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1 DeMaCS, University of Calabria, Italy
fionda@mat.unical.it

2 Institute for High Performance Computing and Networking, ICAR-CNR, Italy
pirro@icar.cnr.it

Abstract. This paper investigates meta structures, schema-level graphs
that abstract connectivity information among a set of entities in a knowl-
edge graph. Meta structures are useful in a variety of knowledge dis-
covery tasks ranging from relatedness explanation to data retrieval. We
formalize the meta structure computation problem and devise efficient
automata-based algorithms. We introduce a meta structure-based rele-
vance measure, which can retrieve entities related to those in input. We
implemented our machineries in a visual tool called MEKoNG. We report
on an extensive experimental evaluation, which confirms the suitability
of our proposal from both the efficiency and effectiveness point of view.

1 Introduction

Knowledge Graphs (KGs) are becoming a common support in many application
domains including information retrieval, recommendation, clustering, entity res-
olution, and generic exploratory search. One fundamental task underpinning
these applications is the extraction of connectivity structures such as paths or
graphs between entities. At the data level, these structures reflect fine-grained
semantic associations like: K. Knuth award Turing Award award−1 John Hopcroft;
the abstraction of these structures by using schema information (e.g., typing, do-
main and range) allows to capture meta information (e.g., Scientist award Prize
award−1 Scientist). Most of current efforts focus on finding simple connectivity
structures like (meta) paths between a pair of entities [2, 17]. This has several
limitations: (i) paths are not enough to capture complex relationships; (ii) limit-
ing the input to a pair of entities does not allow to find refined associations both
at the data and schema level; (iii) enumerating paths is a computationally hard
problem. Recent approaches (e.g., [1]) focus on finding richer structures only but
do not report on their usage in knowledge discovery tasks (see Section 5).

In this paper we focus on meta structures, schema-level graphs that abstract
connectivity information among a set of entities in a knowledge graph. We study
the problem of both finding meta structures and computing meta structure-based
relevance and define: (a) efficient algorithms to isolate the subgraph connecting
the input entities without enumerating paths; (b) techniques to pick the most
relevant portion of this subgraph; (c) techniques to abstract data level information
into a meta structure; (d) relevance measures based on meta structures; (f) user
supports. The contributions of this paper are as follows:



• Automata-based algorithms to find a subgraph connecting a set of entities.
• Layered-Tuple-Relevance (LTR), a meta structure-based relevance measure.
• A visual tool called MEKoNG implementing our approach.
• An experimental evaluation, which shows the efficiency of our proposal both

in terms of running time and in concrete knowledge discovery tasks.

The goal of this paper is on the efficient computation of meta structures and
their usage for relevance computation; the effectiveness from the user point of
view of several types of connectivity structures has been investigated in [17].

Meta structures are useful in a variety of tasks ranging from finding/visualizing
connectivity among entities to recommender systems (e.g., by computing the
relevance between items already purchased and new items). In Section 1.1, we
describe an instantiation of our proposal in the MEKoNG tool, useful to both
discover entity relatedness and recommend related entities; other applications of
our framework (e.g., entity resolution) are considered in Section 4. The paper is
organized as follows. Section 2 describes the problem and the algorithms. Meta
structure-based relevance is discussed in Section 3. Experiments are discussed in
Section 4. We review related work in Section 5 and conclude in Section 6.

1.1 Running Example

We now illustrate MEKoNG, a tool that leverages the low-level services pro-
vided by our framework. We consider the tuple (A. Aho, J. Hopcroft, D. Knuth) as
input and focus on the following tasks: (i) retrieve and explore a meta structure
and its instances; (ii) retrieve the top-5 relevant entities.

Fig. 1 (a) shows a meta structure retrieved for this entity tuple; we can see
that it is a graph including three entities of type Scientist and two entities of type
Award. In particular, one of the scientist has been a doctoral student of a second
Scientist; note also that all three scientist share the same Award and that two of
them also share a second award. The level of expressiveness of this meta structure
goes beyond the expressiveness of its (meta) paths taken separately. In fact by
using meta paths only it would not have been possible to capture constraints
like the common Award. MEKoNG allows to explore a meta structure and its
instances giving insights about the relatedness among the input entities. This
is extremely useful in large KGs as it allows to find out previously unknown
knowledge that is of relevance and understand how it is of relevance. We can
see (Fig. 1 (b)) that the Award that the three Scientist share is the IEEE von
Neumann Medal and that D. Knuth and J. Hopcroft share the Turing Award.

Building upon meta structures, MEKoNG allows to assess entity relevance.
This occurs by replacing nodes in a meta structure with source entities and
picking one of the remaining nodes as target. In the example (see Fig. 1 (c))
A. Aho and J. Hopcroft are used as seed entities thus replacing the leftmost
Scientist nodes in Fig. 1 (a) and the target is the remaining Scientist. The top-5
more relevant entities, ranked according to the LTR relevance measure presented
in Section 3, are shown in Fig. 1 (d). The top relevant result is T. Hoare followed
by I. Sutherland. We can explain this ranking with the fact that LTR when using
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Fig. 1. The MEKoNG system.

the seed entities A. Aho and J. Hopcroft and the meta structure in Fig. 1 (a)
can both discover Award entities and take into account their specificity (i.e., how
many other scientists have a particular Award). I. Sutherland and T. Hoare are
ranked higher than, for instance, J. Ullman that share more awards, because the
former share the Turing Award with J. Hopcroft and this award is less common
than the ACM Fellowship shared with J. Ullman.

2 Discovering Meta Structures

In this section we introduce our approach to find meta structures. We start with
some preliminaries and formalize the problem in Section 2.1. Then, we introduce
algorithms to find a meta structure instance for an input tuple in Section 2.2.
In Section 2.3 we discuss how to abstract a meta structure instance.

2.1 Problem Formalization

A Knowledge Graph (KG) is a heterogeneous network where nodes are entities of
different types and edges model different types of semantic relationships. Yago,
DBpedia, and Freebase are a few examples of popular KGs available in the RDF
standard data format. Due to the generality of our approach, in what follows
we provide a general notation that models graph data. A KG is a directed node
and edge labeled graph G=(V,E) with two node mapping functions φi:V →Lv,
which assigns to each node a unique id and φt:V →2Ls , which assigns to each
node a set of types in Ls. An edge mapping function ϕ:E →Le associates to
each edge a type from Le. To structure knowledge, KGs resort to an underlying
schema, which is defined in terms of entity types and their links.

Definition 1 (Knowledge Graph Schema). Given a KG G and its mapping
functions φt:V →2Ls and ϕ:E →Le, the schema TG of G is a directed graph
defined over Ls and Le, that is, TG=(Ls,Le).

An example of KG schema is reported in Fig. 2 (a); it allows to abstract and
define data and their compatibility (e.g., fellow links Scientist and Association).
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Given a KG, a meta path is essentially an abstract data representation, which
uses schema information. Examples of meta paths are shown in Fig. 2 (b). Meta
paths can only capture simple relationship between entities, while meta struc-
tures, being modeled as graphs, allow to capture more complex relationships.
As an example, the meta structure in Fig. 2 (c), can model the fact that the
Association I1 is shared between the Scientists S3, S2, and the Award A1. This
aspect cannot be modeled by using the two meta paths in Fig. 2 (b). We now
introduce the notion of m-meta structure, which generalizes the notion of meta
structure, defined for a pair of entities [10], to a tuple of arbitrary length.

Definition 2 (m-Meta Structure). Given a KG schema TG=(Ls,Le) and an
entity tuple t = 〈e1, ..., em〉, an m-meta structure for t is a graph S=(N,M, Ts),
whereN⊆Ls is a set of entity type nodes,M a set of edges and Ts=〈T1, ..., Tm〉⊆N
is a set of entity types each corresponding to an input entity. For any edge
(u, v)∈M we have that (u, v)∈Le.

Definition 3 (m-Meta Structure Instance). An instance of anm-meta struc-
ture S=(N,M, Ts) for t = 〈e1, ..., em〉 on a KG G, is a subgraph s=(Ns,Ms)
of G such that there exists a mapping for s, hs:Ns→N satisfying the follow-
ing constraints: (i) for any entity v∈Ns its type hs(v)∈φt(v); (ii) for any edge
(u, v)∈(/∈)Ms we have that (hs(u), hs(v))∈(/∈)M .

The first goal of this paper is to tackle the problem of computing an m-
meta structure given a knowledge graph G, its schema TG and an input tuple
〈e1, ..., em〉. This goal can be formalized via the following general problem:

Problem: m-MetaStructureComputation
Input: A KG G, a KG schema TG, an entity tuple 〈e1, ..., em〉
Output: An m-meta structure S

To solve m-MetaStructureComputation we address two subproblems:
SP1, which focuses on building an m-meta structure instance s (Section 2.2);
and, SP2, which is about abstracting s by using the KG schema TG (Section 2.3).



2.2 SP1: Building m-Meta Structure Instances

In computing an m-meta structure instance for the input tuple t = 〈e1, ..., em〉,
our algorithm sets a horizon h; this parameter bounds the portion of the graph
considered where entities in t are connected. If one were not to limit the search
horizon, then paths connecting entities in t can potentially span over large por-
tions of G. These generic paths would be not informative as they fail to capture
the essential relationships between entities in t. Indeed, if a too large horizon is
considered then the whole G (more precisely, the connected component where
entities in t lie) can trivially become the sought m-meta structure instance.

In what follows, we refer to the problem of computing an m-meta structure
instance that connects the m entities in input as m-MetaStrInstComp. One
way to approach the above problem could be to compute paths of length at
most h interlinking the entities in t = 〈e1, ..., em〉 and then merging them to
obtain the m-meta structure instance. Some existing approaches (e.g., [2, 17])
obtain paths via SPARQL queries and then merge (a subset of) them according
to different strategies. From a computational point of view, materializing paths
and merging them is not an efficient choice. This is because the number of paths
can be exponential, thus requiring both exponential space (to store them) and
exponential time (to iterate over them). In what follows we give an algorithm
showing that m-MetaStrInstComp can be efficiently solved.

Proposition 4 m-MetaStrInstComp can be solved in time O(m× h× |G|)

To prove the above result, we provide an algorithm based on automata the-
ory. The algorithm encodes the input entity tuple t = 〈e1, ..., em〉 as a regular
expression having the form et=(•)∗/[e2]/.../(•)∗/[em−1]/(•)∗/[em]; here, • is a
wild-card, representing a generic edge label in Le and the notation [ei] encodes a
test, which checks whether an edge endpoint is equals to ei, one of the entities in
t = 〈e1, ..., em〉; such kind of regular expression can be represented via a NFA [5]
over the alphabet

⋃m
i=1{[ei]}∪{•} with state transitions occurring when finding

an input entity. We refer to this automaton as tuple automaton At (see Fig. 3).
The set of strings obtained by concatenating the edge labels of paths passing
through e1, ..., em are the set of strings generated by the language corresponding
to et and recognized by At.

qm�1qm�1q0q0 q1q1 qm�2qm�2

•• •• ••

[e2][e2] [e3][e3] [em][em][em�1][em�1]

Fig. 3. Tuple-automaton.

Base Algorithm. We are now ready
to present the algorithm to compute
the m-meta structure instance link-
ing entities in t = 〈e1, ..., em〉. The al-
gorithm includes two main steps: (i)
building a directed label graph G×At
(see Algorithm 1); (ii) filtering the
portion of the input KG G that should
not be part of the m-meta structure

instance identified in the first step (see Algorithm 3). The graph G×At is built
via the procedure reported in Algorithm 1 that performs an optimized Breadth-
First Search on the graph G, according to the automaton At.



Input : KG G, tuple t=〈e1, ..., em〉, horizon h
Output: G×At = (V ′, E′) /* marking of G with states of At */
1: At=buildTupleAutomaton(t) /* build the tuple automaton for the tuple t */

2: V ′={(e1, q0, 0)}; E′ = ∅ /* 0 is the starting depth and q0 the initial state of At */

3: toV isit=visited={(e1, q0, 0)}
4: while toV isit 6= ∅ do
5: (v, qi, d)= extract(toV isit) /* remove the pair inserted first */

6: for all 〈(v′, qj), p〉 in expandState((v, qi),G,At) do
7: if ((v′, qj , d+ 1) /∈ visited) and (d<h) and (|t|-j-1) <(h-d)) then
8: toV isit.add((v′, qj , d+ 1))
9: visited.add((v′, qj , d+ 1))

10: V ′=V ′∪{(v′, qj , d+ 1)}
11: E′=E′∪{((v, qi, d), p, (v′, qj , d+ 1))}
12: return G×At

Algorithm 1: buildMarkedGraph(G, t, l)

Input : node-state pair (v, q), KG G, tuple-automaton At

Output: 〈(node, state), edgeLabel〉 pairs L
1: L = ∅
2: for all (v, p, v′) ∈ G do
3: if (q, [v′], q′) ∈ At then
4: L.add(〈(v′, q′), p〉)

else L.add(〈(v′, q), p〉)
5: for all (v′, p, v) ∈ G do
6: if (q, [v′], q′) ∈ At then
7: L.add(〈(v′, q′), p−〉)

else L.add(〈(v′, q), p−〉)
8: return L

Algorithm 2: expandState((v, q), G, At).

Input : G×At: Marking of G with states of At

Output: s = (Ns,Ms) ⊆ G: m-meta structure Instance
1: toV isit = visited = {(em, qm−1, k) | (em, qm−1, k) ∈ G×At}
2: Ns = ∅, Ms = ∅
3: while toV isit 6= ∅ do
4: (v, q, d)= extract(toV isit)
5: Ns=Ns∪{v}
6: for all ((v′, q′, d− 1), p, (v, q, d)) in G×At do
7: Ns=Ns∪{v′}
8: Ms=Ms∪{(v′, p, v)}
9: if (v′, q′, d− 1) /∈ visited then

10: toV isit.add((v′, q′, d− 1))
11: visited.add((v′, q′, d− 1))
12: return s

Algorithm 3: filterMetaStructureInstance(G×At)

The first step is the construction of the tuple-automatonAt = 〈Q,Σ, q0, {qm−1}, δ〉
associated to et (line 1) and reported in Fig. 3; here, Q is the set of states, Σ



is the alphabet, q0 the initial state, {qm−1} is the set of final states, and δ the
transition function. The size of At linear in the size of the input tuple, that is,
|At| = O(m). At is used to build the labeled graph G × At whose nodes are a
subset of V ×Q×{0, ..., h}. G×At contains an edge from the node (v, q, d) to the
node (v′, q′, d+1) labeled with p ∈ Le (resp., p−) if, and only if: (i) G contains an
edge (v, v′) (resp., (v′, v)) labeled by p; (ii) the transition function δ contains the
triple (q, [v′], q′), and (iii) the node v has been visited at depth d. If δ does not
contain the triple (q, [v′], q′) then the edge from (v, q, d) to (v′, q, d + 1) labeled
with p ∈ Le (resp., p−) is added to G × At. The selection of the edges of G to
be traversed and the nodes/edges to be added to G× At is made at lines 6-11.
The function expandState (see Algorithm 2) (lines 3,6) drives the traversal of
the data graph according to the transitions of the automaton At.

Note that an early termination condition is implemented in Algorithm 1 line
7 by: (i) limiting the horizon of the traversal to h and (ii) stopping the traversal
in advance as soon as some node is reached at a depth that does not allow to
reach all the remaining entities of the input tuple. Indeed when the state qj is
reached, it is necessary to perform at least m-1-j additional traversals to reach
the final state, and thus the entity em. It is easy to see that the size of G × At
is linear both in the size of G, the size of the tuple-automaton and the horizon
h, i.e., |G×At| = O(|G| × |At| × h) = O(|G| ×m× h).

Lemma 5 There exists a path of length at most h connecting e1 to em in G
and passing, in order, through e2, ..., em−1, if, and only if, there exists a path
from (e1, q0, 0) to (em, qm−1, l) in the graph G×At such that l ≤ h.

By leveraging the above property, Algorithm 3 uses G× At to build the m-
meta structure instance s. The idea is to start with an empty m-meta structure
instance and navigate G × At backward (from (em, qm−1, l) to (e1, q0, 0)) by
adding nodes and edges to s (lines 5, 7 and 8). Each node and each edge of
G×At (in the opposite direction) is visited at most once with cost O(|G×At|) =
O(|G| × |At| × h) = O(m× h× |G|). Thus, the total cost, when also considering
the cost of building G×At, is O(m× h× |G|)

The above algorithm uses a horizon h to only consider paths of length at
most h interlinking the entities in t. We now discuss a variant, which introduces
a generic top-k path filtering mechanism based on an edge weighting function.

Edge weighting function. To filter the m-meta structure instance found by the
base algorithm described above we use an approach that assigns to each edge
label a weight. Weights can be assigned according to several strategies; in this
paper we use informativeness, and specifically we build upon the notion of In-
verse Triple Frequency (ITF) introduced and evaluated in our previous work [16].
Basically, the less frequent an edge label is the more it is informative thus get-
ting a higher weight. More formally, for an edge label p in G we have that

ITF(p,G) = log |E|
|E|π(p)

, where |E|π(p) is the number of statements in G where

p appears. Note that ITF values can be precomputed offline. Since our top-k
algorithm works by extracting minimum cost paths, we assign lower ITF values
to more informative edge labels.



Input : G×At: Marking of G with states of At, integer k
Output: s = (Ns,Ms) ⊆ G: m-meta structure Instance
1: H = [] /* Heap used to store prioritized paths */
2: Ns=Ms=∅
3: for all (v, q, i) in G×At do
4: count(v,q,i)=0 /* number of times a node (v, q, i) in G× At is visited */

5: P(e1,q0,i) = {(e1, q0, i)}
6: H.add(P(e1,q0,i),0) /* the initial total weight of the path is 0 */

7: while H 6=∅ and
∑

i count(em,qm−1,i) < k do
8: (P(v,q,i),C)=H.extractMinCost() /* extract the path with minimum cost C */

9: count(v,q,i) = count(v,q,i) + 1
10: if v = em and q = qm−1 then
11: s.add(P(v,q,i))
12: else if count(u,q,i) ≤ k then
13: for all ((v, q, i), p, (v′, q′, j)) in G×At do
14: if (v′, q′, j) /∈P(v,q,i) then
15: P(v′,q′,j)=concatenatePath(P((v,q,i))((v, q, i), p, (v

′, q′, j)))
16: H.add(P(v′,q′,j),C + ITF(p,G) /* insert the path */

Algorithm 4: selectTopK(G×At, k)

Edge Weight Based Algorithm. We describe a variant of the base algorithm that
exploits edge label informativeness. After building the m-meta structure instance
via the base algorithm, selectTopK (Algorithm 4) is used to build the top-k m-
meta structure instance as the graph obtained by considering the top-k most
informative paths between (e1, q0, 0) and (em, qm−1, l) (line 11). Algorithm 4 is
an adaptation of Eppstein’s algorithm [3] to find k shortest paths in a graph,
where each node can be visited at most k times.

Lemma 6 Algorithm 4 runs in O(|edges(G × At)| + k × |nodes(G × At)| ×
log |nodes(G× At)|) = O(k ×m× h× |G| × log(m× h× |G|)) where nodes(G)
is the set of nodes in G and edges(G) the set of edges.

2.3 SP2: Abstracting Meta Structure Instances

The second step to solve the m-MetaStructureComputation is the abstrac-
tion of an instance s into an m-meta structure S by using the KG schema TG. We
considered typing information (the type) of the nodes in the m-meta structure
instance. Existing methods (e.g., [12, 21]) often assume that each node in a KG
G belongs to exactly one class; hence, to abstract s it is enough to substitute to
each node in s its class. However, in complex and real KGs, nodes can belong to
multiple classes. Hence, our approach assign to each node in s the Lowest Com-
mon Ancestor (LCA) of all its types in the type hierarchy. We also considered
another strategy based on the domain and range of edge labels. Given a node
n∈s, we consider all its incoming and outgoing edges; then, by considering their
range and domain, we obtain a set of types. The type of n in the meta structure
S will be the LCA of the types in this set.



3 Meta Structure Based Relevance

This section outlines an m-meta structure-based relevance measure called Lay-
ered Tuple Relevance (LTR). Given a KG G=(V,E) and an m−meta structure S
including Q nodes, the relevance between a tuple including at most Q-1 distinct
entities and a target entity eQ is defined as follow:

R[(e1, e2, ..eQ−1), eQ | S] =
∑

s instance of S

f [(e1, e2, ..eQ−1), eQ | s]

where f is a relevance measure and s is an instance of the m-meta structure S
(see Definition 3). One basic form of R would be to simply count the number of
instances that the tuple (e1, e2, ..eQ−1) and the target entity eQ share; f would
simply return 1 for each instance s of S matching the tuple (e1, e2, ..eQ). For
instance, R[(A. Aho, J. Hopcroft),D.Knuth | S] where S is shown in Fig. 1 (a)
gives 11 instances; apart from the Turing Award, shown in the instance in Fig. 1
(b), there are 10 more awards, among which the Faraday Medal and Kyoto Prize.
Other entities that are relevant to the input tuple (A. Aho, J. Hopcroft) are I.
Sutherland, J. Ullman and T. Hoare, for which there are 16, 12, and 9 instances,
respectively. Using count leads to biased results for two main reasons: (i) count
is not bound, so it is difficult to have an objective way of interpreting relevance;
(ii) count favors popular objects, as objects with large degrees lead to a larger
number of instances. LTR is bound between 0 and 1 and takes into account the
specificity of m-meta structure instances in the relevance assessment.

LTR splits a m-meta structure S in two parts Sl and Sr. Sl considers the
subgraph of S obtained by removing the node where the target entity eQ is
mapped and its edges; besides, in Sl the Q-1 entities in input are used in lieu
of their types. Sr only retains the node (i.e., the type) where eQ is mapped
and its immediate neighbors. Splitting S in this way models the fact that we
are interested in the relevance between at most Q-1 entities whose structural
information is captured by Sl and a target entity eQ whose structural information
is captured by Sr. We sketch the rationale behind LTR via an example.

Consider the m- meta structure St in Fig. 1 (a) including Q=5 nodes. We are
interested in measuring the relevance between the pair A. Aho (aa), J. Hopcroft
(jh) and an instance et of Scientist (i.e., S3 in Fig. 4), that is,RLTR[(aa, jh), et | St] =∑
s LTR[(aa, jh), et | s] with s being an instance of St. Here, we are instantiating

2 out of the 4 possible nodes in the m-meta structure. Although in this example
we focus on aa and jh we may use any pair of entities (or tuple of at most 4
entities) that conform to the m-meta structure in Fig. 1 (a). Fig. 4 (a) shows Sl
(dotted blue line) and Sr (dotted orange line) while Fig. 4 (b) shows instances of
both Award and Scientist; entities for the relevance assessment are instances of
the node S3. LTR leverages the tree structure shown in Fig. 4 (c). The root (level
0) is Sl and is used to start the traversal of the KG by creating at level 1, for
each possible pair of instances of A1 and A2, a new child node; anecdotally there
are 10 children in this example; IEEE J. von Neumann Medal and Turing Award,
are examples of instances of A1 and A2, respectively. Each child node gives a new
instance of the (sub)-meta structure Sl. For each mapping a1 and a2 of A1 and
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A2, a new child node is created at level 2 by instantiating these mappings into
Sr. Leaves (level 3) are created by instantiating into S3 the instances s1, ...,sk
obtained again by traversing the KG (level 2). As an example, for the leftmost
node at level 2, S3 has p instances and thus the corresponding subtree has p
leaves. Note that level 1 and level 3 contain data triples only, while level 0 and
level 2 have the placeholders A1, A2 and S3, respectively. These can be basically
treated as variables with a typing constraint (e.g., S3 is a Scientist). The rele-
vance between the pair (aa, jh) and a target entity et is computed starting from
the leaves of the tree (level 3) and checking for each leaf whether et appears. As
an example, if et=s3, the second leftmost leaf and the central leaf from the right
hand side subtree receive a value 1; all the others receive 0. Relevance is assessed
via equation 1, where Ni is the number of nodes at level i, Nn is the number of
nodes in the subtree rooted at n (excluding n), and Nn|1 is the number of nodes
in the subtree rooted at n having value 1 (excluding n).

RLTR =

∑
n∈level2Θ(n)

N1
with Θ(n) =

Nn|1

Nn
(1)

When traveling up the tree starting from the leaves, each node n at level
2, receives the value Nn|1/Nn. Relevance is computed at the root by summing
values of nodes at level 2 and dividing by the number of children at level 1.
This guarantees that target entities sharing with the other entities of the tuple
less frequent objects (i.e., an Award ai) are ranked higher. Hence, we have that
differently from the count based relevance measure, T. Hoare is ranked higher
than J. Ullman because he received the T. Award, which is a less common than the
ACM Fellowship shared with J. Ullman. In Section 4.2 we will show the usefulness
of LTR in a variety of knowledge discovery tasks.



4 Implementation and Evaluation

We implemented the algorithms in Java and the interface of MEKoNG in Java
FX. The algorithm to compute and abstract m-meta structures discussed in Sec-
tion 2 works in main memory whereas the LTR measure has been implemented
by using a combination of Java code and SPARQL queries. We considered dif-
ferent KGs in our experiments; (i) DBLP: the dataset described in Huang et
al. [10], which contains ∼50K nodes and ∼100K edges and includes four types
of entities (Paper, Author, Venue, Topic); (ii) YAGO: Yago core, which consists
of 5M edges, 125 types and ∼2M nodes having ∼365K types; (iii) DBpedia: a
subset including ∼2M nodes and ∼5M edges obtained from classes such as Per-
son, Location, and City. For the experiments about relevance (Section 4.2) the
full datasets have been accessed via their SPARQL endpoints. Experiments have
been performed on a MacBook Pro with a 2.8 GHz i5 CPU and 16GBs RAM.
Results are the average of 5 runs. We abstract m-meta structure instances using
the LCA of the types of each entity.

4.1 Efficiency

To test efficiency we used increasing subsets of Yago (from 1.5M of edges to
the full dataset) and the full DBLP. Entities are randomly chosen for each run.
Fig. 5 (a) reports the average running time when varying the number of input
entities ne w.r.t. the depth spanning from ne-1 to 6.
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Fig. 5. Results about efficiency.



We observe that in general the running time does not strictly depend on the
size of the dataset; it actually depends from the size of the input tuple with lower
values being responsible for higher running times. The reason is that the early
stopping condition in Algorithm 1 (line 7) is satisfied more frequently when
the number of input entities increases (for a given depth). Fig. 5 (b) reports
the average running times when varying the depth d of the traversal w.r.t. the
number of entities spanning from 2 to d+1. The running time increases with
the depth (as one would expect); it reaches its maximum value for the subset of
Yago including 3M of edges. Fig. 5 (c) reports the size of results as a function
of the depth of the traversal. The size is measured as the % of the triples in
the whole dataset that belong to the m-meta structure discovered. We note that
the higher the depth the larger the m-meta structure discovered. Nevertheless,
the size always remains below 10%. Results for depth equals to 2 and 3 are not
reported as they approach zero.

As for the algorithm that considers top-k paths only, Fig. 5 (d) reports the
average running times as a function of the depth d of the traversal for a fixed k
w.r.t. the number of entities spanning from 2 to d+1. Running times are higher
than those in Fig. 5 (b) since the algorithm requires a further step to find the top-
k most informative paths. In particular, for depth equals to 6 the running time
is ∼35sec (it was 25sec. without the application of the top-k algorithm). Using
the top-k algorithm allows to obtain significantly smaller and more understand-
able m-meta structures As an example, for 3 entities and depth 6, the m-meta
structure instance on DBLP has 390 nodes and 928 edges when using the base
algorithm; the number of nodes is 10 and the number of edges is 11 when using
the top-k algorithm instead. On the whole Yago dataset, for the same depth and
number of entities, the number of nodes and edges is ∼8K and ∼15K, respec-
tively, for the base algorithm; these numbers become 8 and 10 for the top-k.
Running times for DBpedia are not reported since they showed similar trend to
that of Yago. Overall, the base algorithm is able to retrieve an m-meta structure
instance linking the input tuple in a reasonable amount of time (considering the
size of the dataset and the depth); however, the size of such m-meta structure
instance can become prohibitively large. On the other hand, the top-k requires
a slightly larger running time (with an increase of about 30% on average) but
allows to obtain smaller and more useful m-meta structure instances.

4.2 Effectiveness

We now compare the performance of LTR with the approach that count meta
structure instances (referred to as StrCnt) and SCSE and BSCSE [10]; SCSE per-
forms subgraph expansion (from a source entity) by restricting the traversal of a
KG to S) and BSCSE combines and generalizes StrCnt and SCSE. In this case we
consider tuples consisting of two entities. Fig. 6 reports some of the meta struc-
tures used to test the effectiveness of the LTR measure. Besides meta structures
we also considered (combinations of) some of their constituent meta paths.
Entity Resolution. We used LTR to identify entities in a KG that refer to the
same person. In order to construct the ground-truth, we used the entity tuple
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Fig. 6. Meta structures used in the experiments.

(Barack Obama, Republican Party, Presidency of Barack Obama) to obtain the
meta structure in Fig. 6 (a) using data from DBpedia. The meta structure tells
us that two entities of type Person (i.e., P1 and P2) are both married to the same
person P and member of the same Organization (i.e., O); Fig. 6 (a) also shows
(dotted lines) two meta paths P1 and P2.

By using this meta structure we obtained a set of 558 entity pairs; then, we
manually inspected these results to discover 124 pairs of entities that refer to the
same person (e.g., Barack Obama, Presidency of Barack Obama). As for Yago, we
used the ground-truth constructed by Huang et al. [10] including 44 positive pairs
and 2967 negative ones. The meta structure used in Yago is slightly different; it
uses marriedTo in lieu of spouse and affiliatedTo in lieu of party. We compared the
performance of LTR, StrCnt, SCSE, BSCSE on the two meta paths P1 and P2 taken
separately and their (optimal) linear combination. Results are shown in Table 1.
Using meta paths alone gives the lowest performance, while their combination
brings slightly better results on DBpedia. The reason is that meta paths fail in
capturing complex relationships that meta structures can capture using shared
nodes. StrCnt gave better results but it favors popular objects thus giving higher
relevance to pairs of entities sharing more meta structure instances. LTR performs
better as it is able to perform a deeper assessment of relevance by considering the
specificity of entities shared (e.g., P and O) in a meta structure. SCSE/BSCSE work
on main memory and could not handle DBpedia because of a memory overflow.
On Yago, the trend of results remains the same as DBpedia with LTR reporting
slightly lower performance than SCSE/BSCSE. We can explain this behavior by
the fact that SCSE/BSCSE perform a finer-grained layered structural analysis
of a meta structure; however, they assume that the meta structure itself is a
DAG. LTR does not impose this constraint and performs a higher level analysis
by splitting a meta structure in two parts (see Section 3). Nevertheless, LTR

brings the following advantages over SCSE/BSCSE: (i) it can work on any existing
KG exposed via SPARQL, while SCSE/BSCSE require preprocessing and index
building/maintenance; (ii) it can work with arbitrarily-shaped meta structures
and not only DAGs; (iii) LTR is built given a tuple of entities while SCSE/BSCSE
assume meta structures are given.

Table 1. AUC for the Entity Resolution Experiment.

Dataset P1 P2 αP1+(1− α)P2 StrCnt SCSE BSCSE LTR

Yago 0.223 0.115 0.298 0.495 0.534 0.543 0.512

DBpedia 0.167 0.118 0.213 0.314 – – 0.498



Table 2. Top-5 relevant entities using different meta structures and source entities.

Meta Structure
S2 (Fig. 6 (b)) S2 (Fig. 6 (b)) S3 (Fig. 6 (c)) S3 (Fig. 6 (c))

Rank P1=Q. Tarantino P1=C. Eastwood C1= ISWC, Y=2010 C1= ISWC, Y=2016

1 H. Keitel S. Locke ESWC ESWC

2 S. L. Jackson K. Costner EKAW WWW

3 M. Madsen M. Freeman WWW JIST

4 T. Roth M. Hill Description Logics EKAW

5 U. Thurman J. Walter I-Semantics swat4ls

Ranking. We now discuss relevance in different domains. The meta structure
in Fig. 6 (b) models relevance with a person (P1) that has acted and directed
movies (M) where also acted a different persons (P2). The meta structure in
Fig. 6 (c) is used to asses relevance on DBLP based on the fact that authors (A)
have published two papers (P1 and P2) in two venues (C1, C2) in the same year
(Y). Table 2 reports the top-5 relevant entities for different source entities (i.e.,
instantiations of nodes in a meta structure).

As for S2, in DBpedia Q. Tarantino is highly related to H. Keitel and S. L.
Jackson. On Yago (full ranking not reported) we have that S. L. Jackson is ranked
higher than H. Keitel and that L. Bender enters the top-5. By changing the source
entities to C. Eastwood, on DBpedia we get S. Locke and then K. Costner while
in Yago (ranking not reported) we have M. Freeman ranked second and A. Her
entering the ranking. S3 uses two entities as source (a venue C1 and a year Y)
and retrieve the top-k most related venues (instances of C2). In 2010, ESWC is
the most relevant and I-Semantics is the least relevant according to the meta
structure S3. Interestingly, when changing year we can see that WWW becomes
more relevant and that JIST in included in the top-5. LTR offers a flexible way of
assessing relevance by allowing to fix a subset of entities in a tuple. Fixing two
entities allowed to obtain a more refined (venue-year-centric) ranking than fixing
only the venue. In this latter case the ranking would have been different: OWLED
would have entered the ranking in lieu of swat4ls. As an example, by using StrCnt

in 2016 we would have obtained BigData instead of swat4ls, although the latter
(Semantic Web Applications and Tools for Life Science) is clearly more relevant.
Overall, LTR coupled with meta structures offers flexibility in two respects: (i) it
can be applied in a variety of KGs thanks to its SPARQL-based implementation;
(ii) an arbitrary subset of nodes in a meta structure (e.g., a venue and a year)
can be chosen as a source for relevance wrt a target node (e.g., another venue).

5 Related Work

Connectivity Structures. The problem of finding connectivity structures in
graphs has been studied in different fields [19]. Hintsanen [9] focused on finding
the most reliable subgraph in a graph subject to edge and node failures. Ramakr-
ishnan et al. [18] focused on finding the most informative entity-relationship sub-



graphs in a given graph. A variant of this problem has been studied by Mendes
et al. [14]. Other approaches have focused on determining specific substructures
such as the minimum spanning tree or approximations (e.g., STAR [11]). Neither
the above approaches focus on finding meta structures (schema graphs) given
a tuple of entities nor on using meta structures for relevance computation. A
number of approaches (e.g., [2, 4, 6, 8, 17]) have reduced the problem of finding
paths (and meta paths) between entities to that of directly querying a KG by
fixing a maximum path length and then displaying/abstracting (a subset of) the
paths found. Beside the fact that these approaches neither focus on meta struc-
ture nor on relevance computation, their major drawback is that they require
to enumerate paths first. A few approaches focused on finding meta paths; Lao
et al [12] tackle this problem by using constrained random walks. AMIE [7] is a
system to mine association rules from KG. The difference with meta paths algo-
rithms, and with our meta structure finding algorithm, is that AMIE does not
find associations by taking into account the user input (i.e., a tuple of entities).
Meng et al. [15], focuses on meta paths while we focus on meta structures. A
recent approach [1] focuses on finding associations given a tuple of entities. Our
work differs in several respects: (i) we control the size of the subgraph linking the
input tuple by including top-k informative paths since this subgraph can be very
large and thus difficult to visualize (e.g., for relatedness explanation) and reuse
(e.g., for relevance computation); (ii) we do not focus on trees as meta structures
are graphs; (iii) we introduce a novel meta structure-based relevance measure
and show its usefulness in a variety of tasks. Overall, we tackle a more compre-
hensive problem: finding meta structures given a tuple of entities as input, meta
structure-based relevance, and user supports (via MEKoNG).
Relevance Measures. Several measures have been proposed to compute rele-
vance; examples include: (i) measure based on the graph structure (e.g., common
neighbors), Jaccards coefficient or based on random walks [12]; (ii) schema-based
measures based on meta-paths (e.g., [20]); (iii) Huang et al. [10] define relevance
based on meta structures. Our work differs from (i) in the fact that LTR lever-
ages schema information and from (ii) because we use meta structures instead of
meta paths. As for (iii), the underlying assumption that meta structures are al-
ready available may be not realistic for a number of reasons: manually defining
meta structures can be tedious and difficult when dealing with complex KGs
like Yago/DBpedia; and complex meta structures can be difficult to discover,
especially if this is done without automation. Our work is more comprehensive
as it deals with both meta structure finding and relevance computation. Finally,
differently from (i), (ii), and (iii) we focus on entity tuples and not just pairs.

6 Concluding Remarks and Future Work

We discussed an approach to compute meta structures combining an automata-
based algorithm and its variant, which considers the most informative top-k
paths. As our algorithm to find meta structures works in main memory, it cannot
deal with very large KGs. To address this limitation we plan to consider the



vertex-centric Gather Apply Scatter (GAS) paradigm [13] in the future. We
have shown how meta structure-based relevance is useful in a variety of task
(e.g., entity resolution, ranking). Our implementation of LTR, by a combination
of Java code and SPARQL queries, makes it readily available on any SPARQL
endpoint. Testing LTR in other domains is in our research agenda.
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