bollacker, Steve Lawrence, and C. Lee Giles. Citeseer: An autonomous web agent for automatic re-
trieval and identification of interesting publications. In Proceedings of the Second International Conference
on Autonomous Agents (Agents ’98), Minneapolis, 1998. ACM Press.

[9] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Pro-
ceedings of the 7th International World Wide Web Conference. April 1998.

[10] Lois C. Childs. AeroText - a customizable information extraction system. Technical report, Lockheed
Martin, 2001. Unpublished.

[11] Fabio Ciravegna. Learning to tag for information extraction from text. In Fabio Ciravegna and Roberto
Basili, editors, Proceedings of the ECAI Workshop on Machine Learning for Information Extraction, in
conjuction with ECAI 2000, Berlin, August 2000.

[12] R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboroff, James Mayfield, and
Akram Boughannam. Jackal: A Java-based tool for agent development. In Jeremy Baxter and Chairs
Brian Logan, editors, Working Notes of the Workshop on Tools for Developing Agents, AAAI ’98, number
WS-98-10 in AAAI Technical Reports, pages 73–82, Minneapolis, Minnesota, July 1998. AAAI, AAAI
Press.

[13] Neal Coulter. Computing classification system 1998: Current status and future maintenance, report of the
ccs update committee. Computing Reviews, January 1998.

[14] DARPA. DARPA agent markup language website. http://wwww.daml.org/.

[15] Stefan Decker, Frank van Harmelen, Jeen Broekstra, Michael Erdmann, Dieter Fensel, Ian Horrocks, Michel
Klein, and Sergey Melnik. The semantic web - on the roles of XML and RDF. IEEE Internet Computing,
September/October 2000.

[16] T. Eliassi-Rad and J. Shavlik. Instructable and adaptive web-agents that learn to retrieve and extract
information. Technical Report 2000-1, Machine Learning Research Group, Department of Computer
Sciences, University of Wisconsin, 2000.

[17] D. Fensel et al. OIL in a nutshell. In R. Dieng et al., editor, Knowledge Acquisition, Modeling and
Management, Proceedings of the European Knowledge Acquisition Conference (EKAW-2000), Lecture
Notes in Artificial Intelligence. Springer-Verlag, October 2000.

[18] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication language. In Jeff
Bradshaw, editor, Software Agents. MIT Press, 1997.

Valued Sony Customer
 493

[19] FIPA. FIPA 97 specification part 2: Agent communication language. Technical report, FIPA - Foundation
for Intelligent Physical Agents, October 1997.

[20] N. Guarino. Formal Ontology in Information Systems, chapter Formal ontology and information systems.
IOS Press, 1998.

[21] Jeff Heflin, James Hendler, and Sean Luke. SHOE: A prototype language for the semantic webs. Linköping
Electronic Articles in Computer and Information Science, 6, 2001. http://www.ep.liu.se/ea/cis/1997/013/.

[22] James Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2):30–37, March/April 2001.

[23] James Hendler and Deborah McGuinness. The DARPA agent markup language. IEEE Intelligent Systems,
15(6):72–73, November/December 2000.

[24] Herzberg, Mass, Mihaeli, Naor, and Ravid. Access control meets public key infrastructure, or: Assigning
roles to strangers. In RSP: 21th IEEE Computer Society Symposium on Research in Security and Privacy,
2000.

[25] Lalana Kagal, Harry Chen, Scott Cost, Timothy Finin, and Yun Peng. An infrastructure for distributed
trust management. In Working Notes of the Second Workshop on Norms and Institutions in Multi-Agent
Systems, Fifth Internation Conference on Autonomous Agents (Agents ’01), Montreal, Quebec, Canada,
May 29 2001.

[26] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin. Centaurus: A framework
for intelligent services in a mobile environment. In Proceedings of the International Workshop on Smart
Appliances and Wearable Computing (IWSAWC), April 2001.

[27] Robert Kass and Tim Finin. Architectures for intelligent interfaces: Elements and prototypes. 1996.

[28] Craig A. Knoblock, Kristina Lerman, Steven Minton, and Ion Muslea. Accurately and reliably extracting
data from the web: A machine learning approach. Data Engineering Bulletin.

[29] Ora Lassila. Web metadata: A matter of semantics. IEEE Internet Computing, 2(4):30–37, 1998.

[30] Ora Lassila and Deborah McGuiness. The role of frame-based representation on the se-
mantic web. Linköping Electronic Articles in Computer and Information Science, 6, 2001.
http://www.ep.liu.se/ea/cis/1997/013/.

[31] Ninghui Li, Joan Feigenbaum, and Benjamin Grosof. A logic-based knowledge representation for autho-
rization with delegation (extended abstract). Proc. 12th IEEE Computer Security Foundations Workshop,
Mordano, Italy, June 1999. IBM Research Report RC 21492.

[32] Ninghui Li and BBenjamin Grosof. A practically implementable and tractable delegation logic. IEEE
Symposium on Security and Privacy, May 2000.

[33] MapQuest. MapQuest website. http://www.mapquest.com/.

[34] James Mayfield, Paul McNamee, and Christine Piatko. The jhu/apl haircut system at trec-8. The Eighth
Text Retrieval Conference (TREC-8), pages 445–452, November 1999.

[35] Andrew Kachites McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification
and clustering, 1996. http://www.cs.cmu.edu/ mccallum/bow/.

[36] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services. IEEEIntelligent Systems,
16(2), March/April 2001.

[37] Netscape. RSS website. http://my.netscape.com/publish/formats/rss-spec-0.91.

[38] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and C harles E. Youman. Role-based access control
models. IEEE Computer, 20(2):38–47, 1996.

[39] S. Staab, M. Erdmann, and A. Maedche. Ontologies in RDF(S). Linköping Electronic Articles in Computer
and Information Science, 6, 2001. http://www.ep.liu.se/ea/cis/1997/013/.

[40] W3C. RDF website. http://www.w3c.org/RDF.

[41] W3C. RDFS website. http://www.w3c.org/TR/rdf-schema.

[42] WAP Forum. WML spec. http://www1.wapforum.org/tech/documents/SPEC-WML-19991104.pdf.

Valued Sony Customer
 494

Open Learning Repositories and Metadata
Modeling

Hadhami Dhraief, Wolfgang Nejdl, Boris Wolf, Martin Wolpers

Knowledge Based Systems
Institute of Computer Engineering

University of Hannover
Appelstr. 4, D-30167, Hannover, Germany

Tel: +49 511-762-19714
Fax: +49 511-762-19714

E-mail: {dhraief, nejdl, wolf, wolpers}@kbs.uni-hannover.de

Abstract. Building repositories for e-learning is an iterative process and course content and course structure

are always changing. We realized the necessity to separate content from structure of a given course during the

conception of our first e-learning repository, which we called KBS-Hyperbook, several years ago at our

institute. This system has been built around a conceptual model for structure and contents of the domain,

which is expressed in the O-Telos conceptual modelling language. To ease exchange of metadata between

such repositories, the Open Learning Repository (OLR), an e-learning repository we built during the last year

to experiment with various features useful for such repositories, has been developed using RDF/RDFS as

modelling language.

In the first part of this paper, we describe the OLR system in more detail, and show how it uses RDF/RDFS as

its underlying modelling language to express information about the learning objects contained in the

repository, as well as information about the relationships between these learning objects. Based on our

experience in meta-modelling using different modelling languages, we will in the second part of this paper

discuss RDF/RDFS and O-Telos modelling in more depth and will analyse similarities and differences of

these two modelling languages.

Keywords

Meta-modelling, RDF/RDFS, conceptual modelling, hypermedia, learning repositories.

1 The Open Learning Repository

1.1 Motivation

Our Open Learning Repositories aim at metadata-based course portals, which
structure and connect modularised course materials over the Web. The modular content can
be distributed anywhere on the internet, and is integrated by explicit metadata information
in order to build courses and connected sets of learning materials. Modules can be reused
for other courses and in other contexts, leading to a course portal which integrates modules
from different sources and authors. Semantic annotation is necessary for authors to help
them choose modules and to connect them into course structures.

We use a relational database to store all metadata, but store no content in the
database itself. The stored metadata represent information about the structure and the

Valued Sony Customer
 495

access paths within a particular course, the URLs as identifiers for single elements
(modules, courslets, course units, subunits, etc.) and other useful metadata about the
content itself (i.e. Dublin Core or IEEE LOM metadata). We are currently using the OLR
system in the context of two courses, one in artificial intelligence and one in software
engineering.

1.2 OLR functionality

The OLR repository can store RDF (Resource Description Framework) [1] metadata
from arbitrary RDF schemas. However, we have chosen not to implement a one-size-fits-all
approach, and follow a customisable approach, implementing different interfaces together
with their schemas and metadata for different courses using a common infrastructure. Initial
loading for a specific course is done by importing an RDF metadata file (using XML
syntax) based on this course's RDFS [2] schema. Our Artificial Intelligence course
prototype uses a simple schema describing course structure (units, subunits, elements and
arbitrary links between these elements) and simple cataloguing of its elements using the
Dublin Core metadata [3] set. We are currently moving these metadata to the LOM
standard, using the recently developed LOM-RDF-binding.

The web interface for navigating the course follows a multi-view approach. A user
visiting the course currently has a choice between three different navigation schemes. The
first one is a hierarchical tree-like navigation

Figure 1: Display of Metadata for a Specific Resource

directly reflecting the course structure stored in the database. A visitor may open and close
units and subunits to display the elements/pages of the logical document (figure 5). The
second view provides a trail navigation where the user has the possibility to move forward
and backward on a trail. Third we are experimenting with a semantic net or context net
navigation. In this approach the user can view units in different contexts, navigation is

Valued Sony Customer
 496

implemented as a kind of fish-eye view with the current unit located in the centre
surrounded by related units and contexts. All navigation elements are created dynamically
on demand.

In addition to displaying course content we are providing different ways of
reviewing the metadata stored about course elements. Either the system displays metadata
in a nicely formatted way suitable for a human reader or it generates the corresponding
RDF source in XML notation (figure 1).

For content developers we implemented an enhanced web interface which allows
the developer to manipulate metadata through HTML forms (figure 1). The OLR system
translates all user input into suitable SQL update and insert statements hence avoiding to
confront the user with having to understand XML/RDF notation. To evaluate OLR usage,
the system tracks all user behaviour in the database, including which course elements are
accessed and when, which updates are made and by whom. We are using this information
to evaluate different navigation schemes and different types of course units.

1.3 OLR-Architecture

Figure 2: OLR Architecture

The OLR architecture is shown in figure 2. The system is based on a 3-tier

architecture. As front end any state-of-the-art web browser may be used (IE5, NS4). The
mid-tier is a combination of Apache Web server and PHP4 module. The backend holds an
Oracle 8i database and can physically be the same machine as the one running the Web
server.

Whenever the user selects a link or button Apache delegates the client request to the
PHP module executing the appropriate PHP script. In most cases this script will need to
interact with the database since it stores all RDF metadata. For communication with Oracle
PHP uses its built-in OCI8 interface. The PHP script evaluates the data returned by Oracle

Valued Sony Customer
 497

and dynamically creates a HTML page which in turn is sent back to the client browser
initially requesting the page.

In addition the web interface allows to upload raw RDF source code in XML syntax
to be stored in temporary files within the server’s file system. A shell script then runs the
VRP parser [4] against these RDF metadata. The generated triples are input to a Java
application using the JDBC interface which imports all statements into the database.

Figure 3: Adding New Metadata

1.4 Technology

1.4.1 RDF Annotation

The OLR system stores virtually anything it knows about courses as RDF metadata.
In web based learning and teaching, the trend is to encode learning materials with
meaningful and machine understandable metadata in order to facilitate modular and
reusable content repositories.

One of the practical uses of RDF, as it has been described by W3C, is in Web
sitemaps. "The RDF schema specification provides a mechanism for defining the
vocabulary needed for this kind of application" [5].

Thus, with RDF, we can describe for our application, how modules, course units,
courselets are related to each other or which examples or exercises belong to a course unit,
RDF metadata used in this way are called structural or relational metadata. Another
practical use of RDF is the description of web pages/units, which is mandatory to build a
course based on modular content, distributed over different sites. To standardize these kinds
of descriptions, initiatives like IMS and IEEE LOM specify schemas suitable for learning
objects, and we have been involved in the German LOM version as well as in a LOM-RDF-
binding suitable for these learning objects.

Valued Sony Customer
 498

RDF (Resource Description Framework) is supported by a growing Web
community. The primary target of RDF is to provide a standardized way of creating and
using such specialized metadata schemas to describe resources on the Web.

Some of the goals the W3C aims to reach using RDF are:
• Resource Discovery to improve the results of Search Engines.
• Cataloguing to describe content and its relationships at a particular Web.
• Interoperability and Knowledge Sharing for information exchange between different

applications, Software Agents etc.
• Logical Document: Several pieces of content physically distributed over the Internet

build one single Logical Document, where RDF is the glue holding these resources
together.

Everything in RDF is expressed through statements, which are triples consisting of
subject, predicate and object (corresponding to instantiated binary predicates). Expressing
the sentence “Smith is the author of the HTML document that can be found at the URL
“http://www.xyz.com/somedoc.html”” for example is done by a statement, where
“http://www.xyz.com/somedoc.html” is the subject of our statement, its predicate is
“author” (which is a property in RDF terminology) and its object is the literal “Smith”.
Another possibility would be to use a resource (with an URL) as the object of such a
statement, like “http://www.xyz.com/smith.html”, assuming we want to use this URL as
identifier for the person Smith.

This simple example reveals the basic building blocks of any RDF statement: resources
and literals. Anything that can be reached by a URL is a resource whereas a literal is a
simple character string. Subjects and predicates always need to be resources while an object
may be either resource or literal. In addition predicates normally are properties described by
an RDF schema.

The RDF specification does not insist on any implementation of the statement concept
in particular. It introduces a graph representation suitable for the human reader and an
XML-encoding of that graph suitable for XML based parsers. The XML encoding is
probably the most popular RDF representation.

To create self-defined predicates like “author” in our example, one needs to create an
RDF schema. Like RDF metadata these RDF schemas consist of statements and hence can
be expressed utilizing the same XML syntax or any other representation.

With RDF Schema resources can be modelled as classes and predicates as properties.
Thus it is possible to constrain the type of a predicate’s range and domain. For example we
can say that the predicate author may only point to resources that are instances of a class
Person and may only be applied to resources being instances of a class Book.

Since we decided to utilize RDF in OLR for both the annotation of content as well as
the description of course structures we developed an RDF schema for this purpose. Our
implementation focuses on the cataloguing/annotation and on the logical document features
of RDF. An OLR course is a Logical Document and cataloguing is used to store element
information (e.g. title, author).

Each course consists of a number of units that contain elements and further subunits.
Each element represents any kind of Internet resource accessible through a known URL.
For the first version of our introductory course on Artificial Intelligence we defined five
types of basic elements: Topics, examples, slides, exercises and further references. This
choice reflects the typical building blocks of a lecture at a university on an abstract level. If
necessary, further element types can be incorporated easily to satisfy other people's needs
(we are using additional elements in our Software Engineering course). The basic building
blocks (units and elements) are linked together in a tree-like structure that represents a

Valued Sony Customer
 499

course. Each element is described by metadata. The vocabulary describing each element is
basically the Dublin Core Metadata set.

We currently use RDF sequences to link elements to units and units to courses. This
is necessary because the order of the course elements is essential. The disadvantage of this
is, that in the current version of RDF Schema it is not possible to constrain the type of
container elements. In the second part of the paper we include several examples, which use
stronger typing constraints instead of RDF sequences.

Database Schema
In essence, everything in RDF is expressed through statements: simple triples

composed of resources, namespaces and literals - no matter how complex the RDF schema
behind might be. XML syntax is the standard approach for hiding RDF in HTML pages it
describes. This approach always requires a parser to analyse the meta-information and it
conflicts with one of RDF’s key concepts where a group of RDF statements makes
propositions about several distributed resources linking them together to one Logical
Document.

In contrast, using triples directly makes it easy to store RDF metadata in a relational
database. Doing so enables us to create a repository for metadata managed at one central
location using relational database technology. This approach separates the metadata from
the content it describes. SQL queries are used to extract the relevant RDF statements.

An obvious advantage of storing RDF in a relational database is performance: A
SQL query selecting a couple of statements can be much faster than parsing an RDF
document in XML representation to retrieve the same results. Especially when a lot of
similar queries are executed the database’s query optimiser and cashing mechanisms can
speed things up considerably. When looking at large numbers of statements compact
storage is another plus for the database approach: Within a set of RDF metadata a lot of
literals tend to occur more than once. Namespaces are a good example for this
characteristic: Every resource name is preceded by a namespace and often these
namespaces are similar or identical. Being kept in a separate table, each namespace needs
to be stored in the database only once. For multiple usage any namespace only needs to be
referenced by its ID.

For our OLR server, we modified the McBride schema, which is one of several
suggestion presented on the RDF/DB Page from Sergey Melnik [6] , also discussed within
the RDF community. The OLR system is based on the Oracle 8i database, but any standard
relational database would be suitable.

The main table in our database is RDF_STATEMENT. This table represents the
relationship between the three parts of a statement consisting of RESOURCE (stored in
RDF_RESOURCE), PREDICATE (also stored in RDF_RESOURCE) and OBJECT (stored
in either RDF_RESOURCE or RDF_LITERAL). Therefore RDF_STATEMENT contains
three main attributes: SUBJECT, PREDICATE and OBJECT. These attributes are
references to the resource and the literal table. Since the object can either be a resource or a
literal, we use two attributes for OBJECT: OBJ_RESOURCE and OBJ_LITERAL.

The Open Learning Repository is a repository to integrate, manipulate and annotate
more than one course. Thus, we need to store large amounts of statements for every course.
For this purpose, we utilize the table RDF MODEL. Each model currently corresponds to
one course.

Distinctions to the McBride schema

Because OLR is used in a learning context, we establish different user groups with
different roles and rights. Every group may have a specific view on courses and metadata.

Valued Sony Customer
 500

Hence we define a table RDF_USER for user administration which is connected to the
other tables via the attribute USR. We also add the attribute MODIFIED representing the
last modification date.

In OLR all dynamic content is created based on SQL queries stored in the table
SQL_QUERY together with a short description to facilitate the reuse of such queries and to
support the PHP interface. From a developers perspective this greatly enhances reusability
and maintainability of the underlying PHP source code.

In order to evaluate the different visualizations and navigation possibilities in OLR,
we define a table RDF_TRACK to record the user behaviour while accessing course
elements (which resources have been visited, in which order, how often, in which view).
Our current database schema is shown in figure 4.

Figure 4: Database Schema

1.4.4 Architecture and Features of the OLR Web Interface

The Web interface for browsing and manipulating OLR courses needs to be highly
dynamic since it needs to take into account the current state of the database. For this reason
all HTML code is generated on demand by PHP scripts. To control the complexity of the
system the PHP scripts are organized in several layers. Structure and purpose of the
different layers are briefly outlined below.

Database access with PHP is straightforward: It already comes with a built-in API
for communicating with an Oracle database through the standard OCI8 interface. We
designed a number of SQL queries to suit the special needs of the OLR system. These
queries are stored in a database table SQL_QUERY itself along with a unique ID, a query
name and a short text describing the query's purpose. This approach greatly enhances
maintainability and transparency of the system. Queries may contain parameters like
resource IDs specified in brackets.

Core of the code for running SQL queries is the PHP class RDFStatement. Its
constructor requires the query name and eventually a number of parameters. RDFStatement
then executes the query and transfers all results into a PHP array. All database specific code
is hidden behind the public interface of this class.

Valued Sony Customer
 501

On top of the RDFStatement class we develop the OLR API - a growing number of
PHP functions like getResourceTitle(resource_id) that take some resource ID as in-
parameter and retrieve all statements about the specified resource for a specific property.
These getResourceXXX() - functions utilize the RDFStatement class. Note that database
primary keys (usually integer values) serve as in-parameters to identify resources rather
than a combination of namespace and literal which tends to be long strings. This is
extremely useful for our web interface since it keeps track of all state information (e.g.
current course, unit or element) by URL parameters. The OLR API is accompanied by a
number of other APIs such as an API for user and session management and an API for
import and export of RDF source in XML syntax.

The next layer consists of a number of basic building blocks – PHP script fragments
calling API functions and performing the HTML markup of the returned results. For
instance there are PHP blocks for creating the different navigation elements or for
displaying content or metadata of a course element. The final abstraction layer is
represented by templates. In essence templates are HTML files composed by dynamically
putting together the basic building blocks. Most templates follow the same structure with a
navigation element on the left, a content area on the right and above that a header section
displaying title and essential metadata. The templates also verify user access rights.

Figure 5: OLR sample template

The structure of the templates directly supports our multi-view vision. If for

example you want to use a trail instead of a hierarchical navigation only one line of code
needs to be changed in the appropriate template to replace inclusion of the hierarchy-block
by the trail-block.

Though all RDF data are stored in the database tables the content contributor’s web
interface allows direct import and export of RDF source in XML syntax. After inserting
XML code describing an OLR course by copy&paste into an HTML form its content is
uploaded to the server, analysed by the VRP parser and then imported into the database by
a java application through the Oracle JDBC interface. A newly imported course then

Valued Sony Customer
 502

appears in the list of available courses. Without any knowledge of RDF or the specifics of
the underlying OLR schema another content contributor then has the opportunity to modify
the course through clearly arranged HTML forms. The system allows to create, modify or
delete course elements and units. This is one conceptual advantage of the combination
database plus web interface over the standard approach of hiding some static XML RDF
within an HTML file: A authorized subgroup has the opportunity to dynamically change
and extend the content of the repository through an intuitive interface and the database
always keeps track of who did what and at which time modifications where issued. In
addition it is possible to export XML RDF metadata on any level of granularity: One can
export the XML RDF for a single course element, a unit including all its elements and
subunits or a complete course. This feature is beneficial for reuse when creating new
courses and supports metadata processing by other RDF XML compatible applications.

2 Comparing RDF/RDFS to the O-Telos modelling language

2.1 Motivation

As noted above, RDF is a simple but quite powerful modelling language to annotate
WWW resources with semantical information. RDFS enables the simple construction of
conceptual models of sets of WWW resources, and on the other had has been designed as a
quite flexible representation language for these conceptual models. Unfortunately, the RDF
Schema Specification [2] fails to give simple, yet formal explanations of RDFS concepts,
which causes a lot of confusion when one really tries to use all RDFS possibilities. RDFS
tries to be as self-expressible as possible, which leads to several properties playing dual
roles both as primitive constructs and as specific instances of RDF/RDFS properties
(rdfs:domain, rfds:range, rdfs:subClassOf, and rdf:type, see also the detailed discussion in
[7]), where these properties are both defined in the RDF or RDFS-Schema and are used to
define those schemas at the same time. On the other hand, the self-expressibility of RDFS
falls short of fulfilling its promise for meta-modelling, because of the constraints of the
underlying triple model, only a three level modelling hierarchy is possible (rdfs:class,
specific classes as instances of rdfs:class, and instances of classes).

Another drawback of RDFS is its poor support of the reification of statements. An
object identifier must be assigned explicitly to each statement that is to be reified. This has
to be done by adding explicit statements about the subject, predicate and object of the
specific statement.

Building on our previous work on open learning repositories [8], [9], we will in this
second part of the paper compare RDF/RDFS modelling and annotation with the conceptual
modelling language O-Telos, which has been strictly axiomatized in [10], based on the
formalization of Telos (see e.g. [15]). As a conceptual modelling language, O-Telos is used
in various contexts to describe and formalize conceptual models [9], [11], [12], [13]. As for
reification, O-Telos, being based on 4-tuples instead of triples, assigns a unique object
identifier to each statement, which can be used to directly reference that statement.

In this paper, we will compare RDF/RDFS with O-Telos, and discuss possible
mappings from RDF to O-Telos and back, which is useful in our context (making it
possible to exchange metadata between our O-Telos- and RDF-Hyperbook Systems), and
also sheds light on some advantages and disadvantages of the design decisions of RDFS. In
[16] we formalize an RDF variant we call O-Telos-RDF based on the O-Telos model,
which allows annotation in a way very similar to RDF, but extends RDFS with enhanced
reification and meta-modelling capabilities.

Valued Sony Customer
 503

2.2 An introduction to O-Telos

O-Telos is a deductive object-oriented conceptual modelling language very suitable
for modelling and meta-modelling tasks. It has been implemented in the ConceptBase
database system [12]. Its object-oriented constructs like object, class, meta-class, etc. are
expressed using a frame syntax. Each frame declares an object by stating its name, the
classes it subclasses, the classes it instantiates and the attributes it declares or instantiates.

Frames are declared using predefined classes: Individual containing all individuals
as instances, Attribute containing all attributes as instances, Class containing all classes as
instances, String, Integer, etc. The use of the predefined classes is defined by a set of
axioms to insure referential integrity, correct instantiation and inheritance.

The following example is taken from a simplified version of the OLR schema. It is used
to illustrate the O-Telos language:

The lecture material of a course consists of course units, which group the specific
elements. All units/elements can be annotated according to Dublin Core, i.e. they have
a name and a description etc..
The model of the above example declares the following O-Telos frames, which define

the two classes course and course unit as well as a Dublin Core Class, and the
corresponding attributes:

Class DC_Unit with

 attribute

 about: URL;

 title: String;

 description: String

end

Class Course isA DC_Unit with

 attribute

 units: CourseUnit

end

Class CourseUnit isA DC_Unit with

 attribute

 parent_course : Course;

 theory_unit: TheoryUnit;

 example_unit: Example

end

The frame Course declares a class named Course consisting of arbitrarily many

units. A unit is declared by the frame CourseUnit, and groups TheoryUnits, Examples, etc.
Both are subclasses of DC_Unit, stating that they can have a title and a description, both of
type String.
The next frames declare the individuals, e.g. a course unit with the title “Lecture Unit 1”,
the description “Introduction to Intelligent Agents”. This resource belongs to the course
“Introduction to AI 1” which is an introductory course in Artificial Intelligence.
Additionally, this resource belongs to another course “AI 2” which is an advanced course in
Artificial Intelligence.

Individual IntroAILecture in Course with

 title

 t1 : "Introduction to AI 1"

Valued Sony Customer
 504

 description
 d1 : "Introductory course in AI"

end

Individual AdvancedAILecture in Course with
 title

 t1 : "AI 2"

 description
 d1 : "Advanced course in AI"

end

Individual IntroAILectureUnit1 in CourseUnit with

 title

 t1 : "Lecture Unit 1"

 description

 d1 : "Introduction to Intelligent Agents"

 theory_unit

 tu1: "http://www.kbs.uni-hannover.de/.../Definitions.htm";

 tu2: "http://www.kbs.uni-hannover.de/.../Characterisation.htm"

 parent_course

 c1 : IntroAILecture;

 c2 : AdvancedAILecture

end

The frame IntroAILectureUnit1 shows how the declared attributes title, description,

theory_unit and parent_course are instantiated. The theory_unit and parent_course
attributes show that O-Telos attributes usually are multi-valued.

The frames are translated to sets of propositions which can be stored e.g. in the
ConceptBase database. The definition of O-Telos propositions is a relation P(oid,x,l,y) with
oid being the identifier, x being the source, l being the label and y being the destination.
Consequently P(oid,x,l,y) states a relationship called l with ID oid from object x to object y.
O-Telos defines specific interpretations for four predefined types of propositions. The first
of these types is the object declaration P(oid,oid,l,oid) declaring an object named l. As
second predefined type an instance relationship is expressed using the proposition
P(oid,x,*instanceof,y) stating that x is an instance of y. The third type declares the
inheritance relationship by stating propositions of the kind P(oid,x,*isa,y) saying that x is a
specialisation of y. The fourth predefined type of proposition P(oid,x,l,y) represents
ordinary attributes: x has an attribute named l with value y.

2.3 Simple mapping of RDF to O-Telos

Let us now construct a simple mapping from RDF to O-Telos and vice versa. We
will recognize, that both languages are based on very similar ideas for their basic
representation.

We start with a simple RDF declaration:

<rdf:Description ID="LectureUnit1">
 <rdf:type resource="http://.../olr_schema_6#Unit"/>
 <dc:title>Lecture Unit 1</dc:title>
 <dc:description>Introduction to intelligent agents</dc:description>
 <olr:parentCourse rdf:resource="#AILecture"/>
 <olr:theoryUnit rdf:resource="http://.../Agents/Definitions.htm"/>
 <olr:theoryUnit rdf:resource="http://.../Agents/Characterisation.htm"/>
 <olr:theoryUnit rdf:resource="http://.../Agents/Structure.htm"/>

Valued Sony Customer
 505

 <olr:theoryUnit rdf:resource="http://.../Agents/Types.htm"/>
</rdf:Description>

This RDF declaration can be mapped to the following O-Telos frame which contains
basically the same information:

Individual LectureUnit1 in CourseUnit with
 dc_title
 t1: "Lecture Unit 1"
 dc_description
 d1: "Introduction to intelligent agents"
 parent_course
 pc1: AILecture
 theory_unit
 tu1: "http://www.kbs.uni-hannover.de/.../Definitions.htm";
 tu2: "http://www.kbs.uni-hannover.de/.../Characterisation.htm";
 tu3: "http://www.kbs.uni-hannover.de/.../Structure.htm";
 tu4: "http://www.kbs.uni-hannover.de/.../Types.htm"
end

The example shows that the rdf:type property is mapped to the O-Telos relationship

in (instanceof). Also the property declarations dc:title, dc:description, etc. are mapped to
the respective O-Telos attributes. Both representations require the declarations of the
objects/classes Unit/olr_unit and the course AILecture.

2.4 Enhancing the simple mapping (descriptions and aggregations)

A more in-depth examination of the RDF Model and Syntax Specification and our
OLR Schema shows that we can distinguish two types of general classes in RDF. The first
type are classes whose instances group/aggregate other instances. We will call these classes
aggregation classes. In RDF an aggregation class is defined using the following statement:

<rdf:Description ID="...">
</rdf:Description>

These aggregation classes sometimes include additional attributes for their

aggregates. As shown in the above example these types of classes can directly mapped to
O-Telos constructs.
The second type of the general classes in RDF are classes whose instances are assigned to
web pages directly. We will call these classes annotation classes (see also the discussion in
[7]). In RDF an annotation class is defined using the following statement:

<rdf:Description about="http://...">
</rdf:Description>

These annotation classes define attributes to describe the assigned web pages.

Annotation classes can be used in various RDF schemas to declare attributes on the same
resource (referenced by its URI). Thus annotation objects can be mapped to O-Telos
constructs only if there is no other annotation object stating some attribute about the same
resource. Because the O-Telos object takes the URI as its unique ID and all other attributes
are referenced as above. In general this cannot be assured, as RDF, in contrast to (the frame
syntax of) O-Telos, is a property centric language, where properties about a given resource
can be declared in different locations. To reflect this modularity, we need a different
approach for mapping RDF annotation classes to O-Telos.

Valued Sony Customer
 506

As mentioned, resources which are described by the RDF declaration <rdf:Description
about=“http://...”> have no ID property. They are just groupings of attributes, as the
following example shows:

<rdf:Description about="http://.../Agents/Definitions.htm">
 <rdf:type resource="http://.../rdf/olr#TheoryUnit"/>
 <dc:title>Definitions</dc:title>
 <dc:description>Definitions of the basics of AI</dc:description>
 <dc:subject>Definitions</dc:subject>
 <dc:language>german</dc:language>
 <dc:coverage>Introductory course</dc:coverage>
 <dc:rights>KBS (Universität Hannover)</dc:rights>
 <olr:parentUnit rdf:resource="#LectureUnit1"/>
</rdf:Description>

Seven attributes are assigned to the web page, which is defined by the URL
“http://.../Agents/Definitions.htm”.

Table 1. RDF-Triples of the single declaration about “http://.../Agents/-Definitions.htm”

Nr. Subject Predicate Object

1 http://.../Agents/Definitions.htm http://www.w3.org/1999/02/22-rdf-
syntax-ns#type

http://albinoni.kbs.uni-
hannover.de/rdf/olr#TheoryUnit

2 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#title Definitions

3 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#description Definitions of the basics of AI

4 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#subject Definitions

5 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#language German

6 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#coverage Introductory course

7 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#rights KBS (Universität Hannover)

8 http://.../Agents/Definitions.htm http://…/rdf/olr_schema_5#parentUnit online:#LectureUnit1

Table 1 shows the RDF-triples representing the RDF declaration of properties to the
resource “http://.../Agents/Definitions.htm”. The triples are generated by the SIRPAC [14]
parser.

The above example can also be expressed in two separate RDF declarations about
the resource “http://.../Agents/Definitions.htm”. Both declarations assign values to
attributes but represent two different grouping objects.

<rdf:Description about="http://.../Agents/Definitions.htm">
 <rdf:type resource="http://.../rdf/olr#TheoryUnit"/>
 <dc:title>Definitions</dc:title>
 <dc:description>Definitions of the basics of AI</dc:description>
 <dc:subject>Definitions</dc:subject>
</rdf:Description>

<rdf:Description about="http://.../Agents/Definitions.htm">
 <rdf:type resource="http://.../rdf/olr#TheoryUnit"/>
 <dc:language>german</dc:language>
 <dc:coverage>Introductory course</dc:coverage>
 <dc:rights>KBS (Universität Hannover)</dc:rights>
 <olr:parentUnit rdf:resource="#LectureUnit1"/>
</rdf:Description>

Valued Sony Customer
 507

Table 2. RDF-Triples of one the multiple declarations about “http://.../Agents/-Definitions.htm”

Nr. Subject Predicate Object

1 http://.../Agents/Definitions
.htm

http://www.w3.org/1999/02/22-rdf-
syntax-s#type

http://.../rdf/olr#TheoryUni
t

2 http://.../Agents/Definitions
.htm

http://purl.org/dc/elements/1.0#title Definitions

3 http://.../Agents/Definitions
.htm

http://purl.org/dc/elements/1.0#descript
ion Definitions of the basics of A

4 http://.../Agents/Definitions
.htm

http://purl.org/dc/elements/1.0#subject Definitions

The number of triples = 4

Table 3. RDF-Triples of another of the multiple declarations about “http://.../Agents/-Definitions.htm”

Nr. Subject Predicate Object

1 http://.../Agents/Definitions.htm http://www.w3.org/1999/02/22-rdf-
syntax-ns#type http://.../rdf/olr#TheoryUnit

2 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#language German

3 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#coverage Introductory course

4 http://.../Agents/Definitions.htm http://purl.org/dc/elements/1.0#rights KBS (Universität
Hannover)

5 http://.../Agents/Definitions.htm http://.../rdf/olr_schema_5#parentUnit online:#LectureUnit1

The number of triples = 5.

The above two tables Table 2 and Table 3 contain the RDF triples for the two
separate RDF declarations of attributes to “http://.../Agents/Definitions.htm”. By comparing
the different triple sets that describe the example above we recognize that both declarations
(compare Table 1 with the Tables 2 and 3) are identical which they have to be according to
the RDF’s specification. Looking at the example, we again realize the RDF property-centric
approach, i.e. properties are the basic RDF constructs while classes etc. are just an add on
to define rdfs:domain and rdfs:range constraints of these properties.

The advantage of the property-centric approach is that properties can be assigned to
websites in a modular way. Furthermore it is semantically unimportant whether all
properties are instantiated at once. As a result properties are always multi-valued , i.e. the
expression <rdf:description about="…"> for a specific web page can be used repeatedly in
an RDF file (possibly in several RDF files!)

A disadvantage of this modularity is of course that we cannot define single-valued
attributes in RDF. For instance, it is not possible to define a property with a single value to
represent the size of a resource. This, by the way, makes it difficult, if not impossible, to
watch for violations of the single value property of rdfs:range. Several people can define
different (in this case inconsistent) RDF-Statements for the size of the resource which leads
to inconsistent information about the resource. In contrast, although attributes are basically
multi-valued in O-Telos, too, they can be constrained to be single valued by O-Telos
constraints.

Using the frame syntax of O-Telos, modularity like in RDF is not possible, as
definitions and instances in O-Telos are class-centric and not property-centric. So, in O-
Telos it is not possible to use e.g. “http://…/Agents/Definitions.htm” as ID for two
instances. In order to declare several O-Telos objects about the same resource it is
necessary to introduce an additional attribute "about" holding the URI of the resource,
which however introduces an additional identifier which is not necessary in the tuple
representation. Using this workaround, different O-Telos objects describing a resource have

Valued Sony Customer
 508

their own IDs as required by the O-Telos axioms but can describe the same resource. A
similar approach has to be used in XML Schema, by the way.

The previous RDF example of the resource “http://…/Agents/Definitions.htm” is
declared in O-Telos by the following single frame:

Individual AgentDefinition1 in TheoryUnit with
 about
 a : "http://…/Agents/Definitions.htm"
 language
 l : "german"
 coverage
 c : "Introductory course"
 rights
 r : "KBS"
 parent_unit
 pu : LectureUnit1
end

In order to represent the above object AgentDefinition1 by two frames an explicit about-
attribute is used in the frames below. The instances AgentDefinition1 and AgentDefinition2
have different identifiers while they hold the same reference in their about-attribute to
“http://…/Agents/Definitions.htm”.

Individual AgentDefinition1 in TheoryUnit with
 about
 a : "http://…/Agents/Definitions.htm"
 language
 l : "german"
 coverage
 c : "Introductory course"
rights
 r : "KBS"
end
Individual AgentDefinition2 in TheoryUnit with
 about
 a : "http://…/Agents/Definitions.htm"
 parentUnit
 pu : LectureUnit1
end

Using this approach it is possible to declare various objects about the same resource
in the same model. Because O-Telos does not have a feature like the namespace declaration
of RDF it is not possible to declare objects about the same resource in different models.

2.5 Sequences and Reification in RDF and O-Telos

Let us look briefly at sequencing and reification in RDF and O-Telos. As an
example we use the following RDF declaration of the resource LectureUnit1 which we will
translate to O-Telos. LectureUnit1 defines a sequence for values of the olr:theoryUnit
property. Its RDF declaration is given below:

<rdf:RDF xml:lang="en"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:olr="http://.../rdf/olr_schema_5#"
 xmlns:dc="http://purl.org/dc/elements/1.0#">
 <rdf:Description ID="LectureUnit1">

Valued Sony Customer
 509

 <rdf:type resource="http://…/rdf/olr_schema_5#Unit"/>
 <dc:title>Lecture Unit 1</dc:title>
 <dc:description>Introduction to intelligent agents</dc:description>
 <olr:parentCourse rdf:resource="#AILecture"/>
 <olr:theoryUnit>
 <rdf:Seq>
 <rdf:li rdf:resource="http://.../Agents/Definitions.htm"/>
 <rdf:li rdf:resource="http://.../Agents/Characterisation.htm"/>
 <rdf:li rdf:resource="http://.../Agenten/Structur.htm"/>
 <rdf:li rdf:resource="http://.../Agenten/Types.htm"/>
 </rdf:Seq>
 </olr:theoryUnit>
 </rdf:Description>
</rdf:RDF>

In this example the order of resources of the property olr:theoryUnit is defined by
the container object RDF sequence (rdf:Seq). This order is used for the visualisation of the
course hierarchy. While it is a convenient way to represent sequences, it is conceptually
questionable, as rdf:seq is used as range of olr:theoryUnit, instead of the more explicit
ranges describing the specific type of the child resource (like theoryUnit, or, for other
properties, example, slide, etc. which we use in OLR).

O-Telos does not define such a construct for stating sequences, but represents
sequences implicitly by the order of attribute statements in the O-Telos frames. Of course it
is not insured that each implementation of O-Telos interprets the frames in the same way so
that the attribute order (the sequence) might vary from one implementation to another.

If we want to state our RDF example without using RDF sequence but still represent
sequences, we could use an attribute ordinal for the RDF-statements representing the
sequence of the property values. These statements then look like:

<oid ,ordinal,i>, with i:integer and oid:ID is the ID of a statement <s,p,o> with s:subject,
p:predicate and o:object.

In other words we need the possibility to make statements about statements, e.g. by
referring to the IDs of statements in statements. Unfortunately, RDF statements do not have
IDs. Instead we have to introduce higher-order statements which are a special kind of
statements about statements:

<s,p,o,t> with s:subject, p:predicate, o:object and t:type

Applied to our example this could be written as follows:

<olr:Unit rdf:ID="LectureUnit1"/>
<rdf:Description>
 <rdf:subject resource="#LectureUnit1" />
 <rdf:predicate resource="http://.../#theoryUnit" />
 <rdf:object rdf:resource="http://.../Agents/Definitions.htm"/>
 <rdf:type resource="http://.../22-rdf-syntax-ns#Statement"/>
 <olr:ordinalNo>1</olr:ordinalNo>
</rdf:Description>
<rdf:Description>
 <rdf:subject resource="#LectureUnit1" />
 <rdf:predicate resource="http://.../#theoryUnit " />
 <rdf:object rdf:resource="http://.../Agents/Characterisation.htm"/>
 <rdf:type resource="http://.../22-rdf-syntax-ns#Statement"/>
 <olr:ordinalNo>2</olr:ordinalNo>
</rdf:Description>

Valued Sony Customer
 510

Of course the disadvantage is the lost simplicity of the model and a rather complex
und unreadable declaration. In O-Telos, specifying properties for other properties can be
handled more directly, as all property statements have their own unique identifier, and thus
can be directly annotated with additional attributes like in

Attribute LectureUnit1!tu1 in CourseUnit!theoryUnit with
 ordinalNo
 o : 1
end
Attribute LectureUnit1!tu2 in CourseUnit!theoryUnit with
 ordinalNo
 o : 2
end

In [16] we show how to use this idea in an extended variant of RDF (O-Telos-RDF),

which easily allows reifications of arbitrary statements by referencing statement IDs. Of
course, introducing unique ids for property statements in RDF is not possible globally. Still,
locally at one site, this is possible, and the site prefix can make these ids unique worldwide
(which is the approach we propose in [16]).

2.6 Comparing RDF and O-Telos on the Tuple Level

As mentioned before RDF declarations can be represented as triples. A RDF triple
has the definition:

<s,p,o> with s:subject, p:predicate and o:object, reading: there is a property p from
subject s to object o.

O-Telos declarations can be represented by quadruples which are called

propositions. In general propositions represent relationships:

P(oid,x,l,y) with oid:objectID, x:source, l:label, y:destination, reading: there exists
an object with oid stating a relationship called l from object x to object y.

So, O-Telos propositions include an explicit ID, while RDF triples do not. Using

this ID, instantiation of properties is handled differently (explicitly in O-Telos, and
implicitly in RDF), which results in a marked difference in the meta-modelling capabilities
of RDF (rather restricted) and O-Telos (unrestricted meta-modelling hierarchies possible).
Usually, each RDF triple is expressed by two O-Telos propositions, where the instantiation
of a property is an own statement in O-Telos, but is handled implicitly (by directly using
the predicate name) in RDF. In general, O-Telos propositions, which have a unique id, are
much better suited for reification than RDF triples.

The following RDF declarations define three properties for the resource
“http://.../Agents/Characterisation.htm”. The rdf:type property defines the resource as of
type olr#TheoryUnit while dc:title states the name of the resource and olr:parentUnit
defines the resource LectureUnit1 as parentUnit. The triple representation shows three
triples corresponding to this declaration.

<rdf:Description about="http://.../Agents/Characterisation.htm">
 <rdf:type resource="http://.../rdf/olr#TheoryUnit"/>
 <dc:title>Characterisation of agents</dc:title>
 <olr:parentUnit rdf:resource="#LectureUnit1"/>
</rdf:Description>

Valued Sony Customer
 511

Table 4. RDF-Triples of the declaration about “http://.../Agents/Characterisation.htm”

Nr. Subject Predicate Object

1
http://.../Agents/Characterisatio
n.htm

http://…/22-rdf-syntax-ns#type http://.../rdf/olr#TheoryUnit

2 http://.../Agents/Characterisatio
n.htm

http://purl.org/dc/elements/1.0#tit
le

Characterisation of agents

3
http://.../Agents/Characterisatio
n.htm

http://…/rdf/olr_schema_7#paren
tUnit

online:#LectureUnit1

Table 4 states these three RDF triples. They show explicitly that all three properties

belong to the resource, and the predicates (second argument) directly state name and the
accompanying namespace of the properties.

The O-Telos frame declares the object "http://.../Agents/Characterisation.htm" as
instance of (the keyword “in” in the frame) class TheoryUnit similarly to the rdf:type
property of the RDF declaration. The other two attributes dc_title and parentUnit
correspond to the respective properties.

Individual "http://.../Agents/Characterisation.htm" in TheoryUnit with
 dc_title
 t1 : "Characterisation of agents"
 parentUnit
 pu1 : LectureUnit1
end

However, the O-Telos propositions show more detail than the corresponding RDF
triples:

Table 5. O-Telos propositions of the declaration of “http://.../Agenten/Characterisation.htm”

oid source Label destination
#1 #1 “http://.../Agents/Characterisation.htm” #1
#2 #1 *instanceof #TheoryUnit
#3 #1 T1 “Characterisation of agents”
#4 #3 *instanceof #dc_title
#5 #1 pu1 #LectureUnit1
#6 #5 *instanceof #parentUnit

Table 5 shows the O-Telos propositions of our example. Proposition #1 explicitly

represents the object “http://…//Agents/Characterisation.htm” while proposition #2 states
that this object is instance of class TheoryUnit. Proposition #3 declares that the object from
#1 has an attribute t1 with value "Characterisation of agents" while proposition #4 declares
the attribute t1 from #3 as instance of #dc_title. Proposition #5 declares that the object from
#1 has an attribute pu1 as a reference to #LectureUnit1 while proposition #6 declares the
attribute from #5 as instance of #parentUnit. O-Telos also requires that the declaration of
the attributes t1 and pu1 is included in the class TheoryUnit from which this object is an
instance.
We have no direct possibility to represent RDF namespace information in our O-Telos
propositions, as O-Telos relies on the declaration of schema and metadata in one file. In
[16] however we specify statement IDs for O-Telos-RDF (which are invisible in O-Telos),
that include namespace information in a way similar to RDF/RDFS.

Valued Sony Customer
 512

3 Conclusion and future work

This paper discussed the use of RDF metadata in our open learning repository
system OLR, as well as its underlying architecture. We are currently extending this system
by different navigation schemes and are working on making it still easier to modify/extend
metadata and metadata schemas in/with OLR. To support LOM metadata annotation of a
large amount of (often hierarchically related) document pages, we will have to add some
inferencing capabilities which for example allow (default) inheritance of LOM attributes
along the LOM isPartOf relation. An further extension will be P2P exchange functionality
between distributed OLR systems.

In the second part of this paper we have compared RDF/RDFS with the conceptual
modelling language O-Telos and discussed some mappings, which hopefully shed some
light on the advantages and disadvantages of RDFS design decisions. We have continued
this work in another report, which defines an RDF-variant called O-Telos-RDF with
extended reification and meta-modelling capabilities. Further interesting work includes a
comparison of the O-Telos query language (as implemented in Conceptbase) for RDF and
O-Telos-RDF.

This work has profited much from several discussions with our colleagues, and we
want to thank especially Changtao Qu for his comments on several of the issues discussed
in this paper.

Valued Sony Customer
 513

References

[1] RDF Model and Syntax Specification, World Wide Web Consortium (W3C), February 1999,

http://www.w3.org/TR/REC-rdf-syntax/
[2] RDF Schema Specification, World Wide Web Consortium (W3C), March 2000,

http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

[3] Dublin Core Initiative, 2001, http://dublincore.org/

[4] Karsten Tolle, Analyzing and Parsing RDF, Master’s Thesis, Institute of Computer Engineering -

University of Hannover in cooperation with the Institute of Computer Science - Foundation of Research

Technology Hellas - Greece (ICS-FORTH), 2001, http://www.kbs.uni-hannover.de/Arbeiten/Diplomarbeiten-

/00/tolle/AuPRDF.pdf

 [5] Semantic Web Activity Statement, World Wide We Consortium (W3C), 2001,

http://www.w3.org/2001/sw/Activity

[6] Sergey Melnik, Storing RDF in a relational database, 2000,

http://www-db.stanford.edu/~melnik/rdf/db.html

[7] Nejdl, M. Wolpers, C.Capelle, The RDF Schema Specification Revisited, Modellierung 2000, 5. -

7.4.2000, St Goar, Germany, http://www.kbs.uni hannover.de/Arbeiten/Publikationen/2000/modeling2000/-

wolpers.pdf

[8] Wolfgang Nejdl and Martin Wolpers: KBS Hyperbook - A Data-Driven Information System on the Web.

WWW8 Conference, Toronto, May 1999, http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/1999/-

www8/index.html

[9] Wolfgang Nejdl and Nicola Henze: Adaptivity in the KBS Hyperbook System. 2nd Workshop on User

Modeling and Adaptive Systems on the WWW, May 1999, Toronto, Canada, http://www.kbs.uni-

hannover.de/Arbeiten/Publikationen/1999/Henze.html

[10] M. Jeusfeld, Änderungskontrolle in deduktiven Objektbanken, Infix-Verlag 1992, St. Augustin, Germany

[11] Johan Gamper, Wolfgang Nejdl and Martin Wolpers: Combining Ontologies and Terminologies in

Information Systems. 5th International Congress on Terminology and Knowledge Engineering, Innsbruck,

Austria, August 1999, http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/1999/tke99/index.html

[12] M. A. Jeusfeld, M. Jarke, H. W. Nissen and M. Staudt, ConceptBase - Managing Conceptual Models

about Information Systems, in Handbook on Architectures of Informations Systems, P. Bernus, K. Mertins

and G. Schmidt (eds.), Springer Verlag 1998

[13] M. Ashrafuzzaman: Deductive Object-Oriented Database for Geographic Data Handling. Course project

CMPT826, University of Saskatchewan, Canada, March 1996

[14] Janne Saarela, SiRPAC - Simple RDF Parser & Compiler World Wide Web Consortium (W3C), 2001,
http://www.w3.org/RDF/Implementations/SiRPAC/

[15] J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis, Telos: A langugage for representing knowledge

about information systems, ACM Transaction on Information Systems, 8.4, 1990
[16] W. Nejdl, H. Dhraief and M. Wolpers, O-Telos-RDF: A Resource Description Format with Enhanced

Meta-Modelling Functionalities based on O-Telos, Technical Report, Inst. f. Technische Informatik, Uni.

Hannover, Germany

Valued Sony Customer
 514

CREAM — Creating relational metadata with
a component-based, ontology-driven

annotation framework
1Siegfried Handschuh, 1;2Steffen Staab, 1;3Alexander Maedche

1Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de/WBS
fsha,sst,amag@aifb.uni-karlsruhe.de

2Ontoprise GmbH, Haid-und-Neu Straße 7, 76131 Karlsruhe, Germany
http://www.ontoprise.de

3FZI Research Center for Information Technologies,
Haid-und-Neu Straße 10-14, 76131 Karlsruhe, Germany

http://www.fzi.de/wim

“The Web is about links;
the Semantic Web is about the relationships implicit in those links.”

Dan Brickley

Abstract. Richly interlinked, machine-understandable data constitutes the basis for
the Semantic Web. Annotating web documents is one of the major techniques for cre-
ating metadata on the Web. However, annotation tools so far are restricted in their
capabilities of providing richly interlinked and truely machine-understandable data.
They basically allow the user to annotate with plain text according to a template struc-
ture, such as Dublin Core. We here present CREAM (Creating RElational, Annotation-
based Metadata), a framework for an annotation environment that allows to construct
relational metadata, i.e. metadata that comprises class instances and relationship in-
stances. These instances are not based on a fix structure, but on a domain ontology.
We discuss some of the requirements one has to meet when developing such a frame-
work, e.g. the integration of a metadata crawler, inference services, document man-
agement and information extraction, and describe its implementation, viz. Ont-O-Mat
a component-based, ontology-driven annotation tool.

1 Introduction

Research about the WWW currently strives to augment syntactic information already present
in the Web by semantic metadata in order to achieve a Semantic Web that human and soft-
ware agents alike can understand. RDF(S) or DAML+OIL are languages that have recently
advanced the basis for extending purely syntactic information, e.g. HTML documents, with

Valued Sony Customer
 515

semantics. Based on these recent advancements one of the the most urgent challenges now is
a knowledge capturing problem, viz. how one may turn existing syntactic resources into in-
terlinked knowledge structures that represent relevant underlying information. This paper is
about a framework for facing this challenge, called CREAM1, and about its implementation,
Ont-O-Mat.

The origin of our work facing this challenge dates back to the start of the seminal KA2
intiative [1], i.e. the initiative for providing semantic markup on HTML pages for the know-
ledge acquisition community. The basic idea then was that manual knowledge markup on
web pages was too error-prone and should therefore be replaced by a simple tool that should
help to avoid syntactic mistakes.

Developing our CREAM framework, however, we had to recognize that this knowledge
capturing task exhibited some intrinsic difficulties that could not be solved by a simple tool.
We here mention only some challenges that immediately came up in the KA2 setting:

� Consistency: Semantic structures should adhere to a given ontology in order to allow
for better sharing of knowledge. For example, it should be avoided that people confuse
complex instances with attribute types.

� Proper Reference: Identifiers of instances, e.g. of persons, institutes or companies, should
be unique. For instance, in KA2 metadata there existed three different identifiers of our
colleague Dieter Fensel. Thus, knowledge about him could not be grasped with a straight-
forward query.2

� Avoid Redundancy: Decentralized knowledge provisioning should be possible. How-
ever, when annotators collaborate, it should be possible for them to identify (parts of)
sources that have already been annotated and to reuse previously captured knowledge in
order to avoid laborious redundant annotations.

� Relational Metadata: Like HTML information, which is spread on the Web, but related
by HTML links, knowledge markup may be distributed, but it should be semantically
related. Current annotation tools tend to generate template-like metadata, which is hardly
connected, if at all. For example, annotation environments often support Dublin Core
[12], providing means to state, e.g., the name of authors, but not their IDs3.

� Maintenance: Knowledge markup needs to be maintained. An annotation tool should
support the maintenance task.

� Ease of use: It is obvious for an annotation environments to be useful. However, it is not
trivial, because it involves intricate navigation of semantic structures.

� Efficiency: The effort for the production of metadata is a large restraining threshold.
The more efficiently a tool support the annotation, the more metadata will produce a
user. These requirement stand in relationship with the ease of use. It depends also on the
automation of the annotation process, e.g. on the pre-processing of the document.

1CREAM: Creating RElational, Annotation-based Metadata.
2The reader may see similar effects in bibliography databases. E.g., query for James (Jim) Hendler at the

— otherwise excellent — DBLP: http://www.informatik.uni-trier.de/�ley/db/.
3In the web context one typically uses the term ‘URI’ (uniform resource identifier) to speak of ‘unique

identifier’.

Valued Sony Customer
 516

CREAM faces these principal problems by combining advanced mechanisms for infer-
encing, fact crawling, document management and — in the future — information extraction.
Ont-O-Mat, the implementation of CREAM, is a component-based plug-in architecture that
tackles this broad set of requirements.4

In the following we first sketch two usage scenarios (Section 2). Then, we explain our
terminology in more detail, derive requirements from our principal considerations above and
explain the architecture of CREAM (Section 3). We describe our actual tool, Ont-O-Mat, in
Section 4. Before we conclude, we contrast CREAM with related work, namely knowledge
acquisition tools and annotation frameworks.

2 Scenarios for CREAM

We here only summarize two scenarios, two knowledge portals, for annotation that have been
elaborated in [21]:

The first scenario extends the objectives of the seminal KA2 initiative. The KA2 portal
provides a view onto knowledge of the knowledge acquisition community. Besides of seman-
tic retrieval as provided by the original KA2 initiative, it allows comprehensive means for
navigating and querying the knowledge base and also includes guidelines for building such a
knowledge portal. The potential users provide knowledge, e.g. by annotating their web pages
in a decentralized manner. The knowledge is collected at the portal by crawling and presented
in a variety of ways.

The second scenario is a knowledge portal for business analysts that is currently con-
structed at Ontoprise GmbH. The principal idea is that business analyst review news tickers,
business plans and business reports. A considerable part of their work requires the com-
parison and aggregation of similar or related data, which may be done by semantic queries
like“Which companies provide B2B solutions?”, when the knowledge is semantically avail-
able. At the Time2Research portal they will handle different types of documents, annotate
them and, thus, feed back into the portal to which they may ask questions.

3 Design of CREAM

In this section we explain basic design decisions of CREAM, which are founded on the gen-
eral problems sketched in the introduction above. In order to provide a clear design rationale,
we first provide definitions of important terms we use subsequently:

� Ontology: An ontology is a formal, explicit specification of a shared conceptualization of
a domain of interest [8]. In our case it is constituted by statements expressing definitions
of DAML+OIL classes and properties [7].

� Annotations: An annotation in our context is a set of instantiations attached to an HTML
document. We distinguish (i) instantiations of DAML+OIL classes, (ii) instantiated prop-
erties from one class instance to a datatype instance — henceforth called attribute instance
(of the class instance), and (iii) instantiated properties from one class instance to another
class instance — henceforth called relationship instance.

4The core Ont-O-Mat can be downloaded from:
http://ontobroker.semanticweb.org/annotation.

Valued Sony Customer
 517

Graduate

<swrc:Lecturer rdf:ID="person_sst">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

<swrc:PhDStudent rdf:ID="person_sha">

<swrc:name>Siegfried Handschuh</swrc:name>

<swrc: cooperateWith rdf:resource =

"http://www.aifb.uni-karlsruhe.de/WBS/sst#person_sst"/>

...

</swrc:PhDStudent>

http://www.aifb.uni-karlsruhe.de/WBS/sha

PhDStudent Lecturer

Academic Staff

Person

swrc:cooperateWith

rdf:type

rdf:type

http://www.aifb.uni-karlsruhe.de/WBS/sst

rdf:subClass rdf:subClass

rdf:subClassrdf:subClass

cooperateWith

rdf:hasRangerdf:hasDomain
ontology

annotation

web page

URL

Figure 1: Annotation example

Class instances have unique URIs. Instantiations may be attached to particular markups in
the HTML documents, viz. URIs and attribute values may appear as strings in the HTML
text.

� Metadata: Metadata are data about data. In our context the annotations are metadata
about the HTML documents.

� Relational Metadata: We use the term relational metadata to denote the annotations that
contain relationship instances.

Often, the term “annotation” is used to mean something like “private or shared note”,
“comment” or “Dublin Core metadata”. This alternative meaning of annotation may be
emulated in our approach by modeling these notes with attribute instances. For instance, a
comment note “I like this paper” would be related to the URL of the paper via an attribute
instance ‘hasComment’.

In contrast, relational metadata contain statements like ‘student Siegfried cooperates with
lecturer Steffen’, i.e. relational metadata contain relationships between class instances
rather than only textual notes.

Figure 1 illustrates our use of the terms “ontology”, “annotation” and “relational meta-
data”. It depicts some part of the SWRC5 (semantic web research community) ontology. Fur-

5http://ontobroker.semanticweb.org/ontos/swrc.html

Valued Sony Customer

Valued Sony Customer
 518

Table 1: Design Rationale — Linking Challenges with Required Modules

Requirement Storage
Replication

Document Ontology Crawler Annotation Document Information
General Viewer Guidance Inference Management Extraction
Problem Server
Consistency X X
Proper Reference X X
Avoid Redundancy X X X
Relational Metadata X X X
Maintenance X X
Ease of use X X X
Efficiency X X X X X X

thermore it shows two homepages, viz. pages about Siegfried and Steffen (http://www.aifb.uni
-karlsruhe.de/WBS/sha and http://www.aifb.uni-karlsruhe.de/WBS/sst, respectively)
with annotations given in an XML serialization of RDF facts. For the two persons there are
instances denoted by corresponding URIs (person sha and person sst). The swrc:name of
person sha is “Siegfried Handschuh”. In Addition, there is a relationship instance between
the two persons: they cooperate. This cooperation information ‘spans’ the two pages.

3.1 Requirements for CREAM

The difficulties sketched in the introduction directly feed into the design rationale of CREAM.
The design rationale links the challenges with the requirements. This results in a N:M map-
ping (neither functional nor injective). An overview of the matrix is given in Table 1. It shows
which modules (requirements) are mainly used to answer challenges set forth in the introduc-
tion, viz.:

� Document Viewer: The document viewer visualizes the web page contents. The annota-
tor may easily provide annotations by highlighting text that serves as input for attribute
instances or the definition of URIs. The document viewer must support various formats
(HTML, PDF, XML, etc.).

� Ontology Guidance: The annotation framework needs guidance from the ontology. In
order to allow for sharing of knowledge, newly created annotations must be consistent
with a community’s ontology. If annotators instantiate arbitrary classes and properties
the semantics of these properties remains void. Of course the framework must be able to
adapt to varying ontologies in order to reflect different foci of the annotators.

Furthermore, the ontology is important in order to guide annotators towards creating re-
lational metadata. We have done some preliminary experiments and found that subjects
have more problems with creating relationship instances than with creating attribute in-
stances (cf. [22]). Without the ontology they would miss even more cues for assigning
relationships between class instances.

Valued Sony Customer
 519

Both ontology guidance and document viewer should be easy to use: Drag’n’drop helps
to avoid syntax errors and typos and a good visualization of the ontology can help to
correctly choose the most appropriate class for instances.

� Crawler: The creation of relational metadata must take place within the Semantic Web.
During annotation annotaters must be aware of which entities exist in the part of the
Semantic Web they annotate. This is only possible if a crawler makes relevant entities
immediately available. So, annotators may look for proper reference, i.e. decide whether
an entity already has a URI (e.g. whether the entity named “Dieter Fensel” or “D. Fensel”
has already been identified by some other annotators) and thus only annotators may rec-
ognize whether properties have already been instantiated (e.g. whether “Dieter Fensel”
has already be linked to his publications). As a consequence of annotators’ awareness re-
lational metadata may be created, because class instances become related rather than only
flat templates are filled.

� Annotation Inference Server: Relational metadata, proper reference and avoidance of
redundant annotation require querying for instances, i.e. querying whether and which
instances exist. For this purpose as well as for checking of consistency, we provide an
annotation inference server in our framework. The annotation inference server reasons on
crawled and newly annotated instances and on the ontology. It also serves the ontological
guidance, because it allows to query for existing classes and properties.

� Document Management: In order to avoid redundancy of annotation efforts, it is not
sufficient to ask whether instances exist at the annotation inference server. When an an-
notator decides to capture knowledge from a web page, he does not want to query for all
single instances that he considers relevant on this page, but he wants information, whether
and how this web page has been annotated before. Considering the dynamics of HTML
pages on the web, it is desirable to store annotated web pages together with their anno-
tations. When the web page changes, the old annotations may still be valid or they may
become invalid. The annotator must decide based on the old annotations and based on the
changes of the web page.

A future goal of the document management in our framework will be the semi-automatic
maintenance of annotations. When only few parts of a document change, pattern matching
may propose revision of old annotations.

� Information Extraction: Even with sophisticated tools it is laborious to provide semantic
annotations. A major goal thus is semi-automatic annotation taking advantage of informa-
tion extraction techniques to propose annotations to annotators and, thus, to facilitate the
annotation task. Concerning our environment we envisage two major techniques: First,
“wrappers” may be learned from given markup in order to automatically annotate sim-
ilarly structured pages (cf., e.g., [16]). Second, message extraction like systems may be
used to recognize named entities, propose co-reference, and extract some relationship
from texts (cf., e.g., [20]).

Besides of the requirements that constitute single modules, one may identify functions that
cross module boundaries:

Valued Sony Customer
 520

� Storage: CREAM supports two different ways of storage. The annotations will be stored
inside the document that is in the document management component, but it is also stored
in the annotation inference server.

� Replication: We provide a simple replication mechanism by crawling annotations into our
annotation inference server.

3.2 Architecture of CREAM

The architecture of CREAM is depicted in Figure 2. The complete design of CREAM com-
prises a plug-in structure, which is flexible with regard to adding or replacing modules. Docu-
ment viewer and ontology guidance module together constitute the major part of the graphical
user interface. Via plug-ins the core annotation tool, Ont-O-Mat, is extended to include the
capabilities outlined above. For instance, a plug-in for a connection to a document manage-
ment system provides document management and retrieval capabilities that show the user
annotations of a document he loads into his browser. This feature even becomes active when
the user does not actively search for already existing annotations. Similarly, Ont-O-Mat pro-
vides extremely simple means for navigating the taxonomy, which means that the user can
work without an inference server. However, he only gets the full-fledged semantics when the
corresponding plug-in connection to the annotation inference server is installed.

annotated

web pages

web pages

domain

ontologies

copy

WWW

Document Management

Annotation

Inference

Server

Annotation

Inference

Server

Information
extraction

Component

annotate

crawl

Annotation

Tool GUI

plugin

plugin

plugin

Ontology

Guidance

Document

Viewer

Annotation Environment

query

extract

crawl

Figure 2: Architecture of CREAM.

4 Implementation: Ont-O-Mat

This section describes Ont-O-Mat, the implementation of our CREAM framework. Ont-
O-Mat is a component-based, ontology-driven markup tool. The architectural idea behind
CREAM is a component-based framework, thus, being open, flexible and easily extensible.

Valued Sony Customer
 521

In the following subsection we refer to the concrete realization and the particular technical
requirements of the components. In subsection 4.2 we describe the functionality of Ont-O-
Mat based on an example ontology for annotation that is freely available on the web.

4.1 Ont-O-Mat services and components

The architecture of Ont-O-Mat provides a plug-in and service mechanism. The components
are dynamically plug-able to the core Ont-O-Mat. The plug-in mechanism notifies each in-
stalled component, when a new component is registered. Through the service mechanism
each component can discover and utilize the services offered by another component [9]. A
service represented by a component is typically a reference to an interface. This provides
among other things a de-coupling of the service from the implementation and allows there-
fore alternative implementations.

The Ont-O-Mat services have been realized by components according to the requirements
listed in subsection 3.1. So far we have realized the following components: a comprehensive
user-interface, component for document-management, an annotation inference-server and a
crawler:

� Document Viewer and Ontology Guidance: There are various ways how the gained
knowledge database can be visualized and thus experienced. On the one hand, the system
can be used as a browser. In the annotated web pages, the extracted text fragments are then
highlighted and an icon after each fragment is visible. By clicking on the icon, the name
of the assigned class or attribute will be shown. On the other hand, the user can browse
the ontology and retrieve for one class all instances or for one instance all attributes.

The underlying data model used for Ont-O-Mat has been taken from the comprehensive
ontology engineering and learning system ONTOEDIT / TEXT-TO-ONTO (see [18]).

Ont-O-Mat works currently in “read-only–mode” with respect to the ontology and only
operates on the relational metadata defined on top of the given ontology.

� Document Management: A component for document management is required in order
to avoid duplicate annotations and existing semantic annotations of documents should be
recognized. In our current implementation we use a straight forward file-system based
document management approach.

Ont-O-Mat uses the URI to detect the re-encounter of previously annotated documents
and highlights annotations in the old document for the user. Then the user may decide to
ignore or even delete the old annotations and create new metadata, he may augment ex-
isting data, or he may just be satisfied with what has been previously annotated. In order
to recognize that a document has been annotated before, but now appears under a differ-
ent URI, Ont-O-Mat computes similarity with existing documents by simple information
retrieval methods, e.g. comparison of the word vector of a page. If thereby a similarity is
discovered, this is indicated to the user, so that he can check for congruency.

� Annotation Inference Server: The annotation inference server reasons on crawled and
newly annotated instances and on the ontology. It also serves the ontological guidance,
because it allows to query for existing classes and properties. We use Ontobroker’s [3]
underlying F-Logic [14] based inference engine SilRI [2] as annotation inference server.

Valued Sony Customer
 522

The F-Logic inference engine combines ordering-independent reasoning in a high-level
logical language with a well-founded semantics.

� RDF Crawler: As already mentioned above, the annotation must take place right within
the Semantic Web and not isolated. Therefore, we have built a RDF Crawler6, a basic tool
that gathers interconnected fragments of RDF from the Web and builds a local knowledge
base from this data.

In general, RDF data may appear in Web documents in several ways. We distinguish
between (i) pure RDF (files that have an extension like ”*.rdf”), (ii) RDF embedded in
HTML and (iii) RDF embedded in XML. Our RDF Crawler relys on Melnik’s RDF-API7

that can deal with the different embeddings of RDF described above. One general problem
of crawling is the applied filtering mechanism: Baseline document crawlers are typically
restricted by a predefined depth value. Assuming that there is an unlimited amount of in-
terrelated information on the Web (hopefully this will soon hold about RDF data as well),
at some point RDF fact gathering by the RDF Crawler should stop. We have implemented
a baseline approach for filtering: At the very start of the crawling process and at every
subsequent step we maintain a queue of all the URIs we want to analyze. We process
them in the breadth-first-search fashion, keeping track of those we have already visited.
When the search goes too deep, or we have received sufficient quantity of data (measured
as number of links visited or the total web traffic or the amount of RDF data obtained) we
may quit.

� Information Extraction: This component has not yet been integrated in our Ont-O-Mat
tool. Actually, we are near finishing an integration of a simple wrapper approach [15], but
we have not yet the message extraction approach for Ont-O-Mat that suggests relevant
part of the texts for annotation.

4.2 Using Ont-O-Mat — An Example

Our example is based on the freely available SWRC (Semantic Web Research Community)8

ontology , the successor of the KA2 ontology. The SWRC ontology models the semantic web
research community, its researchers, topics, publications, tools, etc. and properties between
them. It is available in the form of DAML+OIL classes and properties, in pure RDF-Schema
and in F-Logic. The general idea behind SWRC is that the SW research community creates
relational metadata according to the SWRC ontology to enable semantic access to their web
pages. In the following we shortly explain how Ont-O-Mat may be used for creating relational
metadata based on the SWRC ontology.

The annotation process is started either with an annotation inference server or the server
process is fed with metadata crawled from the web and the document server. Figure 3 shows
the screen for navigating the ontology and creating annotations in Ont-O-Mat. The right pane
displays the document and the left panes show the ontological structures contained in the
ontology, namely classes, attributes and relations. In addition, the left pane shows the cur-

6RDF Crawler is freely available for download at:
http://ontobroker.semanticweb.org/rdfcrawler.

7http://www-db.stanford.edu/�melnik/rdf/api.html
8http://www.semanticweb.org/ontologies/

Valued Sony Customer
 523

rent semantic annotation knowledge base, i.e. existing class instances, attribute instances and
relationship instances created during the semantic annotation.

Figure 3: Ont-O-Mat Screenshot.

1. First of all, the user browses a document by entering the URL of the web document that
he would like to annotate. This step is quite familiar from existing browsers.

2. Then the user selects a text fragment by highlighting it and takes a look on the ontology
which fits in the topic and is therefore loaded and visible in ontology browser.

3. There are two possibilities for the text fragment to be annotated: as an instance or as a
property. In the case of an instance, the user selects in the ontology the class where the
text fragment fits in, e.g. if he has the text fragment ”Siegfried Handschuh”, he would
select the class ”PhD Student”. By clicking on the class, the annotation gets created and
thus the text fragment will be shown as an instance of the selected class in the ontology
at the ontology browser.

4. To each created instance, literal attributes can be assigned. The choice of the predefined
attributes depends on the class the instance belongs to, e.g. the class ”PhD Student” has
the attributes name, address, email, and telephone number. The attributes can be assigned
to the instance by highlighting the appropriate text fragment of the web document and
dragging it to the related property field.

Valued Sony Customer
 524

5. Furthermore, the relationships between the created instances can be set, e.g. the PhD
Student Siegfried Handschuh ”works at” the OntoAgent project and ”is supervised” by
Rudi Studer. Ont-O-Mat preselects class instances according to the range restrictions of
the chosen relation, e.g. the ”works at” of a PhD Student must be an Project. Therefore
only Projects are offered as potential fillers to the ”works at” relation of Siegfried.

5 Comparison with Related Work

CREAM can be compared along three dimensions: First, it is a framework for mark-up in the
Semantic Web. Second, it can be considered as a particular knowledge acquisition framework
vaguely similar to Protégé-2000[6]. Third, it is certainly an annotation framework, though
with a different focus than ones like Annotea [13].

5.1 Knowledge Markup in the Semantic Web

We know of three major systems that intensively use knowledge markup in the Semantic
Web, viz. SHOE [10], Ontobroker [3] and WebKB [19]. All three of them rely on knowledge
in HTML pages.

They all started with providing manual mark-up by editors. However, our experiences
(cf. [5]) have shown that text-editing knowledge mark-up yields extremely poor results, viz.
syntactic mistakes, improper references, and all the problems sketched in the introduction.

The approaches from this line of research that are closest to CREAM is the SHOE Know-
ledge Annotator9.

The SHOE Knowledge Annotator is a Java program that allows users to mark-up web-
pages with the SHOE ontology. The SHOE system [17] defines additional tags that can
be embedded in the body of HTML pages. The Knowledge Annotater is less user friendly
compared with our implementation Ont-O-Mat. It shows the ontology in some textual lists,
whereas Ont-O-Mat gives a graphical visualization of the ontologies. Furthermore, in SHOE
there is no direct relationship between the new tags and the original text of the page, i.e.
SHOE tags are not annotations in a strict sense.

5.2 Comparison with Knowledge Acquisition Frameworks

The CREAM framework is specialized for creating class and property instances and for pop-
ulating HTML pages with them. Thus, it does not function as an ontology editor, but rather
like the instance acquisition phase in the Protégé-2000 framework [6]. The obvious differ-
ence of CREAM to the latter is that Protege does not (and does not intend to) support the
particular web setting, viz. managing and displaying web pages.

5.3 Comparison with Annotation Frameworks

There are a lot of — even commercial — annotation tools like ThirdVoice10, Yawas [4],
CritLink [23] and Annotea (Amaya) [13].

9http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html
10http://www.thirdvoice.com

Valued Sony Customer
 525

These tools all share the idea of creating a kind of user comment on the web pages. The
term “annotation” in these frameworks is understood as a remark to an existing document.
As mentioned before, we would model such remarks as attribute instances only in our frame-
work. For instance, a user of these tools might attach a note like ”A really nice professor!” to
the name “Studer” on a web page.

Annotea actually goes one step further. It allows to rely on an RDF schema as a kind of
template that is filled by the annotator. For instance, Annotea users may use a schema for
Dublin Core and fill the author-slot of a particular document with a name. This annotation,
however, is again restricted to attribute instances. The user may also decide to use complex
RDF descriptions instead of simple strings for filling such a template. However, he then has
no further support from Amaya that helps him providing syntactically correct statements with
proper references.

To summarize, CREAM is used to generate really machine-understandable data and ad-
dresses all the problems that come from this objective: relational metadata, proper reference
and consistency.

6 Conclusion and Future Plans

CREAM is a comprehensive framework for creating annotations, relational metadata in par-
ticular — the foundation of the future Semantic Web. The framework comprises inference
services, crawler, document management system, ontology guidance, and document viewers.

Ont-O-Mat is the reference implementation of CREAM framework. The implementation
supports so far the user with the task of creating and maintaining ontology-based DAML+OIL
markups, i.e. creating of class, attribute and relationship instances. Ont-O-Mat include an
ontology browser for the exploration of the ontology and instances and a HTML browser that
will display the annotated parts of the text. Ont-O-Mat is Java-based and provides a plugin
interface for extensions for further advancement.

Our goal is a constant advancement of Ont-O-Mat and the CREAM framework in order
to answer basic problems that come with semantic annotation.

We are already dealing with many different issues and through our practical experi-
ences we could identify problems that are most relevant in our scenario/settings, KA2 and
Time2Research. Nevertheless our analysis of the general problem is far from being complete.
Some further important issues we want to mention here are:

� Information Extraction: We have done some first steps to incorporate information ex-
traction. However, our future experiences will have to show how and how well informa-
tion extraction integrates with semantic annotation.

� Multimedia Annotation: This requires considerations about time, space and synchro-
nization.

� Changing Ontologies: Ontologies on the web have characteristics that influence the an-
notation process. Heflin & Hendler [11] have elaborated on changes that affect annotation.
Future annotation tools will have to incorporate solutions for the difficulties they consider.

� Active Ontology Evolvement: Annotation should feed back into the actual ontologies,
because annotators may find that they should consider new knowledge, but need revised

Valued Sony Customer
 526

ontologies for this purpose. Thus, annotation affects ontology engineering and ontology
learning.

Our general conclusion is that providing semantic annotation, relational metadata in par-
ticular, is an important complex task that needs comprehensive support. Our framework
CREAM and our tool Ont-O-Mat have already proved very successful in leveraging the an-
notation process. They still need further refinement, but they are unique in their design and
implementation.

7 Acknowledgements.

The research presented in this paper would not have been possible without our colleagues
and students at the Institute AIFB, University of Karlsruhe, and Ontoprise GmbH. We thank
Kalvis Apsitis (now: RITI Riga Information Technology Institute), Stefan Decker (now: Stan-
ford University), Michael Erdmann, Mika Maier-Collin, Leo Meyer and Tanja Sollazzo. Re-
search for this paper was partially financed by US Air Force in the DARPA DAML project
“OntoAgents” (01IN901C0).

References

[1] R. Benjamins, D. Fensel, and S. Decker. KA2: Building Ontologies for the Internet: A Midterm Report.
International Journal of Human Computer Studies, 51(3):687, 1999.

[2] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service for RDF. In Proceed-
ings of the W3C Query Language Workshop (QL-98), http://www.w3.org/TandS/QL/QL98/, Boston, MA,
December 3-4, 1998.

[3] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to Distributed
and Semi-Structured Information. In R. Meersman et al., editors, Database Semantics: Semantic Issues in
Multimedia Systems, pages 351–369. Kluwer Academic Publisher, 1999.

[4] L. Denoue and L. Vignollet. An annotation tool for web browsers and its applications to
information retrieval. In In Proceedings of RIAO2000, Paris, April 2000. http://www.univ-
savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[5] M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen Staab. From manual to semi-automatic semantic
annotation: About ontology-based text annotation tools. In P. Buitelaar & K. Hasida (eds). Proceedings of
the COLING 2000 Workshop on Semantic Annotation and Intelligent Content, Luxembourg, August 2000.

[6] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen. Automatic generation of ontology editors. In
Proceedings of the 12th Banff Knowledge Acquisition Workshop, Banff, Alberta, Canada, 1999.

[7] Reference description of the daml+oil (march 2001) ontology markup language.
http://www.daml.org/2001/03/reference.html, March 2001.

[8] T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition,
6(2):199–221, 1993.

[9] Siegfried Handschuh. Ontoplugins – a flexible component framework. Technical report, University of
Karlsruhe, May 2001.

[10] J. Heflin and J. Hendler. Searching the web with shoe. In Artificial Intelligence for Web Search. Papers
from the AAAI Workshop. WS-00-01, pages 35–40. AAAI Press, 2000.

[11] J. Heflin, J. Hendler, and S. Luke. Applying Ontology to the Web: A Case Study. In Proceedings of the
International Work-Conference on Artificial and Natural Neural Networks, IWANN’99, 1999.

[12] Dublin Core Metadata Initiative. http://purl.oclc.org/dc/, April 2001.

Valued Sony Customer
 527

[13] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An Open RDF Infrastructure for
Shared Web Annotations. In Proc. of the WWW10 International Conference. Hong Kong, 2001.

[14] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages.
Journal of the ACM, 42, 1995.

[15] J. Klotzbuecher. Ontowrapper. Master’s thesis, University of Karlsruhe, to appear 2001.

[16] N. Kushmerick. Wrapper Induction: Efficiency and Expressiveness. Artificial Intelligence, 118(1), 2000.

[17] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web Agents. In Proceedings of First
International Conference on Autonomous Agents, 1997.

[18] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2), 2001.

[19] P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Proceedings of the 8th Int. World
Wide Web Conf. (WWW‘8), Toronto, May 1999, pages 1403–1419. Elsevier Science B.V., 1999.

[20] MUC-7 — Proceedings of the 7th Message Understanding Conference. http://www.muc.saic.com/, 1998.

[21] S. Staab and A. Maedche. Knowledge portals — ontologies at work. AI Magazine, 21(2), Summer 2001.

[22] S. Staab, A. Maedche, and S. Handschuh. Creating metadata for the semantic web: An annotation frame-
work and the human factor. Technical Report 412, Institute AIFB, University of Karlsruhe, 2001.

[23] Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW, 1998. http://crit.org/ ping/ht98.html.

Valued Sony Customer
 528

OntoWebber:
Model-Driven Ontology-Based Web Site

Management

Yuhui Jin, Stefan Decker, Gio Wiederhold
Stanford University

{yhjin, stefan, gio}@db.stanford.edu

Abstract. Building data-intensive Web sites and especially Web portals is a costly
task, which requires considerable effort for data integration and maintenance and
usually does not result in many reusable components. This is mainly because most
of the design is hard-coded in static or dynamic Web pages. In this paper we
integrate three different approaches to create a comprehensive solution to Web site
and Web portal creation dubbed OntoWebber. OntoWebber integrates (1) the
explicit modeling of different aspects of Web sites, (2) the use of ontologies as the
foundation for Web portal design and (3) semi-structured data technology for data
integration and Web site modeling. The resulting system and methodology
supports the creation of reusable specifications of Web sites. OntoWebber is the
basis for creating the Semantic Web Community Portal as part of the OntoAgents
project, which will help the Semantic Web research community (distributed on the
Web) to exchange and share knowledge conveniently and effectively.

1 Motivation

Building data-intensive Web sites is a high-effort task, which usually does not result in many
reusable components, mainly because nowadays most of the design is hard-coded in HTML
and executable code like CGI scripts, Active Server Pages (ASP) or Java Server Pages (JSP).
 Web portals is a special kind of data-intensive Web sites, which presents a large collection
of information related to specific topics and are often organized by hierarchical directories.
Examples of Web Portals are Yahoo!, and company portals, which present available resources
inside and outside the company to their employees to facilitate cooperation. Knowledge
management and dynamic personalization are key features of these Web portals, which make
the management of these portals even more demanding than that of an ordinary Web site.
 Building and maintaining a portal requires considerable effort for data integration and
maintenance, since quite often available information (e.g. inside a large corporation) is
heterogeneous, distributed and constantly changing. Therefore it is highly desirable to
automate the data integration and maintenance tasks as much as possible.
 In software engineering area, design patterns [6], declarative specification approaches and
modeling of software artifacts (using e.g. UML) help to generate reusable components and
models – this is already partially used for modeling Web sites by approaches like WebML [3].
 In the database area, semi-structured data has proven to be very successful as a means to
integrate heterogeneous data sources [7]. The usefulness of semi-structured data approaches
for modeling Web sites was demonstrated by Strudel Web site management system [5].
 Finally, AI-centric approaches have suggested ontologies as a means to organize and
present Web Portals [9] [15].

Valued Sony Customer
 529

 OntoWebber brings efforts from all these different areas together into a coherent system and
methodology. It adopts a model-driven, ontology-based approach for declarative Web site
management and data integration, and offers support throughout the life cycle of a Web site,
including design, generation, personalization and maintenance. The fundamental idea behind
OntoWebber is the use of ontologies as the basis for constructing different models necessary
for creating a Web site.
 As a demonstration of our idea, we are building the Semantic Web Community Portal
(SWCP) as part of the OntoAgents project*, which will help the Semantic Web research
community (distributed on the Web) to exchange and share knowledge conveniently and
effectively. The reference ontology used to structure the design of the Web site is the Semantic
Web Research Community Ontology†.
 The rest of the paper is organized as follows: the next section presents the architecture and
different layers of the OntoWebber system. Section 3 defines the different ontologies
necessary to specify a Web site, and describes the modeling of the SWCP as a running
example. Section 4 discusses the Web site generation process. Finally Section 5 and 6 present
related work, conclusion and future work.

2 The OntoWebber Web Site Management System

In this section, we first describe the system architecture, with all the important software
components and how they offer support throughout a Web site’s life cycle. Then we introduce
the Web site design methodology, which is based on an ontology-based declarative modeling
approach.

2.1 OntoWebber Architecture

The architecture of OntoWebber system is shown in Figure 1, which can be decomposed into
four layers:
 Integration layer. The integration layer resolves syntactic differences between different
distributed heterogeneous data sources. We have adapted approaches for integration of
heterogeneous information sources (e.g. the TSIMMIS approach [7]) by establishing a joint
data format over all information sources. As for the semi-structured data format, we have
chosen RDF (Resource Description Framework) since it is essentially identical to the OEM
(Object Exchange Model) format used in the TSIMMIS project. The key point of our approach
for information integration is we convert all types of data into RDF data using the reference
ontology, and only perform queries locally to the resulting data stored in the central repository,
without going to the data sources.
 We currently support three kinds of source data in this layer: RDF data can be directly
passed to the articulation layer. Data and ontologies in the UML/XMI format are rewritten by
the Data Translator using the InterDataWorking approach described in [12], before passed to
the articulation layer. Data sources based on HTML are wrapped and written as RDF data
using the reference ontology, thus the resulting RDF data needs no articulation and is directly
stored into the repository. Please note that instance data and ontologies are handled uniformly
– ontologies are just another kind of data.

* The work is supported by the Defense Advanced Research Projects Agency through the Air Force Research
Laboratory.
†http://www.semanticweb.org/ontologies/

Valued Sony Customer
 530

Site View SpecificationsSource
Data

Domain
Ontology
Library

Navigation Schema

Presentation Schema

Site-Modeling Ontology

DAML/RDF repository

Data

Translator

Ontology

Articulator

Query

Engine

Site Builder

Source
Meta-data

Inference Engine

Integration
Layer

Articulation
Layer Composition Layer Generation

Layer

Administrator

Browsable
Web Site

Data
Source

Data
Source

Data
Source

Site Engineer

Figure 1. OntoWebber System Architecture

Wrappers

Content Schema

Maintenance Schema
Personalization Schema

 Articulation layer. The articulation layer resolves the semantic differences between the
different data sources. Even if all source data have been converted into the RDF format. To be
able to use the data for the site generation we need to relate the incoming data to the reference
ontology of OntoWebber. Since different data providers may use different vocabularies
(domain ontologies) to annotate their data, ontology articulation [13] bridges the semantic gap
by establishing mapping rules between the concepts and relationships described in source
ontologies to those in the reference ontology. Then the data can be queried based on the
reference ontology of the OntoWebber system.
 Composition layer. At this stage, the reference ontology and RDF data are available,
together with articulation rules that relate the source data to the reference ontology. The
ontologies for site modeling are a set of predefined schemas using DAML+OIL, available in
the central repository as well. Thus, a particular site view consisting a set of Web pages can be
created from the underlying data. A site view specification is a set of site models describing
different aspects of a site view based on the site modeling ontologies (see Section 3). Later the
site view specification is exported to the query engine (located in the next layer) to be
instantiated as Web pages in the desired format. Site models can be constructed using provided
software components and are materialized in DAML+OIL. Initially, a default site view is
instantiated from a predefined site view specification for general public access. Other site
views can be created for specific user or user group by defining their own site view
specifications. Furthermore, by declaratively modeling personalization and maintenance of a
site, we can achieve these tasks after the site generation phase.
 Generation layer. A browsable Web site can be generated by instantiating the
corresponding site view with data in the repository. This is done by the query engine, which
queries the site view specification for the specific site view to be generated, at the same time
queries the data to produce Web pages in desired format. There is a continuum of possibility

Valued Sony Customer
 531

of query compilation to materialize Web pages for the site view. By declaratively specifying
models, we can achieve all possibilities, i.e. full compilation, partial compilation, or
interpretation of Web pages, and choose the optimal compilation strategy depending on
various factors such as site requirements, user characteristics, etc.. Details are discussed in
Section 4.2.

2.2 Web Site Design Methodology

The design of a Web site is an iterative process [3][14]. Each cycle goes through the following
steps:
 (1) Requirements analysis. This involves the detailed analysis of objectives of the site,
data characteristics, user requirements, etc.. These aspects are the foundation for the site
modeling process.
 (2) Domain ontology design. The site modeling process starts from designing the default
domain ontology, which also serves as the reference ontology for ontology articulation.
Analysis of the data helps to extract the common elements to be included in the default
domain ontology. The objectives and usage of the Web site will also influence the scope and
complexity of the ontology.
 (3) Site view design. A site-view graph is a graphical representation of three aspects of a
site view, i.e., navigation, content, and presentation. The design of the site-view graph is
determined by factors like characteristics, preferences, and requirements for targeted users of
the site.
 (4) Personalization design. Based on user analysis, different personalization elements need
to be defined, including categorical information about the user, such as age, browser type, etc.,
and user requirements such as what operations are expected when changes occur on certain
data. If some data elements of interest are missing from the site-view graph designed in step 3,
we also need to go back and refine the graph.
 (5) Maintenance design. Here we will not dealing with functionality maintenance, which
relates to software engineering issues, such as debugging and empowering the software. We
only focus on the data maintenance aspect of a Web site. Data maintenance involves
manipulating data when certain data changes. Therefore, we need to find out all the anticipated
changes of the data, and the corresponding actions to be performed.

3 Modeling of Web Site

From a data management perspective, a Web site here can be considered as a collection of
data, including site modeling schemas, site models (i.e., instance of modeling schemas), and
source data (i.e., instance of site models). Site model is a notion we use to define all the
models we used in the site modeling process, each represents a different aspect of the Web
site. There are altogether six types of site models which are shown in Figure 2. To facilitate
the processing of these models for Web site management, these six types of site models can
further be classified into two categories, site-specific and site-view-specific. If a site model for
a particular Web site is site-specific, that means there is only one of this type of models for the
Web site. Domain model, personalization model and maintenance model all belong to this
category. For instance, a personalization model captures all the information about users of a
Web site, therefore only one personalization model is needed for any Web site. On the other
hand, there can be multiple site-view-specific models for a particular Web site. These models

Valued Sony Customer
 532

Domain Model Navigation Model

Presentation
Model

Maintenance Model

Content
Model

Personalization Model

Figure 2. Site Models and Their Relationship

site-specific site-view-specific

are only specific to a particular site view, tailored for a particular user. Navigation model,
content model and presentation model belong to this category. Take content model as an
example, for a particular Web site, there could be many content models, though each is
associated with a specific site view. Put it another way, a particular site view specification
contains a navigation model, a content model, and a presentation model. And a Web site
contains multiple site view specifications.
 The relationship of the site models is also shown in Figure 2. There is an arrow between two
models if the source model refers to the destination model as part of its operational data.
Specific to a particular site view, the navigation model specifies the navigational structure of
the site view without concerning what content will be associated with primitive elements of
the structure. Based on the domain model, content model then relates concepts in the domain
to the primitives in the navigation model. The primitives in the navigation model can also be
associated with appropriate presentation styles by the presentation model. Specific to the Web
site, the domain model defines all the concepts and their properties and relationships in the
domain. The personalization model handles the update of individual-dependent data according
to user preferences over navigation, content and presentation aspects of their own site views.
All these models are part of the operational data for the maintenance model, which not only
manages source data, but the other models as well.
 The distinct separation of these site models facilitates the conceptual modeling process.
Designers can focus on each aspect of the site design at a time without bothering with detailed
dependencies on different aspects other than those explicitly specified in the model. Models
can also be reused easily, such as the reuse of favorite presentation style with different content
and navigation models. The declarative specification of these models also makes it much
easier to change any aspect of the site, simply by defining rewriting rules for the models.
 The vocabulary (ontologies) for describing site models is a set of pre-defined site modeling
schemas using DAML+OIL. Table 1 shows the relationship between models, the schemas
used to define them, and meta-schemas (schemas used to define the modeling schemas).

s
Site model

Domain model
Navigation model
Content model
Presentation model
Personalization mod
Maintenance model

Table 1. Relationship between models and schema
Site modeling schema Meta-schema
DAML+OIL DAML+OIL
Navigation schema DAML+OIL
Content schema (and upper ontology) DAML+OIL
Presentation schema DAML+OIL

el Personalization schema (and upper ontology) DAML+OIL
Maintenance schema (and upper ontology) DAML+OIL

Valued Sony Customer
 533

event

condition

action

Trigger

Event entity+

timeStamp*

status

Condition

Rule

Action

OperationNotification
timeStamp*

DataSource

message*

timeStamp*

Add

SiteModel

Delete

RewriteModel
model+

statement+

query+

NavigationModel

ContentModelPersalizationModel

DomainModel MaintenanceModel
PresentationModel

uri*

source+

domainModel

updateFreq*

lastCrawlTime*

crawlStatus*
SVSpecModel

SSpecModel

Conjuction
body

head

conjuct

Conjuct

Subject

Predicate

Object

Statement subject

predicate

object

Item

Variable Resourcename*

ArticulationRule

Figure 3. Upper Ontology for Site Modeling

Literal

 (Note that in this paper, we will use this graphical representation to describe schemas and
models, just for illustration purpose. The corresponding serialization in DAML+OIL should be
straightforward. Nodes in the graph stands for classes in the ontology, the properties of the
class are listed beside it. Solid arrows are used for specifying property values as instances of the
pointed class, and the dashed arrows represent sub-class relationship. Asterisk sign (*) indicates
the value of the property is a literal, and plus sign (+) means the property value is an instance of
a certain class but solid arrow to that class is omitted for readability of the graph.)

 To illustrate the process of modeling a Web site, we will present all site modeling schemas
and a set of site models described using corresponding schemas for an example site view. The
site view can be further instantiated with the data collected from research communities
distributed on the Web, and serves as a simplified version of the SWCP.

3.1 Upper Ontology

Before we discuss all site modeling schemas and example site models, we need to define an
upper ontology which contains all the necessary concepts either not captured by any of the
schemas (e.g., data sources), or will be shared among multiple schemas (e.g., triggers). Figure
3 shows the graphical representation of the upper ontology.
 As can be seen in the upper ontology, we define the six types of site models as first class
objects. This makes models describing the Web site part of the processible data. Management
of Web site can thus be reduced to the management of site models. These site models belong
to two distinct categories, SSpecModel (site-specific model), and SVSpecModel (site-view-
specific model), as we have discussed before. In the upper ontology, we also explicitly define
data sources, rules, and triggers, which will be used later in defining schemas for individual
site models.

Valued Sony Customer
 534

Person name*

age*

address*

email*

homepage*

Employee

Student studiesAt

Event

Conference

Meeting

Exhibition

title*

date*

location*series*

topic+

University hasParts

President

student Organization

affiliation

AcademicStaff cooperateWith

worksAtProject

publication

name

location

carriesOut

employs

SoftwareComponent hasPrice*

topic+

participant+

Publication title*

year*

keyword*

abstract*
Project name*

isAbout+

hasProduct

financedBy+

carriedOutBy+

head+

ResearchGroup head

member

Book InProceedingsisbn*

author+

price*

publisher+

edition*

editor+

author+

volumn*

publisher+

pages*

Development-
Project

ResearchProject

Product name*

developedBy

3.2 Domain Modeling

The domain model is actu
domain, and extracting co
reference ontology in ont
foundation for modeling
modeling is DAML+OIL.
Figure 4 (Note some classe

3.3 Site View Modeling

To facilitate the process o
view, we have designed a
three aspects of a site vie
specification can be gene
pages in desired format fro

3.3.1 Site-view Graph

The site-view graph is a
contains a minimal set of
typical Web site.

Figure 4. The domain model for SWCP
ally an ontology constructed by analyzing the collected data in the
mmon concepts, their properties and relationships. It is used as the
ology articulation for mapping source ontologies to it, and as a
other aspects of a particular site view. The schema for domain
The domain model for the example site view of SWCP is shown in
s and properties such as constraints are omitted due to space limit).

f modeling navigation, content, and presentation of a particular site
graphical representation called a site-view graph to incorporate these
w. By designing a site-view graph, three models of the site view

rated based on the graph, and later guide the instantiation of Web
m the underlying data.

simplified conceptual model to describe hypertext on the Web. It
 design primitives for composing basic information structures in a

Valued Sony Customer
 535

Static
T: Homepage
A: Researchers
A: Publications
A: Projects
A: Search

List
T:Researchers
E:Academic
-Staff
IP: name
OP: name

Fact
T:Researcher
E:Academic
-Staff
OP: *

List
T: Collaborator
E: Academic
-Staff
IP: name
OP:name,email

List
T:Publications
E:Publication
IP: year, title
OP: title

Slide
T: Publications
E: Publication
IP: year
OP: *

List
T: PubInYear
E: Publication
IP: year
OP: title,

keywords

Fact
T: Publication
E: Publication
OP: *

List
T: Projects
E: Project
IP: name
OP: *

Query
T: Search
E: Publication
InP: keyword

(T: title E: entity IP: Indexed Properties OP: Output Properties InP: Input Properties * : all properties)

Figure 5. An example of a site-view graph

P1

P2 P3 P4 P5

P6

P8

P7

P9

L1 L2 L3 L4

L11

L9

L6
L7

L12

L8 L10

L5
C7C6

Pi

Ci

Page

card

link
Li

 Design primitives. The basic elements of a site-view graph are cards, pages and links. A
card is the minimal unit of a site-view graph. A page contains one or more cards and
corresponds to a physical Web page. Links are used to connect cards to form the navigational
structure of the site-view graph. Pages are connected only through the links attached to their
cards. The semantics of these design primitives are defined in the schemas for navigation,
content and presentation. Each schema categorizes and attaches necessary properties to these
design primitives. For instance, a card is attached with properties about coming and outgoing
links in navigation schema, entity property in content schema, and font property in
presentation schema.
 To see how these design primitives fit together to form a complete site-view graph, an
example of a site-view graph for the SWCP is presented in Figure 5. The details about the
graph will be explained in the rest of the section when we describing each model in site view
specification.
 Web information structures. The typical information structures on the Web can be
categorized into three basic types [8]:

• Sequential. A linear form of information flow, the simplest and most common structure.
The linkage from page P6 to P7 in Figure 5 is an example.

• Hierarchical. A hierarchical structure involves having a page linking to lower level pages
of detail. An example could be the root page P1 links to next level of pages P2 to P5 in
Figure 5.

• Associative. This structure involves nonlinear navigation, fundamentally any structure that
is not sequential or hierarchical. L7 in figure 5 is an example where the retrieval of a list of
publications as search result from database helps to form the linkage between the two
pages.

Valued Sony Customer
 536

 The information structure of a site view is usually a combination of the above structures.
The provided design primitives are able to form all these basic information structures, which
are the building blocks of a site view.
 Minimalist Approach. Web sites that are too complicated for their intended user will likely
frustrate the user and make site maintenance a nightmare. Sophistication could add value if
applied appropriately, but still it depends on the nature of the Web site, and the intended user.
When modeling a site view, we explicitly offered a set of guidelines, in favor of a predictable
and consistent user interaction and ease of maintenance.
 A minimalist design includes the following ingredients. A site-view graph always starts
from a default root page, with links to the first level of pages. Content information is
categorized and aggregated by cards and pages. Only one type of content is contained in each
card. Navigation is made possible only through links. Moreover, a site map is generated out of
the site-view graph, which can be presented in a separate page or as part of the root page. This
site map makes the structure of the site visible to users, and gives the location information so
they know where they are and where they can go.

3.3.2 Navigation modeling

The navigation model of a site view is a description of the site-view graph with respect to how
the cards and pages are connected through links, without concerning what semantics will be
associated with these primitives. The schema for navigation modeling is shown in Figure 6.
 We classified cards into two categories, dynamic cards and static cards. Dynamic card
contains content that depends on the changes of source data, i.e., the query used to generate
the content needs to be reevaluated if source data changes. A further classification of dynamic
card is the following four types of card. Each represents a typical way to structure information
within a card:

• Fact Card. Only one instance of the entity will be shown with specified output properties
in the card.

• List Card. A list of instances of the entity will be shown, with indexes on key properties
(i.e., some literal properties of the class). And each instance will be shown with specified
output properties.

Page

Card

FactCard QueryCard

SlideCardListCard

id*

inLink

outLink+

inPage+

id*
Link id*

sourceCard+

destCard+

StaticCard

SeqCard

DynamicPage

StaticPage

DynamicCard

hasCard

hasCard

Figure 6. Navigation Schema

RootPage

Valued Sony Customer
 537

• Slide Card. A sequence of instances of the entity will be shown with specified output

properties in the card, one instance at a time, and hyperlinks are created to browse nearby
instances (in the order given by specified key properties) in the sequence.

• Query Card. A set of input properties needs to be filled out to search for entities satisfying
these criteria.

 The list-card and slide-card are both a type of sequence-card, which means the content of
these cards is a sequence of instances. Details about how content is generated and presented in
the card are discussed in content modeling (see Section 3.3.3). Static card contains content
which is source data independent, such as static text, and images. A common example is the
root page of a site view, which is always a static card, with predefined anchor texts leading to
the next level pages. Pages are also classified into dynamic and static types according to the
types of cards they contain.
 Navigation model of a site view can be defined using the given schema. As an example, a
portion of the navigation model for the example site view is presented in Figure 7.

3.3.3 Content Modeling

The content model associates meanings to design primitives in the site-view graph. The
schema used for content modeling is shown in Figure 8. It basically specifies two aspects of
content modeling. One is how to present the content in a rendered card (part of a Web page),
the other is how to generate the content for a specific card.
 How to present the content in a card can be explained by meanings of the attached
properties to different card classes in the content schema. Each card has a property ‘title’ that
can be used when rendering the card in Web pages. For a static card, we define all types of
static elements that can be contained in the card, i.e., text, image, and anchor.

P7 type

id

hasCard

C7 type

id

inPage

inLink

outLink

L9 type

id

sourceCard

destCard

DynamicPage

SlideCard

“P7”

“C7”

“L9”

Link

L10

C6

Figure 7. Navigation model for example site view

Valued Sony Customer
 538

NativeLink

StaticLink DynamicLink query

variable+

initProp+

sourceAnchor+

destStaticCard+

Card

FactCard
QueryCard

SlideCard
ListCard

StaticCard element

SeqCard indexProp+

inputProp+

Text ImagetextData*

anchor

title*

uri*

StaticElement

Anchor

TextAnchor ImageAnchor

link+

textData* image

DynamicCard

inCard+

entity+

ForeignLink

Link

sourceAnchor+

uri*

Rule

Query

Figure 8. Content Schema

title*

outputProp+

outputProp+

outputProp+

 For a dynamic card, a property ‘entity’ takes a value as a class in the domain model. The
content of the card is instantiated with instances of this class. The ‘outputProp’ property of a
card specifies what properties of each instance are listed on the card. For sequence-card, the
‘indexProp’ property specifies the set of indexed properties used in ordering the listed
instances. A constraint on this property (which is omitted in Figure 8) is it must take values
that are literals (i.e., can not be type of ‘resource’). Consider an example in Figure 5, card C7
is a slide-card, which is a type of sequence-card, it has the following listed properties: title
‘Publications’, which can be the name of the card when it is rendered in a Web page; entity
‘Publication’, which means only instances of class Publication can be contained in the card;
indexed property ‘year’ (note we can have more properties listed to form a multi-key index),
so the order of listed publication instances has to be determined by values of their ‘year’
property; output property ‘*’, this means values of all the properties of publication instances
are shown in the card.
 The generation of content (i.e., instances of entity property of a card) can be realized by
attaching certain properties to link classes. Links can be either foreign (linking to a page
outside the current Web site) or native (linking to a Web page inside the current Web site).
Native links can be either static or dynamic. Static links connect cards without any information
flow, while dynamic links always connect dynamic cards, where the content in the destination
card is determined by information passed from the source card. To instantiate the destination
card with desired content, we associate three properties to a link: a query property, which can
be assigned with a query the execution of which produces the content of the card; a binding-
variable property, which indicates variables in the query which will be instantiated with data
values passed from the source card; and initiating-property property, which helps to create a
hyperlink in the source card. The query is a type of ‘Rule’ class, and the binding-variable is a
type of ‘Variable’ class. A query will first be rewritten with binding variables replaced with
data values passed from source card, then executed to produce the instances.

Valued Sony Customer
 539

Researcher
name: Bart Simpson

age: 12

address: Springfield, US

email: bart@us

homepage: http://….

publication

Publications
title: Semantic Web

year: 2001

keyword: Web, XML

abstract: Semantic Web…

Prev Next First Last

X - C6 instance card Y - C7 instance card

L9

Figure 9. An example of content instantiation

 An example of content instantiation is shown in Figure 9, where we extracted the portion of
site-view graph (see Figure 5) containing card C6, C7 and link L9. In this example, we name
the C6 instance card as X, and similarly, the C7 instance card as Y. Suppose X is already
instantiated with an instance of class ‘AcademicStaff’, whose URI is ‘Bart’ (we use first name
of the instance as the URI only for illustration purpose). And now we need to instantiate Y,
which is intended to have a slide show of all instance publications of ‘Bart’.
 The way the instantiation is done is by specifying appropriate values to the query and
binding-variable properties of link L9. The query‡ attached with link L9 is:

 The binding-variable value of link L9 is ‘A’. To add a hyperlink in X, the initiating property
takes the value as ‘publication’. Then the query is evaluated after replaced the variable ‘A’
with the URI ‘Bart’. Given destination card is a slide-card, a set of Web pages is instantiated
with each instance in the query result (assume we are instantiating Web pages statically).
These Web pages are linked together by pre-defined hyperlinks in a slide-card, such as ‘Prev’
and ‘Next’, and ordered by the indexed properties of the card C7. Finally, a static card
containing an anchor which links to the first of these Web pages is created and added into X.
The name of the anchor is given by the initiating property, which is ‘publication’.
 Another different type of query is that for link L7 in Figure 5. Because the source card is a
query-card, the instances to be contained in the destination card cannot be compiled statically.
The variable binding has to take place at run-time when user specifies the search criteria. The
query for L7 is

‡ Qu
deve
FORALL P,K,T <-
P[type->Publication] and P[keyword->K] and
P[title-> T]
FORALL A,P <-
A[type->AcademicStaff] and A[publication->P]

eries and rules in this paper are written in TRIPPLE notation. TRIPPLE is an inference engine we are
loping for the OntoAgents project. Note that O[P->V] stands for a statement in RDF (O,P,V).

Valued Sony Customer
 540

Page

Layout

Card

background

layout

FrameLayoutFlowLayout

GridLayout
mainCard

Image

font*

size*

color*

row*

column*

totalRow*

TotalColumn*

Figure 10. Presentation schema

 The binding variable is ‘K’. And initiating property is NULL, since no need to have
hyperlink in the search page. After replacing variable K with values entered by the user, the
query will return titles of all the publication instances with the specified keywords. An
instance of the destination card will then be instantiated dynamically as a list of titles of
publications.

3.3.4 Presentation Modeling

The third aspect of a site view is the presentation model. By associating presentation elements
to design primitives in the site-view graph, the presentation model specifies the look-and-feel
of the Web pages generated from the site view. The schema for creating presentation models is
shown in Figure 10.
 The background of the page can be chosen as an instance of images. Card and page both
have style elements like font, color, etc., with the elements of card, if present, overriding those
of the containing page. The layout of cards in a page can be one of the three types. The flow
layout (default layout) arranges all the cards in a row, the grid layout maps these cards to
certain position on the screen, and the frame layout places one card, denoted by mainCard
property, in the static frame, and other cards in the dynamic one.

3.4 Personalization Modeling

Personalization in our approach includes providing personalized content collection,
navigational experience, and presentation style through adapting the site view to the needs of
users. This is accomplished by manipulating all three models of the site view. The schema for
personalization modeling is shown in Figure 11. Users are explicitly modeled by three
properties, i.e., capacity, interest and request.
 Capacity property describes basic information about the user, such as age, preferred
browser type, connection speed, etc.. The capacity of a user can be used to assign user to
certain predefined groups, and adjust presentation styles for better online experience. Interest
aspect of the user includes the three models of the site view of the user. These models specify
the user’s site view and can be rewritten to specify a new site view. And request property
defines triggers which will be fired if certain conditions are satisfied, the actions of the trigger
is either update the site view by model rewriting, or notify user by messages.

Valued Sony Customer
 541

User

Capacity

Interest

Request

username*

password*

capacity

interest

request

name*

age*

gender*

occupation*

incomeLevel*

browserType*

conectionSpeed*

navigateModel+

contentModel+

presentModel+

Trigger

Figure 11. Personalization schema

 Basically, two types of personalization can be provided by the system. The fine-grained
personalization is achieved by defining the personalization model using the above schema. A
coarse-grained personalization can also be used, by assigning user to specific user group. For
each user group, a particular site view and personalization model is constructed. This can be
modeled by defining similar properties for user groups as for users in the above schema and
add relationship between user and user group. In the course-grained personalization, the site
view of the user will not be updated as often as in the fine-grained personalization, since it
only changes when group view changes. This helps to reduce workload of the system
considerably.

3.5 Site Maintenance Modeling

Maintenance of a Web site typically falls into two categories, content maintenance and
functionality maintenance. The later can be further classified into corrective, adaptive, and
perfective maintenance [14]. Here we will focus on the content maintenance aspect, since the
functionality part is more of a software-engineering issue, while what we are interested is the
data management of a Web site.
 From data management point of view, Web site maintenance can be regarded as a
manipulation of data when certain data changes. Therefore, we come to a simple schema for
maintenance modeling, which is shown in Figure 12.
 Administrator is the target object of maintenance rules, and will update the source data,
meta-data, and site view specifications according to the fired triggers. There are basically two
types of maintenance rules.
 User-oriented rules. Administrator is a super user, who has the authority to initiate actions
that influence users and user groups with certain properties. It can be achieved by rewriting the
personalization model. An example of these rules could be “if any instance of Book about
Semantic Web (e.g. title or keyword contains the phrase) has been published, re-compute the
site views of users who are working on a project about DAML.

Valued Sony Customer
 542

Administrator userName*

password*

name*

maintainRule Trigger

Figure 12. Maintenance Schema

 Site-oriented rules. Administrators can also perform operations on meta-data, which
provides basic information about data sources (the frequency of updates, crawl status, etc.) and
about the Web site itself (number of users and user groups, different versions of ontologies,
etc.). This is basically handled by rewriting the maintenance model. For instance, a rule of this
type could be “if source A has changes weekly, and today is six days after the most recent
crawling of the source site, then schedule the crawling for today”.

4 Web Site Generation

The generation of a browsable Web site is an instantiation of a particular site view. It can be
described as a two-phase process. First, integrity constraints are verified over the site view
specification. Second, Web pages are materialized by querying the source data based on the
specified site models.

4.1 Constraint Verification

Constraint verification on a traditional Web site is a difficult task. For example, the checking
of whether each page is reachable from the root page are usually performed by manually
following each link in all the pages, which takes much effort especially when the Web site
contains a large number of pages. The constraints of the Web site generated using our
approach can be easily verified. Since ontologies (i.e., site schemas and models) are explicitly
specified using DAML+OIL, constraint verification becomes a direct application of semantics
of the ontologies. On the other hand, it is also part of the reasoning facility provided by the
inference engine, as we define rules and verify them against the ontologies. Note that a
complete formalization of the ontologies is undesirable as it takes considerable amount of
effort, and offers no obvious benefit.
 There are mainly three types of integrity constraints to be verified against each of the three
models in the site view specification.
 Structural constraints. They dictate all the legal patterns of navigation in the site-view
graph. These are verified against the navigational aspect of the site view. Examples of the
constraints could be expressed as the following rules:
(a) Every dynamic card has at least one incoming link.

<- FORALL C C[type->DynamicCard] ->
 EXISTS L L[type->Link] and C[inLink->L] and L[destCard->C]

Valued Sony Customer
 543

(b) Every card is reachable from the root page, this is expressed by defining a property called
‘reachable’ using recursion, and using this property to check the constraint.

 Se
info
(a) T

d

(b) T

e

 P
platf
pres
imag

 C
quer
stati

4.2 S

Afte
be c
carri
base
pres
 B
page
pre-
FORALL X,Y X[reachable->Y] <-
X[type->Card] and Y[type->Card] and
EXISTS L X[inLink->L] and Y[outLink->L]

FORALL X,Y,Z X[reachable->Z] <-
X[type->Card] and Y[type->Card] and Z[type->Card]
and X[reachable->Y] and Y[reachable->Z]

<- FORALL P,X P[type->Rootpage] and X[type->Card]
-> EXISTS Y Y[type->Card] and P[hasCard->Y] and
X[reachable->Y]
mantic constraints. The content model of a site view is validated based on semantic
rmation. Example constraints could be:
he entity associated with a query-card must match the entity associated with its
estination card, since the search result should relate to the same entity.

<- FORALL X,Y,L,E1,E2 X[type->QueryCard] and Y[type->Card] and

L[sourceCard->X] and L[destCard->Y] and X[entity->E1] and
Y[entity->E2] -> E1 = E2
he value of ‘initProp’ property of a dynamic link should be one of the properties of the
ntity associated with the destination card (see Section 3.3.3).

resentational constraints. The look-and-feel of Web pages can be different on different
orm, browser, and even depends on the connection speed. An example of how these
entation elements influence the site view could be: do not allow usage of background
e and frame layout in the site view given a low connection speed.

<- FORALL P,U,C,S U[type->User] and U[capacity->C] and
 C[connetionSpeed->’Low’] and P[type->Page] ->
 NOT EXISTS X P[background->X] and
 NOT EXISTS Y P[Layout->Y] and Y[type->FrameLayout]
<- FORALL L,I,D,E L[type->DynamicLink] and L[initProp->I]
and L[destCard->D] and D[entity->E] -> I[domain->E]
onstraints involving multiple site models are also possible. An example is to verify that
ies produce a full text version of a site view. This requires defining rules to check both the
c elements in the content model and page elements in the presentation model.

ite View Instantiation

r integrity constraints verification has been done, models in the site view specification will
ompiled into Web pages to produce a browsable Web site. A typical instantiation is
ed out by the query engine which generates HTML pages with data from the repository,
d on the navigation and content model, and produce CSS style-sheets based on the
entation model.
ecause all models are specified declaratively, there exists a continuum of possibilities in
 compilation, which did not exist in any prior system. The possibilities range from full

generation of HTML pages at compile time (full compilation), to partial compilation (e.g.

Valued Sony Customer
 544

a Java Servlet builds the HTML page, and instantiate pages at runtime out of data stored in
database), to full interpretation (the models are interpreted by an interpreter, which creates the
all HTML output at runtime).
 Different solutions have different application areas. Pre-generation of the HTML code is
desirable if the load of the Web site is extremely high and it is too expensive to access a
database when a request comes in. Unfortunately pre-generation is also the most inflexible
solution – a change to the source data may require a large number of the site views to be re-
instantiated. An example of a full pre-generation system is Strudel. Partial compilation is
desirable, if the load of the Web site is in balance with the need to reflect updates of the
database quickly in the generated HTML code. Torri is an example of a Web site management
system realizing partial compilation. The models defined for the Web site are used to generate
JSP scripts. Finally, full interpretation of the models is the most inefficient, but also the most
flexible way of Web site creation. The MyYahoo.com Web site [10] can be regarded as an
interpretative system. Changes to the layout and the selection of modules are directly reflected
in the personalized view of the Web site.

5 Related Work

Given the amount and complexity of the Web content, research has been conducted in the
large context of extending database techniques for data on the Web, particularly with the goal
of facilitating the creation and maintenance of data intensive Web sites. A few systems, such
as ARANEUS[11], AutoWeb[4], Torri[2], have been developed using a model driven
approach, which is adapted from classical database and hypermedia design methodologies.
These systems have their own data models, query languages, and sets of CASE tools to
facilitate the process of wrapping, modeling, generation and querying. But the common theme
is a high-level description of a Web site by distinct orthogonal dimensions. Those dimensions
include the modeling of information content, page composition, navigation, and presentation.
Personalization by means of user modeling and business rule management has also been added
in later systems. However, none of the approaches deal with integration of heterogeneous data
sources, which is what OntoWebber is explicitly designed for. Since in OntoWebber
ontologies and site models for different aspects of the site are both expressed in RDF, they can
be rewritten and queried statically or dynamically, which is another feature not present in these
systems, because they do not have a unified data model like RDF and do not construct
ontologies for every aspects of site modeling.
 Other systems like Strudel[5] and its variant Tiramisu[1], address the problem of data
integration, and establish a separation over the Web site data management, content and
structure specification, and visual presentation. The emphasis of their approach is the
declarative specification of a Web site’s structure and content. By defining a declarative query
language, they showed how the generation of a Web site can be automated by querying the
data graph to construct a site graph (i.e., site view), and how integrity constraints of the
generated site can be enforced by reasoning over the site structure. However, they do not have
fine-grained modeling hierarchies for each aspects of a Web site as in OntoWebber. Site view
in these systems is simply a data graph containing all the navigation and content information.
The presentation style is hard coded in the HTML templates. While in OntoWebber the site
view is specified as three distinct models to separate the aspect for navigation, content, and
presentation. The rewriting and reusing of these models eases the maintenance work and

Valued Sony Customer
 545

enables flexible personalization. Since strudel does not concern the aspects of site maintenance
and personalization, it is actually only an implementation tool, not a management system.
 AI approaches like SEAL[9] focus on the presentation of portals based on a domain
ontology. However, SEAL does not enable the creation of a site by modeling the site itself,
and also offers no support for the integration of heterogeneous data sources. Although SEAL
provides a set of tools (e.g. the Java based rule engine SiLRI), the underlying site still needs to
be created and programmed in a conventional manner.
 The fundamental difference between the OntoWebber approach and previous approaches is
the integration of three different aspects into a coherent framework: (1) integration of
heterogeneous data sources based on a formal model for semi-structured data, (2) explicit
ontologies, which help to structure, create and generate the site, and (3) a rigorous modeling
methodology, which helps to create reusable models.

6 Conclusion and Future Work

We proposed a model-driven ontology-based system architecture for creating data intensive
Web sites and portals. Our approach combines the advantages of different technologies: Semi-
structured data technology is used to integrate heterogeneous data sources; Declarative models
help to define a Web site without hard-coding design into static or dynamic Web pages;
Ontologies are used to provide access to the underlying data and guide the modeling process.
 Future work includes the development and integration of all the software components of the
system. We have already developed a number of tools, such as Web crawler, ontology
articulation tools, data translation tool, ontology construction tool, and RDF query and storage
facilities. However, the graphical Web site modeling tool and the inference engine are still
under development. Furthermore, a number of problems to be considered could be:
 Management of evolving ontologies. Different versions of ontologies (i.e., schemas) might
be incompatible with each other. How to manage evolving ontologies and retain consistency
and usability of ontologies is a necessity for the robustness of a Web site.
 Optimization strategies for site generation. Evaluation and performance measurements of
dynamic and static Web site generation needs to be investigated. And a set of optimization
strategies can thus be defined to guide the cost-effective generation of Web site.
 Adaptation to handle dynamic services. Currently approach of OntoWebber only deals
with static information sources. With UDDI§ and Microsofts.NET initiative, more and more
dynamic Web services will be available, which will be integrated into portals and Web sites.
OntoWebber needs to define appropriate ontologies to be able to handle dynamic services as
well.

References:

[1] Corin R. Anderson, Alon Y. Levy, Daniel S. Weld: Declarative Web Site Management with Tiramisu.
WebDB (Informal Proceedings) 1999: 19-24.

[2] Stefano Ceri, Piero Fraternali, Stefano Paraboschi: Data-Driven, One-To-One Web Site Generation for Data-
Intensive Applications. VLDB 1999: 615-626.

§ http://www.UDDI.org

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fraternali:Piero.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Paraboschi:Stefano.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb99.html
Valued Sony Customer
 546

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling Language (WebML): a modeling language for
designing Web sites WWW9 Conference, Amsterdam, May 2000.

[4] Piero Fraternali, Paolo Paolini: A Conceptual Model and a Tool Environment for Developing More Scalable,
Dynamic, and Customizable Web Applications. EDBT 1998: 421-435.

[5] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, Dan Suciu: Declarative Specification of Web Sites with
Strudel. VLDB Journal 9(1): 38-55 (2000).

[6] Gamma, E., Helms, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and Jennifer Widom. "Integrating
and Accessing Heterogeneous Information Sources in TSIMMIS". In Proceedings of the AAAI Symposium on
Information Gathering, pp. 61-64, Stanford, California, March 1995.

[8] Charles J. Lyons, Essential Design for Web Professionals, Prentice Hall, 2000.

[9] A. Mädche, S. Staab, N. Stojanovic, R. Studer, Y. Sure. SEAL - A Framework for Developing SEmantic
portALs. In: BNCOD 2001 - 18th British National Conference on Databases. Oxford, UK, 9th - 11th July 2001,
LNCS, Springer Verlag, 2001.

[10] Udi Manber, Ash Patel, John Robison: Experience with Personalization on Yahoo! Communications of the
ACM Vol. 43, No. 8 (August 2000), Pages 35-39.

[11] G. Mecca, P. Merialdo, P. Atzeni, V. Crescenzi The (Short) Araneus Guide to Web-Site Development -
Second Intern. Workshop on the Web and Databases (WebDB'99) in conjunction with SIGMOD'99, May 1999.

[12] Sergey Melnik, Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the
Web. ECDL 2000 Workshop on the Semantic Web. 21 September 2000, Lisbon Portugal.

[13] Prasenjit Mitra, Gio Wiederhold, Martin L. Kersten: A Graph-Oriented Model for Articulation of Ontology
Interdependencies. Proceedings of the 7th International Conference on Extending Database Technology, EDBT
2000, March 2000 Springer Verlag.

[14] Tomas A. Powell, David L. Jones, Dominique C. Cutts, Web Site Engineering Beyond Web Page Design,
Prentice Hall, 1998.

[15] Steffen Staab, Jürgen Angele, Stefan Decker, Michael Erdmann, Andreas Hotho, Alexander Mädche, Hans-
Peter Schnurr, Rudi Studer, York Sure. Semantic Community Web Portals. In: WWW9 / Computer Networks
(Special Issue: WWW9 - Proceedings of the 9th International World Wide Web Conference, Amsterdam, The
Netherlands, May, 15-19, 2000), 33(1-6): 473-491. Elsevier, 2000.

http://xerox.elet.polimi.it/webml/documents/www9.pdf
http://xerox.elet.polimi.it/webml/documents/www9.pdf
http://dblp.uni-trier.de/db/indices/a-tree/f/Fernandez@Mary_F=.html
http://dblp.uni-trier.de/db/indices/a-tree/f/Florescu@Daniela.html
http://dblp.uni-trier.de/db/indices/a-tree/l/Levy@Alon_Y=.html
http://dblp.uni-trier.de/db/journals/vldb/vldb9.html
ftp://www-db.stanford.edu/pub/papers/tsimmis-abstract-aaai.ps
ftp://www-db.stanford.edu/pub/papers/tsimmis-abstract-aaai.ps
http://dblp.uni-trier.de/db/indices/a-tree/w/Wiederhold@Gio.html
http://dblp.uni-trier.de/db/indices/a-tree/k/Kersten@Martin_L=.html
http://www.springer.de/comp/lncs/index.html
Valued Sony Customer
 547

Valued Sony Customer
 548

Indexing aWebSitewith
a TerminologyOrientedOntology

E. Desmontils& C. Jacquin
IRIN, UniversitédeNantes

2, Ruedela Houssinière,BP 92208
F-44322NantesCedex 3, France

{desmontils,jacquin}@irin.univ-nantes.fr
http://www.sciences.univ-nantes.fr/ir in/indexGB.html

Abstract. This article presentsa new approachin orderto index a Web site. It uses
ontologiesandnaturallanguagetechniquesfor informationretrieval on the Internet.
Themaingoalis to build astructuredindex of theWebsite.Thisstructureis givenby
a terminologyorientedontologyof adomainwhich is chosenapriori accordingto the
contentof the Web site. First, the indexing processusesimprovednaturallanguage
techniquesto extractwell-formedtermstakinginto accountHTML markers.Second,
the useof a thesaurusallows us to associatecandidateconceptswith eachterm. It
makes it possibleto reasonat a conceptuallevel. Next, for eachcandidateconcept,
its capacityto representthe pageis evaluatedby determiningits level of representa-
tivenessof thepage.Then,thestructuredindex itself is built. To eachconceptof the
ontologyareattachedthe pagesof the Web site in which they are found. Finally, a
numberof indicatorsmake it possibleto evaluatetheindexing processof theWebsite
by thesuggestedontology.

keywords : InformationRetrieval onInternet,Indexing WebPages,Ontologies,Semantic
Indexing.

1 Introduction

Searchingfor information on the Internet meansaccessingmultiple, heterogeneous,dis-
tributedandhighlyevolving informationsources.Moreover, provideddataarehighly change-
able:documentsof alreadyexistingsourcesmaybeupdated,addedor deleted;new informa-
tion sourcesmayappearor someothersmaydisappear(definitively or not). In addition,the
network capacityandquality is aparameterthatcannotbeentirelyneglected.In thiscontext,
the questionis: how to searchfor relevant informationon the Web moreefficiently? Many
searchengineshelpusin this difficult task.A lot of themusecentralizeddatabasesandsim-
ple keywordsto index andto seekthe information.Within suchsystems,therecall1 is often
relatively high.Conversely, theprecision2 is weak.An intelligentagentsupportedby theWeb
sitemaygreatlyimprove theretrieval process([4], [1]). In this context, this agentknows its

1Recall is definedasthe numberof relevant documentsretrieved divided by the total numberof relevant
documentsin thecollection

2Precisionisdefinedasthenumberof relevantdocumentsretrieveddividedby thetotalnumberof documents
retrieved

Valued Sony Customer
 549

pagescontent,is able to perform a knowledge-basedindexing processon Web pagesand
is ableto provide morerelevant answersto queries.In informationretrieval processes,the
major problemis to determinethe specificcontentof documents.To highlight a Web site
contentaccordingto a knowledge,we proposea semi-automaticprocess,which providesa
contentbasedindex of a Web site usingnaturallanguagetechniques.In contrastwith clas-
sical indexing tools, our processis not basedon keywordsbut ratheron the conceptsthey
represent.

In this paper, we firstly presentthe generalindexing process(section2). After having
exposedthe characteristicsof usedontologies(section3), we will indicatehow the repre-
sentativenessof a conceptin a pageis evaluated(section4) and,finally, how this processis
evaluateditself (section5).

2 Overview of the indexing process

The main goal is to build a structuredindex of Web pagesaccordingto an ontology. This
ontologyprovidesthe index structure.Our indexing processcanbe divided into four steps
(figure1:

1. For eachpage,aflat index is built. Eachtermof this index is associatedwith its weighted
frequency. This coefficient dependson eachHTML marker thatdescribeseachtermoc-
currence.

2. A thesaurusmakesit possibleto generateall candidateconceptswhichcanbelabeledby
atermof thepreviousindex. In our implementation,weusetheWordnetthesaurus([23]).

3. Eachcandidateconceptof apageisstudiedto determineits representativenessof thispage
content.This evaluationis basedon its weightedfrequency andon therelationswith the
otherconcepts.It makesit possibleto choosethebestsense(concept)of atermin relation
to thecontext. Therefore,themoreaconcepthasstrongrelationshipswith otherconcepts
of its page,the more this conceptis significant into its page.This contextual relation
minimizestheroleof theweightedfrequency by growing theweightof thestronglylinked
conceptsandbyweakeningtheisolatedconcepts(evenwith astrongweightedfrequency).

4. Amongthesecandidateconcepts,afilter is producedvia theontologyandtherepresenta-
tivenessof theconcepts.Namely, a selectedconceptis a candidateconceptthatbelongs
to the ontologyandhasan high representativenessof the pagecontent(the representa-
tivenessexceedsathresholdof sensitivity). Next, thepageswhichcontainsuchaselected
conceptareassignedto this conceptinto theontology.

Somemeasuresareevaluatedto characterizethe indexing process.They determinethe
adequacy betweentheWebsiteandtheontology. Thesemeasurestake into accountthenum-
ber of pagesselectedby the ontology, the numberof conceptsincludedin the pages...The
index is built asaXML file ([28]) andis independentof Webpages.

Ourprocessis semi-automatic.It enablestheuserto haveaglobalview of theWebsite.It
alsomakesit possibleto index aWebsitewithoutbeingtheownerof thesepages.Wedonot
regardit asa completelyautomaticprocess.Adjustmentsshouldbecarriedout by theuser.
Thecounterpartof this automatisationis, obviously, aworseprecisionof theprocess.Lastly,
comparedto theannotationapproach,our indexing processimprovesinformationretrieval: it

Valued Sony Customer
 550

Concepts
discovery

(2)

Terms
Extraction

(1)

Concepts
representativeness

study
(3)

Structured
index

bui lding
(4)

Web Pages

Terms

 Candidate
concepts

Concepts
and

representativeness

Thesaurus

Ontology

Final Index
(XML f i le)

Figure1: Theindexing process

makesit possibleto reachdirectlythepagesconcerningaconcept.By contrast,theannotation
approachrequiresto browseall thepagesof theWebsiteto find thissameinformation.Now,
wewill studytwo significantelements:theontologyandthemethodto evaluatetheconcepts.

3 Terminology oriented ontologies

3.1 Ontologydefinition

The termontologycomesfrom philosophy. In this context, its definition is: «systematicex-
planationsof theexistence». Futhermore,researchersin KnowledgeEngineeringgive other
moresuitabledefinitionswith their concerns.In this context, their definitionsarestrongly
dependenton theauthor’s point of view andon his useof ontologies[12, 13]. Somehave a
formal point of view andwork on abstractmodelsof ontologieswhile othershave a more
pragmaticapproach.

We have chosenthis definitionof ontology:“an ontology providesthecommonvocabu-
lary of a specificdomainanddefines,moreor lessformally, termsmeaningandsomeof their
relationships” ([11]). In our context, we thuscall ontologya hierarchyof conceptsdefines
in a moreor lessformal way. For instance,figure2 shows anextractof theSHOEontology
concerningtheamericanuniversities.

3.2 Terminologyorientedontology

Theconceptsof ontologiesareusuallyrepresentedonly by a singlelinguistic term(a label).
However, in our context, this termcanbeat thesametime ambiguous(it representsseveral
candidateconcepts)andnot alwaysunique(existenceof synonyms).As a result,within the
framework of texts written in naturallanguage,it is necessaryto determinethe whole set
of the synonyms (candidatelabels)to definein a singleway a concept.Suchprocesscan

Valued Sony Customer
 551

<?xml version="1.0" encoding="ISO-8859-1"
standalone="no"?>

<!DOCTYPE ontology SYS-
TEM "http://.../onto.dtd">
<ontology id="university-ont" version="2.1"

description="...">
<def-category name="Department"

isa="EducationOrganization"
short="university depart-

ment"/>
<def-category name="Program"

isa="EducationOrganization"
short="program"/>

<def-category name="ResearchGroup"
isa="EducationOrganization"
short="research group"/>

<def-category name="University"
isa="EducationOrganization"
short="university"/>

<def-category name="Activity"
isa="SHOEEntity"
short="activity"/>

<def-category name="Work"
isa="Activity"
short="work"/>

<def-category name="Course"
isa="Work"
short="teaching course"/>

...
</ontology>

Figure2: Extractof theSHOEontologyconcerningtheamericanuniversities

be found in a manualway in OntoSeek([14]) or in a semi-automaticway in Mikrokosmos
([25]).

In our context, anontologyis a setof conceptseachonerepresentedby a term(a label)
anda setof synonymsof this term,anda setof relationshipsconnectingtheseconceptsby
thespecific/genericrelationship,thecompositionrelationship,...Currently, theonly relation-
shipwetakeinto accountis the“isa” relationship.Wecall thistypeof ontologyaterminology
orientedontology. Notethatourontologiesdonotreflectall theinherentaspectsto formalon-
tologies([11]). Our ontologiesarecloseby their structureto thoseusedin theSHOEproject
([21]). Moreover, we chooseXML format ([28]) to storeour ontologiesandour indexing
results.The usedDTD is rathersimilar to the SHOEDTD but we mademodificationsand
extensionsto this last.

We thusproposea processwhich makesit possibleto determineall thecandidatelabels
of a concept.This processis basedon a thesaurusandusesa numberof heuristicssimilar
with thoseproposedby theMikrokosmosproject.Thegeneralprincipleof theseheuristicsis
to try to make a correspondancebetweenthepathsaccordingto the“isa” relationshipin the

Valued Sony Customer
 552

ontologyandthepathsof hypernymsin thethesaurus.Accordingto the“matchingdegree”,a
moreor lesslargeconfidenceis givento suchor suchsetof synonyms(concept).Let usnote
thatexperimentsusingtherelationshipof compositionhavenot improvedtheresults.

Theusercanmanuallyfinishthedisambiguationprocessof thelabels.Indeed,theprocess
cannot alwaysselectin anunquestionableway thegoodsetof synonyms.Thedefinitionsof
thesetsof candidateynonymsarepresentedin orderto helpto this final choice.

However, theprocessgivesresultsrathersatisfactorysinceit choosesthegoodsensefor
nearly75% of the labelsassociatedwith the conceptsfor the ontologyof the Universities
of SHOE([21]) andfor 95%of thelabelafterseveralmodifications(contradictionswith the
usedthesaurusweredeleted).

Theseevaluationsweredeterminedwith ontologiesfor which thewholesetof thelabels
associatedwith the conceptswasmanuallydisambiguated.Of course,this disambiguation
processdependson thethesaurusused(in ourcaseWordnet).

4 Index building

The other importantpart of our processis the indexing processand the evaluationof the
importanceof a conceptin aHTML page.Therearetwo essentialsteps:(1) termsextraction
from Webpagesandcalculusof theweightedfrequency and(2) determinationof candidate
conceptsandthecalculusof therepresentativenessof aconcept.

4.1 Termsextraction

Thewell-formedtermsextractionprocessstartsby (1) removing HTML markersfrom Web
pages,(2) dividing thetext into independentsentences,and(3) lemmatizingwordsincluded
in the page.Next, Web pagesareannotatedwith part of speechtagsusingthe Brill tagger
([3]). As a result,eachword in a pageis annotatedwith its correspondinggrammaticalcat-
egory (noun,adjective...).Finally, the surfacestructureof sentencesis analyzedusingterm
patterns(Noun,Noun+Noun,Adjective+Noun...)[7] to providewell-formedterms. For each
selectedterm, we calculateits weightedfrequency. The weightedfrequency takes into ac-
count the frequency of the term andespeciallythe HTML markerswhich are linked with
eachof its occurrences.We can notice that the frequency is not a main criterion. Indeed,
we work with pageswhich areof ratherrestrictedsizecomparedto large corporausedin
NLP (NaturalLanguageProcessing).Theinfluenceof themarker dependson its role in the
page.For example,themarker“TITLE” will giveaconsiderableimportanceto theterm(*10)
whereasthemarker “B” (for bold font) hasaquitelessinfluence(* 2). Thetable 1 givesthe
weight of the mostsignificantmarkers(the markersweightsweredeterminedin an exper-
imentalway [10]). In a Web pagecontaining� differentterms,for a given term

���
(with �

in ����� �), theweightedfrequency 	�
 ���� is determinedasthesumof the � weightsof HTML
markersassociatedwith the � termoccurences.Theresultis thennormalized.Thiscalculusis
shown in formula(1) and(2) where� ��� �

correspondsto theHTML markerweightassociated
with the � th occurrenceof theterm

���
.

	�
 ������� ��
 ��������� �"!$#&%'% (
���
 � � �)� (1)

Valued Sony Customer
 553

<?xml version="1.0" encoding="ISO-8859-1"
standalone="no"?>

<!DOCTYPE ontology SYSTEM "http://.../onto.dtd">
<ontology id="university-ont" version="3.0">
<def-category name="Course" short="teaching course"

isa="Work">
<sense name="Course" no="1" origin="WN"

definition="..." convenience="1.0">
<synset>class#4,course of instruction#1,

course of study#2,course#1</synset>
</sense>

</def-category>
<def-category name="Department"

short="university department"
isa="EducationOrganization">...

</def-category>
<def-category name="University" short="university"

isa="EducationOrganization">
<sense name="University" no="3" origin="WN"

definition="..." convenience="1.0">
<synset>university#3</synset></sense>

</def-category>
<def-category name="Program" short="program"

isa="Information">
<sense name="Program" no="4" origin="WN"

definition="..." convenience="1.0">
<synset>course of study#1,curriculum#1,program#4,

syllabus#1</synset></sense>
</def-category>
<def-category name="ResearchGroup"

short="research group"
isa="EducationOrganization">

<sense name="ResearchGroup" no="0" origin="TECH"
definition="" convenience="1.0">

<synset>research group#0</synset></sense>
</def-category>
<def-category name="Activity" short="activity"

isa="HumanActivity">...
</def-category>
<def-category name="Work" short="work"

isa="Activity">...
</def-category>...

</ontology>

Figure3: Extractof theterminologyorientedontologyconcerningtheamericanuniversity

��
 ������� *� !$#
� ��� �+�
(2)

Valued Sony Customer
 554

HTML marker description HTML marker Weight
Documenttitle <TITLE></TITLE> 10

Keyword <metaname="keywords"... content=...> 9
Hyper-link 8
Fontsize7 <FONTSIZE=7> 5

Fontsize+4 <FONTSIZE="+4"> 5
Fontsize6 <FONTSIZE=6> 4

Fontsize+3 <FONTSIZE="+3"> 4
Fontsize+2 <FONTSIZE="+2"> 3
Fontsize5 <FONTSIZE=5> 3

Headinglevel 1 <H1></H1> 3
Headinglevel 2 <H2></H2> 3

Imagetitle 2
Big marker <BIG></BIG> 2

Underlinedfont <U></U> 2
Italic font <I></I> 2
Bold font 2

...

Table1: Highercoefficientsassociatedwith HTML markers

Table2 showssomeresultsextractedfrom anexperimentonaWebpage.Termsaresorted
accordingto theweightedfrequency coefficient.

4.2 Pageconceptsdetermination

During the termextractionprocess,well-formedtermsandtheir weightedfrequency coeffi-
cientwererespectively extractedandcalculated.Thewell-formedtermsaredifferentforms
representinga particularconcept(for example“chair”, “professorship”...).In order to de-
terminenot only thesetof termsincludedin a pagebut alsothesetof conceptsin a page,a
thesaurusis used.OurexperimentsusetheWordNetthesaurus([23]). Theprocessto generate
candidateconceptsis quitesimple:from extractedterms,all candidateconcepts(all senses)
aregeneratedusingathesaurus.A senseis representedby alist of synonym(this list is unique
for agivenconcept).Thenfor eachcandidateconcept,therepresentativenessis calculatedac-
cordingto theweightedfrequency andthecumulativesimilarity of theconceptwith theother
conceptsin thepage.This lastoneis basedon thesimilarity betweentwo concepts.

We first definethesimilarity measurebetweentwo conceptswhich makesit possibleto
evaluatethesemanticdistancebetweenthesetwo concepts.Thismeasureis definedrelatively
to athesaurusandto thehypernymsrelationship.In ourcontext, weusethesimilaritymeasure
definedby [29]. They proposea similarity measurerelatedto the edgedistancein the way
it takes into accountthe most specificsubsumerof the two concepts,characterizingtheir
commonalities,while normalizingin awaythataccountsfor theirdifferences.Theirmeasure
is shown in formula 3 where , is the mostspecificsubsumerof , # and ,&- , .0/1�32546
�, � is the
numberof edgesfrom , to thetaxonomyroot, and .7/1�825479:
, �� with � in ;<�>=�?A@ is thenumber
of edgesfrom , � to thetaxonomyroot through , .

Valued Sony Customer
 555

Terms Weighted frequency
uw 1.00
cse 0.59

uw cse 0.45
computer 0.41
university 0.37

seattle 0.30
article 0.30
science 0.26
research 0.24
professor 0.24

... ...
computerscience 0.18

... ...
universityof washington 0.16

... ...
program 0.15

... ...
news 0.12

... ...
information 0.09

... ...
message 0.01

... ...

Table2: Extractedtermsandtheir weightedfrequency (sortedaccordingto the weightedfrequency). Results
comingfrom http://www.cs.washington.edu/news/

B � �
, # =�,C- �D� ?FEG.0/1�32546
�, �
.7/1�825479:
, # �IH .0/1�325409:
�,&- � (3)

This measureperformsa little worsethantheResnik’s measure([26]) but betterthanthe
traditionaledge-countingmeasure(seerelatedworksfor moredetails).

For evaluatingthe relative importanceof a conceptin a page,we defineits cumulative
similarity. Thecumulativesimilarity measureassociatedwith aconceptin apage,notedB � � ,
is the sumof all the similarity measurescalculatedbetweenthis conceptandall the other
conceptsincludedin thestudiedpage.In this formula,a specificconceptis unifiedwith the
correspondingsynset(setof synonyms) in WordNet.The measureis shown in formula 43,
where J � synsetsareassociatedwith a term

� � , andthereare � termsin the studiedWeb
pages.

B � �
 BLK7��B /12 �
 � � �1�D� �1MON # � �"P$#RQ�S N �"T$# � U Q
VXW
V !$# B � �
 B+K7��B /12 �
 � � � = B+K7��B /12 V
 ���Y�1� (4)

3 Z[]_^`Z�a�b ZLcdfe�^Xgih"jj is normalized

Valued Sony Customer
 556

In thiscalculus,all similaritiesarenotbeentakeninto accountin orderto discriminatethe
results:a thresholdis applied.Finally, we determinea representativenesscoefficient which
determinestherepresentativenessof aconceptin adocument.Thecoefficient is a linearcom-
binationof theweightedfrequency andof thecumulativesimilarity of aconcept(formula5)4.
This coefficient is themajor oneto qualify answerto a request.The empiricalvaluesfor k
andl arerespectively ? et � .

m /1� m / B / � 2 � 2n��op/ � / B:B
 BLKi�qB /12 �
 � � �)�r� ksEF	�
 BLK7��B /12 �
 � � �1�IH ltE B � �
 BLK7��B /12 �
 � � �1�
k H l (5)

Thetable3 showstheeffectof therepresentativenesson theconceptsorder(termsfound
in the pageare in bold font). Someconceptsarehigher in the table3 than in the table2.
For instance,news#1(weightedfrequency 0.12, representativeness0.51) or information#1
(weightedfrequency 0.1, representativeness0.59).This is a good result for a pagerelated
to a news page.If we analysethe resultmorein details,the concepts:news#4andnews#2
havea representativenessequalto 0.49.This is not very differentfrom thedegreeof news#1
which is equalto 0.51.Theexplanationis thatWordnetincludestoomuchfine-grainedsense
distinctions.In fact,in thethesaurus,thethreepreviousconceptshaveall thesamesubsumers.
Then,an automaticprocesscannotdistinguishthesethreeconcepts.Wordnetwasbuilt by
linguist andis notalwayseffective in NLP [25].

5 Associating concepts and synsets

At thispoint,wehaveontheonehandaterminologyorientedontologyandontheotherhand
candidateconceptswith their representativenesscomingfrom HTML pages.In thenext step,
candidateconceptsarematchedwith conceptsof theontology. If aconceptis in theontology
andin aWebpage,theURL of thispageandits representativenessareaddedto theontology.

To evaluatethe appropriatenessof an ontologyaccordingto a setof HTML pages,five
typical coefficientsarecalculated.Thesecoefficientsarenormalized.The first four coeffi-
cientsdefine:

u therateof conceptsdirectly involvedin HTML pages,calledtheDirectIndexing Degree
or DID;

u the rateof conceptsindirectly involved in HTML pages(calculatedby the way of the
generic/specificrelationship),calledtheIndirectIndexing Degreeor IID ;

u therateof pagesconcernedwith theontologyconcepts,calledtheOntologyCoverDegree
or OCD, which givesthenumberof Web pagesthat involve at leastoneconceptof the
ontology;

u theMeanof theRepresentativenessof thecandidateConcepts(MRC).

Thesecoefficients(DID, IID, OCD,MRC) areevaluatedfor differentthresholdsapplied
on therepresentativeness(0 to 1 with astepequalsto 0.02).For eachcoefficient its weighted

4Therepresentativenessis normalized.v ^�Z�a�b ZLc�d e ^wg h j is thenormalizedsumof all theweightedfrequency
relatedto Z�a�b ZLcd e ^Xg h j .

Valued Sony Customer
 557

Concepts Weighted Representativeness
frequency

uw#0 1.0 1.0
award#2,accolade#1,honor#1,honour#2,laurels#1 0.20 0.7
computer#1,dataprocessor#1,electroniccomputer#1,
informationprocessingsystem#1 0.41 0.68
information#1, info#1 0.1 0.59
cse#0 0.59 0.59
university#2 0.37 0.58
courseof study#1,program#4,curriculum#1,syllabus#1 0.15 0.53
calculator#1,reckoner#1,figurer#1,
estimator#1,computer#2 0.41 0.51
news#1, intelligence#4, tidings#1,word#3 0.12 0.51
news#2 0.09 0.49
news#4 0.09 0.49
voice#6 0.01 0.51
voice#2,vocalization#1 0.01 0.51
message#2,content#2,subjectmatter#1,substance#6 0.01 0.51
language#1, linguistic communication#1 0.01 0.51
article#3, clause#2 0.30 0.5
submission#1,entry#4 0.01 0.5
subject#1, topic#1,theme#1 0.01 0.5
university#3 0.37 0.42
...

Table3: Extractedconceptsafter the calculusof the representativenessdegree(sortedaccordingto the repre-
sentativeness).Resultscomefrom http://www.cs.washington.edu/news/

mean(WM) is calculated.For instance,formula6 presentsthecalculusof theweightedmean
for thedirectindexing degree(DID).

xzy0x � #
� !8{
|�6E xzy0x ��� (6)

Thiscalculusprivilegestheconceptswhicharemorerepresentativeof thepages.A repre-
sentativeontologyof asitehastheweightedmeannearlyequalto � . Thisevaluationdepends
on thethesaurususedbecauseit dependson theusedrelationships.Finally, theglobaleval-
uationof the indexing process(OSAD: Ontology-SiteAdequacy Degree)is a linearcombi-
nationof theseweightedmeans.Currently, thecoefficientsareevaluatedin anexperimental
way. The equation7 givesthe presentevaluationwhere B is a Web site and } an ontology.
Theexperimentshowsthatavalueof 0.3for therepresentativenessgivesgoodresults.Below
this threshold,too many conceptswith a low representativenessarekept.For this threshold,
thediscriminationof conceptsis relatively effective (thelarger theWebpagesare,themore
effective is theprocess).

~��r� x�� � ��� y0y0x�� � �
?

H xzy0x�� � �qH ?GE ~�� x�� � �qH ?GE ��� � � � � (7)

Valued Sony Customer
 558

Thefigure4presentsindexingresultsrelatedto theWebsite:“http://www.cs.washington.edu/”
(1315HTML pages).This is thesiteof thedepartmentof computerscienceof thewashing-
tonuniversity. It waschosenbecauseof its apriori adequacy with ourontology. However, the
Ontology-SiteAdequacy Degree(OSAD) is notveryhigh (56%).Theexplanationis thatthe
usedontology(theSHOEontologywith someextensionsandmodifications)doesnot cover
all thestudieddomain.For instance,thestudiedsitehasnumerouspersonalWebpageswhich
arerarelyindexedby theontology. Figure5 presentsanextractof thestructuredindex.

�

�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Threshold

%

� OCD � MRC � DID � IID

�1� �
� �

� � � � � �
� � � �

� � �
� � � �

� � � �
� � � � �

� � � � � �
� � � � � �

� � � � � � � � � � � � �

�1� �
�

�1� �

Figure4: Someresultsof theindexing process

The indexing processcanhighlight concepts,which do not matchwith conceptsof on-
tologies.In this case,we may searchfor ontologiesrelatedto this index. In the future,we
will beableto startagaintheindexing processwhenthecontentof thesiteevolvesor when
ontologiesareupdated.Thisprocesscanonly beexecutedonmodifiedpages.

Theevaluationprocessenablesusto evaluatetheadequacy betweenthepagesof thesite
andtheontologyandthusto adoptvariousstrategiesdependingon thecoefficientsvalue:

1. thecoefficientsarecorrect:thestructuredindex is keptandexploited;

2. thecoefficientsarenotcorrect:

(a) thepageswhich arenot suitablearedeleted(theOCD and/ortheMRC coefficient
arelow);

(b) theontologyis updated(theDID coefficient is low);

(c) a new ontologyis chosenandthe index is built again(thewholesetof coefficients
is low);

Valued Sony Customer
 559

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE ontology SYSTEM "http://.../onto.dtd">
<ontology id="university-ont" version="3.0" description="">
<def-category name="University" short="university"

isa="EducationOrganization">
<sense name="University" no="3" origin="wn" convenience="1.0">

<synset>university#3</synset>
<page name="http://www.cs.washington.edu/info/contact/"

frequence="0.5" representativeness="0.4"/>
<page name="http://www.cs.washington.edu/info/aboutus/"

frequence="0.54" representativeness="0.49"/>
<page name="http://www.cs.washington.edu/education/courses/590m/"

frequence="0.4" representativeness="0.4"/>
<page name="http://www.cs.washington.edu/outreach/"

frequence="0.28" representativeness="0.34"/>
<page name="http://www.cs.washington.edu/mssi/"

frequence="0.5" representativeness="0.43"/>
<page name="http://www.cs.washington.edu/general/overview.html"

frequence="0.87" representativeness="0.81"/>
<page name="http://www.cs.washington.edu/education/courses/599/"

frequence="0.4" representativeness="0.35"/>
<page name="http://www.cs.washington.edu/workforce/tnt/"

frequence="0.25" representativeness="0.35"/>...
</sense>

</def-category>
<def-category name="Department" short="university department"

isa="EducationOrganization">
<sense name="Department" no="1" origin="wn" convenience="1.0">

<synset>department#1,section#11</synset>
<page name="http://www.cs.washington.edu/education/courses/444/"

frequence="0.29" representativeness="0.31"/>
<page name="http://www.cs.washington.edu/lab/facilities/la2.html"

frequence="0.5" representativeness="0.41"/>
<page name="http://www.cs.washington.edu/ARL/"

frequence="0.21" representativeness="0.32"/>
<page name="http://www.cs.washington.edu/"

frequence="0.33" representativeness="0.37"/>
<page name="http://www.cs.washington.edu/desktop_refs.html"

frequence="0.5" representativeness="0.43"/>
<page name="http://www.cs.washington.edu/news/jobs.html"

frequence="0.44" representativeness="0.46"/>
<page name="http://www.cs.washington.edu/admin/newhires/faq.html"

frequence="0.29" representativeness="0.32"/>
<page name="http://www.cs.washington.edu/info/videos/index.html"

frequence="0.39" representativeness="0.38"/>
<page name="http://www.cs.washington.edu/affiliates/corporate/"

frequence="0.5" representativeness="0.51"/>...
</sense>

</def-category>...
</ontology>

Figure5: Extractof theSHOEontologyconcerningtheamericanuniversities

Valued Sony Customer
 560

6 Exploitation of our approach for query answering

Most of searchenginesusesimplekeywordsto index web pages.Queriesareoften made
up of a list of keywordsconnectedby logical operator(“and”, “or”...). In our context, we
usetheterminologyorientedontologyandthestructuredindex in orderto improvethequery
answeringprocess.Queriesarenot only processedat theterminologicallevel but alsoat the
conceptuallevel. Thisapproachprovidesseveralimprovements:

1. a user’squeryis expanded:termsaretransformedinto concepts;

2. logicaloperatorshavea richersemanticsthanin thesimplekeywordsworld;

3. theanswersaremoresuitableto auser’s query.

Thequeryexpansionis thusimprovedby theuseof ontologies.Often,whena userpro-
posesa query which containstermsconnectedby logical operators,thesetermsare often
ambiguous.In our approach,termsarereplacedby their associatedconcepts.Thecandidate
conceptsarefirst selectedin theontology. Then,theotherconceptsof thequeryandthelogi-
caloperatorsarestudied.Finally, if a termis still associatedwith severalcandidateconcepts,
theuser’s assistanceis required.If setof querytermsarenotassociatedwith any conceptsat
theendof this process,they areregardedasnot relevantfor thesite.Accordingto thelogical
operator, eitherthey aresuppressedfrom thequeryor thequeryhasno response.

Theconceptuallyexpandedquerycanbeexploitedto seekpagescorrespondingprecisely
to its content.Theontologymakesit possibleto improvetheinterpretationof theusedlogical
operators.Currently, in onehand,the“and” and“or” operatorshave thesameinterpretation
asin the traditionnalkeywordsapproach.In the otherhand,the “no” and“near” operators
have a differentsemantics.For a querycontaininga “no” operator, we addto theconcerned
concept,all the conceptswhich aremorespecificthanthis conceptaccordingto the “isa”
relationship.So,all pagescontainingtheseconceptswill berejected.The“near” operatoris
not relatedto the distancebetweenwords(numberof wordsbetweentwo words)as in the
classicalapproach.But, it is relatedto asemanticdistancebetweenconceptsaccordingto the
similarity measure[29] usedto calculatethe representativenesscoefficient. In our context,
the“near” operatorbecomesanunaryoperatorandmakesit possibleto addto thequeryall
theconceptssemanticallyconnectedto thetargetedconceptandin its neighbourhood.

7 Related works

Our choicesdiffer from relatedworksespeciallyfrom work on annotationof Webpagelike
KA2 ([9], [2]), SHOE([21]) or WebKB([22]). Thesetwo projectsannotatemanuallyWeb
pagesusingsemantictags.SHOEproposesasetof SimpleHTML OntologyExtensionto an-
notateWebpageswith ontology-basedknowledgeconcerningpagecontents.In this context,
anagentcanusethisknowledgeto manageeffectively informationrequests.

In all the cases,the goal is to usesemanticinformationto improve the informationre-
trieval. However, in theseapproaches,annotationsarestronglylinkedto document.Theau-
thor of pagesprogressively indicateshandledknowledgewhereit appears.The problemis
that any modificationor new generationof the pagesrequiresto remake entirely or partly
theannotations.Nevertheless,theprecisionof this processis extremelyfine. Moreover, the
methodsbasedon annotationaremanualor semi-manual(anuserinterfacehelpstheuserto

Valued Sony Customer
 561

annotatethedocument[16]). Therefore,they arevery time expensiveandcanbecarriedout
only by specialists([15]).

However, this manualprocessis time expensive, complex, andinformationandknowl-
edgearemixed.Theinformationmanagementdifficulty is thusincreased([15]). In addition,
semanticallyannotateddocumentsarenot todayandperhapsmaybenever availableon the
Web. Thesetwo projectswork on restricteddomainandscalingup to the entireWeb is a
titanic task([15]). Moreover, in thiscontext, all Webpagebuildershaveto acceptto annotate
theirown pages.Theconsensusneededby this protocolis far to bewidely admittedandis at
theoppositeof theWeb philosophy. Anotherprojectis the “WebKB” project([22]). It pro-
posesanothermanualprocessto annotateWeb pagesusingan ontologyrepresentedwith a
conceptualgraph([27]), which is built usinga linguistic thesaurus.Evenif theusedlanguage
is differentfrom thetwo previousprojects,annotationsarealsoincludedin theHTML pages.
Moreover, the thesaurusis only usedto extendthe ontology. It is not usedto automatically
index naturallanguagedocuments.

Like in OntoSeekproject([14]), our approachaddslinguistic attributesto ontologiesus-
ing the WordNet thesaurusto improve our semi-automaticWeb site knowledgediscovery.
Guarinocallsthisprocessadisambiguationprocess. However, themanualprocessOntoSeek
usesontologiesnotto definetheknowledgeof aWebsitebut to find user’sdatain alargeclas-
sical databaseof Web pages.Anotherprojectproposesa similar process:the Mikrokosmos
project([25]) to provide a knowledgebasefor machinetranslationprocess.This processis
anothersemi-automaticprocess(theusercanimprovemanuallythedisambiguationresults).
It studiesseveralheuristics.Themostimportantareanhierarchicalheuristicsandasimilarity
heuristics.The hierarchicalheuristicsusesthe generic/specificrelationshipin the ontology
and the relationshipof hyperonymy in the thesaurus.For [25], the hierarchicalheuristics
seemsto be the moreeffective to selectsenses.Therefore,we chooseto usethis heuristics
andto improve it.

Someprojectsof the KDD (KnowledgeDiscovery in Databases)communityare inter-
estedby extractingknowledgefrom Web sites.[8] apply techniquesof KDD to keywords
which areattachedto thedocumentsandwhich arethenregardedasattributes.Thesemin-
ing techniquesusestatisticalanalysisto discover associationrulesand interestingpatterns
overkeywordsdistributionsandassociations.Otherresearchers[18] usetermsautomatically
extractedfrom documentsto characterizethedocumentandto find associationswhich con-
nect the termsto the documents.Another approachis to apply KDD techniquesafter the
useof informationextractiontechniques,which transforminformationlocatedin texts into a
structureddatabase[6]. Otherapproaches[20] mixeNLP techniquesandKDD techniquesto
extractautomaticallyinformationfrom documents.They donotusekeywordsasattributebut
useconceptswhich areacquiredby theway of a thesaurus.Theapproachof thelastauthors
seemsthe most interestingbecausethey do not work any morewith simplekeywordsbut
with the conceptsincludedin documents.Comparedto KDD techniqueslike [20], we also
work on conceptuallevel insteadon the simplekeywords level. But we take the option to
have linguistic processingmuchfiner andespeciallywe privilegean a priori knowledgeon
the studieddomain(oneor several ontologies).[20] usea priori knowledgeon the studied
domain(a thesaurus)exclusively to extract the conceptsof the pages.In our approach,the
conceptsarealsoextractedfrom thepagesusingathesaurus,but theindexing processitself is
alsobasedon anontologyof thedomain.[24] assertsbesidesthatfor aneffectiveextraction
of knowledge,apriori knowledgeonthestudieddomain(for exampleontologies)is essential.

Many measuresof similarity aredefinedin relatedworks.For [19], theinformationshared

Valued Sony Customer
 562

by two conceptsis indicatedin an“isa” taxonomyby themostspecificconceptthatsubsumes
them.The semanticsimilarity of two conceptsin a taxonomyis the distancebetweenthe
nodescorrespondingto theitemswhich arecompared(edge-counting).Theshorterthepath
from onenodeto anotheris, themoresimilar they are.Givenmultiple paths,onetakesthe
lengthof theshortestone.

A widely acknowledgedproblem([26]) with this approachis that it relieson thenotion
that links in thetaxonomyrepresentuniform distances(but it is mostof thetime false).[26]
describesanalternativewayto evaluatesemanticsimilarity in ataxonomybasedonthenotion
of informationcontent.All links in a taxonomyareweightedwith an estimatedprobability
(conceptoccurrencesin corpora),which measurestheinformationcontentof a concept.The
main ideais: the moreconceptsshareinformation,moresimilar they are.The information
sharedby two conceptsis indicatedby theinformationcontentof theconceptsthatsubsumes
themin thetaxonomy. Theprobability � of aconcept, is basedontheprobabilityassociated
with theconceptplustheprobabilityassociatedwith all its descendantconcepts.��
, � is then
usedto calculatetheinformationcontentof aconcept, which is equalto ��J}+��
���
�, �1� .
8 Conclusions

In this paper, wehavepresenteda semi-automaticprocessto index a Websiteby its content.
This processbuilds a structuredindex coming from an ontologyandpagesof a Web site.
After the constructionof a flat index whereall termshave a weightedfrequency, we deter-
minecandidateconceptsassociatedwith theseterms.For eachconcept,a representativeness
coefficient is calculated.Finally, themostrepresentativeconceptsin aWebpageareselected,
andthosewhich belongto theontologyarekept.Thefinal structuredindex is organizedac-
cordingto theontology. With eachontologyconceptsa setof Webpagesis associatedfrom
wherethepotentialconceptswereextracted.

Thisprocesscomprisesanumberof advantagesonthetraditionalindexing methods(only
basedonkeyword retrieval) andevenon themethodsof Websiteannotation:

1. selectedpagescontainnotonly thekeywordsbut alsotherequiredconcepts;

2. theseconceptsarerepresentativeof thetopicstreatedin selectedpages;

3. termswhich areresponsibleof thepageselectionarenot alwaysthoseof therequestbut
canbesynonyms;

4. pagescancomprisenot only therequiredconceptsbut alsomorespecificones;

5. theimportanceof aconceptdependsnotonly onits termfrequency but alsoontheHTML
markerswhich describeit andon its relationswith theotherconceptsof thepage...

Theindexing processcanbeusednotonly for retrieving informationbut alsofor valueing
the appropriatenessof a Web site with regardto a domainor a knowledge.This latter case
enablesusto classifyaWebsitein ahierarchicalindex of aclassicalsearchengine(Yahou!,
Excite...).Note that suchhierarchiescan be themselves consideredas generalontologies
([17]).

Currently, otherWebsiteson americanuniversitiesareindexedin orderto comparetheir
resultsto thoseof the Washingtonuniversity. In order to improve the indexing results,we
mayalsoimprovethecoveragedegreeof theontologyonour studieddomain.Westudyalso

Valued Sony Customer
 563

otherrelationshipsthanthe generic/specificrelationshipin orderto improve the processof
conceptsextraction.Wehavedevelopedameasureaccordingto thecompositionrelationship,
but wemustalsoevaluateit in anexperimentalway.

Theresultspresentedin thispapercanbeusedin variousapplications.They arecurrently
being incorporatedwithin the Bonom Multi-agent system([5], [4]) to searchfor relevant
informationon theInternet.Thesysteminvolvesdifferenttypesof agentsamongwhich“site
agents”which encapsulateinformationsources.The methodswe proposeareimplemented
within thesiteagents.They greatlyimprovethesiteanalysisprocessandthequeryanswering
process.

References

[1] N. Ashish and C. A. Knowblock, “Semi-AutomaticGenerationInternet Information Sources”,In 2nd
IFCIS Conferenceon CooperativeInformationSystems(CoopIS),Charleston,SC,1997.

[2] V. R. Benjamins,D. Fensel,A. Gomez-Perez,S.Decker, M. Erdmann,E. Motta,andM. Musen.“Knowl-
edgeAnnotationInitiative of theKnowledgeAcquisitionCommunityKA2”. In Proceedingsof the11th
Banff knowledgeacquisitionfor knowledge-basedsystemworkshop,Banff, Canada,1998,pp.18-23.

[3] E. Brill, “Transformation-basederror-driven learningand naturallanguageprocessing:a casestudy in
Part-of-speechTagging”.ComputationalLinguistics,vol. 21,1995,pp.543-565.

[4] S Cazalens,E Desmontils,C Jacquin,andP Lamarre,“A Web Site Indexing Processfor an InternetIn-
formationRetrieval AgentSystem”,InternationalConferenceon Web InformationSystemsEngineering
(WISE’2000),IEEEComputerSocietyPress,Hong-Kong,19-20June,2000,pp.245-249.

[5] S. Cazalensand P. Lamarre,“An organizationof Internetagentsbasedon a hierarchyof information
domains”,In ProceedingsMAAMA W, YvesDemazeauandFranciscoJ.Garijo editors,may2001

[6] J. Cowie andW. Lehnert.“Information extraction”. In Communicationsof theACM, number1, volume
39, january1996.

[7] B. Daille, “Approchemixte pourl’extractiondeterminologie: statistiquelexicaleetfiltres linguistiques”,
PHD Thesis,Paris7, 1994.

[8] R. FeldmanandI. Dagan.“Knowledgediscovery in textual databases(KDT)”. In First internationalcon-
ferenceon knowledgediscovery(KDD’95), Montreal,august1995.

[9] D. Fensel,S. Decker, M. Erdmann,andR. Studer. “Ontobroker: Or How to EnableIntelligent Access
to the WWW”. In Proceedingsof the 11thBanff KnowledgeAcquisition for Knowledge-BasedSystem
Workshop(KAW’98), Banff, Canada,1998.

[10] J.Gamet.“indexationdepagesweb”. RapportdeDEA informatique,universitédeNantes,1998.

[11] A. Gomez-Perez.“Développementsrécentsenmatièredeconception,demaintenanceet d’utilisationdes
ontologies”.In Proceedingsof colloqueTerminologieet intelligenceartificielle de Nantes,10-11 mai
1999,revueterminologiesnouvelles,pp.9-20.

[12] T. Gruber, “A TranslationApproachto PortableOntologySpecification”.In KnowledgeAcquisitionjour-
nal,vol 5, pp 199-220,1993.

[13] N. Guarino.“SomeOrganizingPrinciplesfor aUnifiedTop-LevelOntology”.In SpringSymposiumseries
on ontologicalengineering,pp 57-63,1997

[14] N. Guarino,C. Masolo,andG. Vetere,“OntoSeek:Content-BasedAccessto theWeb”, IEEE Intelligent
SystemsandTheir Applications,Elsevier Science,14(3),1999,pp.70-80.

[15] J.Heflin, J.Hendler, andS.Luke,“Applying Ontologyto theWeb:A CaseStudy”, In InternationalWork-
ConferenceonArtificial andNaturalNeuralNetworks(IWANN), 1999.

[16] J.Kahan,M. Koivunen,E. Prud’HommeauxandR.R.Swick “Annotea:An OpenRDF Infrastructurefor
SharedWebAnnotations”,In proceedingsof theWWW’10 conferences,HongKong2001

Valued Sony Customer
 564

[17] Y. LabrouandT. Finin, “Yahoo!asanOntology- UsingYahoo!Categoriesto DescribeDocuments”,In
Proceedingsof CIKM’99, KansasCity, MO, Oct.1999,pp.180-187.

[18] S.Lin andal. “Extractingclassificationknowledgeof internetdocumentswith miningtermassociations:a
semanticapproach”.In InternationalACM-SIGIRconferenceonresearchanddevelopmentin information
retrieval (SIGIR-98).

[19] J. H. Lee,M. H. Kim, andY. J. Lee,“information retrieval basedon conceptualdistancein IS-A hierar-
chies”,journalof documentation,49(2), 1993,pp188-207.

[20] S. Loh, L.k. WivesandJ PalazzoM deOliveira.“Concept-basedknowledgediscovery in texts extracted
from theweb”. In journalSIGKDD explorations,number1, volume2, pp29-39,2000.

[21] S.Luke,L. Spector, andD. Rager. “Ontology-BasedKnowledgeDiscovery on theWorld-Wide-Web”. In
Proceedingsof theworkshopon Internet-basedinformationsystem,AAAI’96, Portland,Oregon,1996.

[22] P. Martin andP. Eklund,“EmbeddingKnowledgein WebDocuments”,In Proceedingsof the8th Interna-
tionalWorld Wide WebConference,Toronto,Canada,May 11-14,1999(http://www8.org).

[23] G. A. Miller, “WordNet:anOnlineLexical Database”,InternationalJournalof Lexicography, 3(4),1990,
pp.235-312.

[24] D. Mattox,L. SeligmanandK. Smith,“Rapper:awrappergeneratorwith linguisticknowledge”,In ACM
workshopon informationanddatamanagement,2000.

[25] T. O’Hara,K. Mahesh,andS. Niremburg, “Lexical Acquisitionwith WordNetandMicrokosmosOntol-
ogy”, workshopon “usageof WordNetin naturallanguageprocessingsystems”,8 pages,Coling-ACL’98

[26] P. Resnik,“Semanticsimilarity in a taxonomy: aninformation-basedmeasureandits applicationto prob-
lemsof ambiguityin naturallanguage”,journalof artificial intelligenceresearch,11, July 1999,pp. 95-
130.

[27] J.F. Sowa,“ConceptualStructures,InformationProcessingin Mind andMachine”,AddisonWesley Pub-
lishing Company, 1984

[28] W3C. “Extensible Markup Language(XML) 1.0”. W3C Recommendation,Reference:REC-xml-
19980210,10 February1998,http://www.w3.org/TR/REC-XML

[29] Z. Wu andM. Palmer, “verbsemanticsandlexical selection”,In Proceedingsof the32ndannualmeeting
of theassociationfor computationallinguistics,LasCruses,New Mexico, 1994

[30] B. YuwonoandD. L. Lee.“WISE: A World Wide WebResourceDatabaseSystem”.IEEE Transactions
on KnowledgeandDataEngineering,8(4),1996,pp.548-554.

Valued Sony Customer
 565

A semantic model for specifying
data-intensive Web applications

using WebML
Sara Comai Piero Fraternali

Politecnicodi Milano
Dipartimento di Elettronica e Informazione

Piazza L. Da Vinci, 32
I-20133 Milano, Italy

comai,fraterna@elet.polimi.it

Abstract. WebML (Web Modelling Language) is a language for the design of data-
intensive Web sites. It is supported by visual tools allowing the definition of the con-
ceptual data organization and of the pages and links of the actual hypertext(s) which
constitute a Web application. In this paper we describe a semantic model for WebML
hypertexts by means of Statecharts. Statecharts provide a formal description of the
clicking behavior and page data fill of WebML applications. The proposed semantic
model has guided the implementation of the WebML runtime and the construction of
advanced specification checking functions embedded in the WebML design tools. In
particular, developers are supported in the identification of design and runtime prob-
lems caused by non-determinism, racing conditions and deadlocks.

1 Introduction

Web applications have spread in every sector of the human activity, well beyond the bound-
aries of document-oriented systems, for which the Web has been initially conceived.

The enormous demand for Web-enabled applications, both novel or resulting from the
re-engineering of existing systems, coupled to the chronic lack of skilled IT personnel, puts
forth a dramatic request for better software engineering practices, similar to those adopted in
more mature software fields, like database and object-oriented development.

For improving productivity, a broader coverage of the tasks of Web site development
is imperative, because the vast majority of Web development tools available on the market
still concentrate only on design and implementation, paying little attention to requirement
analysis and conceptual modelling [7]. Therefore, implementing and maintaining a large Web
site is still a very human-intensive and error-prone activity, which does not benefit from the
availability of a formal development process, supported by modelling notations and CASE
tools.

To cope with these requirements, the research community has proposed several approaches
for the so-called model-driven design of Web sites [1, 5, 8, 9, 11], which share the idea of
leveraging semi-formal notations to express the data structure and hypertext topology of a
Web site and of using conceptual-level specifications to drive the design and implementation.

Valued Sony Customer
 566

WebML [3] is one of the proposals for the conceptual specification and automatic im-
plementation of Web sites. A WebML specification is directed labelled graph, internally rep-
resented as an XML document written according to the WebML DTD, which describes the
topology of one or more hypertexts conceived to publish information on a set of applica-
tion objects. The WebML language is backed by a suite of software tools, which transforms
visual WebML specifications into server-side page templates and database queries, which
implement the desired Web site.

Differently from previous proposals, which were mostly introduced informally and by
examples, WebML anchors Web site specifications to a sound formal basis, by associating
a formal semantics to the semi-formal visual notation. This paper introduces WebML’s for-
mal semantics, which is based on the use of STATECHARTS [10] to express the dynamic
behavior of a Web site.

As a consequence of establishing a formal model, Web site specifications acquire an un-
ambiguous meaning and lend themselves to automatic checking for correctness or desired
properties. Moreover, the formal semantics can be used as a yardstick to evaluate the cor-
rectness of CASE tools generating running Web sites from WebML specifications, because
the runtime behavior of the generated site must obey the expected behavior expressed by the
formal semantics.

2 Overview of WebML

A WebML specification consists of two major components:

� The structuremodel, describing the conceptual organization of the application data;

� One or more hypertexts(siteviews in the WebML jargon) defined on top of the structure
model, which express the organization and linking of pages used to publish the application
data.

The approach adopted by WebML is data-driven: first the structure of the data is described,
then, on the basis of such structure, the hypertext is defined, as explained in the following
subsections. For further details about the syntax of WebML the reader may refer to [3] and to
the Web site http://webml.org.

2.1 Structuremodel

The structure model describes the conceptual data organization, and is compatible with the
Entity-Relationship data model, used in conceptual database design, and with UML class di-
agrams, used in object-oriented modelling. The fundamental elements of the structure model
are entities, defined as containers of data elements, and binary relationships1, defined as
semantic connections between pairs of entities. Entities have attributes representing the prop-
erties of the real world objects and relationships are characterized by named relationship
roles (i.e., the two directions in which a binary relationship can be traversed) and cardinality
constraints associated to each role.

1WebML presently supports only binary relationship without attributes; work on supporting content units
defined over generalized n-ary relationships and relationship attributes is ongoing.

Valued Sony Customer
 567

Example I: Figure 1 shows a simple structure schema for the publication of an hypertext
describing data about books: the rectangles in the graph represent entities, while edges rep-
resent relationships (for brevity, relationship roles names are omitted). In the example, each
book is written by one or more authors and has a unique publisher; moreover, each book may
be associated with zero or more reviews.

BOOK AUTHOR

REVIEW PUBLISHER

BOOK-REVIEW BOOK-PUBLISHER

0:n

1:1

1:n 1:n

1:1

1:n

BOOK-AUTHOR

Figure 1: Example of structure schema

2.2 Hypertext

A WebML hypertext consists of a set of pages, depicted as rectangles, connected by non-
contextual links, represented by oriented arcs. The content of a page is expressed by means of
contentunits. Different kinds of unit are provided by WebML, denoted by different symbols.
Units may be connected by contextual links, also graphically depicted by means of oriented
arcs (See Figure 3). We describe first content units; then, we clarify the use of contextual and
non-contextual links.

Units publish information about the objects of the structure schema: each unit is defined
over a masterobject, an entity or a relationship role2, which gives content to the unit.

WebML offers six predefined content units to assemble read-only hypertexts (additional
units are available for content management applications):

� Dataunits: they are used to publish a set of attributes of a single object (e.g. the data of a
single book). The graphical representation of WebML data units is shown in Figure 2.a.

� Index units: they are used to represent sorted lists of objects, where each object is denoted
by some representative attributes (e.g. an index of authors may show the first name and
last name of each author). Index units are typically linked to a data unit, which shows
the details of the object selected from the index (e.g. the data of the selected author). The
graphical representation of index units is shown in Figure 2.b.

� Multidata units: they show multiple objects together, by repeating the presentation of
several, identical data units3 (e.g., all the books written by an author). See Figure 2.c for
the graphical representation.

2A relationship role univocally determines a source entity and a destination entity, based on the direction in
which the relationship is considered.

3In the following sections, multidata units will be treated as a finite set of data units, and therefore will not
be considered explicitly.

Valued Sony Customer
 568

� Scroller units: they provide the commands to scroll over an ordered set of objects. They
are generally connected to a data unit showing the current item of the sequence. The
graphical representation is shown in Figure 2.d.

� Filter units: they allow the user to specify search criteria by means of a search form.
Typically, a filter unit is connected to an index unit showing the result of the search (e.g.
the user inserts the category of a book, and the list of books belonging to this category is
shown). The graphical representation of filter units is shown in Figure 2.e.

� Directunits: they associate one object to a single other object along a one-to-one or many-
to-one relationship (possibly the identity relationship). They are generally connected to a
data unit showing the unique target of the one-to-one or many-to-one relationship (e.g.,
the data of a book may be connected through a direct unit to the data of its unique pub-
lisher). The graphical representation is shown in Figure 2.f.

Figure 2: Graphical representation of WebML units

Example II: Consider for example the hypertext depicted in Figure 3. It contains three pages:
the home page, the books’ index page and the book page. The home page is empty (we
suppose that it contains only unmodeled, presentation-oriented content) and is connected
by a link to the books’ index page, which contains two units: a filter defined over books
(BookFilter) allows one to search all books based on some keywords (e.g. with respect to
their category), and is linked to an index unit (BookIndex), which represents the list of books
matching the search criteria expressed in the filter unit. The books’ index is connected to a
data unit in a separate page (BookPage). This page contains several pieces of information,
which are shown when the user clicks on an entry in the index of books: the data of the
selected book (BookData), the data of its publisher (PublisherData), the index of its authors
(AuthorIndex), and a scroller unit defined over the book’s reviews (ReviewScroller), which
allows the user to orderly browse the book’s reviews, displayed one by one in a data unit
(ReviewData). A direct unit (Book2Publisher) is interposed between the BookData unit and
the PublisherData unit, to associate the book to its unique publisher.

An important difference exists between non-contextual links connecting pages and con-
textual links between units: the former are a mere navigational device used to change page,
the latter imply the transportation of navigationcontext from the source to the destination
unit. Navigation context is information passed from one unit to another one in order to make
the second unit computable from the data in the structure layer. For example, in Figure 3
the link exiting the home page is a non-contextual link and does not carry any information;
instead, the link between the BookIndex unit listing a set of books and the BookData unit
showing the data of a particular book is contextual: it must carry the identifier of the book
selected in the index, for the data unit to be computable. Note that, as shown in this example,

Valued Sony Customer
 569

Figure 3: Example of WebML pages

when the source and the destination units of a contextual link belong to different pages, also
navigation between pages is performed.

WebML units are both producers and consumers of navigation context. For example, an
index unit typically produces the identifier of the object selected from the user; however, it
may also consume context, e.g., to display a list of objects connected by a relationship to an
input object. For example, in Figure 3 the AuthorIndex unit, listing the authors of a particular
book, needs the OID of the current book to be computed: indeed, according to the schema
of Figure 1, given the current book, the target objects of the relationship between book and
author can be identified.

The following table illustrates the input and output context of the different WebML units.

Valued Sony Customer
 570

Unit Input parameters Output parameters

Data unit
Selected instance (OID of the
current instance)

Current instance

Index unit
Owner of the relationship

�
,

Optional predicate
� Selected item, Owner of the relationship

�

Multidata unit
Owner of the relationship

�
,

Optional predicate
� Selected item (possibly all the items), Owner

of the relationship
�

Filter unit
Owner of the relationship

�
,

Optional predicate
� New Predicate, Owner of the relationship

�

Scroller unit
Owner of the relationship

�
,

Optional predicate
� Selected item, Owner of the relationship

�

Direct unit Owner of the relationship Target of the relationship
�

�
When a unit is defined over a relationship role, the OID of an instance of the source entity participating

to the relationship (called the relationship’s owner, in the WebML jargon) is required.�
When the unit is preceded by a filter unit, a predicate is passed to compute the result set of the search.�
The target of a one-to-one or many-to-one relationship is the unique object associated to the owner of the

relationship.

As shown in the example of Figure 3, a WebML page typically contains several units
linked in a network topology to produce the desired communication effect. In order to specify
how the context is propagated along the chains of linked units, WebML permits the designer
to declare links (both contextual and non-contextual) as automaticor clickable. The former
are ”automatically clicked” by the WebML runtime system, to propagate context from the
source to the destination unit of the link even in absence of user’s action. The latter do not
exhibit such behavior, but the user must explicitly activate the link for context propagation to
occur.

When links are automatic the output parameters of the unit wherefrom the link exits may
need proper initialization: the output of an index or scroller unit is initialized to the first in-
stance of the underlying entity or relationship; the output predicate of a filter unit is initialized
to ”true”, to select all objects of the underlying entity or relationship.

For example, in Figure 3, when the BookPage is accessed, the OID of the book to be
displayed is passed to the book data unit by its incoming contextual link. Then, propagation
of context occurs inside the BookPage page. If all the links between units in BookPage are
automatic, context information flows from unit to unit without the user’s intervention: the
OID of the selected book flows to the subsequent units, thus showing also the index of authors,
the publisher’s data, the first review and the scroller commands to access the other reviews.
The first review is chosen by default by the system, which initializes the output parameter of
the scroller unit.

Conversely, if the links exiting the book data unit are defined as clickable, when the Book-
Page is accessed only the data of the selected book are shown; then the user must click on the
provided anchors (one for each link) to transfer the output context and see also the other data
in the page. Notice the importance of the automatic links in practical applications: they allow
to automatically display information bound to the current data. A more sophisticated example
showing the use of automatic and clickable links will be presented in the next section.

3 Semantics of WebML

In the previous section we introduced the syntax and the main characteristics of WebML;
now we describe its semantics.

Valued Sony Customer
 571

Before introducing a formal description of the behavior of a dynamic Web site, we ex-
tend the hypertext of Figure 3 in order to show some particular behaviors and problems that
highlight the benefits of having a semantic model.

The WebML specification of Figure 4 extends the previous hypertext with the authors’
index page.

Figure 4: Example of a Web site

Let us carefully analyze such page. It contains several kinds of information to be shown:
the index of all the authors (AllAuthorIndex), the data of a selected author (AuthorData),
the list of the books of such author (BookIndex1) and the data of one book selected from
such list (BookData1). Note that the two first links transport the identifier of the selected
author, while the third link transports the identifier of the selected book. Depending on how
the links between units are specified, i.e. automatic or clickable, this page behaves differently.
Suppose that all the links between the units be automatic, i.e. the first click of every link is
automatically done by the system without any intervention of the user: when this page is
accessed it displays the list of all the authors, the data of the first author of the index (chosen
as default by the system), the list of the books of such author and, finally, the data of the first
book of the book index (chosen as default by the system). All these data are automatically
shown. Then, the user may select a different author from the author index or a different book
from the book index: in both cases all the data related to the units following the considered
index change accordingly. That is, if a new author is selected from AllAuthorIndex the data
of the new author are shown, together with his/her books and the data of the first of such

Valued Sony Customer
 572

books; if a new book of the author is selected from BookIndex1 the data of the selected book
are displayed. Notice how the automatic links allow to define default choices without leaving
empty parts in the page.

Consider now the case where the links exiting the index units are defined as clickable and
the link exiting the author data unit is still automatic: the behavior of the same page would
be different, since the first choice of each index is not performed by the system, but for each
index the system waits until the user clicks on an item. This means that, when the page is
entered the first time it contains only the list of the authors; then, when the user selects one
of such authors, his/her data together with the list of his/her books are shown; finally, when
the user selects one of the books of the author also the data of the books are shown. Then,
the user may e.g. select a new book from BookIndex1: as a consequence the data of the new
selected book are displayed as in the previous case. Instead, if the user selects a new author
from AllAuthorIndex, the data of the new author are displayed together with his/her books’
list but no data about a particular book are shown until the user explicitly selects one item.
Notice that in this case the page content changes, i.e., initially only one unit is populated, then
after user’s clicking two other units are filled and so on.

So, depending on the kinds of link (automatic or clickable) the behavior of the page is
different, since information may be automatically displayed or not displayed at all, and page
composition may change after user clicking. For complex pages containing several units the
same page may have different configurations at runtime depending on the kinds of links and
on user’s behavior; such configurations can be properly described by a semantic model.

Let us consider another important aspect that need to be considered. From the authors’
index page, it is possible to reach the page displaying further information about the selected
book (a direct unit is used to represent the identity relationship, i.e., the current book itself)
and from this page it is possible to go back to the authors’ index page, by selecting one of the
book’s authors. When a page may be reached from different pages, the page must be correctly
computed for every single access. When designing a Web site several pages could in fact be
reused for displaying the same kind of information.

Let us focus on the authors’ index page again: when it is reached from the book page the
contextual link enters the second unit (AuthorData) of the chain. In this case the first unit in
the chain (AllAuthorIndex) may cause some problems. The list of all the authors can always
be displayed, independently of how the page is accessed, since this unit does not receive any
input context. But what about its outgoing link? If it is clickable, the system waits until the
user selects a new item: so, if the page is accessed from the book page the remaining part of
the page is computed for the author selected in the book page and it is not changed until a
new author is selected from the AllAuthorIndex. Instead, what does it happen if the outgoing
link is automatic? Does the system automatically display the data of the first author of such
index or the data of the author selected in the book page?

To answer questions like this we need a semantic model, describing the precise behavior
of the hypertext, whose interpretation may become difficult for complex sites. Then, on the
basis of the semantics the system can be actually implemented and the correctness of the
specification can be automatically checked. To formalize the semantics we adopt Statecharts,
which allow to easily describe any dynamic system behavior. Indeed, each page of the site can
be represented as a state. Intuitively, when we navigate through the different pages we change
state. We can change page by clicking on the anchors provided by the current page: the action
of clicking represents the event which makes the system change its current state. In a similar

Valued Sony Customer
 573

way, also the content of the pages may be represented by concurrent states, each representing
the behavior of a single unit: the content of a unit is shown depending on the possible events
automatically generated by the system (e.g. when there are automatic links to be followed) or
by possible selections performed by the user. In the sequel we formally describe how to map
a generic WebML specification into a Statechart describing its semantics. We first provide
some preliminary definitions. Then, we define how to map pages into states and how to map
units contained inside a page into concurrent states. Finally, we will see that this model allows
to analyze the behavior of the system in critical cases, where for example non-determinism
or racing conditions arise.

3.1 PreliminaryDefinitions

The concepts of a WebML hypertext introduced in the previous sections can be formally
described as follows:

Definition 1: (WebML hypertext): a WebML hypertext is a triple (
�

, � ,) where
�

is
a set of units, � is a set of pages, and 	 is a set of links.

�
, � and 	 are such that: 1) links in

	 connect either two pages in � or two units in
�

; 2) units in
�

are contained in pages in � ;
3) one page in � is defined as the home page.

In the sequel we represent links between units with the pair (
�� ,
�) and links between
pages with the pair (��� , ��).

Units of a page are classified based on the topology of the links that connect them:

Definition 2: (Access, depending, and stand-alone units) Let � =(
�

, � ,) be a WebML
hypertext. Let
�� �

be a unit contained in page ����� . Then,
 is an accessunit if it
has incoming contextual links originating from outside of � ; it is a dependingunit if it has
incoming contextual links originating from units inside � ; it is a stand-aloneunit if it has no
incoming contextual links.4

We now introduce the variables and alphabets for events (E), conditions (C) and actions
(A) needed for mapping WebML concepts to Statecharts:

Definition 3: (Variables and E[C]/A alphabets) Let � =(
�

, � ,) be a WebML hyper-
text. Let
�� (� = ���������) be the units in

�
, ��� (� = ����� �"!) be the links in 	 and ��� (� = ��������#) be

the pages in � . Then, we define the following variables, events, conditions and actions:

4Note that a unit may have multiple incoming links, and thus be both an access and a depending unit. The
actual link used at runtime to access a page determines the role of the unit.

Valued Sony Customer
 574

Type Name Description NULL
value

Variable access link $ � It refers to the contextual link through
which page $ � has been accessed.

yes

Variable recomputable % �
It is a boolean variable stating if the con-
tent of unit % � can be re-calculated for dis-
play or not.

yes

Variable input context % � It contains the input context of unit % � . yes

Variable output context % � It contains the output context of unit % � . yes

Event
output context % � available
(i=1 &'&'& n)

It denotes that the content of unit % � has
been calculated and its output context is
available in variable output context % � .

—

Event
clicked on anchor (
(j=1 &'&'& m)

It denotes that the user has clicked on the
anchor corresponding to link (. —

Condition access link $*) (% �) It checks if there exists an access link en-
tering unit % � in page $*) .

—

Action
initialize output % �
(i=1 &'&'& n)

It initializes all the output parameters of
unit % � . —

As customary in Statecharts we use the polymorphic symbol + to denote both the empty
event, used to specify automatic transitions, and the empty action.

3.2 Pageconfiguration

We first define how to map the pages of a generic WebML hypertext into a Statechart: given a
WebML hypertext all the pages are mapped into states and all the links (both non-contextual
and contextual) are mapped into transitions among such states as follows:

Definition 4: (WebML hypertext Statecharts) Let � =(
�

, � ,) be a WebML hypertext.
Then, the corresponding WebMLhypertext Statechartsis obtained as follows:

� For each �,�-�.� a top-level state / �,� is created;

� For each non-contextual link �0�21435��768��) 9:�;	 a transition from / �< to / ��) is created
with

– E[C]/A= + [=?>@
BA]/access link �C) :=NULL if the link is automatic,

– E[C]/A=clicked on anchor �0� [=?>@
�A]/access link �C) :=NULL if the link is clickable.

� For each contextual link ���D1E3F
�GH6I
�JK9L�M	 with
CGONP�� and
�JQNP��) , a transition from
/ �� to / ��) is created with

– E[C]/A=clicked on anchor �0� [=?>@
�A]/output context
BG available; access link �C) := �R�
if the link is clickable,

– E[C]/A=output context
BG available[=?>@
�A]/access link �C) := �R� if the link is automatic.

� Page ��SUTWVYX is the initial state.

Example III: The WebML hypertext of Figure 4 is mapped into the hypertext statechart
shown in Figure 5: the four pages are mapped into four states and all the links among such
pages are mapped into transitions. In particular, from the home page two non-contextual links

Valued Sony Customer
 575

(transitions 1 and 2) depart, which are activated when the event of clicking on the correspond-
ing anchors occurs. Since the links are non-contextual no access link is set for the following
pages. From the authors’ index page a link departs toward the book page: it is activated when
the user clicks on the anchor of the link (transition 3) provided in correspondence of the book
data unit (BookData1), setting the current link as active for the book page. This last operation
is necessary when the page can be accessed through different links in order to consider the
correct incoming link. This transition notifies also that the output context of BookData1 has
been computed and is available to be used to compute the new page. Analogously, two con-
textual links, one from the books’ index page to the book page (transition 4) and one from
the book page to the authors index page (transition 5) are obtained.

1

/access_link_BookIndexPage:=NULL

clicked_on_anchor_l4[true]

S_AuthorIndexPage

S_HomePage

S_BookIndexPage

S_BookPage

/access_link_AuthorIndexPage:=NULL
clicked_on_anchor_l1[true] clicked_on_anchor_l2[true]

/output_context_BookIndex2_available,
/output_context_BookData1_available,
clicked_on_anchor_l3[true]

/output_context_AuthorIndex_available
clicked_on_anchor_l5[true]

3

2

4

5

access_link_BookPage:=l3

access_link_AuthorIndexPage:=l5

access_link_BookPage:=l4

Figure 5: WebML hypertext statechart

3.3 Unit Configurations

Once the pages have been mapped into states, the content of each page can be described.
Given a page of the WebML hypertext, the units in it are mapped into a set of concurrent
states, each describing the behavior of a single unit.

Intuitively, each unit can be either in a disabledstate, where no data are shown, or in an
enabledstate where its content is displayed according to the input context. At page entry,
a unit is disabled by default. Then, one ore more transitions may lead to the enabled state.
From this state one or more transitions are defined, either to go back to the disabled state
or to re-enter the enabled state, possibly changing the unit content (see Figure 6). The kinds
of events, conditions and actions of the transitions depend on on the fact that the unit is an
access, a standalone or a depending unit.

Definition 5: (WebML unit Statechart) Let � =(
�

, � ,) be a WebML hypertext. Let
�Z�;� be a page containing one or more units and / � be its corresponding state. Then, for
each unit
C) contained in � the following states are introduced:

� A concurrent state /
�) nested at the first level of / � is created;

� A state /\[H�5]W^`_bacX8[
C) nested inside /
B) is created and set as initial state;

Valued Sony Customer
 576

� An state /\XWd ^�_bacX8[
C) nested inside /
B) is created containing the entry action recom-
putable
C) :=false;

A set of transitions between /e[H�5]W^`_bafXW[
C) and /\XWd ^�_bacX8[
C) are introduced as follows:

� If
C) is an accessunit, then, for each contextual link �5g1h3F
<76I
C) 9Q�P	 with
<jiNk� a
transition from /e[H�5]W^`_bacX8[
B) to /\XWd�^`_bacX8[
C) is added with

E[C]/A= + [output context
�mlon NULL AND access link p(
B))]
/input context
B) :=output context
* ;
access link p:=NULL.

The transition states that at page entry the output context of the source unit of the incom-
ing link becomes the input context of the access unit.

� If
C) is a standaloneunit, then a transition from /-[H�5]F^�_bacX8[
C) to /\XWd ^�_bacX8[
C) is added with
E[C]/A= + [=?>@
�A]/ + . The transition states that a standalone unit is automatically enabled at
page entry.

� If
B) is a dependingunit, then for each contextual link �5O1�3F
<76I
C) 9p�q	 with
<rNs�
– The following transitions or actions are added to the state of the source unit
C ,

which feeds navigation context to the depending unit
e) :
t A new ring transition on /uXFd�^`_bafXW[
< is added with:

E[C]/A=clicked on anchor �v [=?>@
�A]/ recomputable
* :=true, wx1k�y6������K6I� .
This transitions expresses that a unit feeding another unit inside the same page
may need re-computation (this happens if there is a cycle of links leading back
to the unit).
If the outgoing link �v is clickable action output context
* :=NULL is added
to all the other transitions entering /uXFd�^`_bafXW[
� ; this expresses that for clickable
links there is the need of cleaning the output context, when the destination unit
is enabled.
If the outgoing link �v is automatic, the action initialize output
* is added to all
the other transitions entering /eXWd ^�_bacX8[
< . This expresses that for automatic links
there is the need of properly initializing the output context, when the destination
unit is enabled.

t Action output context
� available is added as entry action in /uXWd ^�_bacX8[
< to
activate the depending units.

t Actions output context
* :=NULL; output context
� available are added to
the transitions from /eXWd ^�_bacX8[
< to /\[H�5]W^`_bacX8[
� . These transitions indicate that
the unit cannot be computed and therefore also their depending units must be
inhibited by setting the passed context to NULL.

– The following transitions are defined for the depending unit
e) :
t A transition from /e[H�5]F^�_bacX8[
C) to /\XWd ^�_bacX8[
C) is created with:

E[C]/A=output context
� available[output context
*ml:n NULL AND NOT ac-
cess link p(
B)) AND recomputable
B)] /input context
B) :=output context
* .
This transitions expresses that the depending unit is enabled when the output
context of its feeding unit becomes available and is not null, the unit has not

Valued Sony Customer
 577

been directly accessed from outside the page and is re-computable (i.e., its con-
tent has not already computed in the context propagation, e.g., due to link cy-
cles).

t A ring transition on /eXWd ^�_bacX8[
C) is added having:
E[C]/A=output context
� available[output context
*ml:n NULL AND recom-
putable
B)]
/input context
B) :=output context
� . This transition ensures that if the input
context changes also the output context is re-calculated.

t A transition from /eXFd�^`_bafXW[
C) to /\[H�5]F^�_bacX8[
C) is created with:
E[C]/A=output context
� available[output context
* =NULL]/ + . This transi-
tion states that the unit is disabled if due to some event (e.g., a user click on a
preceding index in the same page) and to the context propagation rules the input
context of the depending unit becomes null.

Note that access and standalone units have no transition from the enabled to the disabled
state, because for such units it is not possible to change their content once they have been
calculated. For example, in the page containing the index of all the books’ authors, such
index is immediately shown at page entry and no event can change its content.

Example IV: Consider the authors’ index page of Figure 4: Figure 6 expresses the hypertext
of its first two units, i.e. AllAuthorIndex and AuthorData. For the other units the mapping is
applied in an analogous way. Here we suppose that the link between the units be automatic.

1

5

S_AllAuthorIndex S_AuthorData

S_disabled_AllAuthorIndex

recomputable_AllAuthorIndex:=false

/initialize_output_AllAuthorIndex

/recomputable_i:=true (i=AllAuthorIndex,...)

clicked_on_anchor_l5 [true]

available

output_context_AllAuthorIndex_

ENTRY:

S_enabled_AllAuthorIndex

S_AuthorIndexPage

output_context_AllAuthorIndex_available

[output_context_AllAuthorIndex<>NULL

AND recomputable_AuthorData

AND NOT access_link_AuthorIndexPage(AuthorData)]

S_disabled_AuthorData

S_enabled_AuthorData

output_context_AuthorData_available

recomputable_AuthorData:=false

ENTRY:

[output_context_AllAuthorIndex=NULL]

[output_context_AllAuthorIndex<>NULL

AND access_link_AuthorIndexPage(AuthorData)]

/output_context_AuthorData:=NULL;

output_context_AllAuthorIndex_available

(Other concurrent states)

/input_context_AuthorData=ouput_context_AllAuthorIndex;

initialize_output_AuthorData

initialize_output_AuthorData;

access_link_AuthorIndexPage:=NULL

output_context_AllAuthorIndex_available

/input_context_AuthorData=ouput_context_AllAuthorIndex;

AND recomputable_AuthorData]

initialize_output_AuthorData

3

4

6

2

[true]ε

ε

output_context_AuthorData_available

[output_context_AuthorIndex<>NULL

/input_context_AuthorData=ouput_context_AuthorIndex;

Figure 6: WebML unit configuration statechart

For each unit a concurrent state is created, having two internal states (disabled and en-
abled).

The first unit (AllAuthorIndex) is a standalone unit and therefore it is automatically en-
abled (see transition 1). Since its outgoing link is automatic, it also initializes its output with
default values: in our system it automatically selects as output the identifier of the first author
listed in the index. When the enabled state is entered the unit is set as non-recomputable, i.e.

Valued Sony Customer
 578

its content cannot be automatically recomputed5, and its output context is rendered available
to the depending units. The ring transition on the enabled state (transition 2) is triggered when
the user selects a new item from the index unit: all the units can then be recomputed accord-
ing to the new choice (for the index unit we may for example highlight the current choice, for
the data unit connected to the index we must show the new selected author, and so on).

The second unit (AuthorData) is both a depending unit, since it depends from the AllAu-
thorIndex unit, and an access unit, when the page is accessed from the book page. Due to the
two access methods, its corresponding state embodies two different transitions (transitions 3
and 6) for passing from the disabled to the enabled state.

As a depending unit the unit is enabled when the output context of the AllAuthorIndex
unit is available (transition 3), i.e., every time a new selection in the author index is made by
the user or possibly by the system itself. It is fired only if the output context is valid, if the
unit has not been already computed, and if there are not any active access links which must be
calculated first. Then, it sets its input context to the value of the output context of the unit from
which it depends and initializes its output context. Once in the enabled state, it shows the data
of the current author and, as in the previous case, it is set as non-recomputable and renders
its output available to the following depending unit. From the enabled state two transitions
exit: if the user selects a new author from the index a new output context is available: if the
context is valid the current state is re-entered and recomputed for the new context (transition
4), i.e., the new current author is shown, otherwise the unit must not be displayed and the unit
returns to the disabled state (transition 5). In this latter case the output context of the unit is
set to NULL and becomes available to its depending units which cannot be displayed.

As a depending unit the AuthorData unit is enabled when the page variable accesslink
is active for its incoming link (transition 6). Notice that if the page is entered from the book
page such variable has been set as active by its incoming link (see transition 4 in Figure 5).
If the context is valid the output context is properly initialized and variable accesslink is
unset. Notice that when the page is accessed from the book page only transition 6 is enabled,
while transition 3 cannot be triggered. Now we are able to answer the question we issued in
Section 3 about the behavior of the page when the outgoing link of the AllAuthorIndex unit
is automatic: when the page is accessed from the book page, according to our semantics, the
system displays the data of the author selected in the book page and not the first author of the
AllAuthorIndex unit.

3.4 Checking theConsistencyof WebMLSpecifications

The specification of WebML semantics through Statecharts allows the designer to better grasp
the application behavior and to predict potential critical cases, e.g., non-deterministic and
deterministic conflicting transitions, racing conditions, deadlocks and so on. Here, we only
show a simple case by means of an example.

Example V: Consider the WebML page of Figure 7: two indexes allow the reader to display
information on a certain book. The user may select either a bestselling book from the first
index or a recent book using the second one, and the data about the selected book are shown
in the data unit. If the two links between the index units and the data unit are defined as

5The problem of recomputing the content of a unit becomes relevant in case of cycles among units where all
the links are defined as automatic.

Valued Sony Customer
 579

Figure 7: Example of WebML page with racing condition

automatic, the selected item for both indexes is initialized, which results in an unpredictable
navigation context to be passed to the data unit (see statechart in Figure 8).

In a typical implementation, propagation of context along links takes places according to
some implementation-dependent order, and thus, since the result of applying the two transi-
tions depends on their execution order, a racing condition arises [10].

Notice that, although automatic links are very useful for the specification of automatic
behaviors, their use must be carefully controlled to avoid unpredictable behaviors as shown
in this example.

The Statechart semantic model has been applied to other, more complex, WebML primi-
tives, including AND-OR nested pages, data entry forms, and update operations. Many subtle
behavioral issues have been clarified before implementation with the aid of the illustrated ap-
proach.

4 Implementation

The proposed semantic model has set the basis for the implementation of the WebML tool
suite.

Figure 9 represents the architecture of WebML, which can be divided into three layers:

1. The DesignLayer: it includes WebML Control Center, which is the core software element
of the WebML architecture, supporting the visual specification of Web sites. Designers
use Control Center to input the data structure, the hypertexts diagrams, and presenta-
tion directives6. WebML specifications are stored as XML documents, which feed the
WebML code generator. The output of the code generator is a set of page templates and
unit descriptors, which enable the execution of the application in the runtime layer. A page
template is a template file (e.g., a JSP file), which expresses the content and mark-up of
a page in the mark-up language of choice (e.g. in HTML, WML, etc.). A unit descriptor
is an XML file, which expresses the dependencies of a WebML unit from the data layer
(e.g., the name of the database and the code of the SQL query from which the population
of an index must be computed). Both the templates and the unit descriptors are produced

6Presentation directives are expressed as XSL style sheets, which apply to XML documents conforming to
the WebML DTD.

Valued Sony Customer
 580

by a set of translators coded in XSL and executed by a standard XSL processor. WebML
Control Center provides also an interface to the Data Layer to assist the designer in map-
ping an abstract WebML structure schema to an existing data repository (e.g. a relational
database).

2. The RuntimeLayer: it includes a stack of software components, which produce the actual
pages of the application from page templates. Presently, WebML runs on top of any ex-
isting JSP 1.1 execution engine, enriched with a thin layer of Java classes decoupling the
processing of WebML units from the access API of the data layer. This layer is responsi-
ble of extracting the data from the data repository (WebML RunTime) and of formatting
it to compose the actual page (WebML TagLib).

3. The Data Layer: it includes the repository of data necessary to instantiate the page tem-
plates. The inputs to the Data Layer are requests from the runtime layer for data access.
The output is the requested content. Presently, WebML can access data stored in any
JDBC-compliant relational database and in XML documents.

Three components of the architecture illustrated above have been influenced most by the
work on WebML semantics:

� WebML Control Center: the WebML design tool has been extended with a module re-
sponsible of checking the consistency of the WebML specifications and of producing
warnings and error reports. Checking rules are coded in XSL and enforced by a standard
XSL processor. They embody several conservative correctness checks for alerting the de-
signer of potentially dangerous hypertext configurations, e.g., unit and link mismatches,
racing conditions and deadlocks.

� The WebML template generator: it embodies the page, unit, and link behavior specified
in the Statecharts semantic model. E.g., the sequence of operations needed to correctly
generate the passage of context among units and the navigational logics (automatic and
clickable links) are encoded at this level.

� The WebML runtime, which insulates the WebML templates from the data source. It has
been revised in several aspects to adhere to the described formal semantics. Indeed, this
module actually executes the operations specified in the page templates and unit descrip-
tors, by querying the needed data and checking the actual presence of the data in the data
source.

The presence of the Statecharts formal semantics has permitted WebML developers to
examine on the paper alternative execution options for WebML constructs, and to compare
the behavior of the implementation with the expected hypertext execution semantics.

5 Related Work

WebML [3] is one of a family of proposals for the model-driven development of Web sites,
which includes also other approaches, e.g., Araneus [11], and Strudel [5]. Like Araneus and
Strudel, WebML allows to define the site’s structure and content: in the former, the Entity-
Relationship model is used to describe the data structure and a conceptual model is used to de-
fine the site’s hypertext; the latter relies on a data model for semi-structured information and

Valued Sony Customer
 581

sites are specified through queries expressed in the StruQL language over the semi-structured
data model.

WebML shares several features also with the languages for hypermedia applications, such
as HDM - Hypermedia Design Model [9], OOHDM - Object Oriented HDM [12] and RMM
- Relationship Management Methodologies [9], from which its basic notations and concepts
derive. However, w.r.t. such models WebML has been simplified in order to be effectively
supported by CASE tools, and new features specific to data-intensive Web applications have
been integrated.

W.r.t. all such approaches (Araneus, Strudel and the hypermedia models), WebML pages
and units may be structured in complex ways by means of linking and nesting and exhibit a
more sophisticated navigation context semantics, which permits one to define a wide spec-
trum of page configurations and interactive page-fill behaviors. Indeed, by linking the dif-
ferent kinds of units it is possible to obtain a variety of navigation modes and by defining
links as automatic rather than clickable also the content filling of the pages at runtime can be
designed. Therefore also our semantics, focusing on the description of such features is quite
sophisticated and is not associated only to the simple navigation among pages.

In literature navigation semantics has already been described by means of formal meth-
ods: in [13] Petri Nets are used to describe hypertext systems; in [15] and [6, 14] Statecharts
are employed to describe navigation browsing. Statecharts are a more powerful mean for the
description of reactive systems, since they allow the specification of hierarchical structure;
therefore they seem to be suitable for the specification of hypermedia applications requiring
synchronization control across different levels of the hierarchical structure.

In [15] Statecharts are used to describe the behavior of hypertext networks: however, the
focus is on the specification of system interface behaviors, e.g., related to buttons, frames and
so on. Instead, in [6, 14] a model based on Statecharts, called HMSB - Hypermedia Model
Based on Statecharts, is used to specify both the structural organization and the browsing se-
mantics of hypermedia applications. Here the focus is on synchronization of multimedia data
(i.e. text, audio, animations, images and so on). An environment, called HySChart, supporting
the authoring of structured hyperdocuments based on the HMSB model has been proposed,
which can be used also as a front-end for Web applications. Compared to the HMSB model,
the WebML semantic model addresses structured, data-intensive hypertexts, which do not
consist of page instances connected by links, but of page templates, composed by content
units which retrieve data from a data layer (e.g. a relational database). For this reason the
navigation semantics of WebML results in a more complex specification. Moreover, w.r.t.
[6, 14], Statecharts in WebML are not used as a notation for specifying the Web application,
but they merely represent the method to formally describe its semantics: in fact, the WebML
tools provide a more intuitive graphical notation for the specification of an hypertext, and
rely on the formal semantics to provide an efficient specification checker for such hypertext
model.

Finally, a different approach based on a generalization of Statecharts is used in OOHDM,
which employs ADVcharts [2]. ADVcharts use notations from Petri Nets and statecharts
and are used to provide a formal semantics of Abstract Data Views, a concept for design-
ing interactive user interfaces. Diversely from our approach, ADVcharts address the formal
specification of dynamic aspects of user interfaces, which are seen as composition of simple
visual objects.

Valued Sony Customer
 582

6 Conclusions

In this paper we have presented a semantic model for the WebML site design language. The
model relies on the mapping of WebML constructs (pages, units, and links) into a Statechart.
This mapping caters for all the design primitives of WebML, which are able to formally
express the clicking (and automatic) behavior of complex, real-life data-intensive Web appli-
cations. The proposed semantics has been extensively used as a reference in the implemen-
tation of the WebML design and runtime tools. In the future, further aspects of the WebML
language, designed to cope with sophisticated application requirements (e.g., nested pages,
update operations, data entry units) will also be given a formal semantics using Statecharts,
to formally investigate their properties and runtime behavior and direct their integration in
the WebML design and execution environment.

References

[1] A. Bongio, S. Ceri, P. Fraternali, A. Maurino: Modeling Data Entry and Operations in WebML. WebDB
(Informal Proceedings) 2000: 87-92

[2] L.M.F. Carneiro, D.D. Cowan, C.J.P. Lucena. ”ADVcharts: a Graphical Specification for Abstract Data
Views”. CASCON’93, Toronto, Canada, pp. 84-96 October, 1993.

[3] S. Ceri, P. Fraternali, A. Bongio. ”Web Modeling Language (WebML): a Modeling Language for Design-
ing Web Sites”. Computer Networks, 33, pp. 137-157 (2000).

[4] S. Ceri, P. Fraternali, A. Maurino, S. Paraboschi: One-to-One Personalization of Data-Intensive Web Sites.
WebDB (Informal Proceedings) 1999: 1-6

[5] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, D. Suciu. ”Overview of Strudel - A Web-Site Manage-
ment System”. Networking and Information Systems 1(1): 115-140 (1998).

[6] M.C. Ferreira De Oliveira, M.A.S. Turine, P.C. Masiero. ”A Statechart-based Model for Modeling Hyper-
media Applications”. ACM TOIS, April, 2001.

[7] P. Fraternali. ”Tools and Approaches for Developing Data-Intensive Web Applications: A Survey”. ACM
Computing Surveys 31(3): 227-263 (1999)

[8] F. Garzotto, P. Paolini, D. Schwabe. ”HDM - a Model-based Approach to Hypertext Application Design”.
ACM Transaction on Information Systems 11(1), January, 1-26, 1993.

[9] T. Isakowitz, W. Sthor, P. Balasubramanian. ”RMM: a Methodology for Structured Hypermedia Design”.
CACM, 38(8), pp. 34-44 (1995).

[10] D. Harel, A. Naamad. ”The STATEMATE Semantics of Statecharts”. TOSEM 5(4): 293-333 (1996).

[11] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, G. Sindoni. ”The Araneus Web-Base Management System”.
SIGMOD Conference 1998: 544-546

[12] D. Schwabe, G. Rossi. ”The Object-Oriented Hypermedia Design Model”. Communications of the ACM
38, 8, 45-46, 1995.

[13] P. Stotts, R. Furuta. ”Petri-Net-Based Hypertext: Document Structure with Browsing Semantics”. TOIS
7(1): 3-29 (1989)

[14] M. A. S. Turine, M. C. Ferreira de Oliveira, P. C. Masiero. ”HySCharts: A Statechart-Based Environment
for Hyperdocument Authoring and Browsing”. Multimedia Tools and Applications 8(3): 309-324 (1999).

[15] Y. Zheng, M. Pong. ”Using Statecharts to Model Hypertext”. ECHT 1992: 242-250, 1992.

Valued Sony Customer
 583

S_disabled_BestBookIndex

recomputable_BestBookIndex:=false

/initialize_output_BestBookIndex

/recomputable_i:=true (i=BestBookIndex,...)

clicked_on_anchor_l6 [true]

available

output_context_BestBookIndex_

ENTRY:

S_enabled_BestBookIndex

[true]ε

S_BestBookIndex

/recomputable_i:=true (i=CurrentBookIndex,...)

clicked_on_anchor_l7 [true]

S_CurrentBookIndex

S_disabled_CurrentBookIndex

S_enabled_CurrentBookIndex

ENTRY:

recomputable_CurrentBookIndex:=false

output_context_CurrentBookIndex_

available

/initialize_output_CurrentBookIndex

ε [true]

S_disabled_BookData

S_enabled_BookData

recomputable_BookData:=false

ENTRY:

S_BookData

ouput_context_BestBookIndex

AND NOT access_link_SelectBookPage(BookData)] AND NOT access_link_SelectBookPage(BookData)]

/input_context_BookData:=

AND recomputable_BookData

[output_context_CurrentBookIndex<>NULL

output_context_CurrentBookIndex_available

ouput_context_CurrentBookIndex

output_context_BestBookIndex_available

output_context_BestBookIndex_available

[output_context_BestBookIndex=NULL]

[output_context_BestBookIndex<>NULL

AND recomputable_BookData

/ ε

output_context_CurrentBookIndex_available

[output_context_CurrentBookIndex=NULL]

ε/

output_context_BestBookIndex_available

[output_context_BestBookIndex<>NULL

AND recomputable_BookData]

/input_context_BookData:=

/input_context_BookData:= ouput_context_BestBookIndex

output_context_CurrentBookIndex_available

[output_context_CurrentBookIndex<>NULL

AND recomputable_BookData]

/input_context_BookData:= ouput_context_CurrentBookIndex

S_SelectBookPage

Figure 8: Statechart of a page with racing condition

Valued Sony Customer
 584

Application directory

WebML Control Center

presentation specifications
Structure, hypertext and

Unit descriptors (XML)

Design Layer

Page templates
(e.g. in JSP 1.1)

Web server

JSP engine

WebML TagLib

WebML runtime

Runtime Layer

JDBC

Database

Data Layer

Figure 9: The WebML architecture

Valued Sony Customer
 585

Administrator
586

Development of a Simple Ontology Definition
Language (SOntoDL) and Its Application to a

Medical Information Service on the
World Wide Web

Rolf GRÜTTER and Claus EIKEMEIER
,QVWLWXWH�IRU�0HGLD�DQG�&RPPXQLFDWLRQV�0DQDJHPHQW��8QLYHUVLW\�RI�6W��*DOOHQ�

%OXPHQEHUJSODW]����&+������6W��*DOOHQ��6ZLW]HUODQG

$EVWUDFW� It is the vision of the protagonists of the Semantic Web to achieve a set of
connected applications for data on the World Wide Web (WWW) in such a way as
to form a consistent logical web of data. Therefore, the Semantic Web approach
develops languages for expressing information in a machine-processable form.
Particularly, the Resource Description Framework (RDF) and RDF Schema (RDFS)
are considered as the logical foundations for the implementation of the Semantic
Web. This paper documents the development of a Simple Ontology Definition
Language (SOntoDL). The development is part of a project aimed at the
implementation of an ontology-based semantic navigation through a glossary of an
evidence-based medical information service on the WWW. The latest version of
SOntoDL is integrated with the RDF/RDFS framework thereby providing for the
foundation of a Semantic Web of evidence-based medical information.

��� ,QWURGXFWLRQ

One of the hot topics in medical informatics is the handling of medical terminologies. Thereby,
the challenge is twofold. Firstly, the conflicting targets of a concept representation that is close to
the real-world and, at the same time, easy to handle by healthcare professionals, e.g., for the
coding of diagnoses or indexing of medical subjects, must be solved [17]. Secondly, as existing
terminologies like MeSH (Medical Subject Headings), SNOMED (Standardized NOmenclature
of MEDicine [19]), and UMLS (Unified Medical Language System [18]) show, it is not evident
that medical terminologies provide enough conceptual expressiveness to allow for an easy
handling from a formal-logical point of view. Particularly, the mentioned terminologies do not
distinguish between generic (IS-A) and partitive (PART-OF) relations [15]. However, a formal-
logical foundation is pivotal if terminologies should be processable by computers.

Whereas in closed healthcare settings knowledge engineering, i.e., the discipline that deals
with the formal representation of terminologies, has quite a tradition, the advent of the World
Wide Web (WWW) brought about an increase in its scale and scope. The increased scale refers to
the spread of the WWW which is literally world-wide. The increase in scope refers to the

Administrator
587

extension of knowledge engineering methods to non-medical domains, such as corporations. This
trend is reflected by the recent Semantic Web initiative [1].

It is the vision of the protagonists of the Semantic Web to achieve „a set of connected
applications for data on the WWW in such a way as to form a consistent logical web of data“ ([1],
p. 1). Therefore, the Semantic Web approach develops languages for expressing information in a
machine-processable form. Particularly, the Resource Description Framework, RDF [14] and
RDF Schema, RDFS [5] are considered as the logical foundations for the implementation of the
Semantic Web.

This paper documents the development of a Simple Ontology Definition Language
(SOntoDL). The development is part of a project aimed at the implementation of an ontology-
based semantic navigation through a glossary of an evidence-based medical information service
on the WWW. The terminology on which the ontology is based refers to the field of clinical
epidemiology. The latest version of SOntoDL is integrated with the RDF/RDFS framework
thereby providing for the foundation of a Semantic Web of evidence-based medical information.

��� $SSOLFDWLRQ�'RPDLQ��7KH�(YLPHG�3URMHFW

The Evimed project (www.evimed.ch) was initiated in April 1998. It aims at providing general
practitioners in the German speaking countries with relevant and reliable information for daily
practice, thereby supporting the practitioners in making appropriate medical decisions. To achieve
this, a group of physicians who are trained in evidence-based medicine systematically reviews
published studies with respect to practical relevance and trustworthiness. These reviews are
published together with the links to the original articles in the Journal Club of Evimed (Figure 1).

)LJXUH��� Journal club of the Evimed website

Administrator
588

The Journal Club is the core of the Evimed website. Currently (i.e., in July 2001) it stores 400
reviews of selected articles published in various biomedical journals. The reviews are categorized
according to 22 specialties and can either be browsed or be accessed via a (syntactic) search
engine. The website includes a separate section with articles on the subject of Evidence-Based
Medicine (EBM). Evimed also includes a glossary with currently 25 definitions of EBM-specific
terms from the field of clinical epidemiology. Further services include free access to Medline,
links to literature and other EBM-related sources (e.g., a calendar of events related to further
education in EBM), and a guest book offering the possibility to post comments and to subscribe
for a free newsletter. Taking into account the objection of practitioners who do not feel
comfortable with translating foreign languages, all text of the website is in German.

As mentioned in the Introduction, the development of SOntoDL is part of a project aimed at
the implementation of an ontology-based semantic navigation through the glossary of Evimed.
The ultimate vision of the project is to effectively meet the information needs of the practitioners
who are often not familiar with terms from the domain of clinical epidemiology.

��� 0HWKRGV��7KH�&RQFHSW�RI�WKH�2QWRORJ\

The applied conceptual framework refers to the concept of the ontology as defined by Gruber [8].
According to Gruber, an ontology is a specification of a conceptualization, i.e., a formal
description of the concepts and their relations for a „universe of discourse“. The universe of
discourse refers to the set of objects which can be represented in order to represent the
(propositional) knowledge of a domain. This set of objects and the describable relations among
them are reflected in a representational vocabulary. In an ontology, definitions associate the
names of objects in the universe of discourse with human-readable text, describing what the
names mean, and formal axioms constrain the interpretation and well-formed use of the ontology.
In short, an ontology consists of the triple (vocabulary, definitions, axioms). Formally, an
ontology is the statement of a logical theory.

This conceptual framework has been applied in order to define a simple ontology definition
language. The three major steps of the development process are described in the following
section.

��� 5HVXOWV��7RZDUGV�$�6LPSOH�2QWRORJ\�'HILQLWLRQ�/DQJXDJH

The development process of SOntoDL was guided by the following requirements:
(1) The language format must allow for an easy integration with the WWW.
(2) Since the knowledge base of the given domain evolves with time, the language must allow for

an easy extension of the ontology without requiring the modification of the program that
processes the ontology (i.e., the inference engine).

(3) The language should be applicable not only to the given application domain but also to
additional domains.

(4) The language should support the physically dissociated (i.e., distributed) maintenance of
representational vocabulary and human-readable definitions, as the two do not require the
same frequency of updates and the respective editors may not be the same.

Administrator
589

(5) The language should allow for the representation of complex, non-hierarchical knowledge
structures.

(6) The language should allow to distinguish between generic (IS-A) and partitive (PART-OF)
relations thereby providing enough conceptual expressiveness to support an easy handling of
the representational vocabulary from a formal-logical point of view.

(7) The language should be integrated in a common logical framework for connected applications
on the WWW thereby taking advantage of a range of tools (hopefully) being developed.

Not all of these requirements were specified prior to the development of SOntoDL. Instead, the
list was completed during the development process. The latter can be structured according to the
three basic approaches, i.e., intuitive approach, generic approach, and integration into the
RDF/RDFS framework.

����� ,QWXLWLYH�$SSURDFK

The intuitive approach builds on a simple mapping of the paper-based concept hierarchy as
provided by the healthcare professionals of Evimed onto an Extensible Markup Language (XML)
document tree, whereby the names of the concepts are represented as tag names (Figure 2). By
using the emerging WWW standard XML as the core technology for SOntoDL the requirement
(1) is met.

<EBM_Ontologie>
...
<Stat_Kennzahlen>

<Kennzahlen_Therapie>
<Ereignis>

<Ereignisrate>
<EER>

<CER>
<ARR/>
<RRR>

<NNT/>
</RRR>

</CER>
</EER>

</Ereignisrate>
</Ereignis>

</Kennzahlen_Therapie>
...

</Stat_Kennzahlen>
</EBM_Ontologie>

)LJXUH� �� Intuitive approach to a simple ontology definition language. Note that the XML
representation is incomplete and not ready for a processing by a software program. For complete
XML documents cf. Figures 4 and 6.

The intuitive approach yields the advantage of comprehensiveness and easy readability by
men. As a main disadvantage the representational vocabulary is fixed and cannot be extended
without modifying the Document Type Definition (DTD) (not shown). In other words, it makes

Administrator
590

no sense to define a DTD at all (the definition of a DTD for a class of XML documents is
optional). The intuitive approach defines a particular ontology language, namely for the domain
of evidence-based medicine, rather than an ontology GHILQLWLRQ language and cannot be applied to
other domains. Due to its obvious weakness, the intuitive approach – while initially intended –
has not been implemented.

����� *HQHULF�$SSURDFK

The generic approach defines an ontology definition language by an XML DTD (Figure 3).
Different from the intuitive approach, most of the element types denote generic concepts such as
item, identifier, and description. „Generic“ means in this context that the concepts do
not refer to a particular application domain (e.g., EBM). In addition, since the ontology
includes zero, one or more item (denoted by the symbol *) and each item, in turn, includes
zero, one or more item, the ontology can be arbitrarily extended. This way, the requirements (2)
and (3) are met in addition to (1).

<!ELEMENT ontology (item*)>
<!ATTLIST ontology version CDATA #FIXED "1.1">
<!ELEMENT item (identifier+,description, item*)>
<!ATTLIST item myID NMTOKEN #IMPLIED>
<!ELEMENT identifier (#PCDATA)>
<!ATTLIST identifier language (english | german | french) #REQUIRED>
<!ATTLIST identifier format (short | long) #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ATTLIST description language (english | german | french) #REQUIRED>
<!ATTLIST description implementation (html|url) #REQUIRED>

)LJXUH��� Generic approach to a simple ontology definition language

The generic version of SOntoDL has been applied in order to implement a prototype of an
ontology-based semantic navigation through the glossary of an evidence-based medical
information service on the WWW [9]. At this small scale, it proved to be well defined. However,
when the language was applied to a different domain, i.e., the NetAcademy
(www.netacademy.org), its limitations became clear: Since the ontology is implemented as a
single XML file, the document soon gets very large and hard to handle. Worse, all updates, be it
of the representational vocabulary (element type identifier) or of the human-readable
definitions (element type description), must be made in this central document. In order to
anticipate these disadvantages (and to meet requirement 4), the option to implement the
description as an URI reference [2] instead of a CDATA section was added to the language
(attribute implementation). Even though this extension of SOntoDL is marginal, it has a
major impact on its applicability. Particularly, it is now possible to integrate external resources
into the domain ontology. In other words, external resources can be annotated with a
representational vocabulary by simple URI references.

Administrator
591

����� ,QWHJUDWLRQ�LQWR�WKH�5')�5')6�)UDPHZRUN

The generic version of SOntoDL takes advantage of the intrinsic structuring capabilities of XML
documents, i.e., the representational vocabulary is implemented as a hierarchy of items together
with their identifiers and descriptions, whereby each item corresponds to a node of the document
tree. This pragmatic approach has been chosen since the Evimed vocabulary was provided as a
hierarchy of concepts. The disadvantage of this approach is its limitation to a (mono-) hierarchical
representation and the inability to represent more complex knowledge structures. In order to
overcome this limitation, SOntoDL is integrated into the RDF/RDFS framework, that is the
potential de facto standard for connected applications on the WWW. Thus, along with this third
development step, the requirements (5), (6) (see below), and (7) are met in addition to (1) - (4).

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF
 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“
 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#“
 xmlns:o=“http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf“>
 <rdf:Description ID=“Item“>
 <rdf:type resource=“http://www.w3.org/2000/01/rdf-schema#Class“/>
 <rdfs:subClassOf resource=“http://www.w3.org/2000/01/rdf-
 schema#Resource“/>
 </rdf:Description>
 <rdf:Description ID=“childOf“>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Irreflexive“/>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Asymmetric“/>
 <rdfs:domain rdf:resource=“#Item“/>
 <rdfs:range rdf:resource=“#Item“/>
 <o:isInverseRelationOf rdf:resource=“#parentOf“/>
 </rdf:Description>
 <rdf:Description ID=“siblingOf“>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Irreflexive“/>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Symmetric“/>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Transitive“/>
 <rdfs:domain rdf:resource=“#Item“/>
 <rdfs:range rdf:resource=“#Item“/>
 </rdf:Description>
 <rdf:Description ID=“parentOf“>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Irreflexive“/>
 <rdf:type resource=“http://ontoserver.aifb.uni-
 karlsruhe.de/schema/rdf#Asymmetric“/>
 <rdfs:domain rdf:resource=“#Item“/>
 <rdfs:range rdf:resource=“#Item“/>
 </rdf:Description>
</rdf:RDF>

)LJXUH��� Integration of SOntoDL into the RDF/RDFS framework

Administrator
692

In view of its conception, the generic approach to SOntoDL is closely related to RDF/RDFS,
and a re-definition mainly required the effort to become familiar with RDF/RDFS. The concept
corresponding to the XML DTD is the RDF 6FKHPD. Therefore, SOntoDL is re-defined as an
application-specific extension to RDFS (Figure 4). In addition to the generic namespaces rdf
and rdfs (referring to the RDF Schema), the namespace o [16] is used. The latter refers to a
schema that provides an ontology meta-layer for the representation of axioms. These can be used
to type relations (i.e., properties in terms of RDF/RDFS) thereby providing the basis for the
implementation of integrity constraints for the ontology. While the re-definition of the so far
latest version of SOntoDL has been completed, it has only been partially applied to the EBM
domain in order to test its applicability. Figure 5 shows the Directed Labeled Graph (DLG)
representation of a sample ontology item defined by SOntoDL.

/�

/�

/�

/�

VRQWRGO�,WHP

R
�L
V,
Q
Y
H
U
VH
5
H
OD
WL
R
Q
2
I

sontodl:siblingOf

rdfs:label

sontodl:childOf

rdfs:comment

sontodl:parentOf

http://www.evimed.ch/
JournalClub/Glossar/CER.html

http://www.evimed.ch/

JournalClub/Glossar/RRR.html

http://www.evimed.ch/
JournalClub/Glossar/ARR.html

http://www.evimed.ch/
JournalClub/Glossar/NNT.html

Relative
Risikoreduktion

This is the
definition of …

UGIV�5HVRXUFH

UGIV�&ODVV

R�5HODWLRQ

VRQWRGO�FKLOG2I

R
�7
U
D
Q
VL
WL
Y
H

R
�$
VV
\
P
P
H
WU
LF

R
�6
\
P
P
H
WU
LF

R
�,
U
U
H
IO
H
[
LY
H

VRQWRGO�VLEOLQJ2I VRQWRGO�SDUHQW2I

UGI�3URSHUW\

/� : Application-specific actual data
/� : Application-specific schema and namespace
/� : Ontology meta layer and namespace
/� : RDF/RDFS layer and namespace

rdfs:subClassOf

rdf:type

)LJXUH��� DLG representation of an Evimed ontology item defined by SOntoDL. Note that the
sontodl namespace refers to SOntoDL which is defined as an application-specific extension to
RDFS as shown in Figure 4. The resources on the application-specific actual data layer refer to
four glossary items of the Evimed website. The serialization of the DLG representation in RDF
syntax is shown in Figure 6.

Administrator
593

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF
 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“
 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#“
 xmlns:dc=“http://dublincore.org/documents/1999/07/02/dces/“
 xmlns:odoc=“http://ontoserver.aifb.uni-karlsruhe.de/schema/ontodoc“
 xmlns:o=“http://ontoserver.aifb.uni-karlsruhe.de/schema/rdf“
 xmlns:sontodl=“http://.../schema/sontodl“>
 <rdf:Description about="">
 <dc:Title>Evimed Ontology</dc:Title>
 <dc:creator>
 <rdf:Bag>
 <rdf:li>Rolf Gruetter</rdf:li>
 <rdf:li>Claus Eikemeier</rdf:li>
 </rdf:Bag>
 </dc:creator>
 <dc:date>2000-10-25</dc:date>
 <dc:format>text/xml</dc:format>
 <dc:description>An ontology on evidence-based medicine.</dc:description>
 <dc:subject>Ontology, Evidence-based medicine</dc:subject>
 <odoc:url>http://...</odoc:url>
 <odoc:version>2.0</odoc:version>
 <odoc:last_modification>2000-10-25</odoc:last_modification>
 </rdf:Description>
 <rdf:Description about=“http://www.evimed.ch/JournalClub/Glossar/RRR.html“>
 <rdf:type resource=“http://.../schema/sontodl#Item“/>
 <rdfs:label xml:lang=“de“>Relative Risikoreduktion</rdfs:label>
 <rdfs:comment xml:lang=“en“>This is the definition of the labeled concept
 by Evimed.</rdfs:comment>
 <sontodl:childOf
 resource=“http://www.evimed.ch/JournalClub/Glossar/CER.html“/>
 <sontodl:siblingOf
 resource=“http://www.evimed.ch/JournalClub/Glossar/ARR.html“/>
 <sontodl:parentOf
 resource=“http://www.evimed.ch/JournalClub/Glossar/NNT.html“/>
 </rdf:Description>
</rdf:RDF>

)LJXUH� �� Serialization of the DLG representation of an Evimed ontology item defined by
SOntoDL in RDF syntax. Note that additional schemata, referred to by the namespaces dc and
odoc, are used in order to represent ontology meta-data.

��� 'LVFXVVLRQ

There is quite a number of related approaches to ontology definition languages (cf. Section 6).
Nevertheless, the presented approach follows its own conception. The reason therefore is that the
need for an ontology definition language arose during a particular project in a particular
application domain (cf. Section 2). As a consequence, initially a pragmatic approach was chosen
which was step by step refined as reported in Section 4. The core of the initial conception was to
keep the language as simple as possible and to avoid unnecessary overkill (therefore, an
unreflected application of one of the languages mentioned in Section 6 was not considered).

Administrator
594

During the project, this conception was partially weakened, primarily in favor of a more general
applicability.

As mentioned, the latest version of SOntoDL resulting from the integration into the
RDF/RDFS framework unfolds its full potential only if increasingly tools are available that
support RDF/RDFS. In case another technology for the implementation of the Semantic Web,
such as Topic Maps [3] outsmarts RDF/RDFS, SOntoDL has to be adapted.

��� 5HODWHG�:RUN

SHOE (Simple HTML Ontology Extensions) provides distributed ontologies consisting of
categories and relationship rules [10]. Thereby, the categories provide for the classification of
instances. They are organized hierarchically and support multiple inheritance. The relationship
rules are implemented as Horn clauses. The instances (i.e., individual constants in terms of Horn-
rules) are represented as URLs/URIs. This is similar to the approach as presented in this chapter,
where the human-readable definitions, as part of the ontology, are likewise represented by URI
references. SHOE was originally specified in SGML (as is HTML) (before the definition of
XML) but is meanwhile also specified as an XML DTD.

XOL (XML-based Ontology Exchange Language) is a language for specifying and exchanging
ontologies [13]. XOL is specified in an XML-based syntax (kernel DTD). It uses a frame-based
semantic model, i.e., OKBC-Lite. An XOL file consists of a module-header definition and one or
more class, slot and individual definitions. The module-header definition provides meta-
information of the ontology, such as the name and version. The class definitions provide the
classes and subclasses of the defined individuals. The slot definitions are strings that encode the
official names of the entities. Each slot definition refers to a class name. The individual
definitions provide the names, documentations, instance-of information, and slot-values of the
defined individuals. As a disadvantage, XOL does not re-use the core semantics of RDF/RDFS.
Hence, „pure“ RDF/RDFS applications cannot process even the core object-model definitions.

The Ontobroker application answers queries based on a facts base and an ontology base [7].
The facts base stores instance information („values“ in terms of the query interface) which is
extracted from annotated HTML pages, for instance, of a corporate Intranet, which is different
from the hereby presented approach, where the HTML pages, i.e., the resources, are externally
annotaded by RDF descriptions. The ontology base stores a set of ontologies. Each ontology
includes a concept hierarchy („classes“), a set of slot definitions („attributes“), and a set of rules.
The rules implement integrity constraints for the ontology. Ontologies are defined as F-logic
statements.

An approach to representing ontologies in RDF/RDFS, similar to [16] (and to the latest version
of SOntoDL), is pursued with OIL [12, 6]. OIL uses description logics for the definition of
concepts and relations and proposes an ontological meta-layer that is combinable with the herein
applied axiom categorization proposed by [16].

Closely related is the recent approach as pursued by DAML (DARPA Agent Markup
Language) [11]. The goal of the DAML program is to create technologies that enable software
agents to dynamically identify and understand information sources, and to provide interoperability
between agents in a semantic manner. Particularly, an agent markup language developed as an
extension to XML and RDF should allow users to provide machine-readable semantic annotations
for specific communities of interest. According to the initiators of the DAML program and

Administrator
595

similar to Ontobroker, objects in the Web will be marked to include descriptions of information
they encode, of functions they provide, and/or of data they can produce. In addition, DAML
should allow for an „ontology calculus“ similar to the relational calculus that makes DataBase
Management Systems (DBMS) possible.

5HIHUHQFHV

1. Berners-Lee, T.: Semantic Web Road map. (1998) Retrieved July 6, 2001 from the World Wide Web:
http://www.w3.org/DesignIssues/Semantic.html

2. Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L.: Uniform Resource Locators (URI): Generic Syntax.
(1998) Retrieved July 6, 2001 from the World Wide Web: http://www.ietf.org/rfc/rfc2396.txt

3. Biezunski, M., Bryan, M., Newcomb, S.R.: ISO/IEC FCD 13250:1999 – Topic Maps. Retrieved July 6, 2001
from the World Wide Web: http://www.ornl.gov/sgml/sc34/document/0058.htm

4. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E. (2000). Extensible Markup Language (XML) 1.0 (Second
Edition). W3C Recommendation 6 October 2000. Retrieved July 6, 2001 from the World Wide Web:
http://www.w3.org/TR/REC-xml

5. Brickley, D., Guha, R.V.: Resource Description Framework (RDF). Schema Specification 1.0. W3C Candidate
Recommendation 27 March 2000. Retrieved July 6, 2001 from the World Wide Web: http://www.w3.org/TR/rdf-
schema/

6. Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., Horrocks, I.: Enabling Knowledge
Representation on the Web by Extending RDF Schema. The Tenth International World Wide Web Conference
(WWW10), May 1-5, 2001, Hong Kong. ACM 1-58113-348-0/01/0005. Retrieved July 9, 2001 from the World
Wide Web: http://www10.org/cdrom/papers/291/index.html

7. Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology Based Access to Distributed and
Semi-Structured Information. In R. Meersman et al. (Eds.): Semantic Issues in Multimedia Systems. Proceedings
of DS-8 (pp. 351-369). Boston: Kluwer Academic Publisher.

8. Gruber, T.:. What is an Ontology? (1997) Retrieved July 6, 2001 from the World Wide Web: http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html

9. Grütter, R., Eikemeier, C., & Steurer, J. (2001). Up-scaling a Semantic Navigation of an Evidence-based Medical
Information Service on the Internet to Data Intensive Extranets. In Proceedings of the 2nd International Workshop
on User Interfaces to Data Intensive Systems (UIDIS 2001). Los Alamitos, California, USA: IEEE Computer
Society Press.

10. Heflin, J., Hendler, J., & Luke, S. (1999). SHOE: A Knowledge Representation Language for Internet
Applications. Technical Report CS-TR-4078, University of Maryland, College Park.

11. Hendler, J.: DAML: The DARPA Agent Markup Language Homepage. Retrieved July 6, 2001 from the World
Wide Web: http://www.daml.org

12. Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C., Harmelen, F.V., Klein, M., Staab, S.,
Studer, R.: The Ontology Interchange Language OIL: The Grease Between Ontologies (Tech. Rep., 2000). Dep.
of Computer Science, Univ. of Manchester, UK/ Vrije Universiteit Amsterdam, NL/ AIdministrator, Nederland
B.V./ AIFB, Univ. of Karlsruhe, DE. (http://www.cs.vu.nl/˜dieter/oil/)

13. Karp, P.D., Chaudhri, V.K., Thomere, J.: XOL: An XML-Based Ontology Exchange Language (Tech. Rep.,
Version 0.3, 1999)

14. Lassila, O., Swick, R.R.: Resource Description Framework (RDF). Model and Syntax Specification. W3C
Recommendation 22 February 1999. Retrieved July 6, 2001 from the World Wide Web:
http://www.w3.org/TR/REC-rdf-syntax/

15. Schulz, S., Romacker, M., Hahn, U.: Ein beschreibungslogisches Modell für partitive Hierarchien in
medizinischen Wissensbasen. In: Greiser, E.; Wischnewsky, M. (Hrsg.): Methoden der Medizinischen Informatik,
Biometrie und Epidemiologie in der modernen Informationsgesellschaft. MMV Medien & Medizin Verlag,
München (1998) 40-43

16. Staab, S., Erdmann, M., Maedche, A., Decker, S.: An Extensible Approach for Modeling Ontologies in RDF(S).
Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Universität Karlsruhe (2000).
Retrieved July 6, 2001 from the World Wide Web: http://www.aifb.uni-
karlsruhe.de/~sst/Research/Publications/onto-rdfs.pdf

Administrator
596

17. Straub, H.: Four Models of Concept Architectures. In: Grütter, R. (ed.): Knowledge Media in Healthcare:
Opportunities and Challenges. Idea Group Publishing, Hershey/London (2002) (to appear).

18. United States National Library of Medicine. Unified Medical Language System (UMLS). Retrieved July 6, 2001
from the World Wide Web: http://www.nlm.nih.gov/research/umls/umlsmain.html

19. Wingert, F.: SNOMED Manual. Springer-Verlag, Berlin (1984)

Administrator
597

	paper50.pdf
	Introduction
	Requirements
	Existing Ontology Environments
	Ontology Builder
	Architecture
	Knowledge Representation
	Ontology Inclusion (Uses Relationship)
	Data Storage and Knowledge-Relational Mapping
	Multi User Collaboration & Locking
	Verification
	Difference & Merging
	Role Based Security
	Internationalization
	Import & Export

	Ontology Server
	Usage & Performance
	
	
	Iterations

	Discussion
	Acknowledgements
	References

	paper56.pdf
	1 Introduction
	2 The problem: versioning of ontologies
	2.1 Causes of ontology changes
	2.2 Consequences of the change

	3 Analysis of compatibility
	4 Current practices and requirements
	4.1 Simple example
	4.2 More complicated example
	4.3 Observations
	4.4 Requirements for versioning framework

	5 Building blocks for a versioning methodology
	5.1 Ontology identification on the web
	5.2 Change specification and transparent evolution

	6 Conclusions and further work
	A Implementation in DAML+OIL

	track2.pdf
	paper20.pdf
	2. The RuleML Initiative as a Web Ontology Effort
	3. The Modular Syntax and Semantics of RuleML
	5. Negation Handling in RuleML
	6. Priorities/Evidences in RuleML
	7. Agents and RuleML
	8. RuleML Implementations via XSLT and Rule Engines
	9. Conclusions
	Acknowledgements
	References

	Appendix 1: A Semantic Web Scenario in the Insurance Industry
	Appendix 2: DTD for a Datalog Subset of RuleML
	Appendix 3: Example RuleML Document: A Rulebase own.ruleml

	track3.pdf
	paper55.pdf
	Site modeling schema
	4 Web Site Generation

