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Abstract. A prominent approach to implementing ontology-mediated
queries (OMQs) is to rewrite into a first-order query, which is then
executed using a conventional SQL database system. We consider the
case where the ontology is formulated in the description logic EL and
the actual query is a conjunctive query and show that rewritings of such
OMQs can be efficiently computed in practice, in a sound and complete
way. Our approach combines a reduction with a decomposed backwards
chaining algorithm for OMQs that are based on the simpler atomic queries,
also illuminating the relationship between first-order rewritings of OMQs
based on conjunctive and on atomic queries. Experiments with real-world
ontologies show promising results.

1 Introduction

One of the most important tools in ontology-mediated querying is query rewriting :
reformulate a given ontology-mediated query (OMQ) in an equivalence-preserving
way in a query language that is supported by a database system used to store
the data. Since SQL is the dominating query language in conventional database
systems, rewriting into SQL and into first-order logic (FO) as its logical core
has attracted particularly much attention [3, 4, 5, 6, 7, 10, 12, 15]. In fact, the
DL-Lite family of description logics (DLs) was invented specifically with the
aim to guarantee that FO-rewritings of OMQs (whose ontology is formulated
in DL-Lite) always exist [1,7], but is rather restricted in expressive power. For
essentially all other DLs, there are OMQs which cannot be equivalently rewritten
into an FO query. However, ontologies used in real-world applications tend to have
a very simple structure and, consequently, one may hope that FO-rewritings of
practically relevant OMQs exist in the majority of cases. This hope was confirmed
in an experimental evaluation carried out in the context of the EL family of
description logics where less than 1% of the considered queries was found not to
be FO-rewritable [12]; moreover, most of the negative cases seemed to be due to
modeling mistakes in the ontology.

In this paper, we focus on the description logic EL, which can be viewed as a
logical core of the OWL EL profile of the OWL 2 ontology language [20]. We use
(L,Q) to denote the OMQ language that consists of all OMQs where the ontology
is formulated in the description logic L and the actual query is formulated in the



query language Q. Important choices for Q include atomic queries (AQs) and the
much more expressive conjunctive queries (CQs). It has been shown in [6] that
for OMQs from (EL,AQ), it is ExpTime-complete to decide FO-rewritability.
Combining the techniques from [6] and the backwards chaining approach to query
rewriting brought forward e.g. in [8, 15], a practical algorithm for computing
FO-rewritings of OMQs from (EL,AQ) was then developed in [12]. This algorithm
is based on a decomposed version of backwards chaining that implements a form
of structure sharing. It was implemented in the Grind system and shown to
perform very well in practice [12]. It is important to remark that the algorithm is
complete, that is, it computes an FO-rewriting whenever there is one and reports
failure otherwise.

The aim of this paper is to devise a way to efficiently compute FO-rewritings
of OMQs from (EL,CQ), and thus the challenge is to deal with conjunctive
queries instead of only with atomic ones. Note that, as shown in [5], FO-re-
writability in (EL,CQ) is still ExpTime-complete. Our approach is to combine
a reduction with the decomposed algorithm from [12], also illuminating the
relationship between first-order rewritings of OMQs based on CQs and on AQs. It
is worthwhile to point out that naive reductions of FO-rewritability in (EL,CQ)
to FO-rewritability in (EL,AQ) fail. In particular, FO-rewritability of all AQs
that occur in a CQ q are neither a sufficient nor a necessary condition for q to
be FO-rewritable. As a simple example, consider the OMQ that consists of the
ontology and query

O = {∃r.A v A, ∃s.> v A} and q(x) = ∃y (A(x) ∧ s(x, y))

and which is FO-rewritable into ∃y s(x, y), but the only AQ A(x) that occurs in
q is not FO-rewritable in the presence of O.1 In fact, it is not clear how to attain
a reduction of FO-rewritability in (EL,CQ) to FO-rewritability in (EL,AQ), and
even less so a polynomial time one. This leads us to considering mildly restricted
forms of CQs and admitting reductions that make certain assumptions on the
algorithm used to compute FO-rewritings in (EL,AQ)—all of them are satisfied
by the decomposed backwards chaining algorithm implemented in Grind.

We first consider the class of tree-quantified CQs (tqCQs) in which the
quantified parts of the CQ form a collection of directed trees. In this case, we
indeed achieve a polynomial time reduction to FO-rewritability in (EL,AQ). To
also transfer actual FO-rewritings from the OMQ constructed in the reduction
to the original OMQ, we make the assumption that the rewriting of the former
takes the form of a UCQ (union of conjunctive queries) in which every CQ is
tree-shaped and that, in a certain sense made precise in the paper, atoms are
never introduced into the rewriting ‘without a reason’. Both conditions are very
natural in the context of backwards chaining and satisfied by the decomposed
algorithm.

We then move to rooted CQs (rCQs) in which every quantified variable must
be reachable from some answer variable (in an undirected sense, in the query

1 OMQs also allow to fix the signature (set of concept and role names) that can occur in
the ABox. In this example, we do not assume any restriction on the ABox signature.



graph). We consider this a mild restriction and expect that almost all queries in
practical applications will be rCQs. In the rCQ case, we do not achieve a ‘black
box’ reduction. Instead, we assume that FO-rewritings of the constructed OMQs
from (EL,AQ) are obtained from a certain straightforward backwards chaining
algorithm or a refinement thereof as implemented in the Grind system. We then
show how to combine the construction of (several) OMQs from (EL,AQ), similar to
those constructed in the tqCQ case, with a modification of the assumed algorithm
to decide FO-rewritability in (EL, rCQ) and to construct actual rewritings. The
approach involves exponential blowups, but only in parameters that we expect
to be very small in practical cases and that, in particular, only depend on the
actual query contained in the OMQ but not on the ontology.

We have implemented our approach in the Grind system and carried out
experiments on five real-world ontologies with 10 hand-crafted CQs for each. The
average runtimes are between 0.5 and 19 seconds (depending on the ontology),
which we consider very reasonable given that we are dealing with a complex
static analysis problem.

Proofs are deferred to the appendix, which is made available at http://www.
cs.uni-bremen.de/tdki/research/papers.html.

Related Work. We directly build on our prior work in [12] as discussed
above, and to a lesser degree also on [5,6]. The latter line of work has recently been
picked up in the context of existential rules [3]. The distinguishing features of our
work are that (1) our algorithms are sound, complete, and terminating, that is,
they find an FO-rewriting if there is one and report failure otherwise, and (2) we
rely on the decomposed calculus from [12] that implements structure sharing for
constructing small rewritings and achieving practical feasibility. We are not aware
of other work that combines features (1) and (2) and is applicable to OMQs based
on EL. In the context of the description logic DL-Lite, though, the construction of
small rewritings has received a lot of attention, see e.g. [11, 13, 22, 23]. Producing
small rewritings of OMQs whose ontology is a set of existential rules has been
studied in [14], but there are no termination guarantees. Constructing small
Datalog-rewritings of OMQs based on EL, which are guaranteed to always exist,
was studied e.g. in [9, 21, 25, 26]. A different approach to answering EL-based
OMQs using SQL databases is the combined approach where the consequences
of the ontology are materialized in the data [18,24].

2 Preliminaries

Let NC, NR, and NI be countably infinite sets of concept names, role names, and
individual names. An EL-concept is formed according to the syntax rule

C,D ::= > | A | C uD | ∃r.C

where A ranges over NC and r over NR. An EL-TBox T is a finite set of concept
inclusions C v D, with C and D EL-concepts. Throught the paper, we use
EL-TBoxes as ontologies. An ABox is a finite set of concept assertions A(a) and
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http://www.cs.uni-bremen.de/tdki/research/papers.html


role assertions r(a, b) where a and b range over NI. We use Ind(A) to denote the
set of individual names in the ABox A. A signature is a set of concept and role
names. When an ABox uses only symbols from a signature Σ, then we call it
a Σ-ABox. To emphasize that a signature Σ is used to constrain the symbols
admitted in ABoxes, we sometimes call Σ an ABox signature.

The semantics of concepts, TBoxes, and ABoxes is defined in the usual way,
see [2]. We write T |= C v D if the concept inclusion C v D is satisfied in every
model of T ; when T is empty, we write |= C v D. As usual in ontology-mediated
querying, we make the standard names assumption, that is, an interpretation
I satisfies a concept assertion A(a) if a ∈ AI and a role assertion r(a, b) if
(a, b) ∈ rI .

A conjunctive query (CQ) takes the form q(x) = ∃yϕ(x,y) with x,y tuples
of variables and ϕ a conjunction of atoms of the form A(x) and r(x, y) that uses
only variables from var(q) = x∪ y. The variables x are the answer variables of q,
denoted avar(q), and the arity of q is the length of x. Unless noted otherwise, we
allow equality in CQs, but we assume w.l.o.g. that equality atoms contain only
answer variables, and that when x = y is an equality atom in q, then y does not
occur in any other atoms in q. Other occurences of equality can be eliminated by
identifying variables. An atomic query (AQ) is a conjunctive query of the form
A(x). A union of conjunctive queries (UCQ) is a disjunction of CQs that share
the same answer variables.

An ontology-mediated query (OMQ) is a triple Q = (T , Σ, q) where T is a
TBox, Σ an ABox signature, and q a CQ. We use (EL,AQ) to denote the set of
OMQs where T is an EL-TBox and q is an AQ, and similarly for (EL,CQ) and
so on. We do generally not allow equality in CQs that are part of an OMQ. Let
Q = (T , Σ, q) be an OMQ, A a Σ-ABox and a ⊆ Ind(A). We write A |= Q(a) if
I |= q(a) for all models I of T and A. In this case, a is a certain answer to Q
on A.

Example 1. Consider an example from the medical domain. The following ABox
holds data about patients and diagnoses:

A = {Person(a), hasDisease(a, oca1),Albinism(oca1)}

A TBox T1 is used to make domain knowledge available:

T1 = {Albinism v HereditaryDisease,

Person u ∃hasDisease.HereditaryDisease v GeneticRiskPatient}

Let Q1 be the OMQ (T1, Σfull, q1(x)), where q1(x) = GeneticRiskPatient(x), and
Σfull contains all concept and role names. It can be verified that A |= Q1(a). a

We do not distinguish between a CQ and the set of atoms in it and associate
with each CQ q a directed graph Gq := (var(q), {(x, y) | r(x, y) ∈ q}) (equality
atoms are not reflected). A CQ q is tree-shaped if Gq is a directed tree and
r(x, y), s(x, y) ∈ q implies r = s. A tree CQ (tCQ) is a tree-shaped CQ with
the root the only answer variable and a tree UCQ (tUCQ) is a disjunction



of tree CQs. Every EL-concept can be viewed as a tree-shaped CQ and vice
versa; for example, the EL-concept A u ∃r.(B u ∃s.A) corresponds to the CQ
q(x) = ∃y, z A(x)∧ r(x, y)∧B(y)∧ s(y, z)∧A(z). We will not always distinguish
between the two representations and even mix them. We might thus write
∃r.q to denote an EL-concept when q is a tree-shaped CQ; if q(x) is as in
the example just given, then ∃r.q is the EL-concept ∃r.(A u ∃r.(B u ∃s.A)). If
convenient, we also view a CQ q as an ABox Aq which is obtained from q by
dropping equality atoms and then replacing each variable with an individual (not
distinguishing answer variables from quantified variables). A rooted CQ (rCQ)
is a CQ q such that in the undirected graph induced by Gq, every quantified
variable is reachable from some answer variable. A tree-quantified CQ (tqCQ)
is an rCQ q such that after removing all atoms r(x, y) with x, y ∈ avar(q), we
obtain a disjoint union of tCQs. We call these tCQs the tCQs in q. For example,
q(x1, x2) = ∃y1, y2 r(x1, x2) ∧ r(x2, x1) ∧ r(x1, y1) ∧ s(x2, y2) is a tqCQ and the
tCQs in q are ∃y1 r(x1, y1) and ∃y2 s(x2, y2); by adding to q the atom r(y1, y2),
we obtain an rCQ that is not a tqCQ.

An OMQ Q = (T , Σ, q) is FO-rewritable if there is a first-order (FO) formula
ϕ such that A |= Q(a) iff A |= ϕ(a) for all Σ-ABoxes A. In this case, ϕ is
an FO-rewriting of Q. When ϕ happens to be a UCQ, we speak of a UCQ-
rewriting and likewise for other classes of queries. It is known that FO-rewritability
coincides with UCQ-rewritability for OMQs from (EL,CQ) [4, 6]; note that
equality is important here as, for example, the OMQ ({B v ∃r.A}, {B, r}, q)
with q(x, y) = ∃z(r(x, z)∧r(y, z)∧A(z)) rewrites into the UCQ q∨(B(x)∧x = y),
but not into an UCQ that does not use equality.

Example 2. We extend the TBox T1 from Example 1 to additionally describe the
hereditary nature of genetic defects:

T2 := T1 ∪ {Person u ∃hasParent.GeneticRiskPatient v GeneticRiskPatient}.

The OMQ Q′1 = (T2, Σfull, q1(x)) with q1(x) as in Example 1, is not FO-rewritable,
intuitively because it expresses unbounded reachability along the hasParent
role. In contrast, consider the OMQ Q2 = (T2, Σfull, q2(x)) where q2(x) =
∃y GeneticRiskPatient(x) ∧ hasDisease(x, y) ∧ Albinism(y). Even though q2 is
an extension of q1 with additional atoms, Q2 is FO-rewritable, with ϕ(x) =
q2(x) ∨

(
∃y Person(x) ∧ hasDisease(x, y) ∧ Albinism(y)

)
a concrete rewriting. a

We shall sometimes refer to the problem of (query) containment between
two OMQs Q1 = (T1, Σ, q1) and Q2 = (T2, Σ, q2); we say Q1 is contained in Q2

if A |= Q1(a) implies A |= Q2(a) for all Σ-ABoxes A and a ⊆ Ind(A). If both
OMQs are from (EL, rCQ) and T1 = T2 = T , then we denote this with q1 ⊆T q2.

We now introduce two more technical notions that are central to the con-
structions in Section 4. Both notions have been used before in the context of
ontology-mediated querying, see for example [16, 17]. They are illustrated in
Example 3 below.

Definition 1 (Fork rewriting). Let q0 be a CQ. Obtaining a CQ q from q0
by fork elimination means to select two atoms r(x0, y) and r(x1, y) with y an



existentially quantified variable, then to replace every occurrence of x1−i in q
with xi, where i ∈ {0, 1} is chosen such that xi is an answer variable if any of
x0, x1 is an answer variable, and to finally add the atom xi = x1−i if x1−i is an
answer variable. When q can be obtained from q0 by repeated (but not necessarily
exhaustive) fork elimination, then q is a fork rewriting of q0.

For a CQ q and V ⊆ var(q), we use q|V to denote the restriction of q to the
variables in V , that is, q|V is the set of atoms in q that use only variables from V .

Definition 2 (Splitting). Let T be an EL-TBox, q a CQ, and A an ABox.
A splitting of q w.r.t. A and T is a tuple Π = 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉,
where R,S1, . . . , Sn is a partitioning of var(q), r1, . . . , r` are role names, µ :
{1, . . . , `} → R assigns to each set Si a variable from R, ν : R→ Ind(A) assigns
to each variable from R and individual name from A, and the following conditions
are satisfied:

1. avar(q) ⊆ R and x = y ∈ q implies ν(x) = ν(y);
2. if r(x, y) ∈ q with x, y ∈ R, then r(ν(x), ν(y)) ∈ A;
3. q|Si

is tree-shaped and can thus be seen as an EL-concept Cq|Si
, for 1 ≤ i ≤ `;

4. if r(x, x′) ∈ q then either (i) x, x′ belong to the same set R,S1, . . . , S`, or
(ii) x ∈ R and, for some i, r = ri and x′ root of q|Si

.

The following lemma illustrates the combined use and raison d’être of both fork
rewritings and splittings. A proof is standard and omitted, see for example [17].
It does rely on the existence of forest models for ABoxes and EL-TBoxes, that is,
for every ABox A and TBox T , there is a model I whose shape is that of A with
a directed (potentially infinite) tree attached to each individual.

Lemma 1. Let Q = (T , Σ, q0) be an OMQ from (EL,CQ), A a Σ-ABox, and
a ⊆ Ind(A). Then A |= Q(a) iff there exists a fork rewriting q of q0 and a
splitting 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉 of q w.r.t. A and T such that the following
conditions are satisfied:

1. ν(x) = a, x the answer variables of q0;
2. if A(x) ∈ q and x ∈ R, then A, T |= A(ν(x));
3. A, T |= ∃ri.Cq|Si

(ν(µ(i))) for 1 ≤ i ≤ `.
Example 3. To illustrate the described notions, consider the following CQ.

q3(x) = ∃y1, y2, z Person(x) ∧
hasDisease(x, y1) ∧MelaminDeficiency(y1) ∧ causedBy(y1, z) ∧
hasDisease(x, y2) ∧ ImpairedVision(y2) ∧ causedBy(y2, z) ∧
GeneDefect(z)

It asks for persons suffering from two conditions connected with the same gene
defect. Let the ABox A consist only of the assertion OCA1aPatient(a). We extend
the TBox T2 from Example 2, as follows:

T3 := T2 ∪ { OCA1aPatient v Person u hasDisease.OCA1aAlbinism

OCA1aAlbinism v ImpairedVision uMelaninDeficiency

OCA1aAlbinism v ∃causedBy.GeneDefect }



Let Q = (T3, Σfull, q3(x)). It can be verified that A |= Q(a). By Lemma 1, this is
witnessed by a fork rewriting and a splitting Π. The fork rewriting is

q′3(x) = ∃y1, z Person(x)∧
hasDisease(x, y1) ∧MelaminDeficiency(y1) ∧ ImpairedVision(y1) ∧
causedBy(y1, z) ∧ GeneDefect(z)

The splitting Π = 〈R,S1, r1, µ, ν〉 of q′3 wrt. A and T3 is defined by setting

R = {x}, S1 = {y1, z}, r1 = hasDisease, µ(1) = x, ν = (x 7→ a)

It can be verified that the conditions given in Lemma 1 are satisfied. a

3 Tree-quantified CQs

We reduce FO-rewritability in (EL, tqCQ) to FO-rewritability in (EL,AQ) and,
making only very mild assumptions on the algorithm used for solving the latter
problem, show that rewritings of the OMQs produced in the reduction can be
transformed in a straightforward way into rewritings of the original OMQ. The
mild assumptions are that the algorithm produces a tUCQ-rewriting and that,
informally, when constructing the tCQs of the tUCQ-rewriting it never introduces
atoms ‘without a reason’—this will be made precise later.

Let Q = (T , Σ, q0) be from (EL, tqCQ). We can assume w.l.o.g. that q0
contains only answer variables: every tCQ in q with root x can be represented
as an EL-concept C and we can replace the tree with the atom AC(x) (unless it
has only a single node) and extend T with C v AC where AC is a fresh concept
name that is not included in Σ. Clearly, the resulting OMQ is equivalent to the
original one.

Let Q be an OMQ from (EL, tqCQ). We show how to construct an OMQ
Q′ = (T ′, Σ′, q′0) from (EL,AQ) with the announced properties; in particular,
Q is FO-rewritable if and only if Q′ is. Let CN(T ) and RN(T ) denote the set
of concept names and role names that occur in T , and let subL denote the set
of concepts that occur on the left-hand side of a concept inclusion in T , closed
under subconcepts. Reserve a fresh concept name Ax for every A ∈ CN(T ) and
x ∈ avar(q0), and a fresh role name rx for every r ∈ RN(T ) and x ∈ avar(q0). Set

Σ′ = Σ ∪ {Ax | A ∈ CN(T ) ∩Σ and x ∈ avar(q0)}
∪ {rx | r ∈ RN(T ) ∩Σ and x ∈ avar(q0)}.

Additionally reserve a concept name Ax∃r.E for every concept ∃r.E ∈ subL(T )
and every x ∈ avar(q0). Define

T ′ := T ∪ {CxL v Dx
R | x ∈ var(q0) and C v D ∈ T }

∪ {∃rx.C v Ax∃r.C | x ∈ var(q0) and ∃r.C ∈ subL(T )}

∪ {CyL v A
x
∃r.C | r(x, y) ∈ q0 and ∃r.C ∈ subL(T )}

∪ { u
A(x)∈q0

Ax v N}



where for a concept C = A1 u · · · uAn u∃r1.E1 u · · · u ∃rm.Em, the concepts CxL
and CxR are given by

CxL = Ax1 u · · · uAxn uAx∃r1.E1
u · · · uAx∃rm.Em

CxR = Ax1 u · · · uAxn u ∃rx1 .E1 u · · · u ∃rxm.Em
Moreover, set q′0 := N(x).

Example 4. Consider the OMQ Q = (T1, Σfull, q(x, y)) with T1 as in Example 1
and let q(x, y) the following tqCQ:2

q(x, y) = ∃z GeneticRiskPatient(x) ∧ hasDisease(x, y) ∧
Disease(y) ∧ hasDisease(x, z) ∧ Albinism(z)

We first remove quantified variables: all atoms that contain the variable z are
replaced by A∃hasDisease.Albinism(y), and the TBox is extended with the inclusion
∃hasDisease.Albinism v A∃hasDisease.Albinism. We then construct T ′1 , which we give
here only partially. The final concept inclusion in T1 is

GeneticRiskPatientx u Diseasey uAx∃hasDisease.Albinism v N,

representing the updated query without role atoms; for example, the concept
name Diseasey stands for the atom Disease(y). Among others, T ′1 contains the
further concept inclusions

∃hasDiseasex.HereditaryDisease v Ax∃hasDisease.HereditaryDisease

HereditaryDiseasey v Ax∃hasDisease.HereditaryDisease

where, intuitively, the lower concept inclusion captures that case that the truth
of the concept ∃hasDisease.HereditaryDisease is witnessed at y (the role atom
hasDisease(x, y) from q is only implicit here) while the upper concept inclusion
deals with other witnesses. a

Before proving that the constructed OMQ Q′ behaves in the desired way,
we give some preliminaries. It is known that, if an OMQ from (EL,AQ) has an
FO-rewriting, then it has a tUCQ-rewriting, see for example [6, 12]. A tCQ q is
conformant if it satisfies the following properties:

1. if A(x) is a concept atom, then either A is of the form By and x is the answer
variable or A is not of this form and x is a quantified variable;

2. if r(x, y) is a role atom, then either r is of the form sz and x is the answer
variable or r is not of this form and x is a quantified variable.

A conformant tUCQ is then defined in the expected way. The notion of confor-
mance captures what we informally described as never introducing atoms into
the rewriting ‘without a reason’. By the following lemma, FO-rewritability of the
OMQs constructed in our reduction implies conformant tUCQ-rewritability, that
is, there is indeed no reason to introduce any of the atoms that are forbidden in
conformant rewritings.

2 We only use here that T1 contains the concept ∃hasDisease.HereditaryDisease on the
left-hand side of a concept inclusion.



Lemma 2. Let Q be from (EL, tqCQ) and Q′ the OMQ constructed from Q as
above. If Q′ is FO-rewritable, then it is rewritable into a conformant tUCQ.

When started on an OMQ produced by our reduction, the algorithms pre-
sented in [12] and implemented in the Grind system produce a conformant
tUCQ-rewriting. Indeed, this can be expected of any reasonable algorithm based
on backwards chaining. Let q′ be a conformant tUCQ-rewriting of Q′. The corre-
sponding UCQ for Q is the UCQ q obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from q0 such that both x and y are answer variables. The answer
variables in q are those of q0. Observe that q is a union of tqCQs.

Proposition 1. Q is FO-rewritable iff Q′ is FO-rewritable. Moreover, if q′ is a
conformant tUCQ-rewriting of Q′ and q the corresponding UCQ for Q, then q is
a rewriting of Q.

The proof strategy is to establish the ‘moreover’ part and to additionally
show how certain UCQ-rewritings of Q can be converted into UCQ-rewritings of
Q′. More precisely, a CQ q is a derivative of q0 if it results from q0 by exchanging
atoms A(x) for EL-concepts C, seen as tree-shaped CQs rooted in x. We are
going to prove the following lemma in Section 4.

Lemma 3. If an OMQ (T , Σ, q0) from (EL, tqCQ) is FO-rewritable, then it has
a UCQ-rewriting in which each CQ is a derivative of q0.

Let q be a UCQ in which every CQ is a derivative of q0. Then the corresponding
UCQ for Q′ is the UCQ q′ obtained by taking each CQ from q, replacing every
atom A(x), x answer variable, with Ax(x0), every atom r(x, y), x answer variable
and y quantified variable, with rx(x0, y), and deleting all atoms r(x1, x2), x1, x2
answer variables. The answer variable in q′ is x0. Note that q′ is a tUCQ. To
establish the “only if” direction of Proposition 1, we show that when q is a
UCQ-rewriting of Q in which every CQ is a derivative of the query q0, then the
corresponding UCQ for Q′ is a rewriting of Q′.

4 Rooted CQs

We consider OMQs based on rCQs, a strict generalization of tqCQs. In this
case, we are not going to achieve a ‘black box’ reduction, but rely on a con-
crete algorithm for solving FO-rewritability in (EL,AQ). This algorithm is a
straightforward and not necessarily terminating backwards chaining algorithm
or a (potentially terminating) refinement thereof, as implemented in the Grind
system. We show how to combine the construction of (several) OMQs from
(EL,AQ) with a modification of the assumed algorithm to decide FO-rewritability
in (EL, rCQ) and to construct actual rewritings.

We start with introducing the straightforward backwards chaining algorithm
mentioned above which we refer to as bcAQ. Central to bcAQ is a backwards
chaining step based on concept inclusions in the TBox used in the OMQ. Let C



and D be EL-concepts, E v F a concept inclusion, and x ∈ var(C) (where C is
viewed as a tree-shaped CQ). Then D is obtained from C by applying E v F at
x if D can be obtained from C by

– removing A(x) for all concept names A with |= F v A;
– removing r(x, y) and the tree-shaped CQ G rooted at y when |= F v ∃r.G;
– adding A(x) for all concept names A that occur in E as a top-level conjunct

(that is, that are not nested inside existential restrictions);
– adding ∃r.G as a CQ with root x, for each ∃r.G that is a top-level conjunct

of E.

Let C and D be EL-concepts. We write D ≺ C if D can be obtained from C by
removing an existential restriction (not necessarily on top level, and potentially
resulting in D = > when C is of the form ∃r.E). We use ≺∗ to denote the reflexive
and transitive closure of ≺ and say that D is ≺-minimal with T |= D v A0 if
T |= D v A0 and there is no D′ ≺ D with T |= D′ v A0.

Now we are in the position to describe algorithm bcAQ. It maintains a set
M of EL-concepts that represent tCQs. Let Q = (T , Σ,A0) be from (EL,AQ).
Starting from the set M = {A0}, it exhaustively performs the following steps:

1. find C ∈M , x ∈ var(C), a concept inclusion E v F ∈ T , and D, such that
D is obtained from C by applying E v F at x;

2. find D′ ≺∗ D that is ≺-minimal with T |= D′ v A0, and add D′ to M .

Application of these steps might not terminate. We use bcAQ(Q) to denote the
potentially infinitary UCQ

∨
M |Σ where M is the set obtained in the limit and

q|Σ denotes the restriction of the UCQ q to those disjuncts that only use symbols
from Σ. Note that, in Point 2, it is possible to find the desired D′ in polynomial
time since the subsumption ‘T |= D′ v A0’ can be decided in polynomial time.
The following is standard to prove, see [12,15] and Lemma 5 below for similar
results.

Lemma 4. Let Q be an OMQ from (EL,AQ). If bcAQ(Q) is finite, then it is a
UCQ-rewriting of Q. Otherwise, Q is not FO-rewritable.

Example 5. Consider the TBox

T = {Person u ∃hasParent.GeneticRiskPatient v GeneticRiskPatient}

and let Q = (T , Σ,GeneticRiskPatient(x)) with Σ = {Person,GeneticRiskPatient}.
Note that the role name hasParent does not occur in Σ. Even though the set M
generated by bcAQ (in the limit of its non-terminating run) is infinite, bcAQ(Q) =
GeneticRiskPatient(x) is finite and a UCQ-rewriting of Q. a

The algorithm for deciding FO-rewritability in (EL,AQ) presented in [12] and
underlying the Grind system can be seen as a refinement of bcAQ. Indeed, that
algorithm always terminates and returns

∨
M |Σ if that UCQ is finite and reports

non-FO-rewritability otherwise. Moreover, the UCQ-rewriting is represented in a
decomposed way and output as a non-recursive Datalog program for efficiency



and succinctness. For our purposes, the only important aspect is that, when
started on an FO-rewritable OMQ, it computes (a non-recursive Datalog program
that is equivalent to) the UCQ-rewriting

∨
M |Σ .

We next introduce a generalized version bc+AQ of bcAQ that takes as input an

OMQ Q = (T , Σ,A0) from (EL,AQ) and an additional EL-TBox T min, such that
termination and output of bc+AQ agrees with that of bcAQ when the input satisfies

T min = T . Starting from M = {A0}, algorithm bc+AQ exhaustively performs the
following steps:

1. find C ∈M , x ∈ var(C), a concept inclusion E v F ∈ T , and D, such that
D is obtained from C by applying E v F at x;

2. find D′ ≺∗ D that is ≺-minimal with T min |= D′ v A0, and add D′ to M .

We use bc+AQ(Q, T min) to denote the potentially infinitary UCQ
∨
M |Σ , M

obtained in the limit. Note that bc+AQ uses the TBox T for backwards chaining

and T min for minimization while bcAQ uses T for both purposes. The refined
version of bcAQ implemented in the Grind system can easily be adapted to behave
like a terminating version of bc+AQ.

Our aim is to convert an OMQQ = (T , Σ, q0) from (EL, rCQ) into a set of pairs
(Q′, T min) with Q′ an OMQ from (EL,AQ) and T min an EL-TBox such that Q is
FO-rewritable iff bc+AQ(Q′, T min) terminates for all pairs (Q′, T min) and, moreover,
if this is the case, then the resulting UCQ-rewritings can straightforwardly be
converted into a rewriting of Q.

Let Q = (T , Σ, q0). We construct one pair (Qqr , T min
qr ) for each fork rewriting

qr of q0. We use core(qr) to denote the minimal set V of variables that contains
all answer variables in qr and such that after removing all atoms r(x, y) with
x, y ∈ V , we obtain a disjoint union of tree-shaped CQs. We call these CQs the
trees in qr. Intuitively, we separate the tree-shaped parts of qr from the cyclic
part, the latter identified by core(qr). This is similar to the definition of tqCQs
where, however, cycles cannot involve any quantified variables. In a forest model
of an ABox and a TBox as mentioned before Lemma 1, the variables in core(qr)
must be mapped to the ABox part of the model (rather than to the trees attached
to it). Now (Qqr , T min

qr ) is defined by setting Qqr = (Tqr , Σqr , N(x)) and

Tqr = T ∪ {CxR v Dx
R | x ∈ core(qr), C v D ∈ T }

∪ { u
C(x) a tree in qr

CxR v N}

where CxR is defined as in Section 3, and Σqr is the extension of Σ with all concept
names Ax and role names rx used in Tqr such that A, r ∈ Σ.

It remains to define T min
qr , which is Tqr extended with one concept inclusion for

each fork rewriting q of q0 and each splitting Π = 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉
of q w.r.t. Aqr , as follows. For each x ∈ avar(qr), the equality atoms in qr give
rise to an equivalence class [x]qr of answer variables, defined in the expected way.
We only consider the splitting Π of q if it preserves answer variables modulo



equality, that is, if x ∈ avar(q), then there is a y ∈ [x]qr such that ν(x) = y. We
then add the inclusion(

u
A(x)∈q
with x∈R

Aν(x)
)
u
(
u

1≤i≤`
∃rν(µ(i))i .Cq|Si

)
v N

It can be shown that, summing up over all fork rewritings and splittings, only

polynomially many concepts ∃rν(µ(i))i .Cq|Si
are introduced (this is similar to the

proof of Lemma 6 in [17]). Note that we do not introduce fresh concept names of
the form Ax∃r.C as in Section 3. This is not necessary here because of the use of
fork rewritings and splittings in T min.

Example 6. Consider query q3 from Example 3 and TBox T1 from Example 1.
Constructing Tq3 (thus considering q3 as a fork rewriting of itself) would add
concept inclusions like

Personx u ∃hasDiseasex.HereditaryDisease v GeneticRiskPatientx

The final concept inclusion added is the following, listing concepts needed at
x, y1, y2, and z that result in a match of q3:

Personx uMelaminDeficiencyy1 u ImpairedVisiony2 u GeneDefectz v N

When building the TBox T min
q3 , it is necessary to look for matches of q3 by a

splitting Π of a fork rewriting of q3 w.r.t. Aq3 and T1. We consider here the
splitting Π = 〈R,S1, r1, µ, ν〉 of the fork rewriting q′3 of q3 given in Example 3,
defined by setting

R = {x}, S1 = {y1, z}, r1 = hasDisease, µ(1) = x, ν = (x 7→ x)

For Π, the following concept inclusion is added to T min
q3 :

Personx u ∃hasDiseasex.
(
MelaminDeficiency u ImpairedVision u

causedBy.GeneDefect
)
v N a

It can be seen that when bc+AQ(Qqr , T min
qr ) is finite, then it is a conformant tUCQ

in the sense of Section 3. Thus, we can also define a corresponding UCQ q for Q
as in that section, that is, q is obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from qr such that x, y ∈ core(qr). The answer variables in q are
those of q0.

Proposition 2. Let Q = (T , Σ, q0) be an OMQ from (EL, rCQ). If bc+AQ(Qqr ,

T min
qr ) is finite for all fork rewritings qr of q0, then

∨
qr
q̂qr is a UCQ-rewriting of

Q, where q̂qr is the UCQ for Q that corresponds to bc+AQ(Qqr , T min
qr ). Otherwise,

Q is not FO-rewritable.



To prove Proposition 2, we introduce a backwards chaining algorithm bcrCQ

for computing UCQ-rewritings of OMQs from (EL, rCQ) that we refer to as bcrCQ.
In a sense, bcrCQ is the natural generalization of bcAQ to rCQs. We then show a
correspondence between the run of bcrCQ on the input OMQ Q from (EL, rCQ)
and the runs of bc+AQ on the constructed inputs of the form (Qqr , T min

qr ).

On the way, we also provide the missing proof for Lemma 3, which in fact is a
consequence of the correctness of bcrCQ (states as Lemma 5 in the appendix) and
the observation that, when Q = (T , Σ, q0) is from (EL, tqCQ), then bcrCQ(Q)
contains only derivatives of q0. The latter is due to the definition of the bcrCQ

algorithm, which starts with a set of minimized fork rewritings of q0, and the
fact that the only fork rewriting of a tqCQ is the query itself.

There are two exponential blowups in the presented approach. First, the
number of fork rewritings of q0 might be exponential in the size of q0. We expect
this not to be a problem in practice since the number of fork rewritings of
realistic queries should be fairly small. And second, the number of splittings can
be exponential and thus the same is true for the size of each T min

qr . We expect
that also this blowup will be moderate in practice. Moreover, in an optimized
implementation one would not represent T min

qr as a TBox, but rather check the
existence of fork rewritings and splittings that give rise to concept inclusions in
T min
qr in a more direct way. This involves checking whether concepts of the form

∃rν(µ(i))i .Cq′|Si
are derived, and the fact that there are only polynomially many

different such concepts should thus be very relevant regarding performance.

5 Experiments

We have extended the Grind system [12] to support OMQs from (EL, tqCQ)
and (EL, rCQ) instead of only from (EL,AQ), and conducted experiments with
real-world ontologies and hand-crafted conjunctive queries. The system can be
downloaded from http://www.cs.uni-bremen.de/∼hansen/grind, together with
the ontologies and queries, and is released under GPL. It outputs rewritings in
the form of non-recursive Datalog queries. We have implemented the following
optimization: given Q = (T , Σ, q0), first compute all fork rewritings of q0, rewrite
away all variables outside of the core (in the same way in which tree parts of the
query are removed in Section 3) to obtain a new OMQ (T ′, Σ, q′0), and then test
for each atom A(x) ∈ q′0 whether (T ′, Σ,A(x)) is FO-rewritable. It can be shown
that, if this is the case, then Q is FO-rewritable, and it is also possible to transfer
the actual rewritings. If this check fails, we go through the full construction
described in the paper.

Experiments were carried out on a Linux (3.2.0) machine with a 3.5 GHz
quad-core processor and 8 GB of RAM. For the experiments, we use (the EL
part of) the ontologies ENVO, FBbi, SO, MOHSE, and not-galen. The first three
ontologies are from the biology domain, and are available through Bioportal3.

3 https://bioportal.bioontology.org

http://www.cs.uni-bremen.de/~hansen/grind
https://bioportal.bioontology.org


TBox CI CN RN Min CQ Avg CQ Max CQ Avg AQ Aborts

ENVO 1942 1558 7 0.2s 1.5s 7s 1s 0

FBbi 567 517 1 0.05s 0.5s 3s 0.3s 0

MOHSE 3665 2203 71 2s 10s 40s 6s 0

not-galen 4636 2748 159 6s 9s 28s 25s 2

SO 3160 2095 12 1s 19s 2m23s 4s 1

Table 1. TBox information and results of experiments

q1(x, y) = Patient(x) ∧ shows(x, y) ∧ Endocarditis(y)

q2(w, x, y, z) = Doctor(w) ∧ hasPersonPerforming(x,w) ∧ Surgery(x) ∧
actsOn(x, y) ∧ Tissue(y) ∧ actsOn(x, z) ∧
InternalOrgan(z) ∧ hasAlphaConnection(y, z)

q7(x) = ∃y, z Protein(x) ∧ contains(x, y) ∧ Tetracycline(y) ∧
InternalOrgan(z) ∧ isActedOnSpecificallyBy(z, y)

q8(x) = ∃v, w, y, z Sulphonamide(v) ∧ serves(v, w) ∧ TumorMarkerRole(w) ∧
NamedEnzyme(x) ∧ serves(x,w) ∧ actsOn(x, z) ∧ Liver(z) ∧
TeichoicAcid(y) ∧ actsOn(y, z)

q10(x) = ∃y, z BodyStructure(x) ∧ isBetaConnectionOf(x, y) ∧ Brain(y) ∧
IntrinsicallyNormalBodyStructure(z) ∧ isBetaConnectionOf(z, y)

Fig. 1. Examplary queries used for experiments with TBox not-galen.

MOHSE and not-galen are different versions of the GALEN ontology4, which
describes medical terms. Some statistics is given in Table 1, namely the number
of concept inclusions (CI), concept names (CN), and role names (RN) in each
ontology. For each ontology, we hand-crafted 10 conjunctive queries (three tqCQs
and seven rCQs), varying in size from 2 to 5 variables and showing several
different topologies (see Fig. 1 for a sample).

The runtimes are reported in Table 1. Only three queries did not terminate in
30 minutes or exhausted the memory. For the successful ones, we list fastest (Min
CQ), slowest (Max CQ), and average runtime (Avg CQ). For comparison, the
Avg AQ column lists the time needed to compute FO-rewritings for all queries
(T , Σ,A(x)) with A(x) an atom in q0. This check is of course incomplete for
FO-rewritability of Q, but can be viewed as a lower bound. A detailed picture of
individual runtimes is given in Figure 2.

In summary, we believe that the outcome of our experiments is promising.
While runtimes are higher than in the AQ case, they are still rather small given
that we are dealing with an intricate static analysis task and that many parts of
our system have not been seriously optimized. The queries with long runtimes or

4 http://www.opengalen.org/

http://www.opengalen.org/
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Fig. 2. Runtimes for individual OMQs, showing only non-aborting runs.

timeouts contain AQs that are not FO-rewritable which forces the decomposed
algorithm implemented in Grind to enter a more expensive processing phase.

6 Conclusion

We remark that our approach can also be used to compute FO-rewritings of
OMQs from (EL,CQ) even if the CQs are not rooted, as long as they are not
Boolean (that is, as long as they contain at least one answer variable) and
an algorithm for query containment in (EL,CQ) is also available. This follows
from (a minor variation of) an observation from [5]: FO-rewritability of non-
Boolean OMQs from (EL,CQ) can be polynomially reduced to a combination of
containment in (EL,CQ) and FO-rewritability in (EL, rCQ). As future work, it
would be interesting to extend our approach to UCQs, to the extension of EL
with role hierarchies and domain and range restrictions, or even to the extension
ELI of EL with inverse roles.
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